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Abstract

The aim of this study was to measure and classify spatial patterns in sensory cortical EEGs relating to
conditioned stimuli (CSs) in order to test the hypothesis, based on clinical reports, that cortical dynamics is
not continuous but operates in steps that resemble frames in a cinema. Recent advances in the application
of the Hilbert Transform to intracranial recordings of the EEG in animals have revealed markers for
repetitive phase transitions in neocortex at frame rates in the theta band. The frames were sought in
multichannel EEGs that had been recorded from 8x8 high-density arrays that were fixed on primary
sensory cortices of rabbits trained to discriminate visual, auditory or somatic conditioned stimuli with
reinforcement (CS+) or without (CS-). Localization of frames in EEGs was by use of a new index, He(t),
called "pragmatic information". Each spatial pattern was measured by the 64 scalar analytic amplitudes
from the Hilbert transform and expressed as a 64x1 feature vector specifying a point in 64-space.
Classification with respect to CS+/- was by calculation of Euclidean distances of points from centers of
gravity of clusters after preprocessing by nonlinear mapping. Stable spatial patterns were found in the form
of amplitude modulation (AM) of aperiodic waveforms that included all channels. The impact of a CS on a
sensory neocortex reorganized background EEG into two types of sequential patterns of coordinated
activity, initially local and modality-specific, later global. The initial stage of phase transitions required 3-7
ms. Large-scale cortical activity then reorganized itself repeatedly and reliably over relatively immense
cortical distances within the cycle duration of the center frequency of oscillation. The size, texture, timing,
and duration of the AM patterns support the hypothesis that these frames may provide the basis for
multisensory percepts (Gestalts).

Key words: beta-gamma EEG oscillations, cinematographic brain dynamics, chaotic itinerancy, field
theory, phase transitions, pragmatic information, spatial EEG patterns



1. Introduction

1.1. Field Theory, Phase Transitions and the Cinematographic Hypothesis

Wolfgang Köhler, a founder of Gestalt psychology through his meticulous behavioral studies in apes, came
to the following conclusion: "Our present knowledge of human perception leaves no doubt as to the
general form of any theory which is to do justice to such knowledge: a theory of perception must be a field
theory. By this we mean that the neural functions and processes with which the perceptual facts are
associated in each case are located in a continuous medium" [Köhler, 1940, p. 55]. Unfortunately, he then
mistakenly identified his perceptual fields with the electrical fields of the then newly discovered
electroencephalogram (EEG). Roger Sperry [1958] readily disproved this extension of his hypothesis, by
placing mica strips or silver needles in the visual cortex of trained cats and monkeys and showing that the
resulting distortions in electrical fields had negligible effects on behaviors involving the underlying
perceptual fields. Following this demonstration, and doubtlessly because of the baffling complexity of the
EEG, field theory and Gestalt theory were largely discredited among neurobiologists, who opted for
network models of brain function instead of field models, and who made the action potential the central
dynamical event in observing, measuring and interpreting brain function instead of the synaptic currents
underlying local field potentials and the EEG.

1.2. From new Techniques to new Advances

As noted by Robert Galambos (this volume) new advances stem from new techniques; for the EEG there
are two significant advances. One advance is provided by multi-channel EEG recording from arrays of
closely spaced intracranial electrodes giving high spatial resolution. The spatial power spectral density
(PSDX) is calculated by over-sampling from long linear arrays, from which the spatial Nyquist sampling
frequency is calculated, so that the fine textures of EEG spatial patterns can be resolved without aliasing
[Freeman et al., 2000; Freeman et al., 2003b]. EEG segments often have spatial patterns with chaotic
(aperiodic) carrier waves in the beta or gamma band that are spatially modulated in amplitude (AM) over
the cortex [Freeman, 2005]. Each pattern in EEG signals recorded with arrays of subdural electrodes can
be described by an Nx1 vector that specifies a point in N-space, where N is the number of electrodes (here
N = 64). Pattern similarity for purposes of classification can be evaluated by Euclidean distances between
points in N-space [Viana Di Prisco and Freeman, 1985; Barrie et al., 1996; Ohl et al., 2001].

The other advance is provided by use of the Hilbert transform to calculate the analytic phase and amplitude
[Barlow, 1993; Pikovsky et al., 2001]. This decomposition of the EEG can markedly improve temporal
resolution of both phase and amplitude, because the start and end points of successions of textured EEG
patterns can be measured. It turns out that each AM pattern also has a pattern of phase modulation (PM)
that provides a basis for defining precisely the stability of spatial coherence and synchrony [Freeman and
Rogers, 2002] and for estimating the spatial extent of diameters of the domains of synchronized
oscillations constituting the carrier waves [Freeman, 2003a, b].

1.2. 1. Frames, Wave Packets, and Spatial AM Patterns

These AM-PM field patterns are described as “wave packets” [Freeman, 1975/2004, 2000]. Those with
carrier frequencies in the gamma band recur at rates in the high theta band; those with carrier frequencies
in the beta band recur at rates in the low theta band [Freeman, 2005]. Together they provide for the
possibility of describing a cinematographic mechanism [Sacks, 2004] in support of cognitive operations,
by which successive frames of fields of activity form by phase transitions [Freeman, 2004b]. This
mechanism incorporates the three Principles set forth by Basar [this volume] and others [e.g., Kelso, 1995;
Bressler and Kelso, 2001; Tallon-Baudry, 2004]: oscillations supporting cognition, widespread coherence
and long-range correlation [Vitiello, 2001], and “whole-brain work” by supersynergy as distinct from



integrative brain function. The oscillations enable Köhler’s perceptual fields and Baars’ [1988] “cognitive
workspace”. Wave packets that form by phase transitions are also candidates for Fuster’s “cognits”,
Galambos’ RFUs, Bressler’s “large-scale network activity in cognition”, and Bullock’s new principles of
organization of spikes and slow potentials [all this volume]. The basic dynamics by which they form are
described by a hierarchical group theory of K-sets [Freeman, 1975/2004; Appendix 2.4 in Freeman, 2004b;
Kozma et al., 2003] modeled with nonlinear differential equations [Potapov and Ali, 2001] in accord with
Haken’s [this volume] theory of the order parameter and slaving principle. Measurements of wave packets
in the context of K-set theory provide the substance with which to specify the location, size, latency,
duration, carrier frequency, and related parameters [Freeman, 2004a,b] that are required to implement field
theories of brain function that are expressed both implicitly and explicitly by the reports in this volume.

The most critical evidence required for a field theory is provided by the classifiability of the AM patterns
of wave packets with respect to conditioned stimuli (CSs), because this behavioral correlation affirms the
cognitive significance of the patterns and validates the methods for extracting them from EEG data. The
data summarized in this report were recorded from high-density arrays (inter-electrode distance = 0.79
mm) of 64 electrodes surgically fixed onto the epidural surfaces of the sensory neocortices of rabbits
[Barrie et al., 1996]. Patterns were measured from the root mean square (rms) amplitudes after spatial low
pass filtering, which was necessary to minimize contributions from individual electrodes, in contrast to
spatial high pass filtering (Laplacians for EEG, SAM for MEG) necessary for localization. Broad temporal
band pass filtering was necessary to study aperiodic carrier waves, in contrast to narrow band pass filtering
commonly used to measure theta, alpha and gamma waves. The spatial AM patterns appeared in a
sequence of frames after arrival of each CS that the rabbits had been trained to discriminate under classical
reinforcement learning: CS+ with reinforcement and CS- without reinforcement. The method for
classification of EEG patterns with respect to CSs relied on the 64x1 feature vector of rms amplitudes for
each pattern to specify the location of a point in 64-space, in contrast to the techniques of PCA and ICA
commonly used to isolate local EEG signals. Similar AM patterns formed clusters of points in 64-space; 2
discriminated CSs gave 3 clusters, each with its center of gravity, one for each class of CS and the third for
the control background condition. Classification of an AM pattern was deemed correct when the Euclidean
distance to its center of gravity was shorter than the distance to the other centers of gravity. The patterns
were classified by stepwise discriminant analysis at better than chance levels with respect to CSs in rabbit
data from the olfactory bulb [Viana Di Prisco and Freeman, 1985; Freeman and Grajski, 1987; Grajski and
Freeman, 1989], and by Euclidean distance in data from the prepyriform, visual, auditory, and somatic
cortices [Barrie et al., 1996] and the auditory cortex of the gerbil [N = 18, Ohl et al., 2001].

1.2.2. Multicortical AM Patterns, global Synchronization, and Gestalts

Intermittent high rates of classification were also found in multicortical patterns formed by EEGs from five
mini-arrays fixed on the visual, auditory, somatic, entorhinal cortices and the olfactory bulb [Freeman,
Gaál, and Jornten, 2003c]. The goodness of classification was reduced by removal of the data from each
contributing brain area [Freeman and Burke, 2003], which demonstrated that the spatial patterns were
indeed simultaneous and multicortical. Measurement of the analytic phase relations among the five areas
showed that global patterns were accompanied by abrupt, transient increases in phase locking among the
five areas [Freeman and Rogers, 2003]. This result by the Hilbert transform sharpened the finding by time-
lagged correlation of zero-lag synchrony between pairs of cortices [Freeman, Gaál, and Jornten, 2003c] by
the improved temporal resolution.

In all studies the goodness of correct classification was significant in 1 to 4 peaks of high classification
rates after CS arrival. Maximal classification usually obtained in the first peak within 40-130 ms of CS
onset. The reduction in strength of classification in later peaks was attributed to variation in the latencies of
onset of frames in the 37-40 individual trials in each session, variation that Tallon-Baudry et al. [1996]
termed ‘jitter’. Only modest improvements in classification rates obtained by systematic variation of the



onset times of the samples from the sets of trials about the mean onset time across all trials [Freeman,
2003b], or by measurement of the spatial patterns of phase of the beta-gamma oscillations as markers for
the location of the AM patterns related to behavior [Freeman and Barrie, 2000], indicating that the AM
pattern is the primary property of the wave packet with respect to cognition, while its precise time of
occurrence, duration, and carrier frequencies are secondary properties, provided that the duration is long
enough to encompass at least three cycles of the main frequency [Freeman, 2003b].

1.2.3. Segmentation, Pragmatic Information, and Two Stages in Perception leading to Gestalts

The Hilbert transform is a time-domain transformation that shifts the phases of the components of a signal
by π/2 radians (90°) forward for positive frequencies and backward for negative frequencies. The original
signal, vj (t), which is the EEG of the j-th channel, j = 1,64, gives the real part of a complex function, aj (t),
and the  Hilbert transform of the EEG gives the imaginary part, uj (t):

aj (t) = vj (t) + i uj (t), (1)

where i is the square root of -1. The analytic amplitude of aj (t) is designated by Aj (t) and is given by the
square root of the sum of squares of the two parts,

Aj(t) = [ vj(t)
2 + uj (t)

2 ]0.5, (2)

while the analytic phase of a(t) is designated by Φ(t) and is given by the arc tangent of the ratio of the
imaginary and real parts:

Φj(t) = atan [uj(t) / vj(t) ]. (3)

The Hilbert transform was used to calculate the analytic amplitude of the EEG signals, Aj(t), j = 1,64 in the
beta and gamma bands [Freeman, 2004a] at each digitizing step. The set of amplitudes constituted a feature
vector, A2(t), which served as the vectorial order parameter of the relevant cortical area. The Euclidean
distance between successive points given by A2(t) in 64-space, De(t), approximated the rate of change in
the order parameter. Low values marked the stability of AM patterns, whereas epochs between AM
patterns gave high values of De(t).

De(t) = { 1/64 Σ [A2
j (t) - A

2
j (t-1)]2 }0.5                                 (4)

The amplitude at each step in each signal, Aj(t), was proportional to the density of the dendritic current
under each electrode causing an IR drop across the fixed extracellular tissue specific resistance, R. The
mean square of the 64 values gave A2(t). the average power from Ohm’s Law, I2R, which served as an
index of the mean rate of energy dissipated by a cortical neighborhood in sustaining the EEG.

A2(t) = 1/64 Σ A2
j (t), j = 1,64;                                   (5)

The ratio of these two parameters gave a method to locate the frames despite the jitter. AM patterns were
identified with high values of power and low values of change in order parameter. an index, He(t), that
Atmanspacher and Scheingraber [1990] called ‘pragmatic information’, He(t) was defined at each time step
as the ratio of the rate of change in dissipation of energy, as estimated by the square of the spatial
instantaneous mean analytic amplitude, A2(t), to the rate of change in the order parameter, De(t), as
estimated by the distance between successive points in 64-space:

He(t) = A2(t) / De(t)                                                     (6)

High values of He(t) occurred when the analytic amplitude rose and the rate of change in the spatial AM
pattern slowed, indicating an epoch with transmission at high intensity of a stable AM pattern. The
hypothesis was verified that AM patterns located at peak values of He(t) were optimally classified with
respect to CSs [Freeman, 2005]. The display of AM patterns at peaks of He(t) was facilitated by



preprocessing the data with Sammon’s [1969] method for nonlinear mapping [Barrie et al., 1999]. This
algorithm iteratively mapped the locations of points defined by feature vectors in 64-space into 2-space
for visual display, while preserving the relative distances between the points. After mapping the points
were labeled for graphic display. This technique gave unprecedented separation of AM patterns between
CS+ and CS- and also the sequences of AM patterns between stimuli and responses.

1.3. Segmentation by means of the Pragmatic Information Index

Prior evidence [Freeman and Barrie, 2000; Freeman and Burke, 2003; Freeman and Rogers, 2003]
suggested that from two to four epochs of high classification occurred on different trials. The present
results based on group clustering indicated that varying numbers of classification-related frames occurred
on individual trials, minimally two frames, and that the process of perception occurred in two stages,
with differences between CS+ and CS- trials. Furthermore, the earlier phase transitions triggered by
sensory input introduced frames that were localized to the primary sensory area to which the stimulus
was directed, occurred with relatively short latency and duration after CS arrival, had carrier frequencies
in the gamma band, and had recurrence rates in the high theta band. The later phase transitions that
occurred in association with CS input had longer latency and duration, had large diameters, appeared to
be multimodal, had carrier frequencies in the beta band and recurrence rates in the theta band, and
appeared to occur as often in the prestimulus recording epochs. It is these later beta wave packets, with
characteristics that differ from gamma wave packets [Kopell et al. 2000], that are proposed as candidates
for Baars’ “global work space”, Basar’s “whole-brain work”, Bressler’s [2004] “inferential constraints”,
Kelso’s (1995) “metastable states”, and Fuster’s “cognits” in cognitive function involving Gestalt
formation.

In summary, novel methods were used to record the EEG, to get the analytic signal, a(t), and to define
from the EEG the degree of order, its rate of change, and the rate of energy dissipation in the dynamics
of cortical areas. These methods provided unprecedented spatial and temporal resolution of neocortical
activity patterns during acts of perception that were well controlled by classical and operant conditioning
paradigms. The aim of the present report is to review briefly some of the evidence provided by these new
methods, and to show how this evidence can be used to address two outstanding questions in the cerebral
physiology of cognition: whether perception is based on continuous flows of neural activity or on
staccato stationary patterns that are demarcated by discontinuities corresponding to first order phase
transitions; and whether or not there are quantitative differences in the cognitive dynamics between the
earlier and later stages of perception between the onsets of CSs and CRs.

2. Methods

The methods of electrode array assembly, surgical implantation, training, data acquisition, and
preprocessing have been described [Barrie et al., 1996]. The data for each rabbit consisted of 37 to 40
trials with random alternation of CS+ and CS- presentations. Each trial lasted 6 s with onset of a CS at 3
s ending the control period and starting the test period. The 64 EEGs were analog filtered at 0.1 and 100
Hz, amplified 10K, digitized in 12 bits at 2 ms intervals, and stored in 37-40 blocks, each containing
3000x64 data points (2500x64 after temporal filtering owing to loss of 250 bins at each end of the trial
blocks).

The classification of EEGs with respect to CSs was by two methods. The first method was by the
nonselective Euclidean distance [Freeman and Burke, 2003]. A window of fixed duration, we, (32, 64,
80, 96 or 128 ms) was moved in steps equal to half the duration along the sets of 6 s trials. The temporal
mean of the square of the analytic amplitude at each time step T, Ak,j

2(T), over k = 1, we in the window,
specified the AM pattern as a 64x1 column vector and a point in 64-space. Similar AM patterns had
points close together forming a cluster. The trials were divided into even and odd numbered for training
and test sets. The centers of gravity were calculated for the training set. Classification at each window
time step was by calculating the distance of each point to the two centers of gravity; the classification



was ‘correct’ if the distance to the center of the known class was shortest. The two subsets were then
reversed in cross validation. Significance was determined by the binomial probability of that number of
correct classification could have happened by chance.

The classification by the second method depended on prior selection of segments by use of the index,
He(t), for pragmatic information. The mean square of the analytic amplitude over the window, we, after
summation (equation (4)) gave an estimate for the rate of free energy dissipation. The spatial SDA(t) of
A2(t) gave the order parameter. The Euclidean distance between frames, De(t) from the distance specified
by A(t) – A(t-1) (boldface indicating vectors), gave an estimate of the rate of change in the order
parameter (equation (5)). The pragmatic information index was given by the ratio: A2(t)/De(t) (equation
(6)). The seven steps required for extraction of the relevant feature vectors using He(t) and the techniques
of nonlinear mapping [Sammon, 1969; Barrie et al., 1999] for preprocessing prior to  multidimensional
classification have been illustrated [Freeman, 2005]. Labeling after mapping gave pair wise displays of
overlapping clusters of points. A line was drawn in the display plane that optimally divided the clusters,
and the % correct classification was calculated. All computations were done with a MATLAB 6.5
software package [Mathworks, Inc., Natick, MA]. Further details on techniques are given in the
Appendices of prior reports [Freeman, 2004a, b; 2005], including the use of classifier-directed tuning
curves [Fig. 3 in Freeman et al.,  2003a] to find the optimal spectral bands for spatial and temporal
filtering and the three parameters required for selection of segments of He(t): the threshold te for the
minimal value of He; the optimal width, we, for determination of analytic amplitude squared, A2(t); and
the minimal duration, me, of the segment demarcated by high He [Freeman, 2005]. Peaks for He were
located after setting a threshold value for te. A peak began when He(t) rose above te and ended when it
fell below te. The peaks that proved to be too brief to have informational value were removed by
application of me.

In previous studies each AM pattern was accompanied by a spatial pattern of phase modulation (PM)
having the form of a cone in the surface dimensions of the cortex (Freeman and Baird, 1987; Freeman
and Barrie, 2000). The cone provided a basis for estimating the diameter and duration of successive
cortical patterns of synchronous oscillations. Here the optimization of the parameter, we, served to
estimate the durations of the AM patterns that were located using He(t). An estimate of the diameters of
these classified patterns was obtained by fitting a cone to their analytic phase surfaces given by Φj(t), j =
1,64 [Freeman, 2004b, Appendix 2.2]. The conic basis function was fitted to the analytic phase surface
calculated at the time point of the maximal value of the mean A2(t) in each epoch determined by He(t).
The slope of the cone, γ, gave the phase gradient in radians/mm. The reciprocal of the gradient gave the
spatial wavelength in mm/cycle. Multiplying the wavelength by π/4 gave the diameter at half-power, d0.5,

d0.5 = π /4γ, (7)

which was adopted as a measure of the soft boundary condition for the interactive cortical domain that
sustained each AM pattern.



Results

3.1. Classification with respect to CS+/- Evaluated by Time-locked Stepped Window Method

The feature vectors in the collection from the window stepped across 40 trials were classified after band
pass filtering at three settings: high gamma (50-80 Hz), low gamma (30-50 Hz) and beta (12-30 Hz).
Very few wave packets were captured in the high gamma range, so it was dropped in further testing. Pass
bands for individuals varied from the normative values after classifier-directed optimization of the filter
settings with tuning curves [Freeman et al., 2003a]. The centers of gravity were calculated for the 10
CS+ trials and 10 CS- trials in the training set along with the distances from each point in the test set to
the two centers. Classification was by the shorter of the two distances. The classification was ‘correct’
when the test point for a CS+ (or CS-) point was closest to the training center of gravity for CS+ (or CS).
The training and test sets were reversed, and the calculations were repeated in cross validation.

The outcome was expressed as % correct (Fig. 1). The procedure was repeated at each window step for
the duration of the 6 s trials less the 250 ms at each end lost by FIR temporal filtering. The probability
that the level of ‘correct classification’ would occur by chance was calculated from the binomial
distribution for 37-40 trials in each trial set [Barrie et al., 1996]. The results for the visual, auditory and
somatosensory EEGs showed one significant peak in correct classification for segments in the gamma
band within 130 ms of CS onset (Figs. 1A and B), and two later peaks for steps after filtering in the beta
band (C).

3.2. Early Classification of CS+/- Feature Vectors Located by Pragmatic Information Index, He(t)

The hypothesis was tested that the AM patterns following CS+ arrival within the temporal epoch of 40-
130 ms post-stimulus would differ from those following CS- arrival, whereas the AM patterns in the pre-
stimulus epoch of –1000 to –200 ms preceding both CSs would not differ significantly. The distributions
of qualifying segments for the high and low gamma pass bands are shown in Figs. 2A and B. The
difference in lengths of the epochs of search was adapted to give approximately equal numbers of feature
vectors in the 4 groups, owing to the sparseness of qualifying segments for gamma activity in the control
period.

An example of the output of the nonlinear mapping algorithm (Fig. 3A) shows four clusters: control
before CS- ( ); control before CS+ (Δ); CS- (o); and CS+(*). For each cluster in the mapping plane a
center of gravity was calculated, and the SD of the cluster around that center was displayed by a circle.
The pairs of clusters were graphed separately (Figs. 4B-E) for clarity. A line was drawn in the display
plane between the clusters on the premise of linear separability. The % correct classification was
calculated from the number of points located on the same side of the line as the center to which the
points belonged, divided by the total number of points and multiplied by 100. This criterion was subject
to bias in small samples, so the further requirement was imposed that the total number of feature vectors
contributed by each CS had to be at least 75% of the total number of trials in the set for CS+ and CS- for
the separation to be significant. The level of significance was evaluated by applying the same test to
feature vectors collected in approximately equal numbers from the pre-stimulus control period.

The 4-way classification after nonlinear mapping illustrated in Fig. 3 gave the results listed in Table 1 for
the four pair-wise comparisons from 3 cortices in 10 subjects. Data were available for 4 auditory cortices
but only two visual cortices and three somatic cortices, so three replicates were included. A significance
level of p = .01 at 73% was adopted from the distribution of classification values from the pre-stimulus
period [CS+(0) vs. CS-(0)], comparable to that for the Euclidean distance method (Figs.1A and B).
Significant separation was found between all post-stimulus feature vectors in epoch (0), the pre-stimulus
period, and in epoch (1), the post-stimulus period: [CS+(1) vs. CS-(1) (B), CS+(1) vs. CS+(0) (C), CS-
(1) vs. CS-(0) (D)] for all subjects and areas.



______Fig. 1. Left The rates of % correct classification by the Euclidean distance method are shown for AM
patterns derived from the visual cortical EEG temporally filtered in three pass bands (A-C). These kinds of curves
gave optimal filter settings, estimates for epochs in which AM patterns were to be sought, and significance levels
for classification. Examples from the somatic and auditory cortices showed similar features.

Fig. 2. Right The same data as those giving the curves Fig. 1 for the visual cortex gave the CS+/- epochs
shown here that qualified for inclusion by the criteria established for high pragmatic information, He(t), in three
temporal pass bands (A-C). The high numbers of epochs found in the low pass band for both control and test
periods suggest that the background activity that sustains the pre-stimulus state of expectancy and the post-stimulus
process of decision is conducted largely in the beta band. Comparable results were found in EEGs from the somatic
and auditory cortices [Freeman, 2005].



____________________________
______Fig. 3A. The multidimensional scaling technique of nonlinear mapping projects clusters from 64-space into
2-space while preserving the relative distances between all of the data points [Sammon, 1969]. The scales on the
ordinate and abscissa reflect normalization of the frames to z-scores. Four groups from CS+ and CS- trials were
specified in this example with the gamma pass band: 2 in the control period and 2 in the early test period. The
circles representing the standard deviations (SD) of the clusters were calculated in the display plane. Test groups
separated; control groups did not.

Fig. 3B-E. The % correct classification, gamma pass band, was evaluated by selectively plotting clusters in pairs
and drawing a line that gave maximal separation between the two pairs of feature vectors in the display plane on the
premise of linear separability. B.  Control period: CS+ (0) vs. CS- (0). C. Test period: CS+ vs. CS-. D. Control vs.
test: CS- (0) vs. CS- (1). E. Control vs. test: CS+(0) vs. CS+ (1).



Subsidiary aspects of the hypothesis failed in four respects. (i) The optimal frequency pass band was
predicted on the basis of results from nonselective classification (Fig. 1) to occupy the upper gamma
band (50-80 Hz). Four subjects conformed marginally (Table 1, marked #); the optimal pass band for the
other six was broad (20-80 Hz), giving better results than restriction to the lower gamma band (20-50
Hz). (ii) The predicted optimal width of the window, we, for the rms of the feature vectors was the width
of the peak in He(t) given by the threshold, te; instead by trial and error the average optimal value for we

was 85±27 ms. (iii) The expected minimal duration of the duration for exclusion was me = 80 ms on the
basis of prior results [Barrie et al., 1996]; instead me = 23±4 ms. In these respects the apparent
distributions of the information needed for classification of the feature vectors exceeded the narrow
spectral, temporal, and spatial limits given by localization of the maxima in He(t). (iv) EEGs from both
subjects with a visual cortical array (Figs. 1A and B) consistently had high concentrations of epochs with
high He(t) in the early post-stimulus epoch (40-130 ms), but one of three subjects with a somatic array
and three of five subjects with an auditory array (marked * in Table 1 and Table 6) did not.

Table 1. CS+ vs. CS-: pre-stimulus epoch (0) vs. first post-stimulus epoch (1): gamma band.

Epoch in ms -1000 to –200         40-130           160-400           500-900
Subject   t e    we   me   +0vs -0 +1vs -1 +0vs -1 +1vs -0

F152x10# 0.1    64    20 59 91 74 91
F152x12# 0.1    64    20 56 73 85 78
F9520x9# 0.1    64    12 63 87 80 80
F9520x10    2  128    12 72 87 80 83

Visual Avg 0.6   80    16 62 84 80 83

F528x2    5  128    40 55 89 89 89
L531x6*    4    64    20 62 68 83 86
F220x4# 0.5    48    14 66 85 87 78
F220x3*   9     96    10 60 69 91 84

Somatic Avg       4     84    21 61 78 88 84

F587x1   4  128    20 63 89 92 84
F553x3   2    64    10 52 78 86 91
L530x2# 0.3   64    20 59 79 83 77
L532x3*   4    64    20 69 74 82 83
F592x1*   7    64    20 64 74 83 86

Auditory Avg      4    77    18 61 79 85 84

Grand Ave   3    80    22  64 80 85 84
±SD   3    29      4   6   8   5   5



N = 40:  % correct > 68%, p < .05.   % correct > 73%, p < .01.
# Pass band 50-80 Hz; otherwise 20-80 Hz
*Absent alignment of epochs 40-130 ms post-stimulus (see Fig. 2)

3.3. Late Classification of CS+/- Feature Vectors Located by the Pragmatic Information
Index, He(t)

The hypothesis was proposed on the basis of results from the time-locked stepped window method
(Fig. 1) that three epochs of separable spatial patterns followed onset of the CS+ or CS- [Freeman,
2005]. The hypothesis was tested using nonlinear mapping with 6 groups: CS+ vs. CS- in epochs
(40-130 ms), (160-400 ms) and (500-900 ms). Two temporal frequency pass bands were used. The
upper pass band was 20-80 Hz for all cases. The lower temporal pass band was optimized for each
case by calculation of tuning curves [see Fig. 3 in Freeman et al., 2003a; and Fig 2A in Freeman,
2005]. The optimal thresholds te and he and the window we were sought by varying each +/- an
increment ~50% from an initial estimate in a 3x3x3 test set, with selection for further testing of the
combination of parameters giving the best separation. Examples are shown (Fig. 2, B and C) of the
distributions of qualifying segments for comparison with the results from the forced-step method
(Fig. 1).

The method of AM pattern classification exemplified for the 4-group case in Fig 3 was extended to
6 groups (Figs. 4 and 5). The results from nonlinear mapping of the pair-wise classification of
feature vectors in the 3 epochs are summarized in Table 2, showing significant separation of
feature vectors from CS+ vs. CS- in the first epoch (40-130 ms) but not in the later epochs. Those
epochs included 3 instances in which too few qualifying segments were found with which to
evaluate classification. In contrast, the lower frequency pass band (averaging 7-43 Hz) gave
optimal separation in epoch (500-900 ms) but less so in the earlier epochs. Those epochs also
included several instances in which too few segments qualified to permit evaluation of
classification (Table 3), which implied that the AM patterns being sought were scarce indeed.
Comparison with Table 2 showed in all cases that classification rates in the third epoch (500-900
ms) were higher for beta pass bands than for gamma pass bands. No significant differences were
noted among the three types of cortex in the later epochs, in contrast to the poor classification for
the somatic and auditory cortices in the earliest epoch marked by (*) in Table 1.



_
_______________Fig. 4A. Display of 6 groups in epochs (1)-(3) from beta pass band, with
breakdown by pairs of CS+/CS-. B. Epoch (1) (40-130 ms) C. Epoch (2) (200-400 ms). D. Epoch
(3) (600-900 ms). Optimized temporal pass band = 12-24 Hz; te = 2; we = 160 ms; me = 14 ms.



Fig. 5. The 6 groups shown superimposed in Fig. 4A are displayed in sequential pairs. A. CS-early
vs. mid epochs with significant separation. B. CS+ early vs. mid epochs, separation but too few for
significance. C. CS- mid vs. late epochs, no separation. D. CS+ mid vs. late epochs, separation
with maximal clustering in the middle epoch (2).

Table 2. CS+ vs. CS-: Classification in three post-stimulus epochs: gamma band.
                            Epochs in ms 40-130               160-400               500-900
Subject t e       we      me +1vs -1 +2vs -2 +3vs -3
F152x10            2       128     20 90 76 76
F152x12 2       128     20 94 74 71
F9520x9            2       128     20 85 58 59
F9520x10          2       128       6 85 77 75
Visual Avg 2       128     16 88 71 70

F528x2 5       128      20 88  84 65
L531x6 6         96      10 80 67 64
F220x4 9         96      20 82 85 57
F220x3              9       112      20 75 71 73
Somatic Avg     7       108      18 81 77 65

F587x1              3       128      10 76 62 few±3
F553x3 3       128      10 77 86 81
L530x2 5         96      10 84 75 77
L532x3 3        128     14 73 69 72
F592x1 7        128     12 87 79 57
Auditory Avg     4        122    14 79 74 72

Grand Avg          4        119    15 83 74 63
±SD  3           14      5   6   8   8
20-80 Hz: N = 40:   Correct > 68%, p < .05.   Correct > 72%, p < .01.



Table 3. CS+ vs. CS-: Classification in three post-stimulus epochs: beta band.
                          Epochs in ms   40-130               160-400                 500-900
Subject t e    we    me   pass band, Hz       +1vs -1 +2vs -2 +3vs -3
F152x10   5    128   60      4-40 few±1 81 78
F152x12   2    160   14   12-24 few+1 89 75
F9520x9   4    160   16    8-56 79 79 74
F9520x10   4    160   30      4-40 few±1 84 81
Visual Avg   4    152    28      7-40 few 83 77

F528x2 13    144    20       4-56 81  few-2 77
L531x6 13    160    20      8-24 93 76 81
F220x4 10    160    20      4-56 75 76 83
F220x3 15    192    20      8-24 88 78 76
Somatic Avg     13    164    20      6-40 84 77 79

F587x1   5    192    20    16-48 61 few+2 82
F553x3   4    160    22    12-56 62 few-2 82
L530x2 11    128    26      4-56 few-1 68 79
L532x3   5    128    30      4-40 74 72 75
F592x1 15    160    30      4-24 few+1 76 76
Auditory Avg   8 160 26   8-45 66 72 79

Grand Avg   8 156 25   7-42 76 78 78
±SD   5   21 12   4-14 12   6   3

Varied frequency: N = 40.   Correct > 68%, p < .05.   Correct > 72%, p < .01.

3.4. Classification of Temporal Sequences of Feature Vectors

The nonlinear mapping method enabled comparisons between sequential pairs of spatial
patterns within the CS+ and CS- trials. The same data set as that in Table 2 gave the
pairs in Table 4 from the 6 groups for [CS-(1) vs. CS-(2) vs. CS-(3) and CS+(1) vs.
CS+(2) vs. CS+(3)] in the epochs [40-130 ms; 160-400 ms; 500-900 ms]. Significant
differences were found sequentially for the CS- feature vectors in all cases from the
visual and somatic cortices and from 3 of 5 auditory cortices. Relatively few sequential
pattern differences were found for CS+ feature vectors from the later epochs in the
gamma frequency pass band, corresponding to the low rates of classification for CS+
vs. CS- in the later epochs (Table 2). The data set in Table 3 for the low frequency pass
band gave the sequential pair-wise differences shown in Table 5. Here the CS- feature
vectors in the first epoch (40-130 ms) were obscured by lack of adequate numbers for
classification, whereas for CS+ the discrimination between feature vectors in the
second (160- 400 ms) epoch and third (500-900 ms) epoch was more robust than that
between feature vectors in the gamma pass band (Table 4).

3.5. Calculation of Properties of AM Patterns derived from Qualifying Feature
Vectors

The durations of qualifying AM patterns were estimated from the optimized window
durations, we, in Tables 1, 2 and 3. The mean duration (80±29 ms) in the first epoch
(40-130 ms) was significantly less (p < .01) than that (156±21 ms) in the third epoch
(500-900 ms) by paired t-test, while the mean duration (119±14 ms) in the second
epoch lay between the extremes. The diameters were estimated from the half-power
diameter of a right cone that was fitted by nonlinear regression to the phase surface in
order to calculate the gradient of the cone [Appendix 2.2 in Freeman, 2004b] in
rad/mm. Phase values were calculated from the arctangent given by the ratio of the
imaginary to the real parts from equation (3) after the Hilbert transform at the time of



the peak in A2(t) from equation (5) within the qualifying epochs of He(t). A significant
increase in mean diameter was found (Table 6, p < .01 by a one-tailed paired t-test)
between AM patterns (21.0±9.9 mm) from in the first epoch (40-130 ms) to a mean
diameter (30.0±18.1 mm) in the third epoch (500-900 ms) with the mean diameter
(26.4±12.4 mm) from AM patterns in the middle epoch (160-400 ms) falling again
between the extremes. Previous measurements of phase cones from AM patterns in the
gamma frequency band (20-80 Hz) in these data [Freeman, 2003b] gave mean half-
power diameters, d0.5  = 15±3 mm, with minimal values d0.5 = 8±1 mm and 95%
inclusion d0.5 = 28±7 mm. In summary, the results showed that correctly classified AM
patterns increased in size (approaching the length and hemi-circumference of the
cerebral hemisphere), duration (approaching the temporal wave length of theta), and
carrier wave length (approaching from above the upper limit of the alpha range) as their
latencies increased from the times of onset of the CSs.

Table 4. Sequential feature vectors in 3 post-stimulus epochs: gamma band.

CS- CS+
Epoch 1st vs 2nd           2nd vs 3rd        1st vs 2nd         2nd vs 3rd
Subject -1vs –2              -2vs –3           +1vs +2          +2vs +3

F152x10 98  100 78 77
F152x12  100 73 69 73
F9520x9 73 83 64 77
F9520x10 73 83 63 71

Visual Avg 86 85 68 74

F528x2 89 84 80 76
L531x6 71 68 82 74
F220x4 77 94 75 86
F220x3 90 76 56 67

Somatic  Avg 82 80 73 76

F587x1 66 few-3 74 few-3
F553x4 86 62 85 76
L530x2 84 83 74 84
L532x3 69 81 75 73
F592x1 86 77 66 60

Auditory Avg 78 76 75 73

Grand Avg 82 80 72 74
±SD 11 10   8   7

Range 20-80 Hz   N = 40:   Correct ≥ 68%, p < .05   correct ≥ 72%, p < .01

___________________________



Table 5. Sequential feature vectors in 3 post-stimulus epochs: beta band.

Subject

F152x10
F152x12
F9520x9
F9520x10

Visual Avg

F528x2
L531x6
F220x4
F220x3

Somatic Avg

F587x1
F553x4
L530x2
L532x3
F592x1

Auditory Avg

Grand Avg
±SD

-1vs -2         -2vs -3            +1vs +2            +2vs +3

few-1 69 few+1 91
92 74 few+1 87
64 62 80 75
few-1 58 few+1 79

few 66 few 83

few-2 few-2 83 89
76 86 78 79
73 76 76 79^
64 70 88 70

71few 77few 81 79

63 65 few +2 76^
few-2 few-2 80 78
few-1 65 72 76
86 65 63 73
89 75 few+1 79

79few 68few 72few 76

76 70 78 79
12   8   8   6

N = 40:   Correct ≥ 68%, p < .05.   Correct ≥ 72%, p < .01.

^compare range 1 vs. range 3

A further test was conducted to determine whether the information in the data that served for classification
was concentrated in any smaller number than the set of 64 channels. As in prior studies [Freeman and
Baird, 1987; Barrie et al., 1996; Freeman and Burke, 2003] the test was conducted by randomly deleting
channels in varying numbers and repeating the classification test, while keeping an account of the
contribution by each remaining channel. With one exception the results of prior studies were replicated in
the present study; no channel was any more or less of value than any other, while the best classification
rate was achieved by using all available channels. The exception was that in a study of the auditory cortex
by Ohl, Deliano, Scheich and Freeman [2003], who found tonotopic specificity in the first classification
peaks, although not in later peaks.
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Table 6. Wave packet half-power diameters, d0.5, in mm.

Early   40-130 ms Mid 160-400 ms Late    500-1000 ms Late - Early
Subject N mean  ±SE N mean  ±SE N mean  ±SE diff. mm

F152x10 39 10.5   1.4 51 12.4   1.5 54 29.0   3.3   18.5
F152x12 35 13.3   2.2 34 10.1   1.1 61 11.8   1.1   - 1.5
F9520x9 33 13.7   2.4 42 12.5   1.4 54 14.0   1.4 0.3
F9520x10 31 14.8   1.8 34 12.6   1.9 41 17.6   2.2 2.8
Visual Avg 34 13.1   2.0 40 11.9   1.5 52 18.1   2.0 5.0

F528x2 24 12.5   1.3 25 17.9   4.9 55 18.7   2.3 6.2
L531x6* 27 42.8   3.4 52 41.2   2.4 58 84.0   7.6   41.2
F220x4 34 27.3   4.0 24 36.9   3.5 162 33.8   1.8 6.5
F220x3* 36 33.0   4.9 53 39.3   4.9   62 41.9   4.4 8.9
Somatic Avg  30 28.9   3.4 38 33.8   3.9   84 44.6   4.0   15.7

F587x1 21 17.9   3.2 30 23.2   2.9 47 21.9   1.7 4.0
F553x3 24 19.1   2.1 25 16.7   2.5 51 28.7   3.3 9.6
L530x2 28 15.6   1.7 19 17.6   2.9 160 22.1   1.4 6.5
L532x3* 39 33.0   2.9 21 30.5   2.8 71 38.9   2.8 5.9
F592x1* 39 19.0   2.1 33 44.1   5.1 73 28.3   2.6         9.3
Auditory Avg 30 20.9   2.4 26 31.1   3.2 80 28.0   2.4 7.1

Grand Avg 32 21.0 33 26.4 73 30.0 9.1
±SD [±SE]   5   9.9 [2.7] 12 12.4[5.0] 40 18.6 [5.2]   10.8   [3.0]

4. Discussion

4.1. Rational for the Study of AM Patterns

There are solid reasons to focus on spatial AM patterns of EEGs from high-density arrays. Numerous unit
studies in sensory and motor processing have confirmed that very many neurons cooperate in serial and
parallel networks to process sensory information into percepts [Abeles, 1991; Mehring et al., 2003] and
percepts into goal-directed actions [Houk, 2001; Kim et al., 2003]. Correlative studies of brain imaging by
EEG, MEG, fMRI and related techniques in perception have suggested that neural signals are quickly
amplified to scales of neural activity having the large sizes and long durations required to control and
operate the distributed motor machinery of the brain stem, spinal cord and body. The dendritic currents that
control the unit activity are the main sources of neocortical local field potentials (LFPs), EEG and MEG
after extracellular smoothing by spatial ensemble averaging over thousands or millions of cortical neurons.
The information necessary to identify the neural substrates of perception is expressed in the time and space
dimensions of neural activity; by far the largest information capacity is in the spatial domain, whether that
information is conceived to be expressed at the microscopic level in the intervals or rates of axonal pulse
trains in neural networks or at the mesoscopic level in the amplitudes of LFPs generated by the dendrites.
For both axonal and dendritic activities it is the relative intensities at multiple spatial locations and at
various carrier frequencies that constitute the textures of spatial AM patterns.

Evidence from clinical studies reviewed by Sacks [2004] conjoined with electrophysiological data from
animals [Freeman, 2004a, b] indicates that perception is “cinematographic”, meaning that spatial patterns
occur in discrete time steps separated by phase transitions, each with four stages: re-initialization of the
phase of beta-gamma oscillations over local and also very large areas within a few ms; re-synchronization
within a quarter cycle of the dominant wave length of the carrier wave; stabilization of the AM pattern (the
emergence of order) with little more than the duration of a cycle at the peak carrier frequency; and a
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marked increase in AM pattern intensity, all within 25-35 ms of phase  reset [Freeman, 2003b, 2004a,b].
The index He(t) for pragmatic information, which is defined as the ratio of the rate of free energy
dissipation to the rate of change in the order parameter, is well suited to match the conditions postulated
for maximal cortical impact on subcortical nuclei: high intensity, high synchrony, prolonged pattern
stability over large coherent areas of cortex lasting 3-5 cycles of the peak carrier frequency, and a capacity
for rapid discrete changes in both AM pattern and carrier frequency.

4.2. Caveats And Limitations

Use of the index He(t) to locate pointers to AM patterns substantially improved the rates of correct
classification over those achieved by the Euclidean distance method as applied across sets of CS+/- trials
with fixed time steps. The new method showed that the information needed to classify the feature vectors
representing AM patterns was not focal but was distributed around the He(t) pointers over space, time and
spectra. However, nonlinear mapping was an unsupervised search for optimal clustering that failed to
separate 4 to 6 groups well enough so that they did not overlap. There were no statistical confidence
intervals or criteria for identifying outliers and reducing their impact on the clustering. The technique used
in this study of linear separation in the plane of display to define clusters had the advantage of simplicity
and ease of interpretation, and it sufficed for present purposes, but there is no doubt that superior
classification will accrue with application of nonlinear methods. The sensitivities of the clusters to the
choice of number of groups and to varying limits on the epochs for search remain largely unexplored.
Ideally the sequential clusters in each frequency band, if the appropriate number can be restricted to 2 by
discriminative conditioning, should be treated as 2 multi-stage meta-patterns for each discriminated CS in
the dynamic process described by Tsuda [2001] as “chaotic itinerancy”; each presentation of a CS leads to
a succession of reproducible states, as suggested by the differences tabulated in Tables 4 and 5. One clear
need for improvement is classification of AM patterns measured simultaneously but selectively from
multiple optimized pass bands, instead of the present classification across all epochs in the same pass band.
That is a formidable computational problem.

4.3. Interpretation of AM Patterns in the Perceptual Process

The salient problem in perception is how to characterize the pre-stimulus background in two aspects. One
aspect concerns the repeated phase transitions that generate patterns of phase modulation in the form of
cones [Freeman, 2004b]. These phase cones are associated with chaotic distributions of amplitude, and
they have parameters of size and duration that conform to power law distributions. They appear to provide
for the conditional stability of neocortex in a state of self-organized criticality [Freeman, 2004a], yet they
have no detectable relation to specific, overt behaviors. Typically the animal subjects are motionless in
prior to CS onset. The other aspect is the on-going life of each subject, in which it is to be presumed that,
prior to CS arrival, each primary sensory cortex contributes to a brain state of selective attention that
consists of predictions of inputs the subject expects, each with some a priori likelihood of occurrence, and
that might become apparent by comparing the AM pattern sequences following CS+ (with expected action
to follow) vs. CS- (no post-stimulus action is expected).

The 1/f PSDs of neocortical EEG along with the fractal distributions of the parameters of overlapping
phase cones indicate that the neocortex in each cerebral hemisphere functions as a unified organ with
scale-free dynamics [Freeman, 2004a]. In such a conditionally stable state each hemisphere could
simultaneously generate multiple overlapping spatial AM patterns ranging in size from a few cortical
columns to an entire hemisphere. Transitions at any scale require only a few ms, leading to
resynchronization of beta-gamma oscillations that incorporate only a fraction of the total variance of the
EEG manifesting the activity at each location. The present analysis suggests that the arrival of an expected
CS+ induces formation of an AM pattern that is restricted in size to the pertinent primary sensory cortex in
several or all its parts, with brief duration and a carrier frequency in the gamma band. Some 500 ms later a
larger AM pattern follows that appears to include multiple sensory areas [Freeman et al., 2003c; Freeman
and Burke, 2003; Freeman and Rogers, 2003], with longer duration and a carrier frequency in the beta
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band. A third AM pattern may intervene with indeterminate size and frequency that may be a repetition or
misclassification of either of the other two types. In simultaneous EEG recording from multiple sensory
cortices the classifiable global AM patterns including all sites appear after 300 ms and not in the early
post-stimulus period [Freeman and Burke, 2003]. In contrast, a known CS- also induces an early, relatively
small and brief AM pattern with a carrier in the gamma band, but it is followed by a second AM pattern
still with a gamma carrier frequency and a pattern that clearly differs in texture but not in size or duration.
This second AM pattern may be related to response suppression rather than selection. A third AM pattern
with a beta carrier, long duration, and large diameter differs from that in CS+ trials in the late epoch,
perhaps only by earlier reversion to the inter-trial background state in contrast to performance of a
response.

By this scenario only the early epoch has topographical information and then only if the CS provides it.
The large diameter of AM patterns in cases marked by (*) in Tables 1 and 6 may have resulted from failure
of the array to capture for He(t) the putative local AM patterns in the early epoch. A likely explanation for
the high failure rate for classification of early auditory AM patterns was the tonotopic restriction of the
auditory CSs to 500 and 5000 Hz tones, which stood in contrast to the use of FM tones by Ohl, Scheich
and Freeman [2001], to the full-field weak and stronger flashes in vision, and to the relatively broadly
distributed air puff to the face or back for somesthesis. The arrays were surgically placed over the sensory
areas as described in the literature for the rabbit but without topographic testing with specific CSs prior to
fixation [Barrie et al., 1996]. In retrospect the more appropriate discriminanda would have been brief
sounds with broad spectra such as those of a raindrop vs. a breaking twig. This scenario seems plausible,
so it is offered as counterbalance to show that further analysis of EEG will require skills equally in
application of techniques in neurobiology, in digital signal processing, and in multisensory perceptual
conditioning.

In summary, new techniques for EEG analysis give new vistas on macroscopic brain dynamics that
combine the microscopic electrophysiological properties of cortical neurons during sensory information
processing and mesoscopic psychophysical properties of perception [e.g., Ricciardi and Umezawa, 1967;
Pribram, 1971; Fingelkurts and Fingelkurts, 2004] and the organization of action [Houk, 2001; Kelso,
1995; Vitiello, 2001; Bressler, 2004]. This new platform can provide the foundation needed to investigate
the cerebral dynamics of learning as the learning is actually taking place. “Neural activity in lightly or
moderately anesthetized animals is relatively quiet, regular, and even stately. It is most suitable for the
analysis of the basic topologies of connections, evaluation of fixed parameters, specification of state
variables and observables, identification of intrinsic and extensive degrees of freedom, etc. In the waking
animal the activity becomes more lively, especially in the presence of sensory stimuli and motivating
antecedents such as food deprivation. The activity comes dramatically to the foreground when the sensory
or electrical stimuli are directed into the system, from which the recordings are being made. Above all,
when the animal is in a state of learning with respect to the stimulus evoking the recorded activity, that
activity comes to seem cataclysmic. Great waves of potential roll off each stimulus at wildly fluctuating
frequencies as immense numbers of neurons in the telencephalic masses are brought to focus on the
primary cortex. Yet these waves are only the surface ripples of events within. When the full scope of the
neural event in learning is eventually brought to view, it will be an awesome spectacle, even as it occurs in
the brain of a mouse learning to run a maze for food. Hypotheses which express this phenomenon in terms
of Pavlovian switching circuits and coincidence detectors of pulse trains may logically be correct, but their
rectitude is that of the statement: ‘The brain is made of neurons.’ Of course that is true, but it is not the
whole truth” [p. 148 in Freeman, 1972].
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