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Chapter 1

Introduction

This thesis explores connections between computability theory and set theory. The bulk of
this thesis focuses on extending ideas and techniques from computability theory to higher
set-theoretic levels — higher reverse mathematics (chapters 2 and 3) and uncountable com-
putable structure theory (chapters 4, 5, and 6). We also look at applications of set theory to
computability theory, either by directly answering computability-theoretic questions via set-
theoretic considerations (chapter 8) or by bringing set-theoretic constructions into contact
with classical computability theory (chapter 7). Finally, we also look at results which stretch
from the computability-theoretic to the set-theoretic — specifically, determinacy principles
(chapter 2).

Below we give a summary of the results in this thesis. Each individual chapter is self-
contained, but background knowledge in set theory and computability theory is helpful; we
recommend [35] and [13] respectively, whose notation we follow. Small amounts of proof
theory (conservative extensions) and basic model theory (o-minimality) appear in chapters
2 and 4, but are covered as needed, and we assume no background outside of a standard
introduction to mathematical logic such as [50].

1.1 Higher reverse mathematics

In the first part of this thesis, we look at higher reverse mathematics — roughly speaking, the
study of the effective content of theorems of mathematics which cannot easily be expressed
in the language of second-order arithmetic. Chapter 1 — which consists of work published
as “Transfinite recursion in higher reverse mathematics” [68] — gives an introduction to
the subject, introduces a base theory RCA3

0 for third-order reverse mathematics, and studies
analogues of the system ATR0 at higher types. We show, for example, that the comparability
of well-orderings of sets of reals is a very weak principle, relatively speaking, and that Σ2

1-
separation for functionals implies clopen determinacy for reals.

The main result of chapter 2 is the separation of two determinacy principles. In 1977,
John Steel [73] showed that clopen and open determinacy are equivalent over RCA0, despite
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their different computability-theoretic properties (e.g. clopen games have relatively hyper-
arithmetic winning strategies); the culprit is the high complexity of the predicate “clopen,”
which is Π1

1 complete. We show that once we pass to a context where clopen games are
relatively easier to identify, the principles separate: we define clopen and open determinacy
principles for games played on R, and construct a model M separating them.

Theorem 1.1.1. Over RCA3
0, clopen determinacy for reals is strictly weaker than open

determinacy for reals.

The construction ofM uses a variation of a notion of forcing with tagged trees introduced
by Steel [74]. Leaving aside the technical details, we let G be a certain generic tree, labelled
with ordinals. Elements of M are given by names which depend on G in a “bounded”
way: for a functional to be inM, we demand that it be the evaluation of some name which
respects one of a prescribed family of equivalence relations on the forcing, P, used to produce
G. A name ν for a functional respects an equivalence relation ≈ if whenever p ≈ q, r ∈ R,
and k ∈ ω, we have

p 
 ν(r) = k ⇐⇒ q 
 ν(r) = k.

In classical Steel forcing, we instead look at functions which are hyperarithmetic relative to
G; this has roughly the same effect, but the higher-type analogue of “hyperarithmetic” is
not well-behaved, hence our more abstract approach. Of crucial importance is the countable
closure of P, which is used to control the second-order part of the model and in the verification
that clopen determinacy holds in M, to show that no clopen games of high rank enter M;
this has no analogue in classical Steel-forcing arguments.

From the proof of Borel determinacy (see [52]), we should expect a connection between
Theorem 1.1.1 and determinacy principles for higher Borel levels of games on ω. Indeed,
Sherwood Hachtman [25] answered a question posed in an early draft of [68] by construct-
ing a canonical separating model. Let θ be the least ordinal such that Lθ satisfies “P(ω)
exists and for every well-founded tree T of height ω, there is a map ρ : T → ON with
ρ(x) < ρ(y) whenever x ) y;” Hachtman showed (in the course of his broader analysis of θ)
that the structure (ω,RLθ , (ωR)Lθ) also satisfies clopen determinacy for reals but not open
determinacy for reals.

In chapter e, we present some further results in higher reverse mathematics of a more
technical nature. First, we show that RCA3

0 is a conservative subtheory of Kohlenbach’s
RCAω0 . The main technical obstacle in this proof is that the desired term model has to be
defined in a slightly subtle way; however, no major difficulties emerge. We then move on to
choice principles in the context of higher reverse mathematics. Looking back at the results
of chapter 1, two applications of the axiom of choice were relevant: that the reals are well-
orderable (to get the Kleene-Brouwer order of a tree ⊆ R<ω, and that real-indexed families
of nonempty sets of reals have choice functions (to pass from a quasistrategy to a strategy).

We show that a well-ordering ≺ of the reals does not imply that real-indexed families
of sets of reals have choice functions, over RCA3

0; this requires a somewhat technical con-
struction, since we have to avoid Π1

1-comprehension for functionals which would allow us to
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produce selection functions by picking the ≺-least real in each set (in particular, this makes
this essentially a reverse mathematical result, as opposed to a statement about strength over
ZF ). Our construction is inspired by truth-table reducibility, and bears a certain thematic
resemblance to the construction of the model M above: again we take a forcing extension
of the universe, and let our model consist of the functionals which have names which only
depend on “bounded information” about the generic. The notion of bounded information
we use, however, is radically different: in particular, it is not framed (and does not seem
frameable) in terms of equivalence relations on the forcing, but rather in terms of how many
queries a name is allowed to make to the generic object before its value on a real is computed.

1.2 Computability in generic extensions

In the second part of this thesis, consisting of chapters 4 through 6, we switch from examining
theorems to examining structures. We look at the behavior of countable structures in generic
extensions — first the existence (or not) of copies of them in the ground model, and later
their computability-theoretic properties.

We begin in chapter 4 by looking at structures which exist and are countable in some
generic extension of the universe. (This is joint with Julia Knight and Antonio Montalban
[41].)

Definition 1 ([41]). A generically presentable structure is a pair (ν,P) where P is a forcing
notion and ν is a P-name for a structure with domain ω, such that ν names the same
structure in every extension by P; formally, such that


P2 ν[G0] ∼= ν[G1].

We are interested in when generically presentable structures have copies; that is, when
there is some A ∈ V such that 
P A ∼= ν[G]. We show that the effects of P on cardinals is
crucial:

Theorem 1.2.1 ([41]). Suppose (ν,P) is a generically presentable structure and forcing with
P does not make ωV2 countable. Then:

• (ν,P) has a copy A in V .

• If additionally forcing with P does not make ωV1 countable, then A may be taken to be
countable (in V ).

Theorem 1.2.2 ([41]). Suppose P makes ωV2 countable. Then there is a generically pre-
sentable structure (ν,P) which has no copy in V .

Generically presentable structures were independently and shortly later introduced by
Itay Kaplan and Saharon Shelah [36], who also proved the above two theorems.

We use Theorem 1.2.1 to give a new proof of a theorem of Harrington (unpublished) on
the Scott ranks of counterexamples to Vaught’s conjecture:
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Corollary 1.2.3 (Harrington). Suppose T is a counterexample to Vaught’s conjecture. Then
T has models of size ℵ1 with Scott rank arbitrarily high below ω2.

Harrington’s theorem was independently re-proved by John Baldwin, Sy-David Friedman,
Michael Koerwien, and Chris Laskowski [6] at around the same time, and also by Paul Larson
[46] about a year earlier; their proofs are similar thematically, yet appear sufficiently different
to be called distinct proofs.

We also show that rigid generically presentable structures have copies in V :

Theorem 1.2.4 ([41]). Let (ν,P) be a generically presentable structure. If 
P“ν[G] is rigid”,
then (ν,P) has a copy in V .

This is less directly related with the rest of this thesis, however.
In the course of examining generically presentable structures, we introduce generic Much-

nik reducibility as a method for comparing the complexity of uncountable structures without
leaving the context of Turing reducibility (i.e. without using α-recursion or similar generaliza-
tions). Classical Muchnik reducibility is the natural way of comparing countable structures:
A ≤w B if every copy of B with domain ω computes a copy of A with domain ω.

Definition 2 (S.). Suppose A and B are structures of arbitrary cardinality. We say A is
generically Muchnik reducible to B — and write A ≤∗w B — if V [G] |= A ≤w B for some
generic extension V [G] of the universe in which A and B become countable.

By Shoenfield absoluteness, this is well-behaved; in particular, we may replace “some
generic extension” with “every generic extension” without changing the definition, and ≤∗w
restricted to countable structures is just ≤w. We prove some basic results about generic
Muchnik reducibility, including:

Proposition 1.2.5 ([41]). If A is a countable structure, then A ≤∗w (ω1;<) if and only if
there is some countable ordinal α such that A ≤∗w (α;<).

Proposition 1.2.6 ([41]). (ω1;<) <∗w (R; +,×), strictly.

Connecting with generic presentability, we show that the un-copied structure of Theorem
1.2.2 can be taken to be relatively simple:

Proposition 1.2.7 ([41]). If forcing with P makes ωV2 countable, then there is a generically
presentable (ν,P) with no copy in V such that 
P ν[G] ≤∗w (ωV2 ;<).

Following the results of chapter r, some interest emerged in generic Muchnik reducibility.
The next work on the subject was by Greg Igusa and Julia Knight [32] and independently by
Rod Downey, Noam Greenberg, and Joe Miller [12]; they showed (via different proofs) that
Cantor space is strictly weaker, in terms of generic Muchnik reducibility, than the field of
real numbers, contrary to the expectations of the author. Chapter 5, which is joint work with



CHAPTER 1. INTRODUCTION 5

Greg Igusa and Julia Knight [33], follows up on this work: we study reducts and expansions
of the field of real numbers R. We prove that even very weak reducts of R, such as R
equipped with the order relation and with constants naming each rational or with predicates
for the rational half-open intervals, are already as computationally powerful as R; in the
other direction, expanding R by any analytic function adds no computational power:

Theorem 1.2.8. Let f : Rn → R be analytic. Then (R; +,×) ≡∗w (R; +,×, f).

Shortly after [33] was written, Theorem 1.2.8 was greatly improved by Uri Andrews, Julia
Knight, Rutger Kuyper, Steffen Lempp, Joe Miller, and Maria Soskova [2]; they showed that
in fact any expansion of R by continuous functions is generically Muchnik equivalent to R
itself, sidestepping the use of o-minimality. (However, o-minimality comes back into the
picture when we pay attention to what parameters are needed for the computation.)

Chapter 6 (which is joint work in progress with Greg Igusa [34]) is an appendix to the
work already mentioned above. In it, we continue the study of structures computing every
real. We show that by contrast adding continuous functions to Cantor space can result
in a complexity jump up to R, which is strictly generically Muchnik above Cantor space;
this was already known by Andrews, Knight, Kuyper, Lempp, Miller, and Soskova, but we
provide further examples and some results on when continuous functions have this behavior.
In particular, we show that functions which individually are “tame” can together result in a
jump in complexity. We also look at ultrafilters as (uncountable) structures, and show that
every nonprincipal ultrafilter is generically Muchnik above R, and that generic Muchnik
reducibility restricted to ultrafilters refines the Rudin-Keisler ordering. Finally, we exhibit
an example of a minimally complicated structure computing every real, and show that there
is a structure computable from Baire space which does not compute Cantor space (so that
there is not an “hourglass” phenomenon).

1.3 Further results

The final part of this thesis — chapters 7 and 8 — consists of more miscellaneous and
partial results. In chapter 7, which is joint work with Uri Andrews, Mingzhong Cai, and
David Diamondstone [1], we look at operations on Turing ideals arising from ultrafilters on
ω. Given a Turing ideal I and a non-principal ultrafilter U , let U(I) be the set of all U -limits
of sequences of reals in I. We give a complete characterization of the possible values of U(I)
for a fixed countable Turing ideal I:

Theorem 1.3.1 ([1]). Let I be a countable Turing ideal and J ⊆ P(ω). The following are
equivalent:

• There is a nonprincipal ultrafilter U such that U(I) = J .

• J is a countable Scott set containing X ′ for every X ∈ I.
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This yields a new purely combinatorial proof of the classical result in reverse mathematics
that WKL0 is strictly weaker than ACA0; in particular, this argument avoids the Low Basis
Theorem.

Consistently relative to large cardinals, I show that Theorem 1.3.1 can fail for uncountable
Turing ideals (the statement of this result appears without proof in [1]). We also look at a
natural notion of lowness associated to this class of operations: a set X is ultrafilter-low if for
some nonprincipal ultrafilter U , U(REC) = U(deg(X)). We show that every computably
traceable X, and every X which is bounded by a 2-generic, is U -low. A large number of
open questions remain, including:

• Is there an ultrafilter U such that U(I) is arithmetically closed for every Turing ideal
I? We show that there is no U such that U(I) = ARITH(I) for all I, but this does
not answer the question.

• When is a real ultrafilter-low? In particular, are there ∆0
2 ultrafilter-low reals? And,

are sufficiently random reals ultrafilter-low?

• Is there a real X such that U(deg(X)) = U(REC) for every nonprincipal ultrafilter
U? Such a real would have to be ∆0

2 by Theorem 1.3.1 above.

Finally, in chapter 8 we return to computable structure theory, specifically the computability-
theoretic aspects of ordinals. On a broad scale, ordinals are extremely well-understood from
the computability-theoretic point of view; for instance, (generic) Muchnik reducibility of
ordinals is completely understood. However, once we look at listing classes of ordinals, or at
computing ordinals in a “uniform” manner, things become considerably more complicated.

We begin with a result motivated by Montalban’s [56], which introduced a class of copy-
diagonalize games associated to classes of structures. We show that there is a reasonably-
definable class of ordinals whose associated copy-diagonalize game is undetermined. We
then use a similar argument to show that, in the presence of sufficient determinacy, there
is a countable set B of countable ordinals which is “difficult to list,” in the following sense:
that for any noncomputable ordinal α, there is a real r such that r does not compute a copy
of α, but r join any enumeration of B does.

We then turn to a finer view of the relative complexity of ordinals than is provided by
Muchnik reductions. We look at uniform computations, specifically, Medvedev reducibility:
if A and B are countable structures, A is Medvedev reducible to B — and write A ≤s B —
if there is some e such that, whenever B is a copy of B with domain ω, ΦB

e is a copy of A
with domain ω. The question we attack is:

Question 1. What does the Medvedev degree structure of countable ordinals look like?

Note that the Muchnik degree structure of ordinals is completely understood: α ≤w β if
and only if α < β+, where β+ is the least admissible ordinal greater than β (see e.g. [66]).
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This was a question originally studied by Joel David Hamkins and Zhenhao Li [26]. They
asked, in particular, whether there are Medvedev-incomparable ordinals. We show that the
answer is yes, in a strong sense:

Theorem 1.3.2. There is a club of countable ordinals which are pairwise Medvedev incom-
parable.

The proof uses set-theoretic arguments. In the course of the proof, we are led to define
the Medvedev ordinal variance of a structure: V ar(A) is the transitive collapse of (e.g., the
order type of the set of) the ordinals Medvedev reducible to A. We in fact show:

Proposition 1.3.3. There is a countable θclub such that club-many ordinals α satisfy

V ar(α) = θclub.

By extending Medvedev reducibility to uncountable structures a la generic Muchnik
reducibility, we show that perhaps surprisingly, the Medvedev ordinal variance is bounded
strictly below ω:

Proposition 1.3.4. There is a countable ordinal θsup such that V ar(α) ≤ θsup for all ordinals
α.

This result assumes set-theoretic hypotheses beyond ZFC, for generic absoluteness. We
leave open the relationship between these two bounds:

Question 2. Is θsup = θclub?

We also appropriately extend these results to counterexamples to Vaught’s conjecture,
following a line of work by Montalban (see e.g. [54]). These are of course very coarse results,
and their proofs apply to any natural numbers-indexed relation which is sufficiently defin-
able; in particular, assuming Projective Determinacy, this includes all projectively definable
relations.

Finally, we show that in general, Medvedev reductions do not reach as high as Muchnik
reductions:

Theorem 1.3.5. For all but countably many countable ordinals α, there is an ordinal β with
α < β < α + α such that β 6≤s α.

We are unable to answer, however, whether this phenomenon already happens at ωCK1 :

Question 3. Does ωCK1 ≥s α for all α < ωCK2 ?

This section is work in progress, and we hope that in the near future we will be able to
produce a complete picture of the theory of Medvedev degrees of ordinals.

We conclude with a result on the Muchnik complexity of countable sets of ordinals,
under large cardinal assumptions; while this is not directly related to the topic of Medvedev
complexity of ordinals, it shares a thematic tone, and may be useful down the road as a
technical tool.
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Chapter 2

Higher reverse mathematics, 1/2

The work presented in this chapter appeared in [68].

2.1 Introduction

The question

“What role do incomputable sets play in mathematics?”

has been a central theme in modern logic for almost as long as modern logic has existed.
Six years before Alan Turing formalized the notion of computability, van der Waerden [77]
showed that the splitting set of a field is not uniformly computable from the field; put
another way, van der Waerden demonstrated the necessity of certain incomputable sets for
Galois theory. Other results, especially Turing’s solution to the Entscheidungsproblem and
the solution by Davis, Matiyasevitch, Putnam, and Robinson of Hilbert’s Tenth Problem,
established the incomputability of particular sets of natural numbers of interest. In 1975,
Friedman [18] initiated the axiomatic study of this question, dubbed “Reverse Mathematics.”

Reverse mathematics requires the choice of both a common language in which to express
all analyzed theorems, and a base theory in that language over which all equivalences and
non-implications are to be proved. The natural choice of language is that of second-order
arithmetic, since it is in this language that computability-theoretic principles are most nat-
urally expressed. The base theory is taken to be RCA0, a precise definition of which is
contained in [71]; as a base theory, RCA0 is justified by the fact that it captures exactly
“computable” mathematics, in the sense that the ω-models of RCA0 are precisely the Turing
ideals. One notable feature of reverse mathematics is the existence of the “Big Five,” five
subtheories of second-order arithmetic — RCA0, WKL0, ACA0, ATR0, and Π1

1-CA0 — each of
which is “robust,” in the sense that the same theory results when small changes are made to
its exact statement (or to the precise coding mechanisms used), and which correspond to the
exact strength, over RCA0, of the vast majority of theorems studied by reverse mathematics.
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However, there is a significant amount of classical mathematics, including parts of mea-
sure theory and most of general topology, which resists any natural coding into the language
of second-order arithmetic. This was already recognized by Friedman in [19]. Somewhat
later, Victor Harnik [27] developed a higher-order version of RCA0 in order to study the
axiomatic strength of various results from stability theory. At the time, however, the higher-
order program failed to draw mathematical attention comparable to that of second-order
reverse mathematics.

Recently, however, there has been a return to this subject. The framework of finite
types — in which objects of arbitrary finite order, such as sets of sets of reals, are treated
directly — has begun to emerge as a natural setting for a higher reverse mathematics,
following Ulrich Kohlenbach’s paper on the subject [43].1 Kohlenbach expands the language
of second-order arithmetic to all finite types, and extends the system RCA0 to include a
version of primitive recursion for arbitrary finite-type functionals. The resulting system,
RCAω0 , is a proof-theoretically natural conservative extension of RCA0. (From the point of
view of computability theory, however, the choice of base theory may not be so clear; see
the discussion at the end of this paper.)

Work on reverse mathematics in finite types has so far proceeded along one or the other of
two general avenues: the analysis of classical theorems about objects not naturally codeable
within second-order arithmetic, such as ultrafilters or general topological spaces ([31], [44],
[76]), or the analysis of higher-type “uniformizations” of classical theorems of second-order
arithmetic ([43], [67]). The present paper instead looks at the higher-type analogues of the-
orems studied by classical reverse mathematics, focusing in particular on what old patterns
hold or fail and what new patterns emerge.2

One natural question along these lines is the following: to what extent do the robust
subsystems of second-order arithmetic have robust analogues at higher types? It is this
question which the present paper addresses, focusing on the system ATR0. In the classical
case, much of the robustness of ATR0 comes from the fact that being a well-ordering is
Π1

1-complete. For instance, this is what drives the method of “pseudohierarchies” by which
ill-founded linear orders which appear well-founded, such as those constructed in [28], are
used to prove a large number of equivalences at the level of ATR0; see [71]. Moving up a
type, however, changes the situation completely: since we can code an infinite sequence of
reals by a single real, the class of well-orderings of subsets of R is again Π1

1, instead of being
Π2

1 complete. This causes the entire method of pseudohierarchies to break down, and raises
doubt that the higher-type analogues of various theorems classically equivalent to ATR0 are
still equivalent.

We begin by presenting in section 2 a base theory, RCA3
0, which is essentially equivalent

to, yet simpler to use than, RCAω0 . We then study the complexity over RCA3
0 of several

higher-type analogues of several principles classically equivalent to ATR0: comparability

1Although it is by no means the only one — see [70] for an approach via α-recursion theory instead, and
also [23] for a closely-related α-recursive structure theory. Shore also suggests other approaches which could
be interesting, such as via E-recursion or the computation theory of Blum-Shub-Smale.

2This is also the approach taken in [70], there with respect to α-recursion rather than finite types.
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of well-orderings, clopen determinacy, open determinacy, Σ1
1 separation, and definition by

recursion along a well-founded tree. In section 2, we prove some basic implications and
nonimplications. At the bottom of this hierarchy lies the principle asserting the comparability
of well-orderings of sets of reals, which we show is remarkably weak at higher types relative
to the other principles; above clopen determinacy, a higher-type version of the separation
principle Σ1

1-Sep. We also examine the role of the axiom of choice in higher determinacy
principles.

The main result of this paper, to which section 3 is devoted, concerns the two deter-
minacy principles. In classical reverse mathematics, clopen determinacy fails in HYP, the
model consisting of the hyperarithmetic sets, despite hyperarithmetic clopen games having
hyperarithmetic winning strategies, since the method of pseudohierarchies allows us to con-
struct games which are “hyperarithmetically clopen” but are undetermined in HYP. This
method, as noted above, is no longer valid at higher types, while the complexities of win-
ning strategies for clopen games on reals can still be bounded by a transfinite iteration of
an appropriate jump-like operator. This suggests that at higher types, open determinacy
becomes strictly stronger than clopen determinacy; using an uncountable version of Steel’s
tagged tree forcing, we show that this is indeed the case.

Background and Conventions

We refer the reader to [45] for the relevant background in set theory; for descriptive set
theory, [59] and [38] are the standard sources. For background on reverse mathematics, see
[71]. Finally, for background in finite types, as well as the various computability-theoretic
concerns which arise in higher-type settings, see [48].

There are several notational conventions we adopt for simplicity. Throughout, we use
R to refer to the Baire space, the set of functions from ω to ω; this is because, during the
main result, ordinals will be used as tags, and for this reason a symbol other than “ωω” is
preferable. If σ is a nonempty finite string, we write σ− for the immediate 4-predecessor of
σ, and if f is an infinite string we write f− for the string n 7→ f(n+ 1).

When writing formulas in many-sorted logic, we use the convention that the first time a
variable occurs it is decorated with the appropriate sort symbol; for example,

∃x1∀y0(xy = 2)

is the statement “There is a function from naturals to naturals which is identically 2.” (See
section 2.1 for a discussion of types.) If ϕ is a sentence, then JϕK is the truth value of ϕ: 1
if ϕ holds, and 0 if ϕ does not. We will denote the constant function n 7→ i by i.

If Σ,Π: A<ω → A, we write Σ⊗Π for the element of Aω built by alternately applying Σ
and Π:

Σ⊗ Π = 〈Σ(〈〉),Π(〈Σ(〈〉)〉),Σ(〈Σ(〈〉),Π(〈Σ(〈〉)〉)〉), ...〉.
We write (Σ⊗Π)k for the length-k initial segment of Σ⊗Π. A game is said to be a win for
player X if that player has a winning strategy. A quasistrategy for a game played on a set
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A (so, viewed as a subtree of A<ω) is a multi-valued map from A<ω to A; a quasistrategy is
said to be winning if each element of Aω which is compatible with the quasistrategy is a win
for the corresponding player.

Finally, our main theorem 2.3.2 rely heavily on the method of set-theoretic forcing. For
completeness, we present here a brief summary of this method; for details and proofs, see
chapter VII of [45].

Given a model V of ZFC and a poset P ∈ V , a filter is a subset F of P which is closed
upwards, and such that any two elements of F have a common lower bound in F ; a set
D ⊆ P is dense if every element of P has a lower bound in D. The P-names are defined
inductively to be the sets {(pi, γi) : i ∈ I} of pairs with first coordinate an element of
the partial order P, and second coordinate a P-name. If G is a filter meeting every dense
subset of P which is in V — that is, G is P-generic over V — and γ is a P-name, we let
γ[G] = {θ[G] : ∃p ∈ G((p, θ) ∈ γ)} (this is of course a recursive definition). Crucially, the
definition of γ[G] is made inside V , although G will itself will never be in V .

We then define the generic extension of V by G to be

V [G] = {γ[G] : γ is a P-name in V }.

If V [G] |= ϕ whenever p ∈ G, we write p 
 ϕ; the relation 
 is the forcing relation given
by P. The essential properties of set-theoretic forcing are that the generic extension V [G]
is a model of ZFC; that the forcing relation is definable in the ground model; and that any
statement true in the generic extension is forced by some condition in the generic filter.
These are Theorems VII.4.2, VII.3.6(1), and VII.3.6(2) of [45], respectively.

Additionally, the forcing used in the proof of 2.3.2 will be countably closed:

Definition 3. P is countably closed if any chain of countably many conditions ... ≤ p2 ≤
p1 ≤ p0 has a common strengthening p ≤ p0, p1, p2, ....

Countable closure yields a strong restriction on how a forcing notion can alter the set-
theoretic universe, which will be crucial in 2.3.2:

Fact 2.1.1. If P is countably closed and X ∈ V , then forcing with P adds no new countable
subsets of X. In particular, forcing with a countably closed P adds no new reals.

2.2 Reverse mathematics beyond type 1

We begin this section by developing a framework for reverse mathematics in higher types;
we then define the various higher-type versions of ATR0 we will consider in this paper, and
prove some basic separations and equivalences.
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The base theory

We begin by making precise the notion of a finite type.3

Definition 4. The finite types are defined as follows:

• 0 is a finite type;

• if σ, τ are finite types, then so is σ → τ ; and

• only something required to be a finite type by the above rules is a finite type.

We denote the set of all finite types by FT .
The intended interpretation of finite types is as a hierarchy of functionals, with type 0

representing the “atomic” objects — here, natural numbers, or more generally elements of
some first-order model of an appropriate theory of arithmetic — and type σ → τ representing
the set of maps from the set of objects of type σ to the set of objects of type τ .

Within the finite types is the special subclass ST of standard finite types, defined induc-
tively as follows: 0 is a standard type, and if σ is a standard type, then so is σ → 0. The
standard types are for simplicity identified with natural numbers: 0 → 0 is denoted by “1,”
(0→ 0)→ 0 by “2,” etc.

The appeal of the finite-type framework to reverse mathematics is extremely compelling:
the use of finite types lets us talk directly about objects that previously required extensive
coding to treat in reverse mathematics, or could not be treated at all. For example, a
topological space with cardinality ≤ ii (where i0 = ℵ0 and ii+1 = 2ii) can be directly
represented as a pair of functionals (F i, Gi+1) corresponding to the characteristic functions
of the underlying set and the collection of open subsets. Usually, this representation is even
natural. In [43], Kohlenbach developed a base theory for reverse mathematics in all the finite
types at once, RCAω0 .

However, working with all finite types at once is cumbersome. First, morally speaking,
all finite-type functionals are equivalent to functionals of finite standard type via appropriate
pairing functions; second, arbitrarily high types are rarely directly relevant. For that reason,
we will use a base theory RCA3

0, defined below, which only treats functionals of types 0,
1, and 2. In a subsequent paper, we will show that our theory is essentially equivalent to
Kohlenbach’s; specifically, RCAω0 is a conservative extension of RCA3

0.

Definition 5. L3 is the many-sorted first order language, consisting of the following:

3The one oddity of working with types is that the natural formalization is via many-sorted first-order
logic, as opposed to ordinary first-order logic. In many-sorted logic, each element of the model and each
variable symbol is labelled by one of a fixed collection of sorts; similarly, function, constant, and relation
symbols in the signature must be appropriately labelled with sorts. When there are infinitely many sorts —
as is the case with Kohlenbach’s RCAω

0 , but not our RCA3
0 — the resulting logic is subtlely different from

single-sorted first-order logic; however, these differences shall not be relevant here. For a careful introduction
to many-sorted logic, see Chapter VI of [51].
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• Sorts s0, s1, s2, with corresponding equality predicates =0,=1,=2. We will identify sort
si with type i; recall that the objects of type 0, 1, and 2 are intended to be natural
numbers, reals, and maps from reals to naturals, respectively.

• On the sort s0, the usual signature of arithmetic: two binary functions

+,× : s0 × s0 → s0,

a binary relation
<⊆ s0 × s0,

and two constants
0, 1 ∈ s0.

• Application operators ·0, ·1 with

·0 : s1 × s0 → s0, ·1 : s2 × s1 → s0.

These operators will generally be omitted; e.g., Fx or F (x) instead of F ·1x or ·1(F, x).

• A binary operation
∗ : s2 × s1 → s1

and a binary operation
a : s0 × s1 → s1.

The additional operations ∗ and a allow coding which in Kohlenbach’s setting is handled
through functionals of non-standard type. Axioms which completely determine ∗ and a are
given in Definition 6, below. We will abuse notation slightly and use a to denote both the
concatenation of strings, and the specific L3-symbol, as no confusion will arise. Throughout
this paper, “L3-term” will mean “L3-term with parameters.”

Finally, the syntactic classes Σ0
i and Π0

i are defined for L3 as follows:

• A formula ϕ is in Σ0
0 if and only if it has only bounded quantifiers over type 0 objects and

no occurrences of =1 or =2. (Note that arbitrary parameters, however, are allowed.)

• A formula ϕ is in Π0
i+1 if

ϕ ≡ ∀x0θ(x),

where θ ∈ Σ0
i .

• A formula ϕ is in Σ0
i+1 if

ϕ ≡ ∃x0θ(x),

where θ ∈ Π0
i .

The higher syntactic classes Σ1
i , Σ2

j , etc. are defined in the analogous way, with lower-type
quantifiers being “for free” as usual.
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The base theory for third-order reverse mathematics which we will use in this paper,
RCA3

0, is then defined as follows:

Definition 6. RCA3
0 is the L3-theory consisting of the following axioms:

1. Σ0
1-induction and the ordered semiring axioms, P−, for the type 0 objects.

2. Extensionality axioms for the type 1 and 2 objects:

∀F 1, G1(∀x0(Fx = Gx) ⇐⇒ F =1 G) and ∀F 2, G2(∀x1(Fx = Gx) ⇐⇒ F =2 G)

3. The ∆0
1 comprehension4 schemes for type 1 and 2 objects:

{∀x0∃!y0ϕ(x, y)→ ∃f 1∀x0(ϕ(x, f(x))) : ϕ ∈ Σ0
1}

and
{∀x1∃!y0ϕ(x, y)→ ∃F 2∀x1(ϕ(x, F (x))) : ϕ ∈ Σ0

1}.
(The notation “∃!” is shorthand for “there exists exactly one.”) Recall that Σ0

1 formulas
may have arbitrary parameters.

4. Finally, the following axioms defining a and ∗:

∀k0, r1, n0[(kar)(n+ 1) = r(n) ∧ (kar)(0) = k],

and
∀F 2, r1, k0[(F ∗ r)(k) = F (kar)].

Before continuing further, it is worth explaining the definitions of a and ∗. The first
axiom just says that a is the usual concatenation operation, appending a natural number
to the beginning of a string of natural numbers. The second describes a way to turn type-2
functionals into type-(1→ 1) functionals, and is slightly more complicated. In order to vew
a functional F as a map from reals to reals, we first replace an input real r by the infinite
sequence of reals (0ar, 1ar, ...), and then apply F to each of the reals in this sequence in
turn; this yields a sequence of natural numbers — that is, a real — (F (0ar), F (1ar), ...).
This real is F ∗ r.

This particular definition of ∗ is merely a technical device, and could be replaced with
any of a number of similar constructions; the important point is that we have a way of
interpreting a single real r as a sequence of reals, and that by applying a type-2 functional
to each real in that sequence we can view the functional as a map from R to R instead of a
map from R to ω.

4There are several equivalent formulations of these, including as choice principles; we choose the following
presentation, since it seems the most natural. Since we work with functionals which take values in ω instead
of with sets (= functionals with values in {0, 1}), these schemes do look more complicated than the usual
∆0

1-comprehension scheme in RCA0; however, the intuition behind them — that if exactly one of an effective
collection of existential sentences holds, then we can effectively find which one holds — is the same, and it
is straightforward to show that our schemes are equivalent to their “dual” versions in terms of Π0

1 formulas.
For this reason, we slightly abuse terminology and call these schemes “∆0

1-comprehension.”
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Convention 2.2.1. Throughout this paper, if M |=RCA3
0 we will write M0,M1,M2 for the

type-0, -1, and -2 parts of M , respectively.

Note that if (M0,M1,M2; ∗0,
a

0), (M0,M1,M2; ∗1,
a

1) |=RCA3
0, then in fact

(M0,M1,M2; ∗0,
a

0) = (M0,M1,M2; ∗1,
a

1);

that is, models of RCA3
0 are determined by their 0-, 1-, and 2-type objects, and it is enough to

specify these types to specify the full model. Despite this, the symbols a and ∗ are necessary
for RCA3

0 in order for the comprehension schemes to have full force (given that we avoid
objects of non-standard type). As evidence of this, the following two facts are easy to prove,
yet crucially rely on comprehension over ∆0

1 formulas involving a and ∗:

Fact 2.2.2. RCA3
0 proves each of the following statements:

1. For each type-2 functional F , there is a real r such that

∀s1, n0[∀k0(s(k) = n)→ r(n) = F (s)].

2. For each type-2 functional F , there is a type-2 functional G such that

G(〈a0, a1, a2, ..., an, ...〉) = F (〈a0, a2, a4, ..., a2n, ...〉)

Proof. For (1), first note that the type-2 comprehension scheme gives us a functional I such
that ∀r1[I(r) = r(1)], and hence

∀r1, k0[∀i0(I ∗ (kar)(i) = k)].

Now our desired real r can be defined by

r(k) = F (I ∗ (ka0)),

which exists by the type-1 comprehension scheme.
For (2), let H be the type-2 functional defined by the quantifier-free formula H(r) =

r(2r(0) + 1); then the desired G is defined by the quantifier-free formula

G(r) = k ⇐⇒ F (H ∗ r) = k,

and so again is guaranteed to exist by the type-1 comprehension scheme. �

It can be shown that neither (1) nor (2) is provable if we restrict the ∆0
1 comprehension

schemes to formulas not involving ∗ and a. Essentially, ∗ and a are the price we pay for a
base theory which closely resembles RCA0 and has reasonable models.

To drive this last point home, we end this section by presenting some natural models of
RCA3

0:
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Example 2.2.3. Let I be a Turing ideal; that is, I is closed under the join ⊕ and is
closed downwards under Turing reducibility. Then the smallest ω-model of RCA3

0 containing
precisely the reals in I is

SI = (ω, I, {r 7→ ϕr⊕se (0) : s ∈ I and ϕr⊕se (0) ↓ for every r ∈ I}).

We will call such a pair (e, s) a Turing code for the map r 7→ ϕr⊕se (0).

Proof. Any ω-model of RCA3
0 whose real part is I must be at least as large as SI , so it is

enough to show that SI |=RCA3
0. Axioms (1), (2), and (4) are immediate; it only remains to

show that the comprehension schema are satisfied.
We focus on the type-2 case; the type-1 case is identical. Intuitively, we should be able

to compute the value of any functional defined according to the ∆0
1-comprehension scheme

effectively from the real parameters and Turing codes for the type-2 parameters involved,
since the value of the functional is determined by an effective collection of Σ0

1 sentences. The
only possible difficulty could arise from the new symbols, a and ∗. To ensure that these pose
no problems, we first observe that we can — uniformly in a Turing code for a functional F
and a natural number c ∈ ω — find a Turing code for the map r 7→ F (car). The case of ∗ is
slightly more interesting, but still poses no problems. By a straightforward induction on n,
if F1, ..., Fn ∈ SI , then there is some e ∈ ω and s ∈ I such that, for every r ∈ I and i ∈ ω,
we have

Φr⊕s
e (i) = F1 ∗ (F2 ∗ (... ∗ (Fn ∗ r)))(i).

It now follows by a tedious but straightforward induction on formula complexity that we
can effectively compute the values of any type-2 functional defined in a ∆0

1 fashion from
parameters in SI , uniformly in the real parameters and in Turing codes for the type-2
parameters. But this yields a Turing code for the functional so defined, which is therefore
already in SI . �

Corollary 2.2.4. The structure C = (ω,R, {f : R → ω : f is continuous}) — when inter-
preted as an L3-structure in the natural way — is the smallest model of RCA3

0 containing all
the reals.

Example 2.2.5. Recall that the class of Borel sets is the smallest class of subsets of R
containing the open sets which is closed under complementation and countable unions. Note
that if a set is Borel, then this is witnessed by a well-founded tree whose terminal nodes are
open intervals with rational endpoints, and whose other nodes correspond either to comple-
mentation or countable union; we will call the smallest rank of such a witnessing tree the
Borel rank of the set. Then:

• a map f : R→ ω is Borel measurable if f−1(i) is Borel for every i ∈ ω, and

• a map f : R→ R is Borel measurable if f−1(X) is Borel for every Borel X ⊆ R.
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We let B be the three-sorted structure (ω,R, {F : R→ ω : F is Borel measurable}). Since
B contains all the reals, each of the symbols in the language of RCA3

0 has a natural interpre-
tation in B; in particular, B is closed under the operations a and ∗. Then B |=RCA3

0.
We will use this model in a separation result later (2.2.15).

Proof. Since the first- and second-order parts of B are ω and R, B is clearly closed under
a and ∗, and satisfies parts (1), (2), and (4) of the axioms of RCA3

0, as well as the ∆0
1-

comprehension scheme for type-1 objects. So it only remains to show that B satisfies the
comprehension scheme for type-2 functionals.

There are multiple ways to show that B satisfies the ∆0
1-comprehension scheme for type-2

functionals. First, we observe that if X ⊆ R is Borel and k ∈ ω, then Xk = {r : kar ∈ X} is
also Borel; this is proved by a straightforward induction on the Borel rank of X, which we
omit.

Now suppose Y : R→ ω is ∆0
1 relative to some type-1 parameters r0, ..., rm and some type-

2 parameters F0, ..., Fn. That is, there is a Σ0
0-formula ψ(x0, y1, z0) with only the displayed

variables, which does not involve equality between type-1 or type-2 terms, with some type-1
parameters r0, ..., rm and some type-2 parameters F0, ..., Fn, such that

Y (r) = k ⇐⇒ ∃x0ψ(x, r, k);

we will show that Y is Borel-measurable, and hence in B.
To see this, fix i ∈ ω and consider the set of reals X = Y −1(i); we must show that X is

Borel. Note that since
X =

⋃
j∈ω

{s : ψ(j, s, i)},

so it is enough to show that the sets Xj = {s : ψ(j, s, i)} are each Borel. So fix j ∈ ω. The
set Xj is a Boolean combination of sets of the form Xj,α = {s : α(j, r, i)} for α atomic; so
it is enough to show that each such set is Borel. So fix such an atomic α. Since ψ cannot
involve any instances of equality of type-1 or -2 objects, α must have the form t0 = t1, for
terms t0, t1 of type 0. It is easy to see that Xj,α is Borel if for each k ∈ {0, 1} and c ∈ ω,
{s : tk(s) = c} is Borel.

We will now be finished if we can show that, if c ∈ ω and t is a term with one free type-1
variable y1, real parameters r0, ..., rm, and type-2 parameters F0, ..., Fn, then {s : t(s) = c}
is Borel. This is proved by induction on the complexity of the term. We omit most of the
induction, since it is straightforward, and prove the only difficult part:

Claim: if F0, ..., Fn are Borel, then the map r 7→ F0 ∗ (F1 ∗ (... ∗ (Fn ∗ r))) is Borel.

Proof of claim. It suffices to show that if F is Borel-measurable and X ⊆ R is Borel, then
the set PX = {r : F ∗ r ∈ X} is also Borel; that is, r 7→ F ∗ r is Borel-measurable. This
is proved by induction on the Borel rank of X. If X is open, then if r ∈ PX there is some
finite initial segment σ of F ∗ r such that if s is any real extending σ, we have r ∈ X. So PX
contains the set Cσ = {s : σ ≺ F ∗ s}. But that set is the intersection of finitely many sets
of the form {s : F (cas) = i}, which are Borel since F is Borel-measurable; so Cσ is Borel.
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Moreover, every element of PX is contained in some Cσ, of which there are only countably
many; so PX is Borel.

Since taking preimages commutes with unions and complementation, the rest of the
induction is immediate.

�

The remaining induction is uneventful.
�

Higher-type analogues of ATR0

In what follows, we treat higher-type determinacy principles, and towards that end some
definitions are necessary. We study games of length ω on R — that is, players I and II
alternate playing real numbers, building an ω-sequence of reals. We identify both clopen
games and open games with their underlying game trees, which are subtrees of R<ω: thus,
we identify clopen games with well-founded trees — players alternate playing reals, moving
further along the tree, and the first player to be unable to play and stay on the tree loses —
and we identify open games with trees — players alternate playing reals, and player I (Open)
wins if and only if the play ever leaves the tree. There are several reasonable ways to encode
game trees ⊆ R<ω as type-2 functionals and finite strings of reals as individual reals, and
the specific choice of coding is unimportant. We will assume such a coding method in the
background, so that we may for instance apply a type-2 functional to a node on a subtree
of R<ω; there will be no subtleties in this regard.

When discussing plays, however, things become more complicated. If Σ,Π are strategies,
then the kth stage in the play Σ⊗Π, (Σ⊗Π)k — or rather, a real coding (Σ⊗Π)k — is defined
as follows. There is a functional F , whose existence is guaranteed by the comprehension
scheme, such that F ∗ (kar) is the kth “row” of r; specifically, F is defined by

s 7→ s(2 + 〈s(0), s(1)〉).

We say that a real r codes (Σ⊗ Π)k if

• F ∗ (0ar) = 0,

• ∀0 < 2j + 1 ≤ k[F ∗ ((2j + 1)ar) = Σ ∗ (F ∗ ((2j)ar))], and

• ∀0 < 2j + 2 ≤ k[F ∗ ((2j + 2)ar) = Π ∗ (F ∗ ((2j + 1)ar))];

similarly, we say that r codes the whole play Σ ⊗ Π if r codes (Σ ⊗ Π)k for all k. This
definition lets us refer to the play Σ ⊗ Π inside the language of RCA3

0; and we use, e.g.,
“(Σ⊗ Π)k 6∈ T” as shorthand for “there is a real r coding (Σ⊗ Π)k, and r 6∈ T .”

There is a subtlety here, which arises due to a particular weakness in the base theory
RCA3

0. (The end of this paper addresses the foundational aspects of this; for now, we simply
treat it as it affects us.) RCA3

0 is too weak to guarantee the existence of a real coding the
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whole play Σ ⊗ Π. This is a consequence of Hunter’s proof5 ([31], Theorem 2.5) that the
theory

RCA3
0+E1 := RCA3

0+“∃J2∀x1(J ∗ x = x′)”

is conservative over ACA0: if Σ and Π are each the operator J described above, then “Σ⊗Π
exists” implies “0(ω) exists,” so that sentence cannot be a consequence of RCA3

0+E1, let alone
RCA3

0 itself.
This can be salvaged in general by altering the base theory; and in fact, since this same

subtlety arises in other ways, this is a reasonable course of action — see the end of Section
4 of this paper. In our case, however, all potential difficulties are handled by the strength of
the principles we consider. For example, in the definition of clopen and open determinacy,
we use a strong definition of “winning strategy:” e.g., a strategy Σ for Open in an open game
is winning if for every strategy Π for Closed, there is a real coding some stage (Σ ⊗ Π)k of
the game by which Σ has won. This builds into the statements of the theorems we examine
all the strength we need to perform the intuitively natural calculations involving stages of
games.

The end result is that, although we cannot meaningfully talk about the play of a game
Σ ⊗ Π directly within RCA3

0, the principles we study in this paper happen to have enough
power to allow us to do so. As an example of this, it is easy to see that each of the principles
introduced in Definition 7 below imply that at most one player has a winning strategy in an
open or clopen game; however, this is not provable in the base theory RCA3

0 alone.

Consider the following four theorems, all equivalent to ATR0 over RCA0:

• Comparability of well-orderings: If X, Y are well-orders with domain ⊆ N, then there
is an embedding from one into the other.

• Clopen determinacy: Every well-founded subtree of ω<ω, viewed as a clopen game, is
determined.

• Open determinacy: Every subtree of ω<ω, viewed as an open game, is determined.

• Σ1
1 separation: If ϕ(A) is a Σ1

1 sentence (possibly with parameters) with a single free
set variable, and X = (Xi)i∈ω is an array of sets such that

∀k ∈ ω∃j ∈ 2(¬ϕ(X〈k,j〉)),

then there is some set Y such that

∀k ∈ ω(¬ϕ(X〈k,Y (k)〉)).

These each have reasonable higher-type analogues, each of which is a theorem of ZFC:

5Originally formulated for Kohlenbach’s theory RCAω
0 , but immediately adaptable to RCA3

0.
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Definition 7. Over RCA3
0, we define the following principles:

• The comparability of well-orderings of reals, CWO: If X, Y are well-orderings with
domain ⊆ R, then there is an embedding from one into the other.

• Clopen determinacy for reals, ∆R
1 -Det: for every tree T ⊆ R<ω which is well-founded,

viewed as a clopen game, either there is a winning strategy for player I:

∃Σ: R<ω → R, ∀Π: R<ω → R[∃k ∈ ω((Σ⊗ Π)2k+1 ∈ T ∧ (Σ⊗ Π)2k+2 6∈ T )];

or there is a winning strategy for player II:

∃Π: R<ω → R,∀Σ: R<ω → R[∃k ∈ ω((Σ⊗ Π)2k ∈ T ∧ (Σ⊗ Π)2k+1 6∈ T )].

• Open determinacy for reals, ΣR
1 -Det: for every tree T ⊆ R<ω, viewed as an open game,

either there is a winning strategy for player I (Open):

∃Σ: R<ω → R,∀Π: R<ω → R[∃k ∈ ω((Σ⊗ Π)k 6∈ T )];

or there is a winning strategy for player II (Closed):

∃Π: R<ω → R,∀Σ: R<ω → R[∀k ∈ ω((Σ⊗ Π)k ∈ T )].

• The Σ2
1-separation principle, Σ2

1-Sep: If ϕ(f 2) is a Σ2
1-formula with a single type-2

free variable, and X = (Xη)η∈R, Y = (Yη)η∈R are real-indexed collections of type-2
functionals6 such that

¬∃x1(ϕ(Xx) ∧ ϕ(Yx)),

then there is some type-2 object F such that

∀x1[ϕ(Xx)→ F (x) = 1 and ϕ(Yx)→ F (x) = 0].

(Note that, strictly speaking, Σ2
1-Sep is an infinite scheme, as opposed to a single sen-

tence.) It is these principles which we choose to study in this paper. The remainder of this
section is devoted to the simpler parts of their analysis; the separation of clopen and open
determinacy for reals is the subject of the following section.

Note that the determinacy principles above are not provable in ZF alone, whereas CWO
and Σ2

1-Sep are, so in order to analyze these principles properly we need some version of the
axiom of choice:

6A real-indexed set of type-2 functionals (Zs)s∈R is coded by the type-2 functional

Ẑ : r 7→ ZP0∗r(P1 ∗ r),

where P0, P1 correspond to the left and right projections of a reasonable pairing function R2 ∼= R.
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Definition 8. Let 〈·, ·〉 be an appropriate pairing function on R. The selection principle for
R, SF, is the assertion that for every R-indexed set of nonempty sets of reals has a selection
functional; that is, for every type-2 functional F — interpreted as the R-indexed set of reals

{{s ∈ R : F (〈r, s〉) = 1} : r ∈ R}

— there is a type-2 functional G satisfying

∀r1(F (〈r,G ∗ r〉) = 1).

Now we turn to the implications. Clearly ΣR
1 -Det implies ∆R

1 -Det. A more interesting
implication is the following:

Fact 2.2.6. Over RCA3
0, we have

Σ2
1-Sep + SF→ ∆R

1 -Det.

Proof. This is somewhat involved. We begin with three technical results, which are of
independent interest:

Fact 2.2.7 (Comprehension). RCA0+Σ2
1-Sep implies ∆2

1-comprehension for type-2 function-
als for each n: given n ∈ ω and any Σ2

1 formula ϕ with one type-1 variable which is equivalent
to a Π2

1 formula, there is a functional F such that

F (r) = 1 ⇐⇒ ϕ(r), F (r) = 0 ⇐⇒ ¬ϕ(r)

Proof. Apply Σ2
1-Sep to the pair (ϕ,¬ϕ). �

Fact 2.2.8 (Iteration). RCA3
0+Σ2

1-Sep proves that given a functional F and a real r, we can
form the iteration sequence (r, F ∗ r, F ∗ (F ∗ r), ...). Formally, for every type-2 functional F
there is a type-2 functional G such that — for every r — we have

G ∗ (nar) = F ∗ (F ∗ (...(F ∗ r)))

(where the right hand side contains n applications of “F∗”).

In particular, note that this implies that given any strategies Σ0 and Σ1, the real coding
their entire play Σ0 ⊗ Σ1 exists.

Proof. Fix a real r. Let χ(x1, y0, z1) be the formula asserting that x is a real whose first y
rows are of the form z, F ∗ z, F ∗ (F ∗ z), ... Then let ϕ(w1) be the formula

∃s(χ(s, w(1), w−−), s(w(0) = 0))

and let ψ be the formula

∀s(χ(s, w(1), w−−)→ s(w(0) = 1))

Clearly ϕ and ψ are Σ2
1 and ϕ ∧ ψ is inconsistent, so we may apply Σ2

1-Sep. This yields the
desired G. �
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Proposition 2.2.9 (Paths from subtrees). RCA3
0+Σ2

1-Sep+SF proves that a tree T ⊆ R<ω

is well-founded if and only if it has no nonempty subtrees with no terminal nodes.

Proof. Clearly a witness to T being ill-founded yields a subtree with no terminal nodes.
In the other direction, suppose T is well-founded but has a nonempty subtree S with no
terminal nodes. By SF and 2.2.7, there is a functional F such that if σ is a predecessor of
an element of S, then F (σ) ∈ S is an extension of σ. Fix σ0 ∈ S and let σi+1 = F (σi) for
i > 0; by 2.2.8, the sequence (σ0, σ1, ...) exists. �

We now return to the proof of 2.2.6. Let T ⊆ R<ω be a well-founded tree, viewed as a
clopen game; we will show that T is determined.

Definition 9. For σ ∈ T , let T [σ] = {ρ : σ 4 ρ ∈ T}. A U -tree for σ is a functional
F : T [σ]→ {Safe, Unsafe} satisfying the following properties:

1. ev(σ) = Unsafe;

2. ev(τ) = Safe ⇐⇒ there is some immediate extension ρ of τ such that ρ ∈ T and
ev(ρ) = Unsafe.

An S-tree for σ is a pair (ρ, F ) such that ρ ∈ T is an immediate extension of σ and F is
a U-tree for ρ. We let ϕU(σ) and ϕS(σ) be the sentences, “There is a U-tree for σ” and
“There is an S-tree for σ,” respectively; note that both ϕU and ϕS are Σ2

1.

Intuitively, the existence of a U -tree for σ indicates that σ is unsafe, that is, the game
Gσ is a win for player II. Similarly, the existence of an S-tree for σ provides one bit of
information towards a winning strategy for player I in Gσ.

Lemma 2.2.10. No σ ∈ T satisfies ϕU(σ) ∧ ϕS(σ).

Proof. Otherwise, let T0 and T1 be U - and S-trees for σ; then the set of nodes ρ on which
T0(ρ) 6= T1(ρ) forms a nonempty subtree of T with no terminal nodes, contradicting the
wellfoundedness of T via 2.2.9. �

By 2.2.10 we can apply Σ2
1-Septo get a functional ev : T → {Safe, Unsafe} such that

• ϕU(σ)→ ev(σ) = Unsafe,

• ϕS(σ)→ ev(σ) = Safe.

It is now enough to show that either ev is a U -tree for 〈〉, or there is some length-1
string 〈a〉 ∈ T such that the restriction ev〈a〉 to T [〈a〉] is a U -tree for 〈a〉. To see that this
is sufficient, suppose ev is a U -tree for 〈〉 (the other case is identical). Then by SFthere is
a strategy for player II such that, if |σ| is odd and ev(σ) = Safe, then ev(σaΣ(σ)) is on T
and is marked Unsafe by ev; this strategy can clearly never lose, so by 2.2.8 Σ is a winning
strategy.

Definition 10. Say that a node σ of T is bad if one of the following conditions holds:
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1. ev(σ) = Safe but for every immediate extension ρ of σ we have ev(ρ) = Safe, or

2. ev(σ) = Unsafe but there is some immediate extension ρ of σ such that ev(ρ) =
Unsafe.

Lemma 2.2.11. If σ is bad, then there is some proper extension of σ which is bad.

Proof. Suppose σ is bad but no proper extension of σ is bad.
If σ is bad via case (1), then the map

ev′ : T [σ]→ {Safe, Unsafe} : ρ 7→

{
ev(ρ) if ρ 6= σ

Unsafe if ρ = σ

is a U -tree for σ whose existence follows from 2.2.7; but this contradicts the definition of ev.
If σ is bad via case (2), then we can similarly construct an S-tree for σ, again contradicting

the definition of ev. �

Corollary 2.2.12. There are no bad nodes of T .

Proof. Suppose otherwise. The set of bad nodes exists by 2.2.7; by 2.2.11 and 2.2.9, this
contradicts the well-foundedness of T . �

But now we are done: since T has no bad nodes, either ev is a U -tree for 〈〉, or — letting
σ be some length-1 node of T which satisfies ev(σ) = Unsafe — evσ is a U -tree for σ, and
as observed above either possibility allows us to produce a winning strategy for T . �

Note that at the close of the proof, we conclude that in fact for every σ ∈ T we have
ϕU(σ) ⇐⇒ ¬ϕS(σ); yet since the proof of this fact itself goes through Σ2

1-Sep, the slightly
weaker theory SF+∆2

1-comprehension for type-2 functionals does not seem to imply ∆R
1 -Det.

To compliment 2.2.6, we show that the assumption of SF cannot be removed:

Fact 2.2.13. Over RCA3
0, ∆R

1 -Det implies SF.

Proof. Let F be an instance of SF, viewed as an R-indexed family of sets of reals {Fr}r∈R.
Consider the game in which player I plays a real r, and player II wins if and only if they
immediately play a real s ∈ Fr. A winning strategy cannot exist for player I, and any
winning strategy for player II immediately yields a selection functional for F . �

2.2.6 and 2.2.13 together raise the question of the role that variants of the axiom of
choice might play in higher-order versions of ATR0. This will be treated in more detail in a
forthcoming paper; for now, we introduce one final principle, which is close to the classical
statement of ATR0 itself and which captures exactly the choiceless part of ∆R

1 -Det:
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Definition 11. For a tree T ⊆ R<ω and a node σ ∈ T we let Tσ = {τ : σaτ ∈ T}, and
if F : T → ω we let Fσ : τ 7→ F (σaτ). Σ1

1 rank-recursion on R, denoted “BR,” is then the
scheme asserting that for any tree T ⊆ R<ω which does not contain a nonempty subtree with
no terminal nodes (recall that, absent choice, this is a strengthening of well-foundedness)
and every Σ1

1 formula Σ1
1-formula ϕ(Y 2, Z2) with only the displayed free variables, there is a

type-2 functional F with range ⊆ {0, 1} such that, for σ ∈ T ,

F (σ) = 1 ⇐⇒ ϕ(Fσ, Tσ).

Theorem 2.2.14. Over RCA3
0, we have BR+SF⇐⇒ ∆R

1 -Det.

Proof. ∆R
1 -Det→BR+SF: we have already observed (2.2.13) that ∆R

1 -Detimplies SF. To show
that ∆R

1 -Detimplies BR, given a well-founded T and an appropriate formula ϕ, consider the
following well-founded game. First, player I chooses some σ ∈ T ; then, player II responds by
playing either “Safe” or “Unsafe.” The game then continues by playing the clopen game Tσ,
with player II going first if she chose “Safe” and player II going second if she chose “Unsafe.”
Clearly only player II can have a winning strategy, and any winning strategy computes the
desired h by setting h(σ) = 0 if the winning strategy for II tells II to play “Unsafe” if I plays
σ.

In the other direction, given a clopen game G, use BR with the formula

ϕ(Y 2, Z2) ≡ ∃a1(a ∈ Z and Y (a) = 0)

(recall that Y is meant to stand for Fσ and Z for Tσ). The resulting function h then computes
a winning quasistrategy for G: if h(σ) = 0, then σ is a loss for whoever’s turn it is, and one
player or the other can win by ensuring that their opponent always plays from nodes marked
0 by h. SF then lets us pass from this winning quasistrategy to a geniune winning strategy
for G. �

We end this section by presenting a straightforward separation result — the first instance
of divergence from the standard reverse-mathematical picture. Given the low complexity of
wellfoundedness at higher types, it is reasonable to expect that CWO is quite weak relative
to the higher-type determinacy principles. This is, in fact, true:

Lemma 2.2.15. Over RCA3
0, CWO does not imply ∆R

1 -Det.

Proof. We will show that in fact the model B generated by the Borel sets, defined in 2.2.5,
satisfies CWO but not ∆R

1 -Det. Showing that B |=CWO is straightforward: any uncountable
Borel set of reals contains a perfect subset, and there is no Borel well-ordering of R. These
facts follow from Borel determinacy ([38], Theorem 20.5), and together imply that all Borel
well-orderings are countable. It then follows that any two Borel well-orderings are comparable
by a boldface Σ0

2 embedding, so B |= CWO.
To show that B |= ¬∆R

1 -Det, fix some analytic (that is, boldface Σ1
1) set X ⊆ R which is

not Borel. Let T ⊆ ω<ω be a tree such that

X = {a ∈ R : ∃b ∈ R((〈a(i), b(i)〉)i∈ω ∈ [T ])};



CHAPTER 2. HIGHER REVERSE MATHEMATICS, 1/2 25

such a tree is guaranteed to exists since X is Σ1
1, and since B contains all reals we have that

T ∈ B. Now consider the game G which proceeds as follows:

• Player I plays a real a.

• Player II guesses whether a ∈ X or not.

• If player II guesses “yes,” then player II must also play a real b; player I then plays a nat-
ural number k; the game is now over, and player I wins if and only if (〈a(i), b(i)〉)i<k 6∈
T .

• If player I guesses “no,” then player I plays a real b, player II plays a natural number
k; the game is now over, and this time player II wins if and only if (〈a(i), b(i)〉)i<k 6∈ T .

Informally, player I is challenging player II to correctly compute X, and the tree T is used
to evaluate whether II’s guess was correct. This is a clopen game, and viewed as a subtree
of R<ω it is clearly Borel, so G ∈ B.

However, this game is undetermined in B. To see this, note that since B contains every
real, a strategy in B is winning in B if and only if it is actually winning, since otherwise any
play defeating it would be coded by a real and hence exist in B. So if B satisfies ∆R

1 -Det,
then B must contain an actual winning strategy for G; but X is Borel relative to any winning
strategy for G (since such a strategy Σ must be a strategy for player II, and must have the
property that Σ(〈a〉) = 1 ⇐⇒ a ∈ X). Since B consists precisely of the Borel functionals,
if G were determined in B then X would have to be Borel, which is a contradiction. �

Note that Borel instances of ∆R
1 -Det can be constructed whose winning strategies are

much more complex than Σ1
1; so CWO is in fact far weaker than ∆R

1 -Det.

2.3 Separating clopen and open determinacy

In this section we construct a model M of RCA3
0+∆R

1 -Det + ¬ΣR
1 -Det, using a variation of

Steel’s tagged tree forcing; see [74], and also [57] and [61]. Throughout this section, we work
over a transitive ground model V of ZFC+CH.

Remark 2.3.1. Recently, Sherwood Hachtman [25] has developed an alternate proof of this
result; using methods from inner model theory, he shows that the smallest initial segment of
Goedel’s constructible universe L which is a model of RCA3

0+∆R
1 -Detdoes not satisfy ΣR

1 -Det.
More precisely, he shows that if θ is the least ordinal such that (ω,R, ωR)Lθ |=RCA3

0+∆R
1 -Det,

then (ω,R, ωR)Lθ |= ¬ΣR
1 -Det.

The general picture of classical Steel forcing is as follows. Conditions are well-founded
trees, with additional information representing rank, ordered by extension (with certain
restrictions). The full generic object is an infinite, ill-founded tree, whose nodes are labelled
with their ranks in the tree, together with a collection of distinguished paths. The model
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built from this generic is gotten by looking at all sets hyperarithmetic relative to the tree
and finitely many of the paths; in particular, the ordinal labels are forgotten. This loss of
information is crucial.

In our case, our conditions will be countable, ill-founded trees with additional information,
ordered appropriately. The generic object will be, as in the classical case, a tree whose nodes
are labelled essentially with their rank. This tree can be viewed as the game tree of an open
game; this open game, which is classically a win for player II (Closed), will exist but be
undetermined in our model. The difficult portion of the proof is ensuring that the model
we build satisfies ∆R

1 -Det. Rather than use a higher-order notion of hyperarithmeticity (see
below), we construct our model out of those functionals which depend on the generic tree
only in a limited way; see Definition 14.

The idea behind the game we construct is as follows. Consider the clopen game Gα, for
α an ordinal, in which players I and II alternately build decreasing sequences of ordinals
less than α, and the first player whose sequence terminates loses. Clearly player II wins this
game, since all she has to do is consistently play slightly larger ordinals than what player I
plays.

Gα :
Player I α0 α1 < α0 · · ·
Player II β0 β1 < β0 · · ·

Now there is a natural open game, Oα, associated to Gα. Oα has the same rules as
Gα, except that on player I’s turn, she can give up and start over, playing an arbitrary
ordinal below α. If she does this, then player II gets to play an arbitrary ordinal below α as
well. After a restart, play then continues as normal, until player II loses or player I restarts
again. Player I (Open) wins if player II’s sequence ever reaches zero; player II (Closed) wins
otherwise.

Oα :
Player I (Open) α0 α1 · · ·
Player II (Closed) β0 β1 · · · (∀i, αi+1 < αi → βi+1 < βi)

Essentially, Oα is gotten by “pasting together” ω-many copies of Gα, one after the other,
and player II must win all of these clopen sub-games in order to win Oα. This is still a win
for player II, but in a more complicated fashion. In particular, if player II happened to not
be able to directly see the ordinals player I played, but was only able to see the underlying
game tree itself, she would need quite a lot of transfinite recursion to be able to figure out
what move to play next - seemingly more than she would need to win Gα, since there is
much more “noise” in the structure of Oα. This is roughly the situation we create in the
construction below. We will define a forcing notion which adds a tree TG ⊆ R<ω. This tree
can be viewed as an open game on R of length ω in the usual manner. In the full generic
extension, this game will be identical to the game OωV2 — that is, the game tree of OωV2 will
be isomorphic to TG in the full generic extension — but the function which assigns to nodes
of TG their ordinal ranks will be extremely complicated.
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There are several differences between our construction and Steel’s tagged tree forcing,
however. Most importantly, our forcing is countably closed. Countable closure is an ex-
tremely powerful condition, which we use throughout this argument but especially in 2.3.9;
at the same time, countable closure also adds a layer of complexity to the proof of the re-
tagging lemma, an important combinatorial property of Steel-type forcings, which usually
follows from well-foundedness of the trees underlying the forcing conditions. In our case,
the proof of the retagging lemma uses a much weaker “local well-foundedness” property.
Additionally, there is an important shift in how we define the desired substructure of the
full generic extension. In classical Steel forcing, the desired substructure is defined by first
picking out specific elements of the generic extension — usually paths through a certain tree
— and then closing under hyperarithmetic reducibility; the proof then continues by showing
that every element of the resulting model depends only on “bounded” information about the
generic. In our case, we start at the end, and simply consider the part of the generic exten-
sion depending on the generic in a “bounded” way. This is both clearer and more flexible a
method than the standard approach; also, higher-type analogue of the hyperarithmetic sets
— the so-called “hyperanalytic” sets — is more complicated to work with. See [60] for a
definition of this analogue, as well as an account of some early difficulties faced in its study.

Constructing the model

The forcing we use in this section is the following:

Definition 12. Let ω∗2 = ω2 ∪ {∞}, ordered by taking the usual order on ω2 and setting
∞ > x for all x ∈ ω∗2 (including ∞ > ∞). P is the forcing consisting of all partial maps
p : ⊆ R<ω → ω∗2 × ω∗2 satisfying the following conditions, ordered by reverse inclusion:

• dom(p) is a countable subtree of R<ω with p(〈〉) ↓= (∞,∞) (the game starts with player
Open moving, and no meaningful tags);

• σ ∈ dom(p)→ [(|σ| = 2k + 1 ∧ p(σ−)1 = p(σ)1) ∨ (|σ| = 2k ∧ p(σ−)0 = p(σ)0)] (player
Open is playing p(σ)0, Closed is playing p(σ)1, and on a given turn exactly one of these
values changes);

• if p1(σ) = 0, then no extension of σ is in the domain of p (if Closed ever hits 0, she
loses); and

• σa〈a, b〉 ∈ dom(p), |σ| = 2k, ∞ 6= p(σ)0 > p(σa〈a, b〉)0 → p(σ)1 > p(σa〈a, b〉)1 (as
long as player Open has not just played an ∞, or failed to play less than her previous
play, Closed’s next play has to be less than her previous play).

Note that the way this last condition is phrased allows p(σ)1 to be anything when p(σ)0 =∞,
for |σ| = 2k, since we have ∞ > ∞. Also, if |σ| = 2k and p(σ−)1 = ∞, then p(σ)1 can be
anything.

From this point on, we fix a filter G ⊆ P which is P-generic over V .
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The main difference between our forcing P and Steel forcing is that P is countably closed
(recall 2.1.1). The immediate use of countable closure is that it lets us completely control
the type-1 objects in our model; later, we will use countable closure in a more subtle way,
to show that no well-orderings of reals of length ≥ ωV2 are in our model, even though such
well-orderings will exist in the full generic extension (Lemma 2.3.9).

As with Steel forcing, we have a retagging notion:

Definition 13. For p, q ∈ P and α ∈ ω2, we say that q is an α-retagging of p, and write
p ≈α q, if

• dom(p) = dom(q);

• for σ ∈ dom(p), i ∈ 2 we have

p(σ)i < α→ q(σ)i = p(σ)i

and
p(σ)i ≥ α→ q(σ)i ≥ α.

These retagging relations let us define the set of names which depend on the generic in
a “bounded” way:

Definition 14. Let ν be a name for a type-2 functional, that is, a map R→ ω, and suppose
α ∈ ω2. Then ν is α-stable if for all a ∈ R, k ∈ ω, we have

∀p, q ∈ P[p ≈α q, p 
 ν(a) = k → q 
 ν(a) = k.]

Finally, we can define our desired model:

Definition 15. Fix G P-generic over V . M is defined inductively to be the L3-structure

M = (ω,R, {ν[G] : ∃α < ω2(ν is α-stable)}).

The purpose of this section is to prove

Theorem 2.3.2. M |=RCA3
0+∆R

1 -Det + ¬ΣR
1 -Det.

We begin with two simple properties of the model M .

Definition 16. TG is the underlying tree of G; that is,

TG = {σ ∈ R<ω : ∃p ∈ G(σ ∈ dom(p))}.

Fact 2.3.3. 1. P(ωω) ∩ V ⊂M2.

2. TG ∈M2.
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Proof. (1) follows from the fact that canonical names for sets in V do not depend on the
poset P, and are hence 0-stable. For (2), the only way to force σ 6∈ TG is to have some p ∈ G,
τ ≺ σ such that p(τ)1 = 0, so it follows that the canonical name for TG is 1-stable. �

We can now prove the first non-trivial fact about M : that it does not satisfy open deter-
minacy for reals. Specifically, we will show that TG, viewed as an open game, is undetermined
in M .

The first step is the following:

Lemma 2.3.4. V [G] |= TG is a win for Closed.

Proof. By a straightforward density argument, if G is generic, then whenever |σ| = 2k + 1,
p ∈ G, and p(σ)1 =∞, there is some q ∈ G and a ∈ R such that q(σa〈a〉)1 =∞. It follows
that the strategy

Π(σ) = the ≤W -least a such that ∃p ∈ G(p(σa〈a〉)1 =∞)

is winning for Closed. �

The indeterminacy of TG in M then follows from a two-part argument: strategies for
Open can be defeated using 2.3.4 and the countable closure of P, and stable strategies for
Closed can be defeated by pulling the rug out from under her:

Lemma 2.3.5. M |= ¬ΣR
1 -Det.

Proof. Consider the open game corresponding to TG (in which player I is Open). Recall that
TG is in M and TG is “really” a win for player Closed by 2.3.3 and 2.3.4, respectively; we
claim that this game is undetermined in M .

Suppose Σ is a strategy for player Open in M . Consider the tree of game-states “allowed”
by Σ:

AΣ = {σ ∈ TG : ∃Π(σ ≺ Σ⊗ Π)}.

Since TG is actually a win for Closed, the tree AΣ must be ill-founded. Let f ∈ V [G] be a
path through TG. Then f ∈ V , since P is countably closed and f can be coded by a single
real. But then within V , we can construct a strategy Π which defeats Σ by playing along f :

τ ≺ f → Π(τ) = f(|τ |), τ 6≺ f → Π(τ) = 0.

Since Π exists in V , Π ∈M2; so TG is not a win for Open in M .
Now suppose Π is a strategy for player Closed in M , and suppose (towards a contradic-

tion) that
p 
 ν is a winning strategy in TG

where ν is an α-stable name for Π, α ∈ ω2. We can find

• q ≤ p,
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• a ∈ R− {c : 〈c〉 ∈ dom(p)},

• b ∈ R, and

• β > α

such that 〈a, b〉 ∈ dom(q), q(〈a〉) = (β,∞), and q 
 ν(〈a〉) = b. Now since q ≤ p and p
forces that Π wins, we must have q(〈a, b〉) = (β, γ) with γ > β; so γ > α. But then we can
find a q̂ ≈α q such that q̂ ≤ p and q̂(〈a, b〉) = (β̂, γ̂) for some β̂ > γ̂. But then q̂ forces that
there is some finite play extending 〈a, b〉 which is a win for Open; and since every possible
finite play exists in M , this contradicts the assumption that ν was forced to be a name for
a winning strategy. �

To analyze M further, we require the analogue of Steel’s retagging lemma for our forcing:

Lemma 2.3.6. [Retagging] Suppose α < ω2 has uncountable cofinality, p ≈α q, r ≤ q, and
γ < α. Then there is some r̂ ≤ p with r̂ ≈γ r.

Proof. This is a straightforward combinatorial construction. It is worth noting, however,
that Steel’s retagging lemma is proved using the fact that conditions in Steel forcing are
(essentially) well-founded trees. Of course, are conditions are not well-founded, so we must
be slightly more subtle: the heart of this proof is the realization that conditions in P, though
not well-founded, are “locally well-founded” in a precise sense. Intuitively, when deciding
how to tag a given node of r′, we only need to look at a well-founded piece of the domain
of r; using the ranks of these well-founded pieces as parameters gives us enough “room” for
the natural construction to go through.

Formally, we proceed as follows. Since α has uncountable cofinality, we can find a γ̃ such
that γ < γ̃ < α and γ̃ is larger than every r(σ)i and p(τ)i (i ∈ {0, 1}, σ, τ ∈ R<ω) which is
less than α.

For σ ∈ dom(r)− dom(p), let

Tσ = {τ : σaτ ∈ dom(r) ∧ ∀ρ ≺ τ(|σaρ| odd →∞ 6= r(σaρ−)0 > r(σaρ)0)}

be the set of ways to extend σ within dom(r) which according to r don’t involve player Open
restarting after σ, and note that for each σ ∈ dom(r)− dom(p) the tree Tσ is well-founded.
Also, let N be the set of nodes of dom(r) that are new (that is, not in dom(p)) but don’t
follow any new restarts by player Open:

{σ ∈ dom(r)− dom(p) : ∀τ 4 σ(τ ∈ dom(r)− dom(p), |τ | odd→ r(τ−)0 > r(τ)0 6=∞)}.

The idea is that we really only need to focus on nodes in N : nodes in dom(p) have already
had their tags determined, and nodes not in N ∪ dom(p) will have no constraints on their
tags coming from p at all, since they must follow a restart by Open. In order to define the
value of r̂ on some node σ in N , though, we need an upper bound on how large N is above
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σ to keep from running out of ordinals prematurely; this is provided by taking the rank of
Tσ.

Formally, we build the retagged condition as follows. Recalling that V |=ZFC, fix in V
a well-ordering of R<ω, and via that ordering let rk(S) be the rank of S for S ⊆ R<ω a
well-founded tree. Then we define r̂ as follows:

r̂(σ) =



↑, if σ 6∈ dom(r),

p(σ), if σ ∈ dom(p),

r(σ), if σ 6∈ (N ∪ dom(p)),

(min{γ̃ + rk(Tσ), r(σ)0}, r̂(σ−)1), if σ ∈ N and |σ| is odd,

(r̂(σ−)0,min{γ̃ + rk(Tσ), r(σ)1}), if σ ∈ N and |σ| is even.

It is readily checked that r̂ ∈ P — the assumption on γ̃ being used here to show that the
coordinates of r̂ are decreasing when the corresponding coordinates of r drop from ≥ α to
< α — and that r̂ ≤ p and r̂ ≈γ r (in fact, r̂ ≈γ̃ r). �

As a straightforward application of the retagging lemma, we can now show that M is a
model of RCA3

0:

Lemma 2.3.7. M |= RCA3
0.

Proof. P−, the extensionality axioms, the axioms defining ∗ and a, and comprehension for
reals are all trivially satisfied, the last of these since M contains precisely the reals in V
and V |= ZFC. Only the comprehension scheme for type-2 functionals is nontrivial. We will
prove that arithmetic comprehension for type-2 functionals holds in M , since this proof is
no harder than the proof for ∆0

1 comprehension.
Intuitively, we will show that functionals defined in an arithmetic way depend, value-by-

value, on only countably many bits of information. From this, and the countable closure of
our forcing, we will be able to find stable names for such functionals.

Let ϕ(X1, y0) be an arithmetic (that is, Σ0
n for some n ∈ ω; recall Definition 5) formula

such that for each a ∈ R there is precisely one k ∈ ω with

M |= ϕ(a, k).

Since each natural number is definable, we can assume ϕ has no type-0 parameters. Let
(Fi)i<n be the type-2 parameters used in ϕ, let (sj)j<m be the type-1 parameters used in ϕ,
and let νi be an α-stable name for Fi; since each Fi has a stable name, and there are only
finitely many Fi, we can find some large enough α < ω2 so that such names exist. Note
that we can work directly with the sj, as opposed to just dealing with their names, since our
forcing adds no new reals.

For a ∈ R, let Ca be any countable set of names for reals such that

• Ca contains a name for a and each sj;



CHAPTER 2. HIGHER REVERSE MATHEMATICS, 1/2 32

• whenever a name µ is in Ca and k ∈ ω, Ca contains a name ν such that 
 ν = kaµ;
and

• whenever µ is in Ca and i < n, Ca contains a name µ′ such that 
 µ′ = νi ∗ µ.

Although we have not been completely precise in defining the sets Ca, it is clear that the
definition above is effective in the sense that a suitable set of sets of names {Ca : a ∈ R}
exists in the ground model, V .

The key fact about the Ca is that, by construction, they determine the truth value of the
formula ϕ at a: that is, the truth value of ϕ(a, k) depends only on the values of the Fi on
the reals named by elements of Ca. Formally,

∀µ ∈ Ca∃k ∈ R[(p 
 µ = k) ∧ (q 
 µ = k)]→ ∀l ∈ ω[(p 
 ϕ(a, l)) ⇐⇒ (q 
 ϕ(a, l))].

Now let ν be a name for the functional defined by ϕ. We will show that ν is (α+ω1)-stable.
Let r ∈ R and p, q ∈ P such that p ≈α+ω1 q and p 
 ν(r) = k. Let

Dr = {t ∈ P : ∀µ ∈ Cr∃s ∈ R(t 
 µ = s)}

be the set of conditions which decide the value of each name in Cr. Since Cr is countable,
and P is countably closed, the set Dr is dense. Now suppose towards contradiction that
q 6
 ν(r) = k. Then since Dr is dense, we can find some q′ ≤ q such that

q′ ∈ Dr and q′ 
 ν(r) = l

for some natural l 6= k. By the retagging lemma, there is some p′ ≤ p such that p′ ≈α q′;
but since each of the νi are α-stable, we must have

∀i < n, t ∈ R, µ ∈ Cr[(q′ 
 µ = t) ⇐⇒ (p′ 
 µ = t)].

But since the truth value of ϕ(r, k) depends only on the values of the Cr, this contradicts
the fact that p′ ≤ p and p 
 ν(r) = k. �

Clopen determinacy in M

Showing that M satisfies clopen determinacy for reals, however, requires a more delicate
proof. Intuitively, given a stable name for a clopen game, we ought to be able to inductively
construct a stable name for a winning (quasi)strategy in that game by just iterating the
retagging lemma in the right way. However, since the rank of a stable name is required to
be < ω2, we cannot iterate the retagging lemma ω2-many times, so we need all clopen games
in M to have rank < ω2. This cannot be derived from the retagging lemma alone; instead,
we need to look at particular subposets of P:

Definition 17. For α < ω2, Pα is the subposet of P defined by

Pα = {p ∈ P : ∀σ ∈ dom(p), i ∈ 2(p(σ)i < α ∨ p(σ)i =∞)}.
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Conditions in Pα will turn out to satisfy a slightly stronger retagging property with
respect to ≈α — the projecting lemma, below — than conditions in general, and this will be
used to prove that this forcing adds no stable well-orderings of reals longer than any in the
ground model. Note that this is false for unstable well-orderings; in particular, forcing with
P collapses ω2 in the full generic extension.

Definition 18. For p ∈ P, α < ω2, we let the α-projection of p,

pα : dom(p)→ (α ∪ {∞})× (α ∪ {∞}),

be the map given by

∀σ ∈ dom(p), i ∈ 2, pα(σ)i =

{
p(σ)i if p(σ)i < α

∞ otherwise.

Lemma 2.3.8. [Projecting] For all p ∈ P, α < ω2, we have:

1. pα ∈ Pα;

2. pα ≈α p;

3. p ≤ q → pα ≤ qα;

4. |Pα|V = ℵ1; and

5. Pα is countably closed.

Proof. For (1), note that since we set ∞ >∞, the map

x 7→

{
x if x < α

∞ otherwise

satisfies x < y ⇐⇒ π(x) < π(y). So as long as p is in P, the projection pα will not contain
any illegal instances of the second coordinate increasing (which is the only possible obstacle
to being a condition), and so will also be in P - and clearly if pα ∈ P, then pα ∈ Pα.

(2) and (3) are immediate consequences of (1). Property (3) shows that we can allow
γ = α in the retagging lemma above if p is assumed to be in Pα, and that we can take r̂ to
be in Pα as well in that case.

For (4), note that elements of Pα can be coded by countable subsets of R×ω1; the result
then follows since V |= CH.

Finally, for (5), let (pi)i∈ω be a sequence of conditions in Pα with pi+1 ≤ pi. Then since
P is countably closed, we have some q ∈ P with q ≤ pi for all i ∈ ω; but then qα ∈ Pα by
(1), and since each pi ∈ Pα, we have pαi = pi and hence qα ≤ pi by (3). �
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This lemma helps provide us with explicit upper bounds on the lengths of type-2 well-
orderings in M , via the construction below. We can use this result to provide a bound on
the lengths of well-orderings in M , which in turn allows the induction necessary for showing
clopen determinacy to go through.

Lemma 2.3.9. [Bounding] Suppose ν is a stable name for a well-ordering of R (that is, 
 ν
is a well-ordering of R). Then there is some ordinal λ < ω2 such that


 ν 4 λ.

That is, ω2 is not collapsed in a stable way by forcing with P.

Proof. Suppose ν is an α-stable name for a well-ordering of a set of reals. The proof takes
place around the subposet Pα. For a sequence of reals a = 〈a0, ..., an〉 and a condition p ∈ P,
say that p is adequate for a, and write Ad(p, a), if p forces that a is a descending sequence
through ν:

p 
 a0 >ν ... >ν an.

Note that since ν is α-stable, p is adequate for a if and only if pα is adequate for a, by (2)
of the previous lemma.

In order to bound the size of ν in any generic extension, we create in the ground model
an approximation to the tree of descending sequences through ν, as follows:

Tν = {〈(pi, ai)〉i<n : pi ∈ Pα ∧ ∀i < j < n(pj ≤ pi ∧ Ad(pj, 〈a0, ..., ai−1〉))}.

Elements of Tν are potential descending sequences, together with witnesses to their possi-
bility. Now since ν is a name for a well-ordering, we must have that Tν is well-founded.
Otherwise, we would have a sequence of condition/real pairs, 〈(pi, ai)〉i∈ω, which build an
infinite descending sequence through ν, that is,

pi+1 ≤ pi, pi+2 
 ai >ν ai+1.

But then a common strengthening q ≤ pi, which exists by the countable closure of Pα,
would create an infinite descending chain in ν; and this contradicts the assumption that

 ν is well-founded.

Additionally, |Tν | = ℵ1, since Tν ⊆ (Pα×R)<ω and |Pα| = ℵ1 by Lemma 2.3.8(4). Fixing
in V a bijection between ω1 and Tν we can take the Kleene-Brouwer ordering Lν of Tν . Since
Tν is well-founded, this is a well-ordering; below, we will show that in fact


 ν 4 Lν .

Let
KG
ν = {〈a0, ..., an〉 : a0 >ν[G] ... >ν[G] an}
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be the tree of descending sequences through ν[G] in V [G], and fix a well-ordering ≤W of Pα
in V . For a ∈ KG

ν , we define a condition in Pα by recursion as follows:

h(a) = the ≤W -least p ∈ Pα such that p ≤ h(b) for all b ≺ a and Ad(p, a).

(Note that by the previous lemma and the fact that ν is α-stable, h is defined for all a ∈ KG
ν .)

An embedding from KG
ν into Tν can then be defined:

e : KG
ν → Tν : 〈ai〉i<n 7→ 〈(h(〈a0, ..., ai〉), ai)〉i<n.

It follows that ν[G] 4 Lν , as desired. �

Now we are finally ready to prove that M satisfies clopen determinacy. For simplicity,
this proof is broken into three pieces. First, we show that the rank of a node in a clopen
game can be determined in an α-stable way, for appropriately large α. Then we define a set
which encodes the rank of nodes in a clopen game, as well as which player these nodes are
winning for, and show that this set is similarly well-behaved. Finally, we use this to give
stable names for winning strategies in clopen games which themselves have stable names —
and this will suffice to show that ∆R

1 -Det holds in M . Unfortunately, the first two steps in
this proof is exceedingly tedious, as we require more and more room to retag conditions, but
the intuition is that of a straightforward induction.

Fix in V a well-ordering ≤W of R. Using this well-ordering, we can define the rank rk(T )
of a well-founded tree T ⊂ R<ω in the usual way; and for σ ∈ T , we let rkT (σ) = rk({τ :
σaτ ∈ T}). If ν is a name for a well-founded tree, then rk(ν) and rkν(σ) are the standard
names for rk(ν[G]) and rkν[G](σ).

Lemma 2.3.10. Let ν be a β-stable name for a well-founded subtree of R<ω, p ∈ P, γ < ω2,
and σ ∈ R<ω such that

p 
 rkν(σ) = γ,

and suppose q ≈β+ω1(γ2+2) p; then

q 
 rkν(σ) = γ.

Proof. By induction on γ. For γ = 0, suppose q is a counterexample to the claim; then we
can find r ≤ q and a ∈ R such that

r 
 σa〈a〉 ∈ ν.

Now by the retagging lemma, we can find some r̂ ≤ p such that r̂ ≈β r. Since ν is β-stable,
we have

r 
 σa〈a〉 ∈ ν,

which contradicts the assumption on p.
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Now suppose the lemma holds for all γ < θ, and let p 
 rkν(σ) = θ; then

p 
 ∀a ∈ R(σa〈a〉 ∈ ν → rkν(σ
a〈a〉) < θ).

Suppose towards a contradiction that

q ≈β+ω1(θ2+2) p and q 6
 rkν(σ) = θ;

then there is some r ≤ q, a ∈ R such that

r 
 σa〈a〉 ∈ ν ∧ rkν(σa〈a〉) ≥ θ.

By the retagging lemma we get some r̂ ≤ p such that r̂ ≈β+ω1(θ2+1) r, and since ν is β-stable
we have r̂ 
 σa〈a〉 ∈ ν. Since r̂ ≤ p, and p 
 rkν(σ) = θ, we must be able to find some
δ < θ and s ≤ r̂ such that s 
 rkν(σ

a〈a〉) = δ; using the retagging lemma a second time,
we can get some ŝ ≤ r such that ŝ ≈β+ω1(δ2+2) s. But then by the induction hypothesis
s 
 rkν(σa〈a〉) = δ, contradiction the assumption on r. �

Definition 19. If T ⊂ R<ω is a well-founded tree, thought of as a clopen game, a node σ
on T is safe if the corresponding clopen game

T σ = {τ : σaτ ∈ T}

is a win for player I. For ν be a β-stable name for a well-founded subtree of R<ω with rank
< α for some α < ω2 (see Lemma 2.3.9), let ∆ν be a name for the set which encodes rank
and safety of nodes on ν:

∆ν [G] := {(σ, δ, i) : σ ∈ ν[G] and rkν[G](σ) = δ and i = Jσ is safe in ν[G]K}.

We will show that ∆ν is well-behaved, in the sense of stability, and use this to give a
stable name for a winning strategy for ν.

Lemma 2.3.11. Let ν be a β-stable name for a well-founded subtree of R<ω of rank < α;
and for simplicty, let κ = β + ω1(α2 + 2). If p 
 (σ, δ, i) ∈ ∆ν, and q ≈κ+ω1(δ2+2) p, then
q 
 (σ, δ, i) ∈ ∆ν.

Proof. Suppose not. Let δ be the least ordinal such that for some σ, i there are conditions
p, q such that

• q ≈κ+ω1(δ2+2) p,

• p 
 (σ, δ, i) ∈ ∆ν , and

• q 6
 (σ, δ, i) ∈ ∆ν .
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There are two cases. If δ = 0, then we must have i = 0; since ν is β-stable, there can be
no condition below q which adds a child of σ to ν (since then we can use the retagging lemma
to force this below p, which already forces that σ is terminal in ν), and so q 
 (σ, 0, 0) ∈ ∆ν .

So suppose δ > 0. Since p 
 rkν(σ) = δ, by the previous lemma we have q 
 rkν(σ) = δ;
so q just disagrees on whether σ is safe, which means we must be able to find some r ≤ q
such that

r 
 (σ, δ, 1− i) ∈ ∆ν .

By the retagging lemma we can find an r̂ ≤ p such that r̂ ≈κ+ω1(δ2+1) r.
Now the proof breaks into two subcases based on whether i = 0 or i = 1. We treat the

first case; the proofs are essentially identical.
We have r ≈κ+ω1(δ2+1) r̂ and r 
 (σ, δ, 1) ∈ ∆ν . Since r thinks σ is safe, r must think

there is some immediate successor of σ which is unsafe. That is, we can find s ≤ r, θ < δ,
and a ∈ R such that s 
 (σa〈a〉, θ, 0) ∈ ∆ν ; by retagging again we can find

ŝ ≤ r̂, ŝ ≈κ+ω1(θ2+2) s,

which by our assumption on δ means that

ŝ 
 σa〈a〉 ∈ ν and is unsafe.

But ŝ ≤ r̂ ≤ p and p believes σ is unsafe, which means p believes σ has no safe extensions -
a contradiction. �

Finally, we are ready to show that ν is determined in M :

Corollary 2.3.12. Let ν be a β-stable name for a well-founded subtree of R<ω, viewed as a
clopen game, with rk(ν) < α < ω2 for some limit ordinal α. Then there is an (β+ω1(α4+5))-
stable name for a (type-2 functional coding a) winning strategy for ν.

Proof. (Note that requiring α to be a limit is a benign hypothesis, as we can always make α
larger if necessary; this assumption is just made to simplify some ordinal arithmetic below.)
Recall that ≤W is a well-ordering of R in V . Let µ be a name for the type-2 functional which
encodes the strategy picking out the ≤W -least winning move at any given stage:

µ[G](naσ) =

{
a(n) if a is the ≤W -least real such that ∃β < α[(σa〈a〉, β, 0) ∈ ∆ν ],

0 if no such real s exists.

For simplicity, we assume that 
“no string containing a ‘0’ is on ν,” so that there is no
ambiguity in this definition. Clearly µ yields a winning strategy for whichever player wins
ν.

All that remains to show is that µ is stable. Let λ = (β + ω1(α4 + 5)), fix σ and a, and
let p ≈λ q are conditions in P such that p 
 µ(σ) = a. We can find some r ≤ q and some
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b such that q′ 
 µ(σ) = b; we’ll show that b = a, and so we must have had q 
 µ(σ) = a
already.

There are two cases:

Case 1: a = 0. Suppose towards a contradiction that b 6= 0. Since a = 0, we have p 

∀δ < α,∀b ∈ R[(σa〈b〉, δ, 0) 6∈ ∆ν ]. Let s ≤ r and δ < α be such that s 
 (σa〈b〉, δ, 0) ∈ ∆ν ;
by the retagging lemma, there is p′ ≤ p with p′ ≈β+ω1(α4+4) s, which by Lemma 2.3.11 is
impossible.

Case 2: a 6= 0. By identical logic as in the previous case, we must have b 6= 0; suppose
towards contradiction that b 6= a. With two applications of the retagging lemma, we can
find ordinals δ0, δ1 < α and conditions p′ ≤ p, r′ ≤ r such that

• p′ ≈β+ω1(α4+2) r
′,

• p′ 
 (σa〈a〉, δ0, 0) ∈ ∆ν , and

• r′ 
 (σa〈b〉, δ1, 0) ∈ ∆ν .

By Lemma 2.3.11, we have r′ 
 (σa〈a〉, δ0, 0) ∈ ∆ν and p′ 
 (σa〈b〉, δ1, 0) ∈ ∆ν as well. Also
note that we have p′ 
 µ(σ) = a, r′ 
 µ(σ) = b, since p′ ≤ p and r′ ≤ r ≤ q. Now since
a 6= b, either a <W b or b <W a, and so either way we have a contradiction.

This completes the proof. �

Since M1 = R, M computes well-foundedness of subtrees of R<ω correctly; so by 2.3.9, it
then follows that every clopen game in M has a winning strategy in M . Together with 2.3.5
and 2.3.7, this completes the proof of Theorem 2.3.2.

2.4 Conclusion

In this paper, we have sought to understand how the passage to higher types affects math-
ematical constructions related to the system ATR0; given both the sheer number of such
constructions, and the relative youth of higher-order reverse mathematics, this remains nec-
essarily incomplete. We close by mentioning three particular directions for further research
we find most immediately compelling:

• Despite the analysis provided by this paper, there are still basic questions remaining
unaddressed. It is unclear what is the relationship between ΣR

1 -Det and Σ2
1-Sep. We

suspect that these principles are incomparable, but separations at this level are unclear:
for example, it is open even whether ΣR

1 -Det implies the Π2
2-comprehension principle

for type-2 functionals, although the answer is almost certainly that it does not.
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For that matter, in this paper we have focused entirely on the strengths of third-order
theorems relative to other third-order theorems; their strength relative to second-order
principles has been completely unexplored. For instance, it is entirely possible, albeit
unlikely, that ∆R

1 -Det and ΣR
1 -Det have the same second-order consequences.

• One interesting aspect of the shift to higher types we have not touched on at all is
the extra structure available in higher-type versions of classical theorems. Given a Π1

2

principle
ϕ ≡ ∀X1∃Y 1θ(X, Y ),

we can take its higher-type (so prima facie Π2
2) analogue

ϕ∗ ≡ ∀F 2∃G2θ∗(F,G).

Now, individual reals are topologically uninteresting, but passing to a higher type
changes the situation considerably. Specifically, we can consider topologically restricted
versions of ϕ∗: given a pointclass Γ, let

ϕ∗[Γ] ≡ ∀F 2 ∈ Γ∃G2θ(F,G).

The relevant example is restricted forms of determinacy: the principles ∆R
1 -Det[Γ]

(resp., ΣR
1 -Det[Γ]) assert determinacy for clopen (resp., open) games whose underlying

trees when viewed as sets of reals are in Γ. In particular, the system ΣR
1 -Det[Open] is

extremely weak, at least by the standards of higher-type determinacy theorems: it is
equivalent over RCA3

0 to the classical system ATR0.

The techniques used in the proof of Theorem 2.3.2 are topologically badly behaved. In
particular, they tell us nothing about the restricted versions ∆R

1 -Det[Γ] and ΣR
1 -Det[Γ].

With some work the argument of this paper might extend to showing that ∆R
1 -Det[Γ] 6`

ΣR
1 -Det[Γ] over RCA3

0, for reasonably large pointclasses Γ, but not immediately; and
certainly a detailed understanding of which restricted forms of open determinacy for
reals are implied by which restricted forms of clopen determinacy will require substan-
tially new ideas. This finer structure seems to allow a rich connection between classical
descriptive set theory and higher reverse mathematics, and is worth investigating.

• Finally, there is a serious foundational question regarding the base theory for higher-
order reverse mathematics. The language of higher types is a natural framework for
reverse mathematics, as explained at the beginning of section 2.1; however, the spe-
cific base theory RCAω0 is not entirely justified from a computability-theoretic point of
view. While proof-theoretically natural, it does not necessarily capture “computable
higher-type mathematics.” The most glaring exmaple of this concerns the Turing jump
operator. In the theory RCAω0 , the existence of a functional corresponding to the jump
operator

J1→1 : f 7→ f ′
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is conservative over ACA0 ([31], Theorem 2.5). However, intuitively we can compute
the ωth jump (and much more) of a given real by iterating J; thus, given a model M of
RCAω0 , there may be algorithms using only parameters from M and effective operations
which compute reals not in M . From a computability theoretic point of view, then,
RCAω0 may be an unsatisfactorily weak base theory.

Of course, this discussion hinges on what, precisely, “computability” means for higher
types. A convincing approach is given in [40], justified by arguments by Kleene and
others (see especially [21]) similar in spirit to Turing’s original informal argument. It
is thus desirable — at least for higher-type reverse mathematics motivated by com-
putability theory, as opposed to proof theory — to have a base theory corresponding
to full Kleene recursion.7 We will address these, and other, aspects of the base theory
issue in a future paper. However, the search for the “right” base theory is very fertile
mathematical ground, drawing on and responding to foundational ideas from proof
theory, generalized recursion theory, and even set theory, and deserves attention from
many corners and active debate.

7It should be noted that the separations 2.2.15 and 2.3.2 in this paper do not suffer from the choice of
base theory. This is because — by a straightforward, albeit tedious, induction — Kleene computability from
a type-2 object satisfies the following countable use condition: if F is a given type-2 object, and ϕF

e is a
type-2 object computed from F , then for each real r there is a countable set of reals Cr such that

∀G2(G � Cr = F � Cr → ϕF
e (r) = ϕG

e (r)).

The models in 2.2.15 and 2.3.2 then satisfy this stronger theory by essentially the same argument as in 2.3.7.
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Chapter 3

Higher reverse mathematics, 2/2

The work in this chapter originally appeared in an early draft of [68]; it remains work in
progress.

3.1 The strength of RCA3
0

In this section we review Kohlenbach’s original base theory RCAω0 , and show that it is equiv-
alent to our base theory RCA3

0 in a precise sense.

Definition 20. Let Lω be the many-sorted language consisting of

• a sort tσ for each finite type σ ∈ FT ,

• application operators
·σ,ρ : tσ→ρ × tσ → tρ

for all finite types,

• the signature of arithmetic for the type-0 functionals, and

• equality predicates =σ for each σ ∈ FT .

RCAω0 is the Lω-theory consisting of the following axioms:

• The ordered semiring axioms, P−, for the type-0 objects, and extensionality axioms for
all the finite types;

• the schemata
∃Πσ→(τ→τ)∀Xσ, Y τ (ΠXY = Y )

and

∃Σ(σ→(ρ→τ))→((σ→ρ)→(σ→τ))∀Xσ→(ρ→τ), Y σ→ρ, Zσ(((ΣX)Y )Z = (XZ)(Y Z))

defining the K- and S-combinators, respectively;
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• the axiom R0 asserting the existence of a primitive recursion functional, which for
clarity we will always denote R0:

∃R0→((0→1)→(0→0))
0 ∀x0, g0→1, k0(R0(x, g)(0) = x ∧R0(x, g)(k + 1) = g(R0(x, g)(k)), k);

and

• the choice scheme qf-AC1,0, which consists — for each quantifier-free formula ϕ(X1, y0)
in only the displayed free variables, containing no equality predicate of type 6= 0 — of
the axiom

∀X1∃y0ϕ(X, y)⇒ ∃F 2∀X1ϕ(X,F (X)).

We will prove that RCAω0 is a conservative extension of RCA3
0.1

To begin, we need some basic results about pairing higher-type objects.

Definition 21. Fix a pairing operator 〈·, ·〉 on natural numbers. In a slight abuse of notation,
for reals x, y we let 〈x, y〉 be the real gotten by pairing x and y pointwise:

〈x, y〉 : a 7→ 〈x(a), y(a)〉.

For a finite sequence c of objects which are either all reals or all naturals, let 〈c〉 be the usual
coding of c by repeated use of the appropriate-type pairing operator 〈·, ·〉, associating to the
right.

For a a real, we let ã = a; for b ∈ ω, we let

b̃ = “n 7→ b.”

For c a finite sequence of objects which are each either reals or naturals, let

〈c〉R = 〈c̃0, c̃1, ...〉.

We write πi for the projection map onto the ith coordinate; both RCAω0 and RCA3
0 prove the

existence of the relevant projection functionals. (In the case of RCA3
0, a real-valued projection

πi(〈w〉R) is given by Fi ∗ (〈wR〉) for a certain functional Fi.) Throughout, we use the pairing
functions and projection maps in formulas putatively in the language L3 or Lω, even though
those symbols are not in either language, when it is clear that no expressive power is added.

We begin with the easier result: that RCA3
0 is a subtheory of RCAω0 .

Lemma 3.1.1. Whenever
N = (Nσ)σ∈FT |= RCAω0 ,

we have (N0, N1, N2) |= RCA3
0 (with the symbols a and ∗ interpreted in the obvious way).

1Since the language of RCAω
0 does not include the symbols “∗” and “a,” it is technically better to say

that RCA3
0 is a conservative extension of a subtheory of RCAω

0 ; however, since this will not be an issue, we
ignore this point going forward.
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Proof. The proof that N contains functionals of type 2 → (1 → 1) and 0 → (1 → 1)
corresponding to ∗ and a, respectively, is not hard. It is somewhat tedious, however — for
example, constructing a term corresponding to a requires a definition by cases, and relies on
the functional R0 — and so we omit it.

Since RCAω0 proves P−, extensionality, and Σ0
1-induction,2 it now suffices to show that

RCAω0 proves the ∆0
1 comprehension schemata for type 1 and 2 objects; since the former

follows in turn from the latter and a bit of coding, we just need to prove ∆0
1 comprehension

for type 2 objects in RCAω0 .

Definition 22. An L3-formula ϕ(x) with parameters from N and only type-1 and type-0
variables is representable if there is some type-2 functional Fϕ ∈ N such that

N |= Fϕ(〈a〉R) = 1 ⇐⇒ ϕ(a).

Sublemma 3.1.2. All Σ0
0 formulas are representable.

Proof of claim. By induction on the number of bounded quantifiers. Note that the repre-
sentable formulas are closed under negation, so we need only consider one kind of bounded
quantifier.

The base case follows immediately from qf-AC1,0: if ϕ(r) has no quantifiers, then

ψ(r, k) ≡ (k = 0 ∧ ¬ϕ(r)) ∨ (k = 1 ∧ ϕ(r))

is a quantifier-free formula, and applying qf-AC1,0to ψ yields a representing functional for ϕ.
For the induction step, it is enough to show that

ϕ(r1) ≡ ∃x0 < F 2(r)(G2(〈x, r〉) = 1)

is representable whenever F,G ∈ N are type-2 parameters. The key tool here is the primitive
recursion operator, R0. Using R0, we can define a functional H whose value on a real r is
computed by starting with 0, cycling through all naturals less than F (r) and incrementing
each time we encounter a solution to G(〈−, r〉) = 1; that is,

H(r) = 0 ⇐⇒ ∀x < F (r), G(〈x, r〉) = 0.

Rigorously, we let H be the type-2 functional defined by

λr1.R0(0, λx0.(π0(x) +G(〈π1(x), r〉)))(F (r)),

and note that H is clearly in N . Then the representing functional we desire is simply

I : r 7→ JH(r) > 0K,

whose existence in N follows from applying the axiom qf-AC1,0 to the formula

ϕ(r, k) ≡ (k = 0 ∧H(r) = 0) ∨ (k = 1 ∧H(r) > 0).

This finishes the proof of the sub-lemma. �
2See [43].
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Now we can prove the full ∆0
1 comprehension scheme in RCAω0 , as follows. Let

ϕ(X1, y0) ≡ ∃z0θ(X1, y0, z0)

be a Σ0
1 formula satisfying the hypothesis of the comprehension scheme, with θ ∈ Σ0

0. By
the lemma, let F ∈ N be the functional such that

F (〈A1, b0, c0〉R) = 1 ⇐⇒ N |= θ(A, b, c).

Now consider the formula

ψ(X1, w0) ≡ w = 〈s, t〉 ∧ F (〈X, s, t〉R) = 1;

applying qf-AC1,0 to ψ yields a functional G ∈ N of type 2, and ϕ is represented by the
functional

X1 7→ π0(G(X)),

which is clearly in N . �

The other half of the equivalence is a conservativity result:

Theorem 3.1.3. RCAω0 is conservative over RCA3
0, in the following sense: given any model

(M0,M1,M2;a , ∗) of RCA3
0, there is a model N = (Nσ)σ∈FS of RCAω0 with the same first-,

second-, and third-order parts and corresponding application operators:

M0 = N0,M1 = N1,M2 = M2, ·M0 = ·N0,0, ·M1 = ·N1,0.

Proof. Let M = (M0,M1,M2) |= RCA3
0. Define the set of λ-terms over M as follows:

Definition 23. Fix M |=RCA3
0. The set of λ-terms over M is defined inductively as follows:

• If t is an L3-term of type σ, then t is a λ-term of type σ.

• If t, s are λ-terms of types σ → τ and σ respectively, then ((t)(s)) is a λ-term of type
τ .

• If t is a λ-term of type σ, x is a variable of type ρ, and the expression “λx” does not
occur in t, then λx.(t) is a λ-term of type ρ→ σ.

Free and bound variables are defined as usual. A λ-term λxσ.θ(x) is intended to denote the
map a 7→ θ(a), and so the set of (appropriate equivalence classes of) λ-terms is meant to
define a type-structure. For simplicity, we will refer to λ-terms over M simply as “λ-terms.”

We let T be the set of all λ-terms. We say that t ∈ T is closed if t has no free variables,
that is, if each variable appearing in t is within the scope of a λ.

Now, let ≡ext be the smallest equivalence relation on T satisfying the following:

• If a, b are L3-terms and M |= a = b, then a ≡ext b.
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• For all λ-terms s of type σ in which the variable xσ does not appear and all λ-terms t,
we have

((λxσ.t)(s)) ≡ t[s/x].

(Recall that e[a/b] denotes the expression gotten by replacing each occurence of a by b
in e.)

• If t, s are λ-terms of type (σ → τ) such that

t(a) ≡ext s(a)

for all a of type σ, then t ≡ext s.

• If t, s are λ-terms of type 1 and t(a) ≡ext s(a) for all a ∈M0, then t ≡ext s.

• If t, s are λ-terms of type 2 and t(a) ≡ext s(a) for all a ∈M1, then t ≡ext s.

Our desired model, N , will be built out of these ≡ext-classes. The first step towards
an analysis of ≡ext-classes of λ-terms is the following classical result, here stated in a form
slightly weaker than usual but more directly useful for our purposes:

Definition 24. A λ-term t is in normal form if it contains no subterm of the form ((λx.s)(u))

Theorem 3.1.4. [Normal Form Theorem)] For each λ-term t, there is a λ-term s in normal
form such that

t ≡ext s.

See, e.g., section 4.3 of [22] for a proof. The value of the normal form theorem is that it
allows us to focus our attention on only nicely-behaved λ-terms. The relevant nice behavior
is captured in the following lemma:

Lemma 3.1.5. Let t be a λ-term in normal form. Then:

1. Every subterm of t is in normal form.

2. If t has standard type (that is, type 0, 1, 2, etc.), then every subterm of t also has
standard type.

3. If t is of type 0 or 1, then all bound variables in t are of type 0.

4. If t is of type 2, then t contains at most one bound variable of type 1, and all other
bound variables are of type 0.

5. If t is of type 0, 1, or 2, then every subterm of t is of type 0, 1, or 2.
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Proof. (1) is immediate. For (2), suppose that t has standard type, and suppose t has
subterms of non-standard type. Note that, by induction, every λ-term of non-standard type
has form either s0(s1) or λxσ.s0. Now let s be the minimal leftmost λ-subterm of t which
has nonstandard type; that is, let s be the unique subterm of t such that (i) no subterm of
t containing any characters to the left of s is of nonstandard type, and (ii) s is the shortest
subterm of t with property (i). Then s clearly cannot be of the form s0(s1), since then s0

would also need to be of nonstandard type and would then contradict the minimality of s
among leftmost nonstandard-type λ-terms; so s is of the form λxσ.u. But since there is no
λ-term of nonstandard type occuring to the left of s, and only λ-terms of nonstandard type
can be applied to s on the left, we must have that s is bound by an application on the right.
This immediately contradicts the normality of t, by (1).

For (3), suppose t contains a bound variable yσ of type σ 6= 0. The subterm in which y
appears bound, λy.s, then has type σ → τ for some τ ∈ FT . As in the proof of (2), let u be
the minimal leftmost subterm of t which contains λy.s and has type 6= 0; since t is in normal
form, u must be of the form

λxσ00 .λx
σ1
1 ...λx

σn
n .λy

σ.s.

Now since t has type 0 or 1, u must be on the left or right side of an application. Since t is
in normal form, u must be on the right side of an application; that is, t contains a subterm
of the form ((v)(u)). But v cannot be a parameter from M , since the type of u has height
at least 2, so v is of the form λz.w; so ((v)(u)) is not in normal form, contradicting (1).

(4) follows similarly to (3). Since t has type 2, t may have the form λy1.s, in which case
it contains at least one bound variable of type 1; but then s has type 0, and so by (3) y is
the only bound variable of type 6= 0 occuring in t.

(5) follows the pattern of the previous parts. Towards contradiction, consider the minimal
leftmost subterm s of t of type n > 2; then no functional can apply to s on the left, and
binding s with a λ would result in a subterm of nonstandard type, contradicting (2), so
s must be on the left of an application. But by minimality s has the form λx1.u, so this
contradicts the normality of t. �

Definition 25. Let T ∗i be the set of all closed λ-terms of type i, for i ∈ {0, 1, 2}. For i ∈ 3,
let ei : Mi → T ∗i be the map

ei : a 7→ [a]ext.

Our immediate goal is to show that the ei are bijections. The remainder of the conser-
vativity proof will then follow easily. Injectivity is straightforward; to show surjectivity, we
use the following construction:

Definition 26. Fix a type-1 variable y1. Let T be the set of ordered pairs (t, S), where t is
a λ-term in normal form of type 0 or 1 containing no free variables of nonzero type besides
possibly y, and S = (x0, ..., xm) is a list of type-0 variables including all those occurring in t.

For (t, (xi)i<n) ∈ T , say that F ∈M2 codes (t, (xi)i<n) if
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• either t is of type 0, and for all a0, ..., an−1 ∈M0, b ∈M1, we have

F (a0
a...aan−1

ab) ≡ext t(a0/x0, ..., an−1/xn−1, b/y);

• or t is of type 1, and for all a0, ..., an−1 ∈M0, b ∈M1, we have

F ∗ (a0
a...aan−1

ab) ≡ext t(a0/x0, ..., an−1/xn−1, b/y).

The key lemma is the following:

Lemma 3.1.6. Every (t, (xi)i<n) ∈ T is coded by some F ∈M2.

Proof. We will prove the lemma by induction on the complexity of t; note that by Lemma
3.1.5, if (t, (xi)i<n) ∈ T , then (t, (xi)i<n) ∈ T for all subterms s of t, so an induction is
possible. For this induction, we make the following abbreviations. For π a permutation of n
for n ∈ ω, we let Rπ be the type-2 functional satisfying

∀r ∈M1, i ∈M0 : (Rπ ∗ r)(i) =

{
r(π(i)) if i < n,

r(i) if n ≤ i.

For n ∈ ω, we let Pn be the type-2 functional satisfying

∀r ∈M1, i ∈M0 : (Pn ∗ r)(i) = r(n+ i).

The existence of such functionals in M2 is an easy consequence of the type-2 comprehension
scheme. Finally, recall (5) the definition of the language L3, as well as our convention that
“L3-term” means “L3-term with parameters.” The induction then proceeds as follows:

Fix (t, (xi)i<n) ∈ T , and suppose that for all subterms of t, and all appropriate lists of
variables, the result holds.

For t an L3-term, the comprehension scheme for type-2 functionals gives us the desired
F immediately. If t has type 0, apply comprehension to the formula

Φ(u1, v0) ≡ v = t[u(0)/x0, ..., u(n− 1)/xn−1, (Pn ∗ u)/y],

and if t has type 1, apply comprehension to the formula

Ψ(u1, v0) ≡ v = t[u(1)/x0, ..., u(n)/xn−1, (Pn+1 ∗ u)/y](u(0)).

Clearly the so-defined F codes (t, (xi)i<n).
If t is of the form s0 + s1, by induction let F0, F1 represent (s0, (xi)i<n) and (s1, (xi)i<n)

respectively. Then
F : u1 7→ F0(u) + F1(u),

whose existence is again guaranteed by comprehension, clearly codes (t, (xi)i<n). (Multipli-
cation and successor are handled identically.)
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If t = λz0.s, note that t necessarily has type 1. By induction letG represent (s, (z, x0, ..., xn−1)).
Then G also codes (t, (xi)i<n).

If t = s0(s1), then by 3.1.5(5) s0 has type either 1 or 2. If s0 has type 1 (and so s1 has
type 0), let F0 and F1 represent (s0, (xi)i<n) and (s1, (xi)i<n) respectively. Then

F : u1 7→ (F0 ∗ u)(F1(u))

codes (t, (xi)i<n), and is guaranteed to exist by comprehension.
Finally, suppose t = s0(s1) and s0 has type 2. Note that s0 cannot be of the form λy1.u,

since t is in normal form. Similarly, if s0 were of the form u(v), then u would have to have
non-standard type, and this would contradict 3.1.5(2). This leaves as the only possibility
that s0 is a single type-2 parameter, that is, t is of the form

F (s1)

for some parameter F ∈M2. By induction, let G code s1; then the functional H defined by

H : r 7→ F (G ∗ r)

is in M by comprehension, and codes t.
Since these are all the cases which can arise, this completes the induction. �

As an immediate corollary, we get the surjectivity of e2:

Corollary 3.1.7. For each closed λ-term t of type 2, there is some F ∈ M2 such that
F ≡ext t.

Proof. By 3.1.4, we can assume t is in normal form; then either t is an L3-term, in which
case we are done, or t has the form

t = λy1.s.

Applying Lemma 3.1.6 to s, we get an F ∈ M2 such that for all b ∈ M1, F (b) = s[b/y]; and
so t ≡ext F . �

This then passes to e1 and e0:

Corollary 3.1.8. For each closed λ-term t of type 0 (type 1), there is an a ∈ M0 (b ∈ M1)
such that t ≡ext a (t ≡ext b).

Proof. For the type 1 case, let λx0.s be a λ-term of type 1; now consider the type-2 term
t′ = λy1.s[y(0)/x]; by Corollary 4.14, t′ ≡ext F for some F ∈M2. But then consider the real
f : k0 7→ F (ka0), which is in M1 by comprehension; clearly f ≡ext t since F ≡ext t′, so we
are done.

The type 0 case follows similarly. Let t be a λ-term of type 0, and consider the type-
2 term t′ = λy1.t. Taking F ∈ M2 such that F ≡ext t′, we must have F (0) ≡ext t; but
F (0) ∈M0. �
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Now consider the following Lω-structure NM , defined as follows:

• Nσ = T ∗σ .

• Application in N is defined as

·σ,ρ : ([t]ext, [s]ext) 7→ [((t)(s))]ext.

• The arithmetic functions are transferred fromM0 toN0 in the obvious way; for example,

+N : ([a]ext, [b]ext) 7→ [a + b]ext,

etc.

• The relation <N is defined by

<N= {([a]ext, [b]ext) : a, b ∈M0,M |= a < b}.

Lemma 3.1.9. NM |=RCAω0 .

Proof. Extensionality and P− for the type-0 functionals hold trivially. The Π and Σ combi-
nators are easily expressed as λ-terms, and so the corresponding axioms are satisfied.

The primitive recursion axiom, R0, takes a bit more work to express as a λ-term. By
Σ0

1 induction in M , for any real r1 ∈ M1 and any naturals a0, b0 ∈ M0, there is a (natural
number coding a) primitive recursive derivation for

R0(a, r)(b) = k

for a unique k ∈M0. This lets us apply the ∆0
1 comprehension scheme for type-2 functionals,

and so it follows that there is an F ∈M2 such that F (a0ab0ar1) = k0 if and only if there is
a code for a primitive recursive derivation of R0(r, a)(b) = k. Now consider the λ-term

t := λx0.λr1.λy0.(F (xayar));

by definition of F , [t]ext clearly witnesses the axiom R0 in N .
Finally, the choice principle qf-AC1,0requires a bit of work: an appropriate quantifier-free

formula Φ may contain high-type parameters, in which case the comprehension scheme in M
does not directly apply. Instead, we have to essentially lower the types of the parameters,
using the coding provided by Lemma 3.1.6.

Let Φ(y1, x0) be a quantifier-free formula in the displayed free variables, containing no
occurrences of =σ for σ 6= 0. Then since Φ contains no higher-type equality predicates, every
maximal term in Φ must have type 0. Let t0, ..., tm be a list of these maximal terms, so that
Φ is a Boolean combination of formulas of the form ti = tj or ti < tj for i, j ≤ m.

Note that each ti has free variables from among {y1, x0}. Thus, by Lemma 3.1.6, we can
find functionals F0, ..., Fm ∈M2 such that Fi(a

ab) ≡ext ti[a/x, b/y] for every a ∈M0, b ∈M1.
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Let Φ̂ be the quantifier-free formula gotten from Φ by replacing each ti by Fi(x
ay) for each

i ≤ m; then applying comprehension to Φ̂ yields a type-2 functional G ∈M2, and it is easily
checked that

∀b ∈ N1(Φ(b, [G]ext(b))).

This completes the proof. �

Theorem 3.1.3 is thus proved. �

3.2 Choice principles

We end this chapter by examining the two choice principles which were implicitly used in
the separation of clopen and open determinacy in Chapter 1:

• WO: “There is a well-ordering of the reals.” This was used to pass from a tree ⊆ R<ω

to its Kleene-Brouwer ordering.

• SF: “Every real-indexed family of nonempty sets of reals has a choice function.” This
was used to pass from a quasistrategy to a strategy.

Each of these is readily formulated in the language of RCA3
0. We show that WO and SF

are incomparable over RCA3
0, and that RCA3

0+WO is a conservative extension of ACA0.
We begin by showing that WO and SF are incomparable over RCA3

0. One direction is
easy:

Lemma 3.2.1. RCA3
0+SF 6|=WO.

Proof. Let C be the set of all continuous functions (in some model of ZFC) from R to ω; we
will see that

C = (ω,R, C) |= RCA3
0+ SF+ ¬WO.

Immediately, we have C |= ¬WO, since there is no continuous well-ordering of the reals;
equally immediately, all axioms of RCA3

0 except the ∆0
1-comprehension scheme for type-2

objects hold in C. To show that the comprehension scheme also holds, the key step is showing
that any functional defined by a ∆0

1-formula with continuous functionals as parameters is
again continuous; this is an easy yet tedious induction on formula complexity, so we omit it.

Finally, we must show that C satisfies SF. To see this, suppose F is an instance of SF,
that is, F is a type-2 functional such that for every real a, there is some real b such that
F (〈a, b〉) = 1. Now for a ∈ R, let σa ∈ ω<ω be the lexicographically least string such that
for all reals â, b, if â � |σa| = a � |σa| and σa ≺ b, then F (â, b) = 1; such a string exists, since
F is continuous and is an instance of SF. More importantly, the map a 7→ σa is continuous.
From this, it follows that the function

g : R→ ω : r 7→

{
σr−(r(0)) if r(0) < |σr−|,
0 otherwise.
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is continuous and satisfies F (a, g(a)) = 1 for all reals a; so we are done.3 �

The other separation is more complicated. To the best of our knowledge, there is no
natural model of WO+¬SF as there is of SF+¬WO, so we have to build one. Towards this
end, we begin with an appropriate model W of ZF in which there is no well-ordering of R,
and adjoin a well-ordering of R by forcing. Of course, this also means that in the generic
extension, real-indexed sets of reals have selection functions, so the full model (ω,R, ωR)W [G]

does not separate SF from WO. Instead, we look at the restricted model

(ω,RV , {ν[G] : ν ∈ N})

for a class N of well-behaved names for type-2 functionals, chosen so that the generic well-
ordering of R winds up in the model, but selection functions for real-indexed nonempty sets
of reals do not in general. This is a variation on the basic idea of “symmetric submodels”
which are used to produce models of ZF in which the axiom of choice fails in controlled
ways (see [35], pp. 221-223). The proof of our main result in the following section is also a
variation on this basic idea.

Theorem 3.2.2. RCA3
0+WO6|=SF.

Proof. We take as the ground model for our forcing argument some

W |= ZF+DC+“The reals are not well-ordered;”

the equiconsistency of this theory with ZF itself was proved by Feferman [16]. In W , let

P = {p : p is a countable partial injective function from R to ω1}.

First, note that P is indeed countably closed, so the reals in the generic extension are
precisely the reals in W . We will use this implicitly in what follows. For X a set, we let
[X]ω denote the set of countable subsets of X. We now define, for n ∈ ω+1, the n-countable
names inductively as follows:

• A 0-code is a pair c = (c0, c1), with c0 : R→ [R]ω and c1 : P→ ω. If ν is a name for a
map R→ ω and c is a 0-code, we say that c is good for ν if

∀p ∈ P, a ∈ R[c0(a) ⊆ dom(p)⇒ p 
 ν(a) = c1(p)].

For q ∈ P, 0-code c is ν-good below q if

∀p ≤ q ∈ P, a ∈ R[c0(a) ⊆ dom(p)⇒ p 
 ν(a) = c1(p)].

3Although this model does have the desired properties, it satisfies SF in a rather unsatisfying way; a more
interesting separating model is given by the projective functions, under appropriate large cardinal axioms.
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• Suppose that the set Cn of n-codes has already been defined, as well as the notions
“ν-good” and ν-good below p” for n-codes. An (n+ 1)-code is a pair c = (c0, c1) with
c0 : R→ [R]ω and c1 : P→ Cn. If ν is a name for a map R→ ω and c is an (n+1)-code,
we say that c is ν-good if

∀a ∈ R, p ∈ P[c0(a) ⊆ dom(p)⇒ c1(p) is ν-good below p];

and for q ∈ P, we say that c is ν-good below q if

∀a ∈ R, p ≤ q ∈ P[c0(a) ⊆ dom(p)⇒ c1(p) is ν-good below p].

• A name ν for a map R→ ω is n-countable if there is some n-code c which is ν-good.

• ν is ω-countable if ν is n-countable for some n ∈ ω.

• Finally, a name µ for a map R → R is n- or ω-countable if the name ν for the map
r 7→ µ(r−)(r(0)) is n- or ω-countable.

The intuition is that the value of an ω-countable name is determined by conditions with
large enough domains, mostly regardless of where the elements are sent. This could certainly
be pushed past ω, but finite countability is enough for our purposes.

We can now define our target model: Letting G be P-generic over W , we set

M = (ω,RV = RV [G], {ν[G] : ν is ω-countable}).

Finally, we can finish our proof by showing that M |=RCA3
0+WO+¬SF, as follows:

• M |=WO. This is immediate: the canonical name for the well-ordering

≺G= {(a, b) : G(a) < G(b)}

(viewing G as a map R → ω1) is clearly 0-countable, since to determine whether
G(a) < G(b) just depends on G(a) and G(b).

• M 6|=SF. Our counterexample is ≺G, defined above. Let ν be n-countable. Fix p ∈ P;
we will find a real a and a condition q ≤ p such that

q 
 ¬(a ≺G ν(a)).

Let a = sup(dom(p)) + 1, and let p̂ be any condition ≤ p such that a ∈ dom(p̂) and
G(a)−ran(p̂) is infinite. By induction on n, we can “fill in” the holes in ran(p̂) with the
reals required to decide ν(a); that is, we can find q̂ ≤ p̂ such that sup(ran(q̂)) = q̂(a),
q̂ 
 ν(a) = b for some real b, and ran(q̂) is a proper subset of q̂(a). If b ∈ dom(q̂),
we take q = q̂; if not, we let q be any extension of q̂ with sup(ran(q)) = q(a) and
b ∈ dom(q). Either way, the result is a condition, q, such that q 
 ν(a) = b but
q(b) < q(a), so ν is not a selection function for ≺G.
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• M |=RCA3
0. All axioms except the ∆0

1-comprehension scheme for type-2 objects are
trivially satisfied, since M is an ω-model containing all the reals. To show that the
comprehension scheme holds, note that by a straightforward induction, if ν0 and ν1

are m- and n-countable names for maps R → R then the name for their composition
ν0 ◦ ν1 is (m+ n)-countable. From this, it immediately follows that any ∆0

1 expression
θ with ω-countable parameters defines an ω-countable functional: let m be such that
all parameters in θ are m-countable, and let k be the length of θ; then the functional
defined by θ is mk-countable.

This completes the proof. �
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Chapter 4

Computable structures in generic
extensions

The work in this chapter appeared as [41], and is joint with Julia Knight and Antonio
Montalban; it appears here with their permission.

4.1 Introduction

In computable structure theory, one studies the complexity of structures using techniques
from computability theory. Almost all of this work concerns countable structures; much
less is known about the complexity of uncountable structures. However, the computability
theory of uncountable structures has received more attention in the last few years. (See for
instance the proceedings volume of the conference Effective Mathematics of the Uncountable
[24].) One idea for studying the complexity of an uncountable structure that seems new is
to consider what happens to the structure when its domain is made countable.

Before making this idea more concrete, we recall the notion of Muchnik reducibility be-
tween countable structures. This is the standard way in computable structure theory to say
that one structure is more complicated than another, in the sense that it harder to compute.

Definition 4.1.1. Given countable structures A and B we say that A is Muchnik reducible
to B, and we write A ≤w B, if, from any copy of B, we can compute a copy of A.

On its face, this notion is limited to countable structures. However, by examining generic
extensions of the set-theoretic universe, V , we can extend it further:

Definition 4.1.2 (Schweber). For a pair of structures A and B, not necessarily countable
in V , we say that A is generically Muchnik reducible to B, and we and write A ≤∗w B, if
for any generic extension V [G] of the set theoretic universe V in which both structures are
countable, we have

V [G] |= A ≤w B.
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In Section 4.2, we will prove the basic properties of this reducibility. We will show that it
coincides with Muchnik reducibility on countable structures; i.e., if A and B are countable,
then A ≤w B if and only if A ≤∗w B (Corollary 4.2.5). More generally, we do not need to
consider all the generic extensions that make A and B countable — this is a consequence
of Shoenfield absoluteness (Theorem 4.2.1), a general principle about forcing. We will prove
that for any two such generic extensions if A ≤w B holds in one, then it holds in the other
(Lemma 4.2.3). This shows that generic Muchnik reducibility is a very absolute, and hence,
natural, notion of computability-theoretic complexity.

We will also show that the equivalence ≡∗w, induced from the reducibility ≤∗w, respects
L∞ω-elementary equivalence. In Section 4.2, we will also exhibit some examples of this re-
ducibility. For instance, we show that the countable structures generically Muchnik reducible
to the linear order ω1 are precisely those Muchnik reducible to some countable well-ordering,
and we identify two natural structures — W and R, the powerset of ω and the field of
real numbers — each of which lies above every countale structure in the generic Muchnik re-
ducibility. We show thatW ≤∗w R; recently Igusa and Knight [32] have shown thatR 6≤∗w W ,
so these two structures are fundamentally different.

Closely related to generic reducibility is generic presentability. Intuitively, a countable
structure A is generically presentable if there is some forcing notion P such that any forcing
extension by P always contains a copy of A. We will be interested in when generically
presentable structures already have copies in the real universe. To be precise, we define:

Definition 27. A generically presentable structure is a pair (P, ν), where P is a forcing
notion and ν is a P-name, such that


P“ν[G] is a structure with domain ω” and 
P×P “ν[G0] ∼= ν[G1].”

We say (P, ν) is generically presented by P. When the forcing notion is clear from context,
we will abbreviate “(P, ν)” by “ν,” or abuse notation and use notation for classical struc-
tures (“A,” “B,” etc.) instead. If (P, ν) is a generically presentable structure and Q is
another forcing notion, we say (P, ν) is generically presentable by Q if there is a generically
presentable structure (Q, µ) such that


P×Q “ν[G0] ∼= µ[G1],”

and we will elide the distinction between such a pair of generically presentable structures when
no confusion will result. Note that every actual structure may be thought of as a generically
presented structure.

Remark 4.1.3. After submitting, we learned that at around the same time, generic pre-
sentability was independently being studied by two other groups. Itay Kaplan and Saharon
Shelah, addressing a question of Jindrich Zapletal, defined generic presentability and gave
alternate proofs of our Theorems 4.3.14 and 4.3.18. Separately, Paul Larson [46] studied the
Scott analysis of structures (see Section 4.3); since — roughly — a structure is generically
presentable if and only if its Scott sentence exists, his work yields proofs of our Theorems
4.3.14 and 4.4.1.
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In Section 4.2 below we give an alternate approach to generic presentability, via countable
models of set theory.

Remark 4.1.4. Usually, a copy of a structure A is just a structure B which is isomorphic
to A. However, in this paper we will find ourselves studying structures which may not yet
exist, or copies of structures in larger universes, so it is worth making precise what we mean
by “copy.” In this paper, we will primarily use the word “copy” in two ways:

• If A is a structure in V , we will often want to consider copies of A with domain
ω. Although these will not exist in V if A is uncountable, they will exist in generic
extensions; we will use the term “ω-copy” (of A) to refer to a copy of A with domain
ω, which may live in a generic extension of the universe.

• Separately, we will also want to ask whether a generically presentable structure is al-
ready present, up to isomorphism, in V . Towards that end, if A ∈ V is an actual
structure and B = (P, ν) is a generically presentable structure, we say that A is a copy
of B if 
P A ∼= ν[G].

Although these two uses of the word “copy” are somewhat at odds, we will be careful to make
clear at each point what notion of “copy” is meant.

Convention 4.1.5. For simplicity, as is standard in set theory, we will frequently abuse
notation by referring to generic extensions V [G] of the universe V as if they exist rather
than writing everything out in terms of names.

We will be interested in examining when a generically presentable structure already exists
— that is, when it has a copy (or an ω-copy) in the ground model V . It is well-known that
if a set S is in V [G] for every P-generic G, then S must belong to V already (Solovay [72],
see Theorem 4.2.23 below for a precise statement and proof). However, the situation for
isomorphic copies of a given structure is more complicated. There are cases in which the
analogous fact is true, and there are cases in which it is not. This paper is devoted to
analyzing this situation.

In particular, we are interested in the interaction between generic presentability and
generic Muchnik reducibility. Generic Muchnik reducibility can be extended to generically
presentable structures in a natural way — if A and B are generically presentable structures
(or one is generically presentable and the other is an actual structure, or etc.), then A ≤∗w B
if and only if, whenever P is a forcing presenting both A and B, we have 
P A ≤w B. Now if
A ≤∗w B, then B contains all the information necessary to build A— up to a certain amount
of genericity. To what extent is this genericity actually necessary? Ted Slaman formulated
this question as follows:

Main Question 1 (Slaman). Suppose A is a generically presentable structure and A ≤∗w B
for some actual structure B ∈ V . Is there a copy of A in V ?
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This can be rephrased as a question about inner models, as follows. Suppose A ≤∗w B
with B in Gödel’s constructible universe, L; must we have some C ∼= A (in V ) with C ∈ L?
Note that if A ≤∗w B with B ∈ L, then there is a generically presentable structure (P, ν) ∈ L
such that — in V — we have 
P ν[G] ∼= A, so this really is a special case of the previous
question. Of course, L may be replaced with any inner model of ZFC, or even much less
than ZFC.

We begin by studying the role of forcing-theoretic properties in generic presentability.
We prove:

Theorem 4.1.6. Any structure generically presentable by a forcing notion that does not
make ω2 countable has a copy (not necessarily with domain ω) in V .

This theorem yields as a corollary a partial positive answer to Slaman’s question.

Corollary 4.1.7. If A is a generically presentable structure which is ≤∗w B for some actual
structure B ∈ V with cardinality ≤ ℵ1, then A has a copy in V . Alternately, from an inner
model perspective, we have that if B lives in L and, within L, has size ℵL1 , then A has a copy
in L.

We also give a new proof of the following result of Harrington.

Theorem 4.1.8 (Harrington). If T is a counter-example to Vaught’s conjecture, then it has
models of arbitrarily high Scott rank below ω2.

On the other hand, these positive results cannot be extended much further: making ω2

countable always introduces a structure with universe ω that does not have a copy in V ,
and that moreover has low complexity as measured by the generic Muchnik reducibility.
This provides an exact dichotomy among structures generically presentable, and a negative
answer to Slaman’s question in general.

Theorem 4.1.9. There is a generically presentable structure M, which is presented by any
notion of forcing that makes ω2 countable, but which has no copy in V . Moreover, this M
is generically Muchnik reducible to the ordering (ω2, <).

We close with a structural approach to the question: what properties ensure that generic
presentability implies existence in the ground model? We show that this occurs at least
when the structures involved are as “set-like” as possible, in the sense of being rigid — that
is, having no non-trivial automorphisms. In Section 4.4, we show the following:

Theorem 4.1.10. Suppose A is rigid and is generically presentable. Then there is an
isomorphic copy of A already in V .
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4.2 Generic reducibility

Basic properties

The key result for analyzing generic presentability and generic reducibility is the Shoenfield
Absoluteness Theorem (see [35]). The version we state below is slightly weaker than the
actual theorem, but it is all we will need here:

Theorem 4.2.1 (Shoenfield). Suppose ϕ is a Π1
2 sentence, with real parameters. Then, for

every forcing extension W of V , V |= ϕ ⇐⇒ W |= ϕ.

An easy fact about (countable) Muchnik reducibility of structures is the following.

Observation 4.2.2. Basic facts about ≤w are invariant under forcing. Specifically, we have
the following.

1. The relation “≤w” is Π1
2.

2. For countable A, the predicate “≥w A” is Π1
1 in a Scott sentence of A.

Together with Theorem 4.2.1, this implies that much of the theory of ≤∗w is absolute. In
particular, we have the next lemma.

Lemma 4.2.3. Fix arbitrary structures M,N in V . If there is some generic extension in
which M and N are countable and M≤w N , then M≤∗w N .

Proof. Suppose otherwise. Then there must exist posets P0 and P1 in V such that forcing
with either collapses both M and N ,


P0 M≤w N and 
P1 M 6≤w N .

Let G = H0 × H1 be P0 × P1-generic over V . Let M0 and N0 be reals in V [H0] coding
copies of M and N with domain ω, and let M1 and N1 be reals in V [H1] coding copies
of M and N with domain ω. Then, in V [H0], M0 ≤w N0, while in V [H1], M1 6≤w N1.
By Shoenfield’s absoluteness, this is still true in V [H0][H1]. This gives us a contradiction
because, in V [H0][H1], M0 is isomorphic to M1 and N0 to N1. �

Remark 4.2.4. For κ an infinite cardinal, the partial order Col(κ, ω) of finite sequences of
ordinals < κ, ordered in the natural way, collapses κ to ω. This forcing notion is (a special
case of) the Levy collapse. By 4.2.3, we may always assume that the forcings we consider
are Levy collapses for κ at least as large as each structure under consideration.

As an immediate corollary of Lemma 4.2.3, we get the following.

Corollary 4.2.5. For structures A,B countable in V , we have A ≤w B if and only if
A ≤∗w B.
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Potential isomorphism

Generic Muchnik reducibility also has strong connections with infinitary logic.

Definition 4.2.6. Let L be a language; that is, a set of relation and operation symbols.

• L∞ω is the collection of formulas obtained from the atomic L-formulas by closing under
arbitrary set-sized Boolean combinations and single instances of quantification. See [39]
for a treatment of the basic properties of L∞ω.

• For structures A,B of arbitrary cardinality, we say that A is L∞ω-elementary equiva-
lent to B, and we write A ≡∞ω B, if the structures satisfy the same L∞ω sentences.

There is a structural characterization of ≡∞ω, due to Carol Karp:

Definition 4.2.7. Suppose I is a set of partial maps. We say that I has the back-and-
forth property — equivalently, I is a back-and-forth system — if 〈∅, ∅〉 ∈ I and for every
〈ā, b̄〉 ∈ I,

1. ā and b̄ satisfy the same atomic formulas,

2. for every c ∈ A, there is d ∈ B such that 〈āc, b̄d〉 ∈ I, and

3. for every d ∈ B, there is c ∈ A such that 〈āc, b̄d〉 ∈ I.

An I with the back-and-forth property is called a back-and-forth system between A and B.

Theorem 4.2.8 ([37]). A ≡∞ω B iff there is a back-and-forth system between A and B.

It is then not hard to see that for A and B countable, we have that A ≡∞ω B if and only
if A ∼= B. Additionally, Karp’s characterization shows that ≡∞ω is absolute with respect
to forcing. Clearly ≡∞ω is upwards absolute. To show downwards absoluteness, let ν be a
name for a back-and-forth system between A and B in some forcing extension by P; then
I = {〈a, b〉 : ∃p ∈ P(p 
 〈a, b〉 ∈ ν))} is a back-and-forth system between A and B. Thus,
for possibly uncountable structures A and B, we have A ≡∞ω B iff A ∼= B once they are
made countable:

Lemma 4.2.9 (Essentially Barwise [8]). The following are equivalent:

1. A ≡∞ω B,

2. in every generic extension where A and B are countable, A ∼= B,

3. in some generic extension where A and B are countable, A ∼= B.

As an immediate corollary, we have the following.

Corollary 4.2.10. A ≡∞ω B implies A ≡∗w B.



CHAPTER 4. COMPUTABLE STRUCTURES IN GENERIC EXTENSIONS 60

This lets us connect ≡∞ω-equivalence and generic Muchnik reducibility in a strong way:

Lemma 4.2.11. Let A ∈ V be a structure. The following are equivalent:

1. A ≤∗w B for some countable structure B.

2. A ≡∗w B for some countable structure B.

3. A ≡∞ω B for some countable structure B.

Proof. Clearly (3) implies (2) and (2) implies (1). To see that (1) implies (3), suppose
A ≤∗w C for C countable, let C be an ω-copy of C in V , and let V [G] be a generic extension
in which A is countable. Then in V [G], there is some index e such that, for the eth Turing
machine Φe, ΦC

e
∼= A. This means that in V , ΦC

e must be total, and so ΦC
e is a copy of A

which lives in V ; that is, the structure B = ΦC
e is L∞ω-equivalent to A. �

Examples

We present below some examples of uncountable structures whose complexity in terms of
≤∗w we have been able to analyze.

Example 4.2.12. Let U be the structure with domain ω t P(ω), with signature consisting
of only the ∈-relation on ω × P(ω).

Proposition 4.2.13. U ≡∗w 0, where 0 is the empty structure.

Proof. We will show there is a computable structure S that is ≡∞ω-equivalent to U . By the
absoluteness of ≡∞ω, we will then have that in any generic extension that makes U countable,
S and U are still ≡∞ω-equivalent, and, hence, isomorphic.

We note that the orbit in U of a tuple of sets X̄ is determined by the cardinalities of the
Boolean combinations of the sets Xi. To guarantee that we have a back-and-forth family of
finite partial isomorphisms, we let S consist of ω together with a family of sets P having the
following properties:

• P is an algebra of sets; i.e., it is closed under union, intersection, and complement,

• P includes all finite sets,

• if X ∈ P is infinite, then there are disjoint Y, Z ∈ P , both infinite, such that Y ∪Z = X.

We can easily find such an S which is computable. We could, for example, take the
family of primitive recursive sets. �

Similarly, the field of complex numbers is essentially computable.
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Example 4.2.14. Let C = (C; +,×). This is ≡∞ω-equivalent to the algebraically closed field
of countably infinite transcendence degree and characteristic zero. By a well-known result of
Rabin [62], this has a computable copy. Then C has minimal complexity; that is, C has a
computable copy in every generic extension in which it is countable.

If we consider a variant of U in which the elements of ω have names, we reach the opposite
end of the complexity spectrum:

Example 4.2.15. Let W be the expansion of U to include the successor relation on ω. Then
any ω-copy (4.1.4) of W computes every real in the ground model V , so given any countable
A ∈ V we have A ≤∗w W.

The situation is the same with respect to the real numbers.

Example 4.2.16. The field of real numbers R = (R; +,×) is, likeW, maximally complicated
with respect to countable structures: for every countable structure A, we have A ≤∗w R. To
see this, suppose V [G] is a generic extension in which R has an ω-copy, R. First, note
that the standard ordering <R is defined both by an existential formula and by a universal
formula, and so after collapse the corresponding relation on any ω-copy of R is computable
relative to that copy.

Now fix a real in the ground model b ∈ R and let b̂ ∈ R be the corresponding element of
the ω-copy. Since <R is computable from the atomic diagram of R and there is a uniform
effective procedure for identifying each rational number in R, the cut corresponding to b̂ is also
computable from the atomic diagram of R; thus, every real in the ground model is computable
from the atomic diagram of R. Since R was an arbitrary ω-copy of R in an arbitrary generic
extension, it follows that R ≥∗w A for every countable A ∈ V .

We would now like to compare the structures R andW under ≤∗w. It is easy to show the
following.

Proposition 4.2.17. R ≥∗w W

Proof. We can use the elements of R in the interval [0, 1) to enumerate the subsets of ω in
V . To each real r in the interval, we associate the set Ar consisting of those n such that the
nth term in the binary expansion of r is 1. Minimal care has to be taken for double binary
representations: if we assume no binary expansion ends up in an infinite string of 1s, we
then need to add those sets. �

Recently, Igusa and Knight [32] have shown that this reduction is strict. However, this
relies crucially on the fact that R is not very saturated (specifically, that R is Archimedean).
For example, for an elementary extension M of R that is ω-saturated, we have W ≥∗w M.
More generally, we have the following.

Proposition 4.2.18. Let M be an ω-saturated model of a complete elementary first order
theory T . Then W ≥∗wM.
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Proof. Assume without loss of generality that T is decidable — we may make this assumption
since every real can be computed uniformly from the atomic diagram of a single parameter
inW (specifically, itself). Macintyre and Marker [49] showed that for an enumeration E of a
Scott set S, and an elementary first order theory T in S, E computes the complete diagram
of a recursively saturated model of T realizing exactly the types in S that are consistent with
T . After we collapse the cardinal so thatW becomes countable, it computes an enumeration
E of the Scott set S consisting of the subsets of ω in W . Now, the theory ofM is in S, and
the types realized in M are exactly those in S that are consistent with T . Then the result
of Macintyre and Marker yields a recursively saturated model realizing exactly these types.
This model is isomorphic to the collapse of M. �

Finally, uncountable well-orderings live strictly between the two extremes.

Example 4.2.19. The linear order ω1 = (ω1, <) computes — that is, is generically Muchnik
above — precisely those countable structures which are Muchnik reducible to some countable
well-ordering. One direction is obvious; in the other direction, suppose A ≤∗w ω1 is countable,
and let V [G] be a forcing extension in which ω1 is countable. Then V [G] satisfies “A is
Muchnik reducible to a countable well-ordering,” which is Σ1

2 via 4.2.2, and so already true
in V by Shoenfield absoluteness.

Proposition 4.2.20. R >∗w ω1 and W >∗w ω1, strictly.

Proof. To see that R 6≤∗w ω1, fix some non-computable real r ∈ R. Then the cut correspond-
ing to r, and hence r itself, is computable in any ω-copy R of R in any generic extension
since the ordering relation is both Σ1 and Π1. On the other hand, by a result of Richter
[64], the only sets computable in all copies of a countable linear ordering are the computable
sets, so in any generic extension in which ω1 is countable there will be ω-copies of ω1 whose
atomic diagrams do not compute r.

To see that ω1 ≤∗w R, suppose V [G] is a generic extension in which R is countable, and
let R ∈ V [G] be a copy of R with domain ω. Now R computes an enumeration of the sets
coded by the cuts in R—the reals in V . Some of the reals code linear orderings. For an
ordering r coded in R, if r is not a well ordering, this is witnessed by a decreasing sequence
d, also coded in R. A countable well ordering in V is isomorphic to a countable ordinal, so
it stays well ordered in V [G]. Using R′′, we get an ω-sequence of well-orderings: For a ∈ R,
we take the ordering coded by a, if this is a well ordering, and otherwise, we have a finite
ordering. The result is an ordering of type ωV1 . Now, we apply in V [G] the theorem saying
that, for any set X and any linear order L, if X ′′ computes a copy of L then X computes a
copy of ω · L ([3], Theorem 9.11). Since ωV1

∼= ω · ωV1 , our R computes a copy of ωV1 .
The proof that W >∗w ω1 is identical. �

Generic presentability

In this section we elaborate on the concept of generic presentability.
Recall the definition of generic presentability:
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Definition 28. A generically presentable structure is a pair (P, ν), where P is a forcing
notion and ν is a P-name, such that


P“ν[G] is a structure with domain ω” and 
P×P “ν[G0] ∼= ν[G1].”

Remark 4.2.21. It may be helpful to note that for any generically presentable structure
A = (P, ν), there is some cardinal λ such that, for any κ ≥ λ, A is presented by the Levy
collapse Col(κ, ω). To see this, take λ = 2|P|. Then forcing with Col(κ, ω) for κ ≥ λ will in
turn make the set of dense subsets of P countable, at which point we can construct a generic
filter through P.

Although this is the definition we will use throughout this paper, it will be useful to note
that it can be relativized to arbitrary models of ZFC:

Definition 29. For a model M of ZFC, a generically presentable structure over M is a pair
(P, ν) ∈M , where P is a forcing notion in M and ν is a P-name in M , such that

M |= [
P“ν[G] is a structure with domain ω” and 
P×P “ν[G0] ∼= ν[G1]”].

The value of this relativization is the following. Often it is useful to imagine that the set-
theoretic universe in which we work is actually countable, and lives inside a larger universe.
For instance, this perspective means that the generic filters implicit in forcing arguments
have to exist, reducing the need to talk about names directly. The following result shows
that generic presentability has an equivalent and perhaps simpler definition if we adopt this
viewpoint:

Proposition 4.2.22. Suppose M is a countable transitive model of ZFC and A is a structure
in the real universe, V . Then the following are equivalent:

1. There is a generically presented structure over M , (P, ν), such that for every G which
is P-generic over M we have V |=“ν[G] ∼= A.”

2. There is a forcing notion P in M such that, for every G which is P-generic over M ,
we have a structure B ∈M [G] such that V |=“A ∼= B.”

Proof. Clearly (1) implies (2). To show (2) implies (1), let P be a poset such that every
generic extension of M by P contains a copy of A (as seen in V ). Let G and H be mutually
P-generic over M , and let ν and µ be names for copies of A in M [G] and M [H], respectively.
Since G and H are mutually generic, there is some (p, q) ∈ G × H such that (p, q) 
P×P
ν[G0] ∼= µ[G1]. This means that (p, p) 
P×P ν[G0] ∼= ν[G1] by considering the condition
(p, q, p) in the triple product P× P× P. Letting Q = {q ∈ P : q ≤ p} and ν̂ be the natural
restriction of ν to Q, we have that (Q, ν̂) is a generically presented structure over M which
is as desired. �

An argument similar to the proof of 4.2.22 shows that the analogue of generic presentabil-
ity for sets is trivial:
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Theorem 4.2.23 (Solovay). If a set is present in two mutually generic extensions, then it
was already present in the ground model. Formally:

• (Internal version) If P is a forcing notion, p, q ∈ P, and ν, µ are P names such that
(p, q) 
P2 ν[G0] = µ[G1], then there is some set S such that p 
 ν[G] = S.

• (External version) If M is a countable transitive model of ZFC, P is a forcing notion in
M , G,H are mutually P-generic filters over M , and X ∈M [G]∩M [H], then X ∈M .

Proof. We will prove (2) only, since the proofs are similar. Suppose M,P, G,H,X are as
hypothesized with X of minimal rank, so X ⊆ A for some A ∈M . Let µ, ν ∈M be P-names
such that ν[G] = µ[H] = X, and let (p, q) ∈ G ×H be such that (p, q) 
P2 ν[G0] = µ[G1].
Suppose towards contradiction there is some a ∈ A such that p 6
 a ∈ ν and p 6
 a 6∈ ν,
and suppose X(a) = i; then picking r ≤ p with r 
 ν[G0](a) = 1 − i and s ≤ q with
s 
 µ[G1](a) = i (which must exist since X(a) = i) yields absurdity. So p already decides
membership of each element of A in X, and hence X = {a : p 
 a ∈ ν} ∈M. �

Remark 4.2.24. Note that this argument breaks down completely when we look at structures-
up-to-isomorphism instead of sets-up-to-equality, essentially because structures, unlike sets,
do not have unique representations. Broadly speaking, in order to adapt this argument to
show that a generically presentable structure A has a copy in the ground model V we need to
argue that there is a way to build up A explicitly from its small substructures. Although this
is not always possible, the following model-theoretic perspective will be useful for producing
positive results: to any structure we may associate a “Scott sentence,” an infinitary first-
order sentence which characterizes the structure and is defined in a suitably absolute fashion.
Moreover, if a structure A is countable, then its Scott sentence provides a reasonably effective
recipe for building a copy of A — specifically, since the satisfiability of Lω1ω-sentences is
absolute, if a model of set theory contains the Scott sentence of A as an Lω1ω-sentence then
that model contains a copy of A itself. Intuitively, we are motivated to claim that a structure
is generically presentable if and only if its Scott sentence already exists. As written of course
this is vague, but it is an important intuition for the arguments given in Section 3.

4.3 Generic presentability and ω2

In this section and the next, we address the question “when do generically presentable struc-
tures have copies in V ?” This section focuses on a forcing-theoretic aspect of the question.
For which forcing notions P do we have copies in V for all structures generically presentable
by P with universe ω? Surprisingly, this is entirely determined by how P affects cardinals: ω2

remains uncountable after forcing with P if and only if every structure generically presentable
by P on ω has a copy in V .

As a consequence of proving the left-to-right direction of this result, we also give a new
proof of the result due to Harrington that counterexamples to Vaught’s conjecture must
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have models of arbitrarily high Scott rank in ω2. The right-to-left direction follows from a
construction of Laskowski and Shelah [47].

Scott Analysis.

We begin by reviewing the Scott analysis of a structure. Scott [69] proved that for every
countable structure A, there is an infinitary sentence σ of Lω1ω such that the countable
models of σ are exactly the isomorphic copies of A. Such a sentence is called a Scott
sentence.

There are several definitions of Scott rank in the literature (see, in particular, [7], [3], [53],
[9], and [55]). The definitions give slightly different values. However, all of the definitions
assign countable Scott ranks to countable structures. In general, the complexity of the Scott
sentence is only a little greater than the Scott rank of the structure. If one definition assigns
a computable ordinal Scott rank, then the other definitions do as well, and then there is a
Scott sentence that is Σα, for some computable ordinal α. The definition that we give below
is the one used by Sacks [65]. We begin by defining a family of definable expansions of A.

Definition 4.3.1. For each α, we define a fragment LAα of L∞,ω as follows:

• Let LA0 consist of the elementary first order formulas.

• Given LAα , for each complete non-principal type Φ(x) ⊆ LAα realized in A, add the for-
mula

∧
Φ(x) to LAα+1, and close under finite logical connectives and first-order quanti-

fiers.

• At limit levels, take unions.

For each α there is a natural way to expand A to a LAα -structure Aα; we will abuse notation
by omitting the subscript, since no confusion will arise.

At some step α, A becomes LAα -atomic, in the sense that all LAα -types are principal.

Definition 4.3.2. The Scott rank of A, sr(A), is the least ordinal α such that A is an
LAα -atomic structure.

Lemma 4.3.3. If A is generically presentable, then, for every ordinal β, LAβ ∈ V .

Proof. First, let us remark that we can code the formulas in LAβ by sets: for instance, we
code an infinitary conjunction of formulas ψi by a pair, the first element being a code that
means “conjunction” and the second element being the set of codes for the formulas ψi —
say, by defining code(

∧
i∈I ψi(x)) = 〈17, {code(ψi(x)) : i ∈ I}〉. This is quite standard, so we

let the reader fill in the details.
The one important detail is that we are not coding infinitary conjunctions using sequences

of formulas, but using sets where the order of the formulas does not matter. The key
point is that if we have different presentations of a structure A, the types realized in each
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presentation are the same as sets. We can then prove by induction on β, that LAβ is a set that
is independent of the presentation of A. Since A is generically presentable, say by a forcing
notion P, the language LAβ belongs to all P-forcing extensions of V , and so by Solovay’s
Theorem 4.2.23, we get that LAβ belongs to V . �

Definition 4.3.4. Given a structure A, let L̂ be the language containing a relation symbol
for each formula in LAsr(A) (the Morleyization of LAsr(A)), and let Â be the natural expansion of

A to the language L̂. Note that if A is generically presentable, then L̂ ∈ V since LAsr(A) ∈ V .

Notice that Â is atomic in a very strong way: each L̂-type is generated by a quantifier-free
L̂-formula.

Remark 4.3.5. Throughout this section we will tacitly assume that L (and hence L̂ as well)
is no larger than A; that is, that the statement “|L| ≤ |A|” is true in every forcing extension
by P (where P is a forcing generically presenting A). This assumption is used, for example,
in 4.3.7 below, and is necessary for straightforwardly applying the facts about amalgamation
we will prove in section 4.3. Note that this assumption holds for the vast majority of natural
structures.

Lemma 4.3.6. If A is generically presentable, then so is Â.

Proof. We already showed that LAsr(A) ∈ V , so L̂ ∈ V . There is only one way to expand A
to the L̂-structure Â. So, Â has a presentation with domain ω in every generic extension of
V where A does. �

Proposition 4.3.7. Suppose A is generically presentable by a forcing notion that does not
collapse ω1. Then A has a copy in V with domain ω.

Proof. Intuitively, the Scott sentence of A must lie in V , and since ω1 is not collapsed we
can reconstruct A from its Scott sentence.

In detail, let P be a forcing notion that does not collapse ω1, and for which A is generically
presentable. Since Â is generically presentable, and L̂ ∈ V , we have that ThL̂(Â), the L̂-

theory of Â, is a set of L̂ sentences that belongs to all P-generic exensions. Thus, ThL̂(Â) ∈
V .

In all of these extensions, L̂ is countable (because A is), and, hence, L̂ cannot be un-
countable in V . Otherwise, there would be an injection from ω1 into L̂, and since P does not
collapse ω1, L̂ would stay uncountable in V [G].

Now, in each of these generic extensions, Â is the unique countable atomic model of
ThL̂(Â). The existence of such a model is a Σ1

1 statement with ThL̂(Â) as parameter. By

absoluteness, this must be true in V too, and by the uniqueness of Â in V [G], this model
must be isomorphic to Â. �
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Keeping ω2 uncountable.

We now turn to the Fräıssé limit construction, first used in [17]:

Definition 4.3.8. Fix a relational language L. For an L-structure B, we denote by KB
the set of (structures isomorphic to) finite substructures of B, and we call KB the age of B.
For K a set of finite structures and A a structure, we say that A is the Fräıssé limit of K if
KA = K and the set of isomorphisms between finite substructures of A has the back-and-forth
property.

Convention 4.3.9. When we speak of the cardinality of an age, we will mean the cardinality
of the age modulo isomorphism, that is, the number of isomorphism types of finite structures
in that age.

It is clear from the definition that if A and B are countable Fräıssé limits for the same
age K, then A ∼= B. A given age may have non-isomorphic uncountable Fräıssé limits. For
example, if K is the set of finite linear orderings, the Fräıssé limits are the dense linear
orderings without endpoints, and there are many — in fact, 2ℵ1 many, the most possible —
non-isomorphic ones of cardinality ℵ1.

Lemma 4.3.10. If A is generically presentable, then KA ∈ V .

Proof. This follows from Solovay’s Theorem 4.2.23: KA is a set of finite structures that is
independent of the presentation of A. �

Using the same argument as in Proposition 4.3.7, we get a bound on the size of L̂ and
KÂ:

Corollary 4.3.11. If A is generically presentable by a forcing not making ω2 countable, then
L̂ and KÂ have size ≤ ℵ1 in V .

Fräıssé [17] proved that if K is a countable set of finite structures satisfying the Hereditary
Property (HP ), the Joint Embedding Property (JEP ) and the Amalgamation Property
(AP ), then it has a Fräıssé limit (see 6.1 of [29] for definitions). The next lemma says that
this is still the case when K has size ℵ1. The earliest reference we know is Delhomme, Pouzet,
Sagi, and Sauer [11, Corollary 2, p. 1378]. We give the proof because we want to make clear
that the result does not automatically generalize to ages of size > ℵ1; and indeed, we will
see in the next subsection that there is an age of size ℵ2 with no limit (Corollary 4.3.19).

Lemma 4.3.12. Let K be a family of ℵ1 finite structures on a relational language L of size
≤ ℵ1. If K has HP, JEP, and AP, then there is a Fräıssé limit A with age K.

Proof. The key is the following:

Claim: Suppose we have embeddings A → B and A → C where A,B ∈ K and C
is countable and its age is a subset of K. Then there is a countable structure D,
whose age is a subset of K, and which amalgamates these embeddings.
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To prove the claim, write C as the union of an increasing sequence {Cn : n ∈ ω} where each
Cn ∈ K, and with C0 = A. Let D0 = B, and note that we have an embedding from C0 to
D0. Given Dn, by induction we will have an embedding from Cn into Dn, and Dn will be
an element of K; and by definition we have an embedding from Cn into Cn+1. We then form
Dn+1 by amalgamating the embeddings Cn → Cn+1 and Cn → Dn within K. The direct limit
D of the Di is the desired amalgamation.

Now we prove the lemma. Suppose K is such a family of finite structures. There is a
sequence (Aξ)ξ∈ω1 of structures such that:

• ξ0 < ξ1 → Aξ0 ⊆ Aξ1 ;

• each Aξ is countable and its age is a subset of K; and

• for every ξ ∈ ω1 and B, C ∈ K and every pair of embeddings B → C and B → Aξ, there
is γ > ξ and an embedding C → Aγ compatible with the inclusion Aξ → Aγ.

The union A of the Aξ clearly has age K. It is clear from the construction that the set of
finite partial isomorphisms has the back-and-forth property. �

Note that the limit A constructed above need not be ℵ1-homogeneous or unique.

Corollary 4.3.13. Let B be an L-structure that lives in an extension of the universe and
is ω-homogeneous in the sense that the family of isomorphisms between finite substructures
has the back-and-forth property. Suppose B is generically presentable, and |KB|, |L| ≤ ℵ1 in
V . Then in V there is a structure L∞ω-equivalent to B.

Proof. Since B is generically presentable, we have that KB ∈ V by Lemma 4.3.10. Since
B is ω-homogeneous, KB has HP , JEP and AP in any model where B lives; since these
properties are absolute, we conclude that KB has these properties in V . Since |KB| ≤ ℵ1 and
|L| ≤ ℵ1 in V , by Lemma 4.3.12 we have that KB has a Fräıssé limit F in V . In a generic
extension presenting B, the age KB—and, hence, the Fräıssé limit F—will be countable.
Then F ∼= B, by the uniqueness of countable Fräıssé limits, so F is the required structure
L∞ω-equivalent to B which lives in V . �

We are now ready to prove the main positive result of this section.

Theorem 4.3.14. Suppose A is generically presentable by a forcing notion P that does not
make ω2 countable. Then there is a copy of A in V , with cardinality at most ℵ1 in V .

More precisely, if (P, ν) is a generically presentable structure and P does not make ω2

countable, then there is a copy B ∈ V of (P, ν), with |B| ≤ ℵ1.

Proof. Let L be the language of A. Since A is generically presentable, by Lemmas 4.3.3
and 4.3.6 we know that L̂ is in V and Â is generically presentable. Consider some generic
extension V [G] by a forcing which generically presents A and which does not make ω2

countable. Using in V [G] the fact that Scott ranks of countable structures are countable,
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since ωV2 is still uncountable in V [G] the language L̂ has size ≤ ℵ1 in V . This implies that
KÂ is in V by Lemma 4.3.10 and has size ≤ ℵ1 in V by Corollary 4.3.11. Now, we can apply

Corollary 4.3.13 to get a copy of Â which lives in V (of course, Â need not be countable in
V ). Intuitively, we now want to take the reduct of this copy to L, but L̂ need not include L
(for instance, if two L-symbols have the same interpretation); instead, from Â we can now
“decode” the correct interpretations of each of the symbols in L, and thus produce a copy
of A itself. �

Note that Theorem 4.3.14 does not directly imply Proposition 4.3.7, since the latter
concludes that the generically presentable structure in question has a countable copy in V .

We may apply Theorem 4.3.14 to prove the following.

Theorem 4.3.15 (Harrington, unpublished). If T is a counterexample to Vaught’s Conjec-
ture, then for each β < ω2, T has a model of size ℵ1 with Scott rank ≥ β.

Proof. Recall that if T is a counterexample to Vaught’s conjecture it has countable models
of arbitrary Scott rank below ω1. Being a counterexample to Vaught’s conjecture is a Π1

2

property ([58]; see also [65], Proposition 5.1) and hence absolute. Let P = ω<ω1 be the usual
Levy collapse of ω1 and let G be P-generic. Note that P is homogeneous in the following
sense: the partial orders P and {q ∈ P : q ≤ p} are isomorphic for any p ∈ P. Since T
is a counterexample to Vaught’s conjecture, in V [G] we have a countable model B of Scott
rank α ≥ β. We claim that B is generically presentable over V by P, that is, that there is a
generically presentable structure (P, µ) such that V [G] |= µ[G] ∼= B. This would give us the
claimed result: since P does not collapse ω2, by Theorem 4.3.14, we would have a copy of B
of size ℵ1 in V , and since Scott rank is absolute, this copy is as wanted.

So fix a P-generic G and a name ν ∈ V for a structure B in V [G] which is (in V [G]) a
countable model of T with Scott rank ≥ α, and suppose towards contradiction that B is not
generically presentable in the sense of the previous paragraph. This will let us produce a
size-continuum set of countable models of T of bounded Scott rank, thus contradicting the
assumption that T is a counterexample to Vaught’s conjecture.

We proceed as follows. First, suppose without loss of generality that


 “ν[G] |= T and sr(ν[G]) = α;”

we can make this assumption since some condition inGmust force this, and P is homogeneous
so we may take that condition to be the empty condition. We now claim that whenever
H0, H1 are mutually P-generic, we have ν[H0] 6∼= ν[H1]. This immediately follows from the
assumption that B is not generically presentable — otherwise, taking an H0, H1 mutually
generic with ν[H0] ∼= ν[H1], we must have some pi ∈ Hi such that (p0, p1) 
P×P ν[G0] ∼= ν[G1].
Since P is homogeneous we may assume p0 = p1 = ∅; but then this contradicts our assumption
that B is not generically presentable.
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So we have that mutually generic filters through P yield non-isomorphic models of T
of Scott rank α. Now, consider a forcing notion Q that adds perfectly many mutually P-
generics. (This is quite standard: for instance let Q be the set of finite partial maps from
2<ω to ω<ω1 and then obtain the P generics by concatenating the ω<ω1 -strings along each
path in 2ω.) After forcing with Q, by the arguments above we obtain continuum many
pairwise-nonisomorphic countable models of T , each of Scott rank α < ω1. Since being a
counterexample to Vaught’s conjecture is absolute, this is a contradiction. �

Remark 4.3.16. Recently, Baldwin, S.-D. Friedman, Koerwien, and Laskowski [4] have
given a new proof of Harrington’s result using similar genericity arguments; their proof uses
a generic version of the Morley tree, which they show is invariant across forcing extensions.

Finally, we can use Theorem 4.3.14 to give a partial positive answer to Slaman’s question:

Corollary 4.3.17. Suppose A is a generically presentable structure with A ≤∗w B for some
B ∈ V with cardinality ≤ ℵ1. Then A has a copy in V .

Proof. Let P be a forcing notion that collapses ω1 while keeping ω2 uncountable, such as
P = ω<ω1 . Let V [G] be a generic extension by P. Then B is countable in V [G], and, a
fortiori, there is a copy of A in V [G]. It follows that A is P-generically presentable. Then
by Theorem 4.3.14, there is a copy of A in V . �

Collapsing ω2 to ω.

We close this section by presenting a strong negative result, coming from a construction due
to Shelah and Laskowski [47]. Throughout the rest of this section, we abbreviate the linear
order (ω2, <) by “ω2.”

Theorem 4.3.18. There is a structure A, generically presentable by any forcing making ω2

countable, but with no copy in V .

Proof. Laskowski and Shelah [47] gave an example of an elementary first order theory T , in
a countable language, such that:

1. The language has a sort W such that, for every model M of T and every subset
A ⊆ WM, T (A) has an atomic model if and only if |A| ≤ ℵ1.

2. T has a countable model M0 such that WM0 is totally indiscernible in the sense that
any permutation of WM0 extends to an automorphism of M0. Furthermore, M0 is
atomic over WM0 .

For C a countable structure, let MC be the two-sorted structure with one sort corre-
sponding to a copy of C, one sort corresponding to a copy of M0, and with a function
symbol f providing a bijection between C and WM0 . Since the elements of WM0 are totally
indiscernible, any two choices of f yield isomorphic structures, so MC is well-defined.
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Now consider the “structure” Mω2 which lives in any extension of the universe where
ω2 is countable. Thus, Mω2 is generically presentable by Col(ω2, ω). However, there is no
copy of Mω2 in V : Since if the first sort is really ω2, of size ℵ2, then in the second sort, the
predicate W has size ℵ2. But, by the assumption on M0, MC is always atomic over C (a
fact that is absolute), and by the assumption on T , T (WMω2 ) has no atomic models. �

The structure of Laskowski and Shelah also provides a counterexample to a natural
extension of Lemma 4.3.12.

Corollary 4.3.19. There is an age S of size ℵ2 with the Hereditary, Joint Embedding, and
Amalgamation properties but for which there is no Fräıssé limit.

Proof. Consider the theory T (A) = Th(M0, aa∈A), where A = AM has size ℵ2. The principal
types are dense, but T (A) has no atomic model. We add predicate symbols for the principal
types. For B ⊆ A of size up to ℵ1, there is an atomic model of the corresponding theory
T (B) = Th(M0, aa∈B). Let K consist of the finite substructures of the atomic models of
the theories T (B). In total, what we have is appropriate to be the age for an atomic model
of T (A). That is, we have the Hereditary, Joint Embedding, and Amalgamation properties
(essentially [47], pg. 3). However, any Fräıssé limit of S would yield an atomic model of
T (A), so the Fräıssé limit cannot exist. �

4.4 Generically presentable rigid structures

In the previous section, we gave a complete characterization of those posets P with the
property that every structure generically presentable by P has a copy already in the ground
model. In this section, we examine the dual question: what properties of structures ensure
that generic presentability implies the existence of a copy in the ground model? Specifically,
we extend Solovay’s Theorem 4.2.23 to structures that are sufficiently “set-like:”

Theorem 4.4.1. If a generically presentable structure is rigid, then it has a copy in the
ground model.

More precisely, suppose (P, ν) is a generically presentable structure such that 
P“ν[G]
has no nontrivial automorphisms.” Then (P, ν) has a copy in V .

Proof. We assume the language L of the rigid generically presentable structure N = (P, ν)
is relational. On ω × P, we define the relation ≡ as follows:

(a, p) ≡ (b, q) ⇐⇒ (p, q) 
P2 “{(a, b)} extends to an isomorphism ν[ġ0] ∼= ν[ġ1].”

If (a, p) ≡ (a, p), we say a is stable in p, and we write M for the set {(a, p) : a is stable in p}.

Lemma 4.4.2. The relation ≡ is an equivalence relation on M.
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Proof. Symmetry is clear, and reflexivity is immediate from the definition of M. For transitiv-
ity, suppose (a, p) ≡ (b, q) ≡ (c, r), and let G0×G1 be P2-generic over V with p ∈ G0, r ∈ G1;
and let H be P-generic over V [G0×G1]-generic, with q ∈ H. Then clearly in V [G0×G1][H],
there is an isomorphism between ν[G0] and ν[G1] taking a to c; but this is a Σ1

1 property,
and so already true in V [G0 ×G1]. Thus, (a, p) ≡ (c, r). �

Now let M be the set of ≡-classes of elements of M. The basic properties of M , which
parallel the properties of ages needed for Fräıssé constructions, are:

Lemma 4.4.3. For p ∈ P, a ∈ ω,

1. (Extension) if a is stable in p and q ≤ p, then a is stable in q and (a, p) ≡ (a, q);
and

2. (Genericity) there is some q ≤ p with a stable in q.

Proof. (1): That a is stable in q is immediate from the definition of stability. To see that
(a, p) ≡ (a, q), note that any pair of generics H0, H1 witnessing the failure of (a, p) ≡ (a, q)
would also witness the instability of (a, p).

(2): Consider the condition (p, p) ∈ P2. By our assumption on ν, there must be some
condition (q, q′) ≤ (p, p) and a′ ∈ ω such that

(q, q′) 
P2 {(a, a′)} extends to an isomorphism ν[ġ0] ∼= ν[ġ1].

It now follows that a is stable in q: given G0 × G1 P2-generic over V extending (q, q), fix
some H which is P-generic over V [G0×G1] with q′ ∈ H. Then in V [G0×G1][H] there is an
isomorphism between ν[G0] and ν[G1] extending {(a, a)}; but this is a Σ1

1 fact, so already
true in V [G0 ×G1]. �

Finally, the following result is where rigidity is used. Intuitively, rigidity plays the role
in our proof that ω-homogeneity plays in standard Fräıssé limit constructions.

Lemma 4.4.4. (Simultaneity) Suppose p, q ∈ P and i1, ..., in : ⊆ ω → ω are partial maps
in V with disjoint domains which are each forced by (p, q) in P2 to extend to isomorphisms
j1, ..., jn : ν[G0] ∼= ν[G1]. Then

(p, q) 
P2

⋃
1≤j≤n

ij extends to an isomorphism ν[G0] ∼= ν[G1].

Note that this result immediately implies the seemingly stronger result in which disjoint-
ness of domains is not assumed.

Proof. We will prove the lemma in the case where n = 2, p = q, i1 = {(a, a)} and i2 = {(b, b)}
for some distinct a, b ∈ ω; the general result is no different. Note that the assumption on ij
in this case means just that a and b are stable in p.
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Let G0×G1 be P2-generic extending (p, p). Then, forced by (p, p), there are isomorphisms
j1, j2 : ν[G0] ∼= ν[G1] with j1(a) = a and j2(b) = b. Consider the map j = j1 ◦ j−1

2 . This is
an automorphism of ν[G1], and hence by rigidity must be the identity; so j1(b) = b, since
j−1

2 (b) = b by assumption on j2. But then j1 is an isomorphism extending {(a, a), (b, b)}, so
(p, p) forces that there is an isomorphism between ν[G0] and ν[G1] extending {(a, a), (b, b)}.

�

Now we come to the body of the proof of Theorem 4.4.1. We can turn M into an L-
structure,M, as follows: writing (a, p) for the equivalence class of (a, p) ∈M, for each n-ary
relation symbol R ∈ L we let RM be the set of tuples ((a1, p1), . . . , (an, pn)) such that

∃q ∈ P, c1, ..., cn stable in q (∀i ≤ n[(ai, pi)= (ci, q)] ∧ q 
 “ν |= R(c1, ..., cn)”).

Informally, this definition ensures that each relation R holds whenever it ought to hold; we
will also need the converse result, that each R fails whenever it ought to fail, and this is
where Simultaneity will come in.

Lemma 4.4.5. Let G be P-generic over V . Then V [G] |= ν[G] ∼=M.

Proof. For a ∈ ν[G], let StabGa = {p ∈ G : (a, p) ∈ M}. Then for every p, q ∈ StabGa , we
must have (a, p) ≡ (a, q): since p, q ∈ G, there must be a common strengthening r ≤ p, q; by
4.4.3(1), we have (a, p) ≡ (a, r) and (a, q) ≡ (a, r), and hence (a, p) ≡ (a, q) by transitivity.
So the set {(a, p) : p ∈ StabGa } is contained in a single ≡-class, and hence corresponds to a
single element of M.

Consider the map i : ν[G] →M : a 7→ {a} × StabGa ; We claim that i is an isomorphism.
Surjectivity is an immediate consequence of genericity (Lemma 4.4.3(2)), and injectivity
follows from the rigidity of ν[G].

Finally, we must show that i is a homomorphism. Let R be a relation symbol in L
and a ∈ ν[G]. First, suppose ν[G] |= R(a). Let p ∈ G be such that p ∈

⋂
a∈a Stab

G
a and

p 
 ν[G] |= R(a). Then p witnesses that M |= R(i(a)). Conversely, suppose M |= R(i(a))
and fix p ∈

⋂
a∈a Stab

G
a . Then we must have some q ∈ P and c stable in q such that

(ci, q) ≡ (ai, p) for each i and q 
 R(c). But then by simultaneity (Lemma 4.4.4) we must
have p 
 R(a). �

This finishes the proof of Theorem 4.4.1. �
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Chapter 5

Expansions and reducts of R

The work in this section appeared as [33], and is joint with Greg Igusa and Julia Knight; it
appears here with their permission.

5.1 Introduction

The behavior of structures in generic extensions of the universe has been studied from a
number of different angles; for example, Baldwin, Laskowski, and Shelah [5] studied the con-
ditions under which non-isomorphic structures may become isomorphic, and Knight, Mon-
talban, and Schweber [41] (and independently Kaplan and Shelah [KS14–IK14˝]) studied
structures existing in every generic extension of the universe by some forcing. In the latter
example, general results about such “generically presentable” structures led to a new proof
of a result of Harrington saying that if T is a counterexample to Vaught’s Conjecture, then
T has models of cardinality ℵ1 with arbitrarily large Scott ranks less than ω2. (There are
now at least three new proofs of this result. In addition to the one in [41], there is one by
Baldwin, S.-D. Friedman, Koerwien, and Laskowski [6] and one by Larson [46]; these other
proofs do not use generically presentable structures directly, but do use related ideas.)

The present paper continues the general theme of studying structures in generic exten-
sions. We examine the computability-theoretic properties of structures in generic extensions,
and in particular its connections with tameness in model theory. In [41], the third author
defined a notion that lets us compare the computing power of structures of any cardinality:

Definition 30 (Schweber). Let A and B be structures in V (of any cardinality). We say
that A ≤∗w B if in a generic extension V (G) in which both A and B are countable, every
copy of B computes a copy of A.

In [41], there are a few examples comparing familiar structures. In particular, it is shown
thatW ≤∗w R, whereR is the ordered field of real numbers, andW is a structure representing
the power set of ω, coded asW = (P (ω)∪ω, P (ω), ω,∈, S), where S is the successor relation
on ω. In computability, these two structures are sometimes identified; both are referred to
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as “the reals”. Of course, they are not the same structure: R is a field, while W is just a
family of subsets of ω.

Let R∗ be an ω-saturated extension of R. In [32], it is shown that R∗ ≡∗w W and that
R 6≤∗w R∗, so R 6≤∗w W . In the proof, we note that R is a residue field section of R∗. After
collapse, R∗ is no longer ω-saturated, but it is recursively saturated, and it realizes just
the types in the Scott set that is the old P (ω). We show that for a countable recursively
saturated real closed field K, with residue field k, some copy of K does not compute a copy
of k. The proof of this involves a reduction. It is shown that if every copy of K computes
a copy of k, then the set FT (K) consisting of finite elements that are not infinitesimally
close to any algebraic element must be defined in K by a computable Σ2 formula. It is then
shown that FT (K) has no such definition.

In the present paper, we consider further structures related to the reals. Let Rexp =
(R, exp). We show that Rexp ≡∗w R. More generally, if f is total analytic on R and
Rf = (R, f), then Rf ≡∗w R. The process of generalizing our proof from the first example
to the latter example also allows us to prove a number of results found independently by
Downey, Greenberg, and Miller [] showing that a number of seemingly weaker structures are
also equivalent to R under ≡∗w.

The structure W represents Cantor space. It is clearly equivalent to C = (2ω, (Rn)n∈ω),
where Rnf iff f(n) = 1. To represent Baire space, we may take B = (ωω, (Rn,k)n,k∈ω), where
Rn,k(f) iff f(n) = k. This structure is also equivalent to R [12].

In Section 2, we show that Rexp ≡∗w R. The proof combines ideas from computability
(jumps and effective guessing strategies), computable structure theory (definability by com-
putable infinitary formulas), and model theory (o-minimality). In Section 3, we generalize
the result from Section 2 to show that for any expansion M of a very weak base structure,
if M is o-minimal and has definable Skolem functions, then M ≡∗w R. In Section 4, we
apply the result from Section 3 to show that the other structures we are interested in are
all equivalent to R: the expansions Rf ≡∗w R, where f is analytic, the reduct R+, and the
structure B representing Baire space. In the remainder of the introduction, we give some
background on o-minimality.

We end with a cautionary remark. If A is an expansion of B such that A ≡∗w B, it
may not be the case that (in an appropriate generic extension) every copy of B computes a
copy of A together with an isomorphism between the copy of B and the reduct of the copy of
A. Indeed, that is the case with expansions of R: for example, the functions which R can
compute in this sense are precisely the piecewise algebraic functions.

o-minimality

Definition 31. A structure M with a dense linear ordering on the universe is o-minimal if
each set definable by an elementary first order formula (with parameters) is a finite union of
intervals (possibly trivial) with endpoints in M.

The following is well-known [42].
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Proposition 5.1.1. If T is the elementary first order theory of an o-minimal structure M,
then all models of T are o-minimal.

We say that T is an o-minimal theory.

Examples.

1. R is o-minimal. Tarski [75] proved that Th(R) is decidable. In the proof, Tarski gave
an effective elimination of quantifiers. There is an algorithm (familiar to every school
child) for deciding the truth of the quantifier-free sentences. As a side result, Tarski
stated the fact that in R, and the other models of the theory, the definable sets are
finite unions of intervals.

2. R+ is o-minimal. It is clear from the definition that any reduct of an o-minimal
structure that includes the ordering is o-minimal.

3. Rsin is not o-minimal—think of the set of zeroes of sin(x).

4. Rexp is o-minimal. Wilkie [78] showed that Texp = Th(Rexp) is model complete; i.e.,
if M1 and M2 are models of Texp, with M1 ⊆ M2, then M1 ≺ M2. By results of
Khovanskii [30], it follows that the theory is o-minimal. Ressayre [63] gave another
proof of model completeness.

5. Ran is o-minimal, where this is the expansion of R with the restrictions fI of analytic
functions f to compact intervals I = [a, b]. More precisely, fI is the total function that
agrees with f on I and has value 0 otherwise. By results of van den Dries [14], building
on work of Gabrielov [20], Ran is o-minimal.

We will use the following facts. The first is due to van den Dries [15].

Proposition 5.1.2. Any o-minimal expansion of R+ has definable Skolem functions.

The second fact is due to Pillay [42].

Proposition 5.1.3. For an o-minimal theory with definable Skolem functions, definable
closure is a good closure notion, satisfying the Exchange Property—if a is definable from b̄, c
and not from b̄, then c is definable from b̄, a.

This means that independence, basis, and dimension are well-defined. The third fact is
also due to Pillay [42].

Proposition 5.1.4. For an independent tuple b̄ in an o-minimal structure A, if ϕ(x̄) is
a finitary formula true of b̄, then there is an open box B around b̄, with vertices having
coordinates in A, such that ϕ(x̄) is valid on B.

Remark. If A is an Archimedean model of Th(R) (or Th(R+)), and ā is a tuple in an open
box B with vertices having coordinates in A, then there is another open box B∗ ⊆ B such
that ā ∈ B∗ and B∗ has vertices with rational coordinates. We refer to B∗ as a rational box.
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5.2 Rexp ≡∗w R
In this section, our goal is to prove the following.

Theorem 5.2.1. Rexp ≡∗w R.

Here is a brief overview of the proof. Clearly, R ≤∗w Rexp. We show that Rexp ≤∗w R.
Let Texp be the elementary first order theory of Rexp. After collapse, let K be a copy of R
with universe a subset of ω.

Being isomorphic to R, K can be expanded to a structure Kexp satisfying Texp. We will
show that this expansion is unique. Then, using definability of algebraic independence, we
will show that ∆0

2 relative to K, we can find a basis for Kexp. We then use a computable
approximation to this basis in a finite injury priority construction in order to construct a
copy of Kexp using K.

Expanding K to a model of Texp

We first show that for a countable Archimedean real closed ordered field K with an added
function f satisfying Texp, the expansion is unique, and the function expK is defined by a
computable Π1 formula. The same is true if we substitute for exp an arbitrary continuous
function.

Lemma 5.2.2 (Uniqueness). Let f be a continuous function on the reals, and let Tf =
Th(R, f). If K is an Archimedean real closed ordered field, there is at most one expansion
(K, fK) satisfying Tf . Moreover, for the function fK is defined by a computable Π1 formula
with a real parameter. Hence, it is ∆0

2 relative to K.

Proof. To prove uniqueness, we identify K with a subfield of R. Let a ∈ K. For each
open interval I containing f(a), and having rational endpoints, there is an open interval J
containing a, also with rational endpoints, such that f (as a function on R) maps J to I.
For each such pair of intervals I and J , with rational endpoints, there is a sentence in Tf
saying that f maps J into I. Then the function fK must map J to I in K. This implies
that fK(a) in K must match f(a) in R. This proves uniqueness.

We show that there is a computable Π1 formula with the meaning y = f(x). We have
y = f(x) iff for all pairs of rational intervals J and I such that Tf contains the sentence
saying that f : J → I, if x ∈ J , then y ∈ I. This gives a definition that is the conjunction
of finitary quantifier-free formulas over a set that is c.e. relative to Tf . We can replace this
by a c.e. conjunction involving a real parameter r ∈ [0, 1], where r, in its preferred binary
expansion, has 1 in the kth place iff k is the Gödel number of a sentence of Texp.

Let ck(u) be a finitary quantifier-free formula saying of u ∈ [0, 1] that its preferred binary
expansion has 1 in the kth place. For all k, we define a finitary quantifier-free formula
ρk(u, x, y). If k is the Gödel number of a sentence saying that f : J → I, then ρk(u, x, y)
says ck(u) → (x ∈ I → y ∈ J), and if k is not the Gödel number of such a sentence,
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then ρk(u, x, y) = >. Then the computable Π1 formula
∧
k ρk(r, x, y) holds just in case

y = f(x). �

Remark. Not all Archimedean real closed ordered fields can be expanded to models of Texp.
In particular, since e = exp(1) is transcendental, the ordered field of real algebraic numbers
cannot be expanded in this way.

By Proposition 5.1.4, for a tuple ā that is independent in Rexp, each formula ϕ(x̄) true
of ā is valid on an open box B around ā, with vertices having rational coordinates. We need
the converse of this.

Lemma 5.2.3. Let ā be a tuple of reals. Suppose that for every formula ϕ(x̄) true of ā in
Rexp, there is an open box B around ā, with vertices having rational coordinates, such that
Texp contains the sentence saying that ϕ(x̄) is valid on B. Then ā is independent in Rexp.

Proof. Suppose not. Say ak is defined from a1, · · · , ak−1 in Rexp. Let ϕ(x̄) be a formula
saying that xk is defined in this way from x1, · · · , xk−1. This cannot be valid on an open
box. �

Independence relations on Rexp

Definition 32. Suppose K is an Archimedean real closed ordered field with an expansion
(K, exp) satisfying Texp. Let INDn(K) be the set of n-tuples in K that are independent in
(K, exp).

We show that the relations INDn(R) are defined in R by computable sequences of
computable Π2 and computable Σ2 formulas. The computable Π2 definitions are easy.

Lemma 5.2.4 (Computable Π2 definition of INDn). For each n, we can effectively find a
computable Π2 definition of INDn, with a parameter r coding Texp.

Proof. We have ā ∈ INDn iff for each formula ϕ(x̄), there is an open box B around ā,
with vertices having rational coordinates, such that Texp contains one of the sentences (∀x̄ ∈
B)ϕ(x̄) or (∀x̄ ∈ B)¬ϕ(x̄). We can express this as a computable Π2 formula. Let ck(u) be
the formula saying that the kth place in the preferred binary expansion of u is 1. For each
formula ϕ in the appropriate variables, and each rational box B, let k(ϕ,B) be the Gödel
number of the sentence saying (∀x̄ ∈ B)ϕ(x̄). We have ā ∈ INDn iff∧

ϕ

∨
B

(ā ∈ B & (ck(ϕ,B)(r) ∨ ck(¬ϕ,B)(r))) ,

where the conjunction is over all ϕ with appropriate variables, and the disjunction is over
all rational boxes B. This is computable Π2, with the parameter r, as required. �

The computable Σ2 definition for the relation INDn is less obvious.
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Lemma 5.2.5 (Computable Σ2 definition of INDn). For each n, we can effectively find a
computable Σ2 definition of INDn, with a parameter r coding Texp.

Proof. Fix n. Let (ϕm(x̄))m∈ω be a computable list of formulas in the variables x̄, in the
language of Rexp. We build a tree T , computable in Texp, consisting of finite sequences of
rational boxes B1, B2, . . . , Bs such that B1 ⊇ B2 ⊇ . . . ⊇ Bs and for each k, one of the
sentences (∀x̄ ∈ Bk+1)ϕk(x̄) or (∀x̄ ∈ Bk+1)¬ϕk is in Texp. By Proposition 5.1.4 and Lemma
5.2.3, ā ∈ INDn iff there is a path π = B1, B2, . . . through T such that for each s, ā is in the
box Bs. We must be sure that this definition can be expressed by a computable Σ2 formula
in the language of real closed ordered fields, with the parameter r.

Claim: There is a computable Π1 formula, with parameter r, saying that x codes a path
through T .

Proof of Lemma. The preferred binary expansion of x gives the characteristic function fx of
a set Sx ⊆ ω. The set Sx may be finite, although it cannot be co-finite. We consider a path
through T to be a set S with the following properties.

1. all elements of S are (codes for) finite sequences (B1, . . . , Bs) in T ,

2. if (B1, . . . , Bs, Bs+1) is in S, then so is (B1, . . . , Bs),

3. if two sequences in S have length s, then they are equal,

4. S is infinite.

We show that there are computable Π1 formulas saying that Sx has each of the four
properties above.

For Property 1, we say that Sx has no elements not in T . Since T is computable in
Texp and Texp is coded by r, there is a c.e. set C of pairs (σ, k), with σ ∈ 2<ω, such that
k /∈ T iff for some (σ, k) ∈ C, r agrees with σ, where this means that the preferred binary
expansion of r extends σ; i.e., ck(r) holds for σ(k) = 1 and ¬ck(r) holeds for σ(k) = 0.
To get a computable Π1 formula saying that Sx has no elements not in T , we take the c.e.
conjunction over (σ, k) ∈ C of formulas saying that if r agrees with σ, then ¬ck(x). This is
computable Π1 with parameter r.

For Property 2, we must say that Sx (a set of codes for finite sequences), is closed under
initial segments. We take the conjunction over pairs (k, k′) such that for some s, k is the
code for a sequence of length s + 1 and k′ is the code for the initial segment of length k, of
formulas saying ck(x)→ ck′(x). This is computable Π1, with no parameter.

For Property 3, we say that if two sequences in Sx have length s, then they are equal. We
take the conjunction of formulas saying ¬ck(x) & ck′(x), over all pairs (k, k′) coding distinct
sequences of the same length. This is computable Π1, with no parameter.
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For Property 4, we must say that Sx is infinite. We recall that the elements x of [0, 1)
that code finite sets are just the dyadic rationals. We have a computable Π1 formula saying
that r is not equal to any of these rationals.

Putting the four statements together, we have a computable Π1 formula, with parameter
r, saying that x codes a path through T . �

Knowing that x codes a path through T , we want a computable Π1 formula saying that
an n-tuple ū lies in the boxes on this path. We take the conjunction over k coding a finite
sequence of rational boxes (B1, . . . , Bs) of the formulas saying ck(x)→ ū ∈ Bs. To say that
ū is independent, we have a computable Σ2 formula saying that there exists x such that Sx
is a path through T and ū lies in the boxes corresponding to this path. �

Thanks to the computable Π2 and computable Σ2 definitions, we know that for any copy
K of R, the relations INDn(K) are ∆0

2 relative to K, uniformly in n.

Lemma 5.2.6 (Basis). Suppose K is a copy of R. Then we have a sequence b1, b2, . . . , ∆0
2

relative to K, and forming a basis for Kexp.

Proof. Applying a procedure that is ∆0
2 relative to K, we run through the elements, and we

use the relations INDn to choose a basis. We let b1 be first satisfying IND1(u1), we let b2

be first such that (b1, b2) satisfies IND2(u1, u2), etc. �

To complete the proof that Rexp ≤∗w R, we show the following.

Proposition 5.2.7 (Enumerating the complete diagram of the expansion). After collapse,
let K ∼= R. Then there is a is a copy C of Kexp with complete diagram computable in K.

Proof. Let b1, b2, . . . be a basis for Kexp that is ∆0
2 relative to K, determined as in the previous

lemma. Guessing at this basis, and using Texp, we enumerate the complete diagram of a copy
C of Kexp. The universe of C will be ω, which we think of as a set of constants. We fix a
computable enumeration of the sentences ϕ(c̄), where ϕ(x̄) is a formula in the language of
Rexp and c̄ is a tuple of constants. We suppose that the language includes symbols for the
definable Skolem functions. We fix a computable enumeration of terms τ(c̄), where τ(x̄) is a
term and c̄ is a tuple of constants. We enumerate the complete diagram of C in stages. Let
δs be the set of sentences enumerated by stage s.

The set δs includes sentences saying that the constants mentioned are all distinct. We
start with δ0 = ∅, and δs ⊆ δs+1. We will arrange that for each sentence ϕ(c̄), one of ±ϕ(c̄)
is in δs for some s. We will also arrange that for each term τ(c̄), some sentence of the form
τ(c̄) = c′ appears in δs for some s. To determine an isomorphism f from C onto Kexp, it is
enough to determine f−1(bn) for all n, since the rest of the elements are definable from the
basis. We have the following requirements.

Rn: Determine f−1(bn).
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At stage s, we have tentatively mapped some constants d̄s to a tuple v̄s in K which we
believe to be an initial segment of the basis b1, b2, . . .. In δs, we have mentioned the constants
d̄s, plus some further constants c̄s. Each ci ∈ c̄s has been given a definition τi(d̄s), and the
the sentence ci = τi(d̄) is in δs. We will maintain the condition that what we have said in δs
about d̄ is valid on a rational box Bs around v̄s. We must make this precise.

Let χs(d̄s, c̄s) be the conjunction of the sentences in δs. Let ū be a tuple of variables
corresponding to d̄s. We suppose that these variables do not appear in the sentences of
δs. Let χ∗s(ū) be the formula obtained from χs(d̄s, c̄s) by replacing each di ∈ d̄ by the
corresponding variable ui, and replacing each ci ∈ c̄s by τi(ū), where ci is defined to be
τi(d̄s). Note that χ∗s(ū) has conjuncts saying that the terms ui and τi(ū) are all distinct.

Now, χ∗s(ū) expresses what we have said about d̄s in δs. We say how to check that this is
true on a rational box Bs around v̄s. We write χ∗s(Bs) for the sentence saying (∀ū ∈ Bs)χ

∗
s(ū).

We check that v̄s ∈ Bs and that χ∗s(Bs) ∈ Texp. We can check that v̄ ∈ Bs using K. We can
check, using the real that codes Texp, that the sentence χ∗s(Bs) ∈ Texp.

At stage s+ 1, if our stage s guess v̄s at the initial segment b̄s of the basis seems correct,
then v̄s+1 = v̄s, v

′, where v′ appears to be the next element of the basis. If at stage s our
guess v̄s at b̄s changes, then v̄s+1 is the restriction of v̄s to the part that still seems to be
an initial segment of the basis. In this case, the elements of d̄s tentatively mapped to the
elements of v̄s that are not in v̄s+1 will be remapped to definable elements, and at all future
stages will be treated as part of the c̄. In the event that at a later stage some elements of v̄s
appear to return to the basis, we will create new constants to map to those elements.

At stage s + 1, assuming that our stage v̄s+1 has a new element v′, we map to a new
constant d′ to it. We put into δs+1 sentences saying that d is not equal to any element of d̄s
or c̄s. We decide the next sentence ϕ that mentions only the constants from d̄s, c̄s. Also, for
the next term τ(d̄s) not already given a name, add a sentence c = τ(d̄s), where c is either
in c̄s or the first constant not yet mentioned. The lemmas below guarantee that we can do
this all of this, while maintaining the condition that what we have said in δs+1 about d̄s+1 is
valid on a rational box around v̄s+1. We need some terminology.

Definition 33. We say that (δ, d̄; c̄) is a good triple if

1. δ is a finite set of sentences with constants split into disjoint sets d̄, and c̄,

2. δ includes sentences saying that the constants are all distinct,

3. for each c ∈ c̄, δ includes a sentence τ(d̄) = c.

For a good triple (δ, d̄; c̄), a test formula χ∗(ū) is obtained in the way we obtained χ∗s(ū)
from δs above.

Definition 34. For a good triple (δ, d̄; c̄), we say that χ∗(ū) is a test formula if it is obtained
by the following steps.

1. Let χ be the conjunction of δ, let ū be a sequence of new variables corresponding to d̄.
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2. Let χ∗(ū) be the formula obtained from χ by replacing di by ui and replacing ci by τi(ū),
where ci = τi(d̄) is a sentence of δ defining ci in terms of d̄.

For our construction, at stage s, we will have a good triple (δs, d̄s; c̄s) with a test formula
χ∗s that is valid on a rational box Bs, so that the sentence χ∗s(Bs) is in Texp. Moreover, we
will have f tentatively mapping d̄s to v̄s ∈ K, where v̄s ∈ Bs. We believe that v̄s is an initial
segment of the basis.

Lemma 5.2.8. Let (δ, d̄; c̄) be a good triple with test formula χ∗(ū) valid on a rational box
B containing an independent tuple b̄. Let b′ be a further element independent over b̄. Let δ′

be the result of adding to δ sentences saying of a new constant d that it is not equal to any
mentioned in δ. Then (δ′, d̄, d; c̄) is a good triple, with test formula χ′∗(ū, u′) that is valid
on a rational box B′ around b̄, b′. (We may suppose that the projection of B′ on the initial
coordinates, omitting the last one, is contained in B.)

Lemma 5.2.9. Let (δ, d̄; c̄) be a good triple with test formula χ∗(ū) valid on a rational box
B containing an independent tuple b̄. Let ϕ be a sentence with constants among d̄, c̄. There
is a good triple (δ′, d̄; c̄), where δ′ is the result of adding ±ϕ to δ, with test formula χ′∗(ū)
valid on a rational box B′ ⊆ B containing b̄.

Lemma 5.2.10. Let (δ, d̄; c̄) be a good triple with test formula χ∗(ū) valid on a rational box
B containing an independent tuple b̄. For a term τ(d̄), there is a good triple (δ′, d̄ : c̄′), with
a test formula χ′∗(ū) valid on a rational box B′ ⊆ B containing b̄, where where δ′ and c̄′

satisfy one of the following:

1. δ′ is the result of adding to δ a sentence c = τ(d̄), for some c ∈ c̄, and c̄′ = c̄,

2. δ′ is the result of adding to δ a sentence c′ = τ(d̄), where c′ is new, along with sentences
saying that c′ is not equal to any of the constants in d̄, c̄, and c̄′ is c̄, c′.

In our construction, it may be that at stage s+ 1, our guess at the initial segment of the
basis changes. Then v̄s+1 is the restriction of v̄s to the part that seems correct. We must
give the extra elements of d̄s definitions in terms of d̄s+1. The following lemma says that we
can do this.

Lemma 5.2.11. Let (δ, d̄, d′; c̄) be a good triple with test formula χ∗(ū, u′) valid on a rational
box B containing a tuple b̄, b′, where b̄ is independent. There is a good triple (δ′, d̄; c̄, d′) with
test formula χ(ū, u′) valid on a rational box containing b̄, where δ′ is the result of adding to
δ a sentence d′ = τ(d̄). We may take B′ to be the projection of B on the initial coordinates,
omitting the one that corresponds to u′.

Proof of Lemma. The box B is a cross product of rational intervals. Say that I is the
interval corresponding to the coordinate u′, and take q ∈ I. There is a term τ in our
language naming q. Let δ′ be the result of adding to δ the defining sentence d′ = τ , and
modifying the definitions ci = τ(ū, u′), by replacing u′ by τ . We have in δ sentences saying
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that d′ is distinct from all constants in d̄, c̄. The formulas of δ are valid on B, and they
guarantee that for ū ∈ B′, nothing in I can be equal to any ui. Also, for ci with a definition
ci = τ(d̄) in δ, for ū ∈ B′, nothing in I can be equal to τ(ū). �

We begin at stage 0 with the good triple (∅, ∅, ∅). Our guess at an initial segment of the
basis is ∅, and f is not defined on any elements. Suppose at stage s, our guess at an initial
segment of the basis is v̄s, we have the good triple (δs, d̄s; c̄s), with test formula χ∗s(ū) valid
on a box Bs around v̄s, and we have f mapping d̄s to v̄s.

We must say what happens at stage s + 1. Supposing v̄s still appears to be an initial
segment of the basis, and that v′ is the next element of the basis, we consider letting v̄s+1 =
v̄s, v

′ and extending f to map a new constant d′ to v′, and letting d̄s+1 = d̄s, d
′. Assuming

that we can find an appropriate rational box on which the test formula is valid, we let δs+1

be an extension of δs, with some sentences added as follows:

Step 1 We add sentences saying that d′ is not equal to anything in d̄s, c̄s.

Step 2 We add one of the sentences ±ϕ, where ϕ is the first sentence on our list that involves
only constants from d̄s, c̄s,

Step 3 For the first term τ(d̄s) such that δs does not include a defining sentence c = τ(d̄), we
add such a sentence. Here c may be an element of d̄s, or c̄s or a new constant.

Lemma 5.2.8 says that we can carry out Step 1, finding a rational box on which the
appropriate test formula is valid, provided that our guess the initial segment of the basis
is correct. Lemma 5.2.9 says that we can carry out Step 2, provided that our guess at the
initial segment of the basis is correct. Lemma 5.2.10 says that we can carry out Step 3,
provided that our guess at the initial segment of the basis is correct.

Running our approximations ahead, either v̄s will no longer seem to be an initial segment
of the basis, or else we will arrive at v̄s+1 the result of adding a single element to v̄s and a
good triple (δs+1, d̄s+1, c̄s+1), carrying out all three steps, with a test formula that is valid on
an appropriate rational box Bs+1 containing v̄s+1. We do not add to the diagram unless this
happens.

If it appears that v̄s is not an initial segment of the basis, then we apply Lemma 5.2.11
finitely many times, to give definitions to the elements of d̄s that are mapped to the elements
of v̄s that are not in v̄s+1. This lemma tells us how to arrive at an appropriate next good
triple and a rational box Bs+1. If those elements of v̄s later return to our approximation for
b̄, the construction will create new elements that will be mapped to those elements.

Eventually, our guess at the initial segment of the basis of length n is correct. Say this
happens at stage s. The initial segment of the basis of length n is v̄s, and for all stages t ≥ s,
the stage t version of f will map d̄s to v̄s. What we say about d̄s is true about v̄s. Taking
the limit, f gives pre-images to all elements of the basis. Each element of our C that is not
the pre-image of a basis element under f has a definition in terms of some elements that
pre-images of the basis elements. We have arranged that if ϕ(d̄, c̄) is in δs, where f(d̄) = v̄
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is part of the basis, and ci has been given a definition τi(d̄) in δs, then ϕ(v̄, τ̄(v̄)) is true in
Kexp. Thus, f is an isomorphism. This completes the proof of Proposition 5.2.7. �

5.3 Generalizing

In the previous section, we showed that Rexp ≤∗w R. In this section, we generalize. We
replace R by an apparently very weak structure, and we replace Rexp by an arbitrary o-
minimal expansion M of the weak structure having definable Skolem functions. For the
weak structure, we consider two possibilities. The first is RQ, with just has the ordering on
the real numbers, plus constants for the rationals. This structure is weak in terms of what is
definable by elementary first order formulas. The second structure, Rint, with the ordering
on the reals, plus the intervals [q, q′), where q < q′ are dyadic rationals, is even weaker than
RQ in terms of what is definable by elementary first order formulas.

Our proof is phrased most naturally with RQ used as the weak structure for our general
result. In [] Downey, Greenberg, and Miller prove that Rint ≡∗w R using a similar proof that
was found independently. (They actually use B, which can easily be shown to be equivalent
to Rint.) In the next section, we mention how our proof of Theorem 5.3.1 can be modified
to use Rint as the weak structure.

Theorem 5.3.1. Let M be an o-minimal expansion of RQ with definable Skolem functions.
ThenM≤∗w RQ. In fact, after collapse, every copy K of RQ computes the complete diagram
of a copy of M.

We will imitate the proof that Rexp ≤∗w R. Let TM = Th(M). We split the proof of
Theorem 5.3.1 into a sequence of lemmas, following the outline from the previous section.
The greatest difference is in the lemma below. In the previous section, the proof of Lemma
5.2.2, on uniqueness of the expansion, did not use o-minimality, just the fact that exp is a
continuous function.

Lemma 5.3.2 (Uniqueness). For K ∼= RQ, there is a unique expansion KM to a model of
TM.

Proof. Since M is o-minimal, with definable Skolem functions, definable closure is a good
closure notion. Since K ∼= RQ, there is at least one expansion of K to a model of TM, say
K1. Let b1, b2, . . . be a basis for K1. Suppose K2 is another expansion of K to a model of TM.
Suppose ϕ(x̄) is true in K1 of a basis tuple b̄. Since b̄ is independent in K1, by Proposition
5.1.4 there is a rational box B around b̄ such that the sentence Since M is o-minimal, with
definable Skolem functions, definable closure is a good closure notion. Since (∀x̄ ∈ B)ϕ(x̄)
is in TM. Then ϕ(x̄) must be true of b̄ in K2. For an element c that is not in the basis, we
have a definition of c from basis elements in K1, say c = τ(b̄). Let c′ be τ(b̄) in K2. We can
show that c = c′. If c is in a rational interval I, then the formula saying τ(x̄) ∈ I is true of
b̄ in K1. This formula is also true of b̄ in K2, so c′ ∈ I. This shows that K1 = K2. �
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We write KM for the unique expansion of K to a model of TM. Let INDn be the set of
n-tuples in K that are independent in the expansion KM. The next lemma is the analogue
of Lemma 5.2.4.

Lemma 5.3.3 (Computable Π2 definition of INDn). For each n, we can effectively find a
computable Π2 definition of INDn, with a real parameter r coding TM.

Proof. We have b̄ in INDn iff for all formulas ϕ(x̄) in the appropriate variables, there is
a rational box B around b̄ such that TM contains one of the sentences (∀x̄ ∈ B)ϕ(x̄) or
(∀x̄ ∈ B)¬ϕ(x̄). We express this as a computable Π2 formula, just as we did in the proof of
Lemma 5.2.4. �

The next lemma is the analogue of Lemma 5.2.5.

Lemma 5.3.4 (Computable Σ2 definition of INDn). For each n, we can effectively find a
computable Σ2 definition of INDn, with a real parameter r coding TM.

Proof. For a fixed tuple of variables x̄, let (ϕn(x̄))n∈ω be a computable list of the formulas
in the language ofM with free variables x̄. Let T be the tree of finite sequences of rational
boxes (B1, B2, . . . , Bs) such that B1 ⊇ B2 ⊇ . . . ⊇ Bs such that for each k, one of the
sentences (∀x̄ ∈ Bk+1)ϕk(x̄) or (∀x̄ ∈ Bk+1)¬ϕk(x̄) is in TM. The tree is T computable in
TM. We have b̄ in INDn iff there is a path π through T such that b̄ is in all of the boxes
associated with π.

The computable Σ2 definition of INDn(ū) says that there exists x coding a path through
T such that ū is in all of the boxes associated with the path. As in the proof of Lemma 5.2.5,
we have a computable Π1 formula (with a parameter for TM) saying that x codes a path
through T , and another computable Π1 formula saying that ū lies in the boxes corresponding
to the path coded by x. �

The next lemma is the analogue of Lemma 5.2.6.

Lemma 5.3.5 (Basis). There is a basis b1, b2, . . . for KM that is ∆0
2 relative to K.

Proof. We proceed exactly as in the proof of Lemma 5.2.6. Since the relations INDn are
∆0

2 relative to K (uniformly), we apply a procedure ∆0
2 relative to K to run through the

elements of K in order, adding a given element to our basis just in case it is independent of
those previously added. �

The next lemma is the analogue of Proposition 5.2.7. This will complete the proof of
Theorem 5.3.1.

Lemma 5.3.6 (Enumerating the complete diagram of the expansion). Any copy of K com-
putes the complete diagram of a copy of the expansion KM.
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Proof. Let b1, b2, . . . be a basis for KM that is ∆0
2 relative to K. Guessing at the basis, we

enumerate the complete diagram of a copy of KM. We maintain the condition that if we
have tentatively mapped d̄ to v̄ in K which we believe to be an initial segment b̄ of the basis,
and we have defined other elements c̄ in terms of d̄, then the theory TM guarantees that
what we have said about d̄ is true on a rational box around v̄. �

Corollary 5.3.7. RQ ≡∗w R

Proof. It is easy to see that RQ ≤∗w R ≤ (R, (q)q∈Q). By the main result of this section,
(R, (q)q∈Q) ≤∗w RQ. �

5.4 The structure Rint

Recall that Rint has just the real numbers, with the ordering, and unary predicates Pq,q′ for
the intervals [q, q′) with dyadic rational endpoints. This can be thought of as the minimal
structure that is able to recover the (preferred) binary expansions of the real numbers, as
each initial segment of the binary expansion of a number corresponds exactly to the number
being in a half-open interval of this sort. For instance, knowing that the binary expansion
of x begins 0.10 corresponds exactly to knowing that x ∈ [1

2
, 3

4
).

We could have substituted Rint in Theorem 5.3.1, with some modifications that we will
mention shortly. However, these modifications would have forced us to re-verify many of
the results of Section 2, and it is already proved in [t]hat B ≡ R, so we do not discuss the
modifications in detail.

The first modification is to Lemma 5.3.4. The dyadic rationals are definable without
quantifiers in RQ, but in Rint, they are Π1 definable. (We have that x = 1

2
iff (x ∈ [1

2
, 1)) ∧

(∀y ∈ [1
2
, 1))(x ≤ y).) Thus, in Rint we do not have a computable Π1 formula saying that x is

not a dyadic rational, so to ensure that x codes an infinite set, we instead use the complement
of the set that x would normally code. Every number has infinitely many zeroes in its binary
expansion, so this ensures that every x codes an infinite set.

The second modification is simpler but more cumbersome to verify. Every use of open
rational intervals and open rational boxes needs to be replaced with half-open dyadic rational
intervals and boxes, and then every proof and Lemma needs to be re-verified.
Remark. If we wish to use this modified version of Theorem 5.3.1 to prove thatRQ ≤∗w Rint,
it is both relevant and somewhat amusing to notice that RQ is, in fact, o-minimal, and that
it has a very strange notion of algebraicity: The algebraic closure of any set of elements
is simply that set together with all of Q. Thus, a basis for RQ is simply the entire set of
irrationals of R.

We conclude this section with a proof that Rint ≡∗w B, which will allow us to use the
result from [12] to prove that Rint ≡ R.

Lemma 5.4.1. B ≤∗w Rint.
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Proof. Given a copy K of Rint, we can enumerate the preferred binary expansions of the
reals in the interval [0, 1). For each such real, we get a function f ∈ 2ω such that f has
infinitely many 0’s. Given such an f , we pass to a function g ∈ ωω, where g(0) is the number
of 1’s before the first 0, and for k > 0, g(k) is the number of 1’s between the kth 0 and the
(k + 1)st. This gives a copy of B. �

Lemma 5.4.2. RI ≤∗w B.

Proof. Given a copy of B, we can enumerate the functions g ∈ ωω. From each g, we pass
effectively to a function f ∈ 2ω such that g(0) is the number of 1’s before the first 0 in f ,
and g(k+ 1) is the number of 1’s between the (k+ 1)st and (k+ 2)nd 0’s in f . The functions
f ∈ 2ω are just the preferred binary expansions of reals in the interval [0, 1). The ordering
on these reals corresponds to the lexicographic ordering on the functions f . For each dyadic
rational q, we give a name in which we mark the first in the infinite sequence of 0’s. For a
function f that is the preferred binary expansion of a real r in the interval [0, 1), we cannot
effectively determine whether r = q. However, for a pair q < q′ ∈ D, we can effectively
determine whether r ∈ [q, q′). We have a copy of the restriction of RI to the interval [0, 1).
For the full structure, we take pairs (z, f), where z ∈ Z and f ∈ 2ω has infinitely many 0’s.
We take the lexicographic ordering on these pairs. The full set of dyadic rationals consists
of the elements z + q, for q with a special name. We can determine membership in intervals
with these endpoints. This gives a copy of RI . �

Using the result of Downey, Greenberg, and Miller [12], we may conclude that Rint is
equivalent to our other structures.

Proposition 5.4.3. Rint ≡∗w R.

Proof. We have just shown that Rint ≡∗w B. In [12], it is shown that B ≡∗w R. �

5.5 Applying the general results

In this section, we apply the results from the previous section to show that various structures
are equivalent to R in computing power. We begin with Rf = (R, f), where f is analytic.
In Section 2, we considered the case where f is the exponential function. In this case, Rf

was o-minimal, but if f is the sine function, then Rf is not o-minimal.

Proposition 5.5.1. Let f be analytic on R. Then Rf ≡∗w R.

Proof. Clearly, R ≤∗w Rf . Let Rbounded f be the expansion of R by the family of functions
fz, for z ∈ Z, where

fz(x) =

{
f(x) if x ∈ [z, z + 1]
0 otherwise

Lemma 5.5.2. Rf ≤∗w Rbounded f .
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Proof. Let (K, (fKz )z∈ω) be a copy ofRbounded f . We define fK such that (K, fK) is isomorphic
to Rf . Given a ∈ K, we can find, effectively in the field K, the integer z that is the “floor”
of a; i.e., z ≤ a < z + 1. Then fK(a) = fKz (a). �

We can now complete the proof of Proposition 5.5.1. It is clear that
Rbounded f ≤∗w (Rbounded f , (q)q∈Q). Using Theorem 5.3.1, we get
(Rbounded f , (q)q∈Q) ≤∗w RQ ≤∗w R. This shows that Rf ≤∗w R. �

Next, we reprove a result from [12]. Consider the reductR+ ofR, without multiplication,
but including addition, the ordering, and the constants 0 and 1.

Proposition 5.5.3. R ≡∗w R+.

Proof. By Theorem 5.3.1, we have R ≤∗w RQ. It is easy to see that RQ ≤∗w (R+, (q)q∈Q) ≤∗w
R+ ≤∗w R. �

We also consider one example that is fairly simple, but that has a different flavor from
our other examples. Let (rn)n∈ω be any sequence of elements ofR, and consider (R, (rn)n∈ω),
the expansion of R with constants for those elements.

Proposition 5.5.4. R ≡∗w (R, (rn)n∈ω).

Proof. Let M be the expansion of RQ with all of the structure of R and the constants rn.
We have R ≤∗w M ≤∗w RQ ≤∗w R. We use Theorem 5.3.1 for the second reduction. The
others are clear. �

5.6 Arbitrary continuous f

Recently, Andrews, Knight, Kuyper, Lempp, Miller, and Soskova [2] have extended the
results of this chapter to all continuous functions: they showed that if f is continuous,
then B ≡∗w (R,+,×, f). The key result they used was that if I is a jump ideal, then any
enumeration of I computes a running jump enumeration of I:

Theorem 5.6.1 ([2]). Let I be a countable jump ideal. For any listing E = {Ei : i ∈ ω} of
the functions in I, E computes a sequence of pairs S = {(Di, Ji) : i ∈ ω} such that

• {Di : i ∈ ω} = {Ej : j ∈ ω} (of course, possibly out of order), and

• Ji = (
⊕

j≤iDj)
′.

Moreover, the computation of S from E can be done uniformly in 0′.

This avoids the use of o-minimality to control injury. However, once we look at the
parameters necessary to perform the relevant generic Muchnik reductions, o-minimality ap-
pears to return to relevance. Generic Medvedev reducibility (the uniform version of generic
Muchnik reducibility) is defined analogously to ≤∗w:
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Definition 35. For structures A,B (not necessarily countable), we say A is generically
Medvedev reducible to B — and write A ≤∗s B — if for some e, there is a generic extension
V [G] in which A,B are countable and

V [G] |= For every ω-copy B of B, ΦB
e
∼= A.

(≤∗s will be reintroduced in chapter 8.) As with generic Muchnik reducibility, we may
replace “there is a generic extension” with “in every generic extension.” Most Muchnik re-
ductions occurring in nature are not Medvedev reductions, but become Medvedev reductions
when the top structure is expanded by a finite sequence of constants. This is true in the
cases examined here. The results of this chapter show that given any continuous function f
and a real code r for f , we have

(R, r, 0′) ≥∗s (R; +,×, f)

. By contrast the results of this chapter show that given any analytic function f and a real
code r for the full first-order theory of (R; +,×, f), we have

(R, r) ≥∗s (R; +,×, f),

that is, 0′ is no longer necessary. In case the theory of f is reasonably simple — as is
conjectured to be the case for example with the exponential — this is a strong improvement.

Of course, the question remains whether this is actually a real difference:

Question 4. Is there a continuous function f : R→ R such that

(R, r) 6≥∗s (R; +,×, f)

(where r is the canonical real coding the full first-order theory of f)?
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Chapter 6

Notes on structures computing every
real

The work in this chapter is joint with Greg Igusa, and is work in progress; it appears here
with his permission.

6.1 Introduction

We continue to study the structures A which compute every real, in the sense that if V [G]
is a generic extension in which A is countable and r ∈ V is a ground real, then V [G] |=
“Every ω-copy of A iscomputes r.” We first take a brief look at expansions of Cantor space
by continuous functions which strictly increase its complexity, in contrast to the situation
for R. We then turn to ultrafilters, viewed as structures in a natural way, and show that ≤∗w
restricted to ultrafilters refines the Rudin-Keisler ordering. Finally, we show that there is a
≤∗w-least structure computing every real, and that there is a structure strictly above Cantor
space but not below Baire space.

6.2 Functions on Cantor space

In the previous chapter, we proved that expansions of R by analytic functions do not lead to
an increase in generic Muchnik complexity. Shortly after the work in that chapter was done,
Andrews, Knight, Kuyper, Lempp, Miller, and Soskova [2] extended this to all continuous
functions. However, the anIK14alogous result fails badly for Cantor space. In this section, we
briefly discuss some expansions of Cantor space by continuous functions which yield strictly
more complex structures — specifically, which are generically Muchnik equivalent to R.

It is immediate that, if I have an expansion of Cantor space in which the set of infinite
reals is relatively intrinsically computably enumerable (r.i.c.e.) in every generic extension
in which the structure is countable, then this structure is generically Muchnik above Baire
space: identify each infinite Cantor space real with its principal function. With slightly
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more work, we can see that the same is true if the infinite reals are co-r.i.c.e. More generally,
enumerating any countable dense set of reals results in Baire space:

Lemma 6.2.1. Suppose M is an expansion of Cantor space such that there is a countable
dense set D of Cantor space reals, which is c.e. in every copy of M (after collapse). Then
M≥∗w R.

Proof. First, without loss of generality assume D does not contain either of the endpoints
of Cantor space (the all-0 or all-1 reals). We’ll look at Cantor space as a linear order in the
natural way: x < y if on the first bit of difference n, x(n) < y(n).

Before collapse (that is, in V ), we can organize D as follows:

• We first enumerate (via a greedy algorithm) a sequence of elements of D forming an
ω-chain with limit 1: x0 < x1 < ... < 1.

• As this is going on, we do the same to each xi: so we enumerate e.g. a sequence
x3 < x(0, 4) < x(1, 4) < x(2, 4) < ... < x4.

• Let X be the set of all reals we ever generate this way (so an element of X has the
form xσ for some finite sequence σ). Via back-and-forth, we have X = D.

• Now fix as a parameter a Cantor space real r coding the array X. Since the above was
conducted entirely in V , such a real exists.

Now look at a copy C of M after collapse. Given any real x not in D, we can associate
a Baire space real f(x) using r:

• f(x)(0) is the least n0 such that x < x(n0).

• f(x)(1) is the least n1 such that x < x(f(x)(0), n1).

• Etc.

Of course, for a real in D, this process breaks - but since D is c.e. in C, we can use an
appropriate injury argument to handle that occasion. When we realize that a real we are
looking at is in D, we replace it with a real not yet in D, which agrees with our original real
on sufficiently many digits, and continue the process. This gives an enumeration of all maps
ω → ω in V ; that is, a copy of B. �

Remark 6.2.2. This generalizes to countable D which are somewhere dense. However,
countable nowhere dense sets of reals, or uncountable sets of reals, might yield structures in
between W and R. Specifically, for A ⊆ 2ω, let WA be the structure W together with a unary
predicate for A. Then it is currently possible that for some A we have W <∗w WA <

∗
w R.

By a similar (slightly easier, in fact, since no injury is necessary) argument, co-enumerating
any countable dense set of Cantor space reals yields a structure computing Baire space.
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Remark 6.2.3. A similar result can be proved for certain structures associated to some more
general metric spaces.

As an application of the lemma above, we show:

Proposition 6.2.4. There is a continuous F : 2ω → 2ω such that WF ≡∗w R.

Proof. Let F be the left shift operator: F (g)(n) = g(n+ 1). Then the set of sequences with
finitely many 1s is r.i.c.e. in WF : g has only finitely many 1s iff some finite iterate of F
applied to g yields 0. By Lemma 6.2.1, WF ≡∗w R. �

While there is essentially only one left shift operator, there are many distinct right shift
operators: for σ ∈ 2<ω, let Sσ : 2ω → 2ω be defined by Sσ(g)(n) = g(n− |σ|), if n ≥ |σ|, and
Sσ(g)(n) = σ(n) otherwise.

Proposition 6.2.5. There are continuous F0, F1 such thatWF0 ≡∗w WF1 ≡∗w W butW{F0,F1} ≡∗w
R.

Proof. Let F0 = S〈0〉, F1 = S〈1〉. The set of sequences with finitely many 1s is r.i.c.e. in
W{F0,F1}, since a real has only finitely many 1s iff it is gotten from 0 by applying F0 and F1

in some (finite) combination; so by Lemma 6.2.1, W{F0,F1} ≡∗w R.
However, each reduct WF0 and WF1 is generically Muchnik equivalent to W . We prove

this for WF0 , the proof for WF1 being identical. �

6.3 Ultrafilters

In this section we examine ultrafilters on ω from the point of view of generic Muchnik
reducibility. There is a natural way to view an ultrafilter as a structure in a finite language;
we show that when so viewed, every ultrafilter computes every real, an ultrafilter is non-
principal iff it lies above R iff it is not equivalent to W , and that the generic Muchnik order
on ultrafilters refines the Rudin-Keisler ordering.

Definition 36. For U an ultrafilter on ω, let IU be the structure with two sorts, “points”
(corresponding to elements of ω) and “sets” (corresponding to elements of U). The language
of IU consists of the unary successor operation, S, on the sort of points, and the membership
relation E on points × sets.

For efficiency, we identify U and IU below. An immediate starting point is the observation
that ultrafilters compute every real. Indeed, every ultrafilter computes Cantor space:

Proposition 6.3.1. If U is an ultrafilter, then U ≥∗w W.

Proof. Every element of Cantor space is either an element of U , or the complement of an
element of U ; and exactly one of these holds. So from an enumeration of U we can easily
produce an enumeration of W . �
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In general, structures which compute every real in a “uniform” way will compute Cantor
space.

In comparison with Baire space, things become slightly more complicated. It is easy
to show that no nonprincipal ultrafilter is generically Muchnik reducible to Baire space
(and that principal ultrafilters are generically Muchnik equivalent to Cantor space); in the
opposite direction, it is unclear whether every ultrafilter computes Baire space. However, a
broad class of them do:

Proposition 6.3.2. Every Ramsey ultrafilter computes R.

Proof. Given a Ramsey (hence nonprincipal) ultrafilter U , the set of principal functions of
elements of U is a set of total maps ω → ω. In [2], it is shown that (in an appropriate generic
extension) from any enumeration E1 of the reals (viewed as elements of Cantor space) in V ,
together with an enumeration E2 of a dominating family of functions (viewed as elements
of Baire space) in V , we can compute Baire space. The proof is completed by noting that
Ramsey ultrafilters yield dominating families: given any Ramsey ultrafilter U and f : ω → ω,
there is a u ∈ U such that the principal function of u is everywhere greater than f . (To
prove this, consider a coloring of pairs of natural numbers in which each natural has eventual
color 0 but is colored 1 with a “large” initial segment.) �

Note that this approach fails badly for ultrafilters in general: consider any ultrafilter all
of whose elements have positive upper density. However, we can extend this result to all
ultrafilters which lie above any Ramsey ultrafilter, in an appropriate sense:

Definition 37. If U, V are ultrafilters on ω, then U is Rudin-Keisler reducible to V —
written “U ≤RK V ” — if there is some f : ω → ω such that f−1(X) ∈ V iff X ∈ U .

Proposition 6.3.3. If U, V are ultrafilters on ω with U ≤RK V , then U ≤∗w V .

Proof. Let f : ω → ω be a Rudin-Keisler reduction from U to V . Since V computes every
real, we may assume we have f as a parameter. In a generic extension where V is countable,
we build a copy of U in stages. First, we get an enumeration {ri : i ∈ ω} of all ground-model
reals from V : the ris are the sets in V , and their complements. It will now be enough to
construct a listing of those ground-model reals which are in U (since it’s easy to pass from
such a list to a copy of U).

This is done by a priority argument, albeit a somewhat degenerate one. Let {vi : i ∈ ω}
be a listing of the reals in V . Given a ground model real ri, say ri looks good at stage s if for
some n < s we have f−1(ri � s) � s ⊆ vn — that is, if vn looks like a witness to the statement
“f−1(ri) ∈ V .” Call such an n a size witness for ri at stage s.

We will build a list of reals s〈i,j〉 as follows. Intuitively, s〈i,j〉 will be equal to ri unless j
fails to be a size witness for ri. Formally, we let s〈i,j〉(k) = 0 iff

• j is a size witness for ri at stage k, and

• ri(k) = 0;



CHAPTER 6. NOTES ON STRUCTURES COMPUTING EVERY REAL 94

and s〈i,j〉 = 1 otherwise.
It is easy to check that S = {si,j : i, j ∈ ω} is exactly U . We then effectively pass to an

injective sub-enumeration of S, and use that to build a copy of U . �

Combining the previous two results yields:

Corollary 6.3.4. If U ≤RK V and U is Ramsey, then V ≥∗w R.

This leaves two natural questions:

Question 5. Does ≤∗w agree with ≤RK on ultrafilters?

Question 6. Does every ultrafilter compute Baire space?

6.4 Degrees of structures computing all reals

In this section we prove a couple basic results about the generic Muchnik degrees of structures
which compute every real. We show that there is a least such structure, and that there is
a structure computing every real which lies strictly above Cantor space, W , but does not
compute the field of reals, R; we also show that this latter structure is not computable from
R.

Definition 38. A computed real is a set X of triples (m,n, k) ∈ ω3 such that

• (m,n, k), (m,n′, k′) ∈ X implies n = n′, k = k′.

• If (m,n, k) ∈ X and m′ < m, then there are n′, k′ such that (m′, n′, k′) ∈ X.

The interpretation of a computed real is as a partial map ω → ω whose domain is an
initial segment of ω, and on input m outputs n after exactly k many steps if (m,n, k) ∈ X.

To each computed real X we associate a structure S(X) as follows. The language of S(X)
consists of two sorts (or unary predicates) U and W which partition the structure; each sort
consists of a countable infinity of elements. On the U sort, we have a unary function symbol
S so that (US(X), S) is a copy of ω with successor; from now on we identify elements of U
with the corresponding natural numbers. Finally, there is a ternary relation E ⊆ U ×U ×W
such that:

• S(X) |= ∃w ∈ W (E(m,n, v)) iff for some k, (m,n, k) ∈ X.

• For each w ∈ W , there are at most one pair m,n ∈ U such that E(m,n,w).

• For infinitely many w ∈ W , there are no m,n ∈ U with E(m,n,w).
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Essentially, S(X) is the structure associated to X by forgetting when computations in
X converged, but without taking projections (so there is no implicit jump). In the opposite
direction, to an infinite (so, total) computed real X let π(X) = {(m,n) : ∃k((m,n, k) ∈ X)}
be the projection of X to a real.

Finally, P consists of the disjoint union of infinitely many copies of S(X), for each
computed real X in the ground model V .

Clearly P computes every real. What is less obvious is that it is the minimal such
structure under generic Muchnik reducibility:

Proposition 6.4.1. Suppose A computes every real. Then A ≥∗w P.

Proof. Let P be the Cohen forcing associated to A: that is, a condition in P is a finite
injective sequence of elements of A. Since A computes every real, a fortiori P-generic copies
of A compute every real. In an appropriate generic extension V [G], let A be an ω-copy of
A. Let the norm of a condition p, denoted |p|, be the maximum of the union of its domain
and range (viewed as subsets of ω) if p 6= ∅, and 0 otherwise. To each pair (e, p) ∈ ω×P, we
(computably in A) associate a computed real X(e, p) as follows: (m,n, k) ∈ X(e,p) iff there is
some q ≤ p such that

• |q| = k and Φq
e(m)[k] ↓= n,

• for any q′ ≤ p with |q′| < k, Φq
e(m)[|q′|] ↑, and

• for all m̂ ≤ m and q0, q1 ≤ p with |q0| = |q1| = k, we have

¬[Φq0
e (m̂)[k] ↓6= Φq0

e (m̂)[k] ↓].

(That is, there are not two conditions of norm ≤ k which reveal possible disagreement
below p.)

Note that there are only finitely many conditions of a fixed norm, so this is effective relative
to A. Now build a structure S consisting of the disjoint union of infinitely many copies of
each S(X(e,p)); we will see that S ∼= P.

First, note that the structure associated to each finite computed real appears (infinitely
often) in S: each finite computed real is computable, so corresponds to some S(X(e,p)) where
e ignores the parameter p. Moreover, if r is a real in the ground model, then — since every
sufficiently generic copy of A computes r — there must be an (e, p) such that π(X(e,p)) = r:
let p be a condition forcing ΦG

e = r.
So we need only show that only ground model reals appear. Fix (e, p) ∈ ω × P. If X(e,p)

is finite, then there is nothing to show. If X(e,p) is infinite, then we have

π(X(e,p)) = {(m,n) : ∃q ≤ p((q 
 ΦG
e (m) = n))}.

But this set is in the ground model. So we are done. �
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The exact relationship between P and more natural structures remains somewhat unclear.
In particular:

Question 7. is P ≡∗w W?

Turning to the interval between W and R, although we cannot yet construct a structure
of strictly intermediate complexity, we show that — assuming the continuum hypothesis —
there is not an “hourglass” phenomenon:

Proposition 6.4.2 (ZFC+CH). There is a structure A such that A >∗w W but A 6≥∗w R.

Proof. Let A be the disjoint union of R∗ (a size-continuum countably saturated real closed
field) and the linear order (ω2, <). Clearly A ≥∗w W ; we need only show that A 6≥∗w R.

By the same arguments as in [32], if A ≥∗w R then the set FT of elements of the R∗-part
of A which are infinitely close to a finite transcendental real would have (in V ) an infinitary
Σ2 definition over A. However, let E be an Lω1ω-elementary substructure of A containing the
whole R∗-part of A, whose ordinal part is isomorphic to ωV1 . Then the same infinitary Σ2

definition defines FT in E . However, in Chapter 3 we showed that any structure computing
every real is generically Muchnik above (ω1, <), so E ≤∗w W ; this contradicts the fact that
W 6≥∗w R. �

Question 8. Can we remove CH from the above argument?

Proposition 6.4.3 (ZFC). The structure A above is not generically Muchnik reducible to
R.

Proof. It is enough to show that R 6≥∗w (ω2, <), which is true for cardinality reasons (CH)
together with the fact that (ω2, <) is rigid:

• Let V [H] be a generic extension where ωV2 is made countable.

• Let P be the Cohen forcing associated to R; essentially, P = R<ω. Note that P exists
in V .

• Let G be a P-generic filter over V [H], and let RG be the associated ω-copy of R. Note
that G is also P-generic over V , and in V [G] ωV2 is still uncountable.

• By genericity over V [H], there must be some p ∈ G and e ∈ ω such that p forces that
ΦRG
e is a copy of (ω2, <). But then in V [G], ΦRG

e is a certain countable structure.

• However, since ω2 is still uncountable in V [G], we cannot have ΦRG
e
∼= (ωV2 , <): iso-

morphism in a forcing extension is just elementary equivalence over L∞ω, and L∞ω-
equivalent ordinals are equal. So we are done.

�

Question 9. Is there a structure strictly between (in the sense of generic Muchnik reducibil-
ity) Cantor space and Baire space?
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Chapter 7

Limit computability and ultrafilters

The work here appeared as [1], and is joint with Uri Andrews, Mingzhong Cai, and David
Diamondstone; it appears here with their permission.

7.1 Introduction

If X is a set of natural numbers, we can view X as a countable array of sets in a natural
way:

Definition 39. Let X ⊆ ω. Then the we let Xi = {j : 〈i, j〉 ∈ X} and Xj = {i : 〈i, j〉 ∈ X}
be the ith column and jth row of X, respectively.

We can then consider the eventual behavior of each row of X. In particular, in case every
row of X is finite or cofinite — that is, if lims(X

j(s)) exists for every j — then we can define
the limit of X as

lim(X) = {j : lim
s

(Xj(s)) = 1} = {j : Xj cofinite}.

If Z = lim(Y ) and Y ≤T X, we say Z is limit computable relative to X.
Shoenfield showed that A ≤T X ′ if and only if A = lim(Y ) for some Y ≡T X. While

this is only one of many characterizations of the jump, limit computability is of particular
interest because it suggests a wide class of generalizations: given any notion of “generalized
limit,” we can consider the collection of sets which are generalized limit computable relative
to a given X. These in turn yield generalized jump operators, that take a set X to the
collection of sets which are generalized limit computable relative to X.

In this paper, we investigate limit computability along (nonprincipal) ultrafilters. For
each ultrafilter U , we introduce a function δU taking each Turing degree a to the collection
of sets “U -limit computable” in members of a. Besides establishing its basic properties, we
characterize the possible values of δU(a), define a notion of “lowness for ultrafilters” and
study the question of characterizing these degrees, and examine the ordering on ultrafilters
induced by the construction U 7→ δU .



CHAPTER 7. LIMIT COMPUTABILITY AND ULTRAFILTERS 98

We recall the definition of an ultrafilter:

Definition 7.1.1. A set A ⊆ P(ω) is an ultrafilter if it satisfies the following properties:

1. ω ∈ A, ∅ 6∈ A.

2. If X ∈ A and X ⊆ Y ⊆ ω, then Y ∈ A.

3. If X, Y ∈ A, then X ∩ Y ∈ A.

4. For every X ⊆ ω, X ∈ A or (ω −X) ∈ A.

Additionally, an ultrafilter is nonprincipalif it contains no finite set. Although the existence
of nonprincipal ultrafilters is not provable in ZF alone, it follows from the axiom of choice
that there are 22ℵ0 -many ultrafilters on ω, the maximum number possible.

Throughout this paper, we will always write “ultrafilter” to mean “nonprincipal ultrafil-
ter.”

Using the fourth ultrafilter axiom, we can take the limit along any ultrafilter of any
sequence (Xi)i∈ω of sets, and for nonprincipal ultrafilters this notion of limit agrees with
the classical one when each Xi is finite or cofinite. Taking limits along an ultrafilter then
yields the notion of limit computability along an ultrafilter, which in turn yields a class of
operators on Turing degrees.

Formally, we proceed as follows. We begin by defining the limit, along an ultrafilter, of
an array of reals:

Definition 7.1.2. For a sequence of sets X = (Xi)i∈ω and an ultrafilter U , we let

lim
U

((Xi)i∈ω) = {j : {i : j ∈ Xi} ∈ U}} = {j : Xj ∈ U}.

Note that, as in the case of classical limit computability, each column Xi functions as an
approximation to the limit set limU(X), and dually each row Xj determines the jth bit of
limU(X).

We can now define the maps, δU :

Definition 7.1.3. Fix an ultrafilter U . For a Turing degree a, we let

δU(a) = {lim
U

((Xi)i∈ω) : (Xi)i∈ω = X ∈ a}.

Remark 7.1.4. Note that δU(a) = {limU((Xi)i∈ω) : (Xi)i∈ω = X ≤T a}: for X ≤T a, if we
fix some set Y ∈ a, then replacing the 0th column of X by Y results in an array of degree a
whose rows have the same U-limits as those of X.
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It is the maps δU and their images, especially δU(0), which are the subject of this article.
We call maps of the form δU ultrafilter jumps.

We begin by establishing basic closure properties of sets of the form δU(a); this culminates
in the following characterization, which is our main result. Recall that a Scott set is a
collection of reals closed under Turing reducibility and join, and which contains an infinite
tree T ⊆ 2<ω only if it also contains an infinite path through T .

Theorem 7.1.5. For a Turing degree a, the following are equivalent:

• S is a countable Scott set containing a′.

• There is some ultrafilter U such that δU(a) = S.

Next, we look at how a single ultrafilter jump can behave with respect to different degrees.
We call a degree a u-low if there is some ultrafilter U such that δU(a) = δU(0). Using
techniques similar to those in the proof of the main theorem, we show the following:

Theorem 7.1.6. If a is bounded by a 2-generic or is computably traceable, then a is u-low.
Conversely, any degree which computes a DNR2 or is high is not u-low.

We then turn our attention to the structure on the class of all ultrafilters provided by
the construction U 7→ δU . Our main result in this direction is that the partial order induced
by this construction is related to a classical reducibility notion on ultrafilters:

Definition 7.1.7. For ultrafilters U ,V, we write “U ≤ V” if δU(a) ⊆ δV(a) for all degrees a
on some cone, and “U ≡ V” if U ≤ V and V ≤ U .

Theorem 7.1.8. The partial order on ultrafilters induced by ≤ is a quotient of the Rudin-
Keisler ordering of ultrafilters on ω.

We also show that the operation of composition of ultrafilter jumps is captured by a
binary operation on ultrafilters:

Theorem 7.1.9. There is a binary operation ∗ such that for every pair of ultrafilters U and
V, we have

δU ◦ δV = δU∗V .

This operation is immediately seen to be compatible with the ordering, ≤, so that we
have the structure of a partially ordered semigroup.

Finally, we end by presenting two directions for further research. Additionally, through-
out this paper we raise a number of questions arising from the theorems above, which remain
open.

Throughout this paper, we will need the following pair of basic combinatorial facts:

Definition 7.1.10. A collection {Xi : i ∈ I} of sets is free if every finite Boolean combina-
tion is infinite. In particular, each Xi and its complement must be infinite and the Xi must
be distinct.
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Fact 1. Suppose {Xi : i ∈ I} is free, and J ⊆ I. Then there is an ultrafilter U with
{i ∈ I : Xi ∈ U} = J .

Fact 2. We can effectively find large free sets. Specifically, there is a total Φe such that

{ΦX
e : X ⊆ ω}

is a free set.

To prove Fact 1, by freeness every finite intersection of elements of {Xj : j ∈ J} ∪ {X i :
i 6∈ J} is infinite, and so there is an ultrafilter containing {Xj : j ∈ J} ∪ {X i : i 6∈ J}.

To prove Fact 2, construct a computable function ι : 2<ω → 2<ω which

• builds reals along paths: σ ≺ τ ⇐⇒ ι(σ) ≺ ι(τ), and

• forces all Boolean combinations to be large: for every I ⊆ 2n, the set

{j : ∀σ ∈ 2n(ι(σ)(j) = 1 ⇐⇒ ι(σ) ∈ I)}

has size at least n.

We then let ΦX
e = ι(X). (Note that, in fact, we have ΦX

e ≡T X.)

Our notation and terminology are mostly standard, except for our notation for rows and
columns (see Definition 39). For background on computability theory and set theory, we
refer to [13] and [35], respectively. For background on ultrafilters, see [10].

Finally, a word of reassurance: since ultrafilters usually arise in the context of set theory,
it is reasonable to worry that answers to questions about the maps δU may be independent
of ZFC. However, since the action of δU on a degree a is determined by countably much
information about U , most relevant questions are at worst Π1

2, and hence set-theoretically
absolute (see chapter 25 of [35]). Indeed, with two exceptions, set theory will not be a serious
concern in this article. The exceptions are proposition 7.5.1 — where we examine properties
of a natural ordering of ultrafilters arising from the construction U 7→ δU — and section 7.6,
where we mention a set-theoretic direction for further research.

7.2 Basic Properties of δU

In the previous section, we motivated the study of the functions δU by drawing a comparison
with the Turing jump. We begin this section by elaborating on that analogy. The following
lemma shows that each function δU dominates the Turing jump in a completely uniform way:

Lemma 7.2.1. There are Turing functionals Φe0 ,Φe1 ,Φe2 witnessing the following (for every
ultrafilter U):
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1. δU grows at least as fast as the Turing jump: for every Y = lim f(x, s), we have
limU(Φf

e0
) = Y .

2. δU strictly dominates the Turing jump: for every set X, we have limU(ΦX
e1

) 6∈ ∆0
2(X).

3. For every set X, we have limU(ΦX
e2

) 6≤T limU(X), that is, δU(deg(X)) has no top
element.

Proof. (1) follows from the relativized limit lemma. Suppose f is a total X-computable
function such that

∀x, lim
s→∞

f(x, s) ↓= Y (x).

Let Φe0 be defined by
Φf
e0

(〈i, j〉) = f(j, i).

Then since U contains all cofinite sets we have limU(Φf
e0

) = Y .
For (2), say that a set Z has the limit property if for all j, limi→∞ Z(〈i, j〉) exists. To

prove part (ii) we need only construct a Z ≤T X such that for all nonprincipal U and all
Ẑ ≤T X with the limit property, we have limU(Z) 6= limU(Ẑ). To do this, we proceed as
follows. For e, s ∈ ω, let

ne,s = max{j : ΦX
e (〈j, e〉)[s] ↓}, ve,s = ΦX

e (〈ne,s, e〉)

(with the convention that ve,s = 0 if ne,s is undefined). Now let Z be defined by

Z(〈k, e〉) = 1− ve,k,

and note that Z ≤T X. The proof of (iii) is completed by noting that whenever ΦX
e is the

characteristic function of a set with the limit property, then

lim
k→∞

Z(〈k, e〉) ↓= 1− lim
k→∞

ΦX
e (〈k, e〉),

so limU(Z)(e) = 1− limU(ΦX
e )(e), and hence limU(Z) is not ∆0

2. This construction, moreover,
is effective, so we get the desired index e1.

The proof of (3) is similar to that of (2). �

Lemma 7.2.1 raises the problem of classifying the possible images of δU(a).

Lemma 7.2.2. δU(a) is a Turing ideal, that is, closed under ⊕ and ≤T .

Proof. Closure under ⊕ follows from the fact that

lim
U

({Ai}i∈ω)⊕ lim
U

({Bi}i∈ω) = lim
U

({Ai ⊕Bi}i∈ω).

To show that δU(a) is closed under ≤T , fix A = (Ai)i∈ω and suppose Φ
limU (A)
e = B. Then let

Ci = {j : ΦAi
e (j)[i] ↓= 1}
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and let C = (Ci)i∈ω. We claim that limU(C) = B. To see this, fix k ∈ ω. There is some
initial segment σ ≺ limU(A) such that Φσ

e (k) ↓; since ultrafilters are closed under finite
intersections, for U -many i we have σ ≺ Ai, and for cofinitely many i we have i > |σ|.
Together, these facts imply that for U -many i we have Ci(k) = Φσ

e (k) = B(k), which in turn
implies limU(C) = B. �

In fact, an even stronger closure property is satisfied:

Proposition 7.2.3. For every ultrafilter U and degree a, δU(a) is a Scott set. In fact, as in
7.2.1 this is uniform: there is a single e ∈ ω such that for all X and U , we have

lim
U

(X) is an infinite subtree of 2<ω ⇒ lim
U

(ΦX
e ) is a path through lim

U
(X).

Proof. The intuition behind this proof is that a tree T in δU(a) must be “named” by a
sequence of trees (Xi)i∈ω in a, which — if T is to be infinite — must have arbitrarily long
paths. By producing a sequence of increasingly long paths through this sequence of trees, we
produce a sequence of sets in a which U sends to an infinite path through the named tree.
Note that this is intuitively the same argument as for closure under Turing reducibility.

The details are as follows. Suppose X = (Xi)i∈ω ∈ a is such that T = limU(X) is an
infinite subtree of 2<ω. First, we can assume without loss of generality that each column
Xi is also a tree (i.e., downwards closed). To see this, let Yi be the downwards-closed part
of Xi, and let Y = (Yi)i∈ω ∈ a. Since Y ⊆ X we have limU(Y ) ⊆ limU(X) — in fact,
limU(Y ) = limU(X) — and limU(Y ) is clearly a tree; so any path we build through limU(Y )
will also be a path through T .

So assume X is a sequence of trees. Then X computes a sequence P = (fi)i∈ω of sets
fi ⊆ Xi such that fi is a finite path through Xi of maximal length ≤ i (the “≤ i” is required
to make this search effective). We claim that limU(P ) is an infinite path through T .

Clearly limU(P ) ⊆ T , is closed downwards, and is a path in T (that is, any two elements
are comparable); so it is enough to show that limU(P ) is infinite. Towards a contradiction,
suppose σ ∈ limU(P ) of length n is terminal. Then since ultrafilters are closed under finite
intersections, we have that for U -many i, fi < σ. Moreover, by definition of P , for all but
n-many i, we have

|fi| ≤ n ⇐⇒ ht(Xi) ≤ n.

Together these imply that for U -many i, Xi has height at most n, and so limU(X) has height
at most n as well, which is a contradiction.

By examining the argument above, it is clear that this is a uniform construction, that is,
that the construction of P is uniformly computable in X and does not depend on U . �

Remark 7.2.4. Lemma 7.2.3 yields an alternate proof of the classical result in reverse
mathematics that the theory WKL0 is strictly weaker than the theory ACA0 (see chapter VIII
of [71]), as follows: via a greedy algorithm we can construct an ultrafilter U such that the
set {e : We ∈ U} is ∆0

4; this ensures that δU(0) consists entirely of ∆0
4 sets, and so is not

arithmetically closed. This is genuinely different from the standard proof, which follows from
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iterating the Low Basis Theorem. In particular, neither lowness nor iterated forcing are used
in the proof of 7.2.3.

In the following section, we will show that the converse of 7.2.3 holds: given any countable
Scott set S containing 0′, there is a nonprincipal ultrafilter U such that δU(0) = S, and
more generally if a′ ∈ S then we can find a U with δU(a) = S.

7.3 Building Scott sets

We now completely characterize the possible images of ultrafilter jumps by proving the
converse of 7.2.3. This does not provide a characterization of the maps δU , however, since
we only determine the possible local behaviors of those maps. However, in the next section
we do make progress towards this goal, by studying what sorts of simultaneous behaviors
can be realized by ultrafilter jumps.

Theorem 7.3.1. Let a be a degree, and let I be a countable Scott set containing a′. Then
I = δU(a) for some nonprincipal ultrafilter U .

Proof of 7.3.1. Call a pair (A,B) with A ∈ a and B ∈ I an axiom; informally, we interpret
(A,B) as meaning “A is mapped to B by limU .” Precisely, for C a set of axioms, say that
an ultrafilter U satisfies C if limU(A) = B whenever (A,B) ∈ C. Since every family of sets,
all of whose finite intersections are infinite, can be extended to a nonprincipal ultrafilter,
satisfiability has a purely combinatorial definition: if A = {(Ai, Bi) : i ∈ I} is a set of
axioms, we say A is consistent if for every F ⊆ I finite and n ∈ ω, the intersection

[
⋂
j∈F
m<n

Bj(m)=1

(Aj)
m] ∩ [

⋂
j∈F
m<n

Bj(m)=0

(Aj)m]

is infinite. Equivalently, A is consistent if and only if there is a nonprincipal ultrafilter
satisfying A.

Remark 7.3.2. In 7.4.5 we will consider a different notion of consistency — instead of “A
gets mapped to B,” our commitments will have the form “A and B get mapped to the same
set.”

Fix I = {Yi : i ∈ ω}, and let a = {Xi : i ∈ ω}; we will build the desired ultrafilter in
stages. We will build a consistent set of axioms C such that (i) for every A ∈ a there is some
B ∈ I with (A,B) ∈ C, and (ii) for every B ∈ I there is some A ∈ a such that (A,B) ∈ C.
We handle (i) at even stages, and (ii) at odd stages:

• In (i), in deciding where to map a set A ∈ a we run the risk of contradicting already-
enumerated axioms (Ai, Bi)i<k — for example, if the fifth rows ofA andA0 are identical,
then the fifth bit of B must be B0(5). To find a B ∈ I to which it is “safe” to map
A, it turns out to be equivalent to find a path through a certain infinite binary tree
computable in the jump of the (finitely many) axioms built so far.
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• In (ii), an apparent difficulty is posed by the fact that a cannot “see” the commitment
we have already made, since right components of axioms lie outside a; however, this
turns out not to matter. Suppose B ∈ I and (Ai, Bi)i<k is consistent; then if A is
“sufficiently different” from the Ais, the set (Ai, Bi)i<k ∪ {(A,B)} is also consistent.
So in deciding what should be mapped to B, we ignore B entirely, and simply choose
some A which is sufficiently different from the sets we have enumerated on the left, so
far.

Formally, we proceed as follows:

Even case. Suppose that we have C2s = {(Ai, Bi) : i < 2s}, and that C2s is consistent,
and consider the set Xs ∈ a. We will find a B ∈ I such that C2s ∪ {(Xs, B)} is consistent.
Let D = {(Ai)j : i < 2s, Bi(j) = 1} ∪ {N − (Ai)

j : i < 2s, Bi(j) = 0}; intuitively, D is the
collection of sets we have guaranteed are in the ultrafilter so far. Write D = {Dk : k ∈ ω},
and note that this can be done effectively in

⊕
i<sBi := B̂ ∈ I. Say that σ ∈ 2<ω is

temporarily consistent if |σ| = n and ∀m < n,

• σ(m) = 1⇒ |(Xs)
m ∩ (

⋂
j<nDj)| ≥ n, and

• σ(m) = 0⇒ |(N− (Xs)
m) ∩ (

⋂
j<nDj)| ≥ n;

note that B̂ ⊕ X ′s can uniformly decide whether a σ ∈ 2<ω is temporarily consistent. Let
T ⊆ 2<ω be the tree of temporarily consistent nodes; since C2s is consistent by induction,
T is infinite, and since I is a Scott ideal containing X ′s and B̂ ∈ I there is some B ∈ I
whose characteristic function is a path through T . Then C2s ∪{(Xs, B)} is consistent, so let
C2s+1 = C2s ∪ {(Xs, B)}.

Odd case. Suppose that we have a consistent set of axioms C2s+1 = {(Ai, Bi) : i < 2s+1},
and consider the set Ys ∈ I; we need to find some A ∈ a such that C2s+1 ∪ {(A, Ys)} is
consistent. Our main difficulty is that the condition C2s+1 we have built so far is not a-
computable — in a, we can only see {Ai : i < 2s+1}— so in order to guarantee consistency
we will need to ensure that the axiom (A, Y ) is consistent with any possible consistent set
of axioms with left coordinates from among the Ai (i < 2s + 1). To do this, we use a
modification of 2:

Definition 40. A set X is free over a family of sets Z = {Zi : i ∈ ω} if every finite Boolean
combination of elements of Z, which is infinite, has infinite intersection with both X and
ω −X.

Lemma 7.3.3. We can find free sets in a uniformly effective manner. Specifically, there is
an e such that for all Z = {Zi : i ∈ ω}, ΦZ

e is free over {(Zi)j : i, j ∈ ω}.

Proof. We need to build X such that for every set B which can be written as a Boolean
combination of finitely many elements of Z, either B is finite or both B ∩ X and B ∩ X
are infinite. Let (Bi)i∈ω be a list of all Boolean combinations of elements of Z, with each



CHAPTER 7. LIMIT COMPUTABILITY AND ULTRAFILTERS 105

combination occurring infinitely often, such that for all i, B2i = B2i+1; note that such a B
can be chosen recursively in Z. At stage 0, set p0 = ∅ and say that all i await attention.
At stage s, suppose we have defined a string ps ∈ 2<ω with length s. Say that j requires
attention if j < s, and at the beginning of stage s, j awaits attention, and s ∈ Bj. Let i be
the least number which requires attention, and let ps+1 = p_s 〈1〉 if i is even and ps+1 = p_s 〈0〉
if i is odd. From now on, say that i is satisfied, and move on to stage s+1 - at the beginning
of which all j which were satisfied at the beginning of stage s remain satisfied, i is satisfied,
and all other requirements await attention.

Let X =
⋃
ps. To see that X has the desired property, first note by induction that for

each j ∈ ω, either Bj is finite or there is some stage s by which j is satisfied. Now, for B
a finite Boolean combination of elements of Z which is infinite, let I = {j : Bj = B} =
{j0, j0 + 1, j1, j1 + 1, ...}. Each time ji is satisfied, a new element is added to B ∩ X; each
time ji + 1 is satisfied, a new element is added to B ∩ X. So both B ∩ X and B ∩ X are
infinite. �

To finish the proof of Theorem 7.3.1, we iterate Lemma 7.3.3 to build an X ∈ a such
that for each k ∈ ω, Xk is free over {Ai : i < 2s + 1} ∪ {Xj : j < k}; we then take
C2s+2 = C2s+1 ∪ {(A,X)}. �

Having completely classified the sets of the form δU(a) in terms of a, we now face the
question of classifying ultrafilter jumps themselves:

Question 1. What conditions on a function f : {Turing degrees} → {Scott sets} ensure that
f = δU for some U?

One interesting special case is the following:

Question 2. Is there a U such that δU(a) is always arithmetically closed?

This is partly motivated by Remark 7.2.4, which suggests that there may be further
interaction between the study of the maps δU and reverse mathematics.

Currently it is not clear how to approach this type of problem, largely because construct-
ing ultrafilter jumps “to order” is quite difficult. We make some technical progress in this
direction, however, in the following section, in which we study what simultaneous behaviors
can be realized by ultrafilter jumps.

7.4 Lowness notions

Theorem 7.3.1 allows us to control the value of δU(a) for a fixed degree a; however, it says
nothing about what simultaneous behaviors can occur.

First of all, it is obvious that if b ≥ a, then δU(b) ⊃ δU(a), and so one particularly
interesting question is the following: for what degrees a is there an ultrafilter U such that
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δU(a) = δU(0)? We will call such a degree u-low, and we will call a real u-low if it belongs
to a u-low degree.

It is easy to see that 0′ is not u-low: by a standard diagonalization argument, 0′ computes
an array A = (Ai)i∈ω such that the eth row of the eth computable array has no agreement
with Ae. More precisely:

Proposition 7.4.1. If a contains a DNR2 real, then a is not u-low.

Proof. Such a degree a contains a set A such that for every e, if Φe is total then

Φe(〈i, e〉) 6= A(〈i, e〉).

It follows that we can never have limU(A) = limU(C) for any computable array C, so we are
done. �

As an aside, note that this rules out the most natural possible positive answer to Question
2:

Corollary 7.4.2. No ultrafilter jump δU is the “arithmetic closure” operator; that is, for
every U there is some a such that δU(a) 6= ARITH(a).

However, this does not rule out the existence of ultrafilters which are arithmetically closed
in pathological ways, so Question 2 remains open.

In addition, high degrees are not u-low. Recall that a degree a is high if a′ ≥ 0′′.

Proposition 7.4.3. If a is high, then a is not u-low.

Proof. By Martin’s Lemma, such a degree a computes a dominant function f which domi-
nates every computable function. Using f we can compute a set A such that

Φe(〈i, e〉) 6= A(〈i, e〉)

is true cofinitely often for each e ∈ Tot, i.e., for each e such that Φe is total. So as in the
DNR2 case we are done. �

In light of Propositions 7.4.1 and 7.4.3, it is reasonable to ask whether any nonzero degree
is u-low. In fact, many degrees are u-low, including every 2-generic and every computably
traceable degree. We begin with a basic combinatorial lemma:

Lemma 7.4.4. Suppose {Ai : i ∈ ω} and {Xi : i ∈ ω} are collections of sets of natural
numbers. Then the following are equivalent:

1. There is an ultrafilter U such that for all i, limU(Ai) = limU(Xi). (Note that here we
think of each Ai and Xi as an array of sets, so they will each have their own rows
(Ai)

j, (Ai)
j and columns (Ai)k, (Xi)k.)
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2. For every n, k, there is some m > k such that for every i, j < n, we have

(Ai)
j(m) = (Xi)

j(m).

If C = {(Ai, Xi) : i ∈ ω} is a collection of pairs of sets such that the above conditions
hold, we call C a consistent system; note that this is a different sense of consistency that that
used in 7.3.1.

Proof. (2) ⇒ (1): Suppose condition (2) holds. Then letting Di,j = {x : (Ai)
j(x) =

(Xi)
j(x)} be the set on which the jth rows of Ai and Xi agree, we have that D = {Di,j :

i, j ∈ ω} has the finite intersection principle. Any ultrafilter U ⊃ D witnesses (1), so we are
done.

The proof of (1)⇒(2) is similar. �

Theorem 7.4.5. Every real bounded by a 2-generic is u-low.

Recall that a real f is 2-generic if (when viewed as a filter in the poset 2<ω) it meets or
avoids every Σ0

2 subset of 2<ω: if A ⊆ 2<ω is Σ0
2 and f ∩A = ∅, then ∃τ ≺ f(∀σ � τ, σ 6∈ A).

Proof. Fix G 2-generic; we will construct a U such that δU(deg(G)) = δU(0). Let

TotG = {e0 < e1 < ...} = {e : ΦG
e is total}.

For i ∈ ω, let ti be the first condition in G such that ti 
 “ΦG
ej

is total” for every j ≤ i; note
that such conditions exist since G is 2-generic. This is the only point in the proof where full
2-genericity is required. (We do not need to take the least such conditions, but we do need
the tis to be successively stronger conditions: t0 ≥ t1 ≥ ....) Let P = {pj : j ∈ ω} be a listing
of Cohen conditions.

We will construct recursive sets Xi such that there is an ultrafilter which maps Xi and
ΦG
ei

to the same set. These Xi will be defined column-by-column, with each column making
an increasingly strong guess as to the corresponding column of ΦG

ei
. The complexity of the

construction comes from the fact that these guesses must be made effectively, and also must
cohere with each other; this second requirement is the reason for having Xi take into account
the Φej with j < i in the construction below. Note that the Xi are individually recursive,
but the array (Xi)i∈ω need not be recursive.

Construction 7.4.6. We define the sets Xi (i ∈ ω) as follows:

1. For pk 6≤ ti, the kth column of Xi is empty: {〈j, k〉 : j ∈ ω} ∩X = ∅.

2. For pk ≤ ti, we define a sequence of conditions q0, ..., qi as follows:

• q0 is the lexicographically least condition ≤ pk such that

∀m < k,Φq0
e0

(〈m, k〉) ↓ .
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• qj+1 is the lexicographically least condition ≤ qj such that

∀m < k,Φqj+1
ej+1

(〈m, k〉) ↓ .

Note that such qj exist since pk ≤ ti ≤ ti−1 ≤ ... ≤ t0. We then define the kth column
of Xi as by

(Xi)k = {m : m < k ∧ Φqi
ei

(m) ↓= 1}.

We claim that there is an ultrafilter U such that limU(ΦG
ei

) = limU(Xi) for every i. By
Lemma 7.4.4, it is enough to show that the pair of sequences

{ΦG
ei

: i ∈ ω}, {Xi : i ∈ ω}

satisfies the property 7.4.4(1).
To show this, fix n, k, and consider the set of conditions

En,m = {p ∈ P : ∃k > m(∀i, j < n, (Φp
ei

)j(k) ↓= (Xi)
j(k))}.

Each En,m is Σ0
1; we will show that G meets each En,m.

It will be enough to show that En,m is dense below tn — the 2-genericity of G, together
with the fact that En,m is Σ0

1, means that G must then meet En,m. Towards this, we fix some
condition p ≤ tn. There must be some k such that k > m and pk ≤ p. Since pk ≤ p ≤ tn, the
kth column of Xn was constructed according to step (2) of Construction 7.4.6. Let qn ≤ pk
be the nth condition as defined in the construction of Xn. By the construction of Xn and
the fact that k > m, we have, for every i < n,

Φqn
ei

(〈m, k〉) = Xi(〈m, k〉);

so qn ∈ En,m. �

The analogous question for measure remains unsolved.

Question 3. Are sufficiently random reals u-low?

By a similar argument to the proof of Theorem 7.4.5, we can show that another important
computability-theoretic property implies u-lowness:

Theorem 7.4.7. Computably traceable implies u-low.

Recall that a degree a is computably traceable if for every h ∈ a, there is a computable
j such that h(n) ∈ Dj(n) and |Dj(n)| ≤ 2n for every n, where De is the canonical finite set
coded by e. Note that since there are computably traceable degrees which are not 2-generic
and vice versa, Theorems 7.4.7 and 7.4.5 compliment each other.
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Proof. Let {Ai : i ∈ ω} be a list of all sets of degree ≤T a; as in the proof of 7.4.5, we will
construct a collection {Xi : i ∈ ω} of recursive sets such that there is some ultrafilter U
satisfying limU(Xi) = limU(Ai) for every i. This ultrafilter will then satisfy δU(a) = δU(0).

To construct the Xi, we work in stages. Each Xi will have associated with it three
functions: the interval function fi, the block function gi, and the guessing function hi. We
view Ai and Xi as arrays in the usual way, so that Ai, Xi ⊆ ω2; in order to construct
Xi, we partition the full array ω2 into “blocks,” and partition the nth block into 2n-many
“intervals,” and define Xi on each interval separately.

The functions gi and fi tell us how to perform this construction: gi(n) is the number
of columns in the nth block, and fi(m) is the number of columns in the mth interval.
(Recall that each block will be partitioned into exponentially-many intervals.) Now we let
hi be a computable function such that for every k, Dhi(k) is a finite set of size 2k listing
the possible behaviors of Ai on the (finitely many) values in the kth block and above the
diagonal {〈s, s〉 : s ∈ ω}; the existence of such an hi is guaranteed by the assumption that
a is computably traceable. We then define Xi so that Xi agrees with Ai on at least one
interval in each block, by predicting Ai’s behavior on the tth interval using the tth element
of Dhi(k).

This describes the process for building a single Xi. To ensure that agreements between
the Xis and the Ais occur across is, we make intervals of Xi+1 correspond to blocks of Ai;
this guarantees that the collection of pairs {(Ai, Xi) : i ∈ ω} forms a consistent system (see
7.4.4).

Precisely, the construction is the following:

• At stage 0 we have f0 : x 7→ 1 and g0 : x 7→ 2x.

• At stage i+1, blocks from stage i become intervals and the new blocks are exponentially
large collections of intervals. That is, fi+1 = gi, gi+1(0) = fi+1(0), and

gi+1(n+ 1) =
2n+2−1∑
j=2n+1−1

fi+1(j).

The hi are then computable maps such that for every x, (the canonical code for) the
finite set

Ai � {〈m,n〉 : m ≤ n and
x−1∑
t=0

gi(t) ≤ n <
x∑
t=0

gi(t)}

is an element of Dhi(x) = {si,x1 < si,x2 < ... < si,x2x }.
We then let Xi be defined by copying the set coded by si,xm on the mth interval in the

xth block. It is easy to see that for every j, there is at least one interval in the jth block
such that Xi and Ai agree on the first j-many rows. Since our construction nests blocks at
level i inside intervals at level i + 1, it is now easy to see by Lemma 7.4.4 that the family
{(Ai, Xi) : i ∈ ω} is consistent. �
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The above results provide a wide swath of u-low degrees. However, our knowledge of
u-lowness is still very incomplete. The following question remains open:

Question 4. Is there an exact characterization of u-lowness in terms of classical computability-
theoretic properties?

Less ambitiously, note that no ∆0
2 degree is either 2-generic or computably traceable, and

so the following question remains open:

Question 5. Is there a nonzero ∆0
2 real which is u-low?

Finally, while investigating u-lowness, an even stronger notion of weakness with respect
to ultrafilters arises. We say a degree a is u-trivial if δU(a) = δU(0) for every ultrafilter U .

Question 6. Is there a nonzero u-trivial degree?

Any u-trivial degree must be low: if X is not low, then there is a Scott set containing ∅′
and not containing X ′, and by Theorem 7.3.1 there is an ultrafilter U such that δU(deg(X)) 6=
δU(REC). In particular, a positive answer to Question 6 would yield a strong positive answer
to 5.

7.5 Comparing ultrafilters

We now turn to what the construction of the maps δU can tell us about the set of ultrafilters.
We begin by defining a natural preorder arising from these maps, and then turn to a natural
associated algebraic (semigroup) structure; we end by presenting a connection with a classical
structure on ultrafilters, the Rudin-Keisler order. This section is self-contained, but for
background and further information on the Rudin-Keisler order, and orderings on ultrafilters
in general, see [10], especially chapters 9 and 16.

Definition 41. For U ,V ultrafilters, let U ≤ V if for some degree b, we have δU(a) ⊆ δV(a)
for all a ≥T b; that is, U ≤ V if δV dominates δU on a cone. We write Dult for the resulting
partial order on (equivalence classes of) ultrafilters.

Note that U < V does not imply that, on a cone, δU(a) ( δV(a). Indeed, it is not clear
whether such a situation ever occurs.

Question 7. Are there U ,V such that δU(a) ( δV(a) for all a (on a cone)?

Proposition 7.5.1. Dult is ω1-directed: given any ω1-sized collection {Uη : η ∈ ω1} of
ultrafilters, there is a V with Uη < V for every η.

Proof. We use Fact 2 to construct an ultrafilter V which dominates each Uη on a cone. Let
h : R → ω1 be a function such that for each α ∈ ω1, the set {r : h(r) > α} contains a
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cone, and which is Turing invariant: r ≡T s ⇒ h(r) = h(t). For example, we could take
h : r 7→ ωr1.

Now fix, for each real r, a real r̂ such that r̂ ≥T s for every s ∈ δUη(deg(r)) with η < h(r).
Using 2 we can construct an ultrafilter V such that r̂ ∈ V(deg(r)) for every real r. This V
dominates each Uη on a cone, so we have Uη < V for every η ∈ ω1. �

Note that this argument cannot be easily extended to give upper bounds of larger sets
of ultrafilters. Indeed, it is consistent that there are exactly ω2-many ultrafilters on ω, in
which case ω1-directedness is the most we could hope for.

Question 8. What can be said about |Dult|? (Note that we have 2ℵ0 < |Dult| ≤ 22ℵ0 ;
the second inequality is trivial, and the first follows from an argument similar to that of
Proposition 7.5.1. Moreover, it is consistent — and follows from GCH— that |Dult| = 22ℵ0 .)

Additionally, the proof of Proposition 7.5.1 says nothing about the optimality of the
upper bound constructed.

Question 9. What sets of ultrafilters have least upper bounds in Dult?

Note that it is not even clear whether finite sets of ultrafilters have least upper bounds.

We now show that the set of ultrafilters carries a natural semigroup structure which is
compatible with the degree structure Dult:

Definition 42. For U ,V ultrafilters, let

U ∗ V = {X : {b : {a : 〈a, b〉 ∈ X} ∈ V} ∈ U}.

It is clear that U ∗ V is again an ultrafilter, and that the operation ∗ is associative. The
crucial property of ∗ is the following:

Proposition 7.5.2. For all U ,V we have δU ◦ δV = δU∗V .

Proof. For a set X, let
X] = {〈〈i, j〉, k〉 : 〈i, 〈j, k〉〉 ∈ X}.

We claim that limU∗V(X]) = limU(limV(X)), as follows:

x ∈ lim
U

(lim
V

(X)) ⇐⇒ {j : 〈j, x〉 ∈ lim
V

(X)} ∈ U ⇐⇒ {j : {k : 〈k, 〈j, x〉〉 ∈ X} ∈ V} ∈ U

⇐⇒ {j : {k : 〈〈k, j〉, x〉 ∈ X]} ∈ V} ∈ U ⇐⇒ {〈k, j〉 : 〈〈k, j〉, x〉 ∈ X]} ∈ U∗V ⇐⇒ x ∈ lim
U∗V

(X]).

Since the operation ] is invertible and preserves Turing degree, we have shown that δU ◦
δV(a) = δU∗V(a) for every degree a. �
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Remark 7.5.3. Note that Proposition 7.5.2 only holds on the level of degrees: in general,
given ultrafilters U and V and a set X there need be no ultrafilter W with limW(X) =
limU(limV(X)). For example, take X = (Xi)i∈ω with X0 = ω and Xi = ∅ for i > 0. Then
limW(X) = {0} and limU(limV(X)) = ∅ regardless of the choice of U ,V ,W.

Proposition 7.5.2 immediately yields:

Corollary 7.5.4. The operation ∗ is compatible with Dult: if U0 ≤ U1 and V0 ≤ V1, then
U0 ∗ V0 ≤ U1 ∗ V1. Moreover, ∗ is well-defined on elements of Dult.

Proposition 7.5.2 also provides us with a “jump” operator on Dult:

Definition 43. For U an ultrafilter, let U ′ = U ∗ U .

Proposition 7.5.5. For every U we have U < U ′.

Proof. This is a refinement of Corollary 7.4.2. That U ≤ U ′ is immediate. To show that this
is strict, fix a sufficiently large degree a and suppose U ′ ≤ U . Then we have (using Lemma
7.2.1(1) for the first equality)

δU(a′) ⊆ δU ′(a) ⊆ δU(a),

contradicting the relativized version of Proposition 7.4.1. �

This natural algebraic structure, compatible with the preorder, suggests that Dult may
be an interesting degree structure in its own right. We end by providing further evidence
for this: a connection between Dult and a more classical ordering of ultrafilters, the Rudin-
Keisler ordering:

Definition 44. For U ,V ultrafilters, U is Rudin-Keisler reducible to V — and we write
U ≤RK V — if for some f : ω → ω we have

U = f−1(V), that is, X ∈ V ⇐⇒ f−1(X) ∈ U .

We write U ≤fRK V if f witnesses U ≤RK V.

The connection between Rudin-Keisler reducibility and our Dult is provided by the fol-
lowing:

Theorem 7.5.6. Suppose U ≤fRK V. Then if f ≤T a, we have δU(a) ⊆ δV(a).

Proof. Given X = (Xi)i∈ω ∈ a, define Yi = {n : n ∈ Xf(i)}, Y = (Yi)i∈ω. Now by our
assumption on f we have

n ∈ lim
V

(Y ) ⇐⇒ {i : n ∈ Xf(i)} ∈ V ⇐⇒ {i : n ∈ Xi} ∈ U ⇐⇒ n ∈ lim
U

(X).

But this means δU(a) ⊆ δV(a), so we are done. �
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Corollary 7.5.7. If U ≤RK V, then U ≤ V.

Given this connection between Dult and the Rudin-Keisler ordering, it is natural to ask:

Question 10. Is there a characterization of ≤ in terms of combinatorial properties of ultra-
filters? In particular, does ≤∗ coincide with ≤RK?

7.6 Further directions

We end by presenting two directions for further research.

Filter jumps

We have investigated maps δU for U an ultrafilter. However, this construction applies equally
well to filters:

Definition 7.6.1. A filter is a collection of sets F ⊆ P(ω) satisfying conditions (1)-(3) of
definition 7.1.1. For F a filter and A = (Ai)i∈ω a sequence of sets, set limF(A) = {i : Ai ∈
F}; then for a a Turing ideal, define

δF(a) = {lim
F

(A) : A ≤T a}.

To preserve the analogy with limit computability, we will restrict our attention to filters
containing F .

Intuitively, this is a more “biased” notion of limit computability, since it is in general
easier to have X 6∈ F than to have X ∈ F . This is reflected in the fact that, in general, the
resulting “filter jumps” δF — while they may correspond to natural computability-theoretic
operations — do not always yield Turing ideals. For example, δFcof (a) = Σ0

2(a), which is not
closed under Turing reduction. On the positive side, note that δF(a) is always closed under
⊕, and the limit lemma immediately implies that δF(a) ⊇ ∆0

2(a). Beyond this, however, it
seems difficult to establish how these more general operations behave, and so the question
of characterizing the possible images of filter jumps, in analogy with Theorem 7.3.1, is open:

Question 11. Fix a Turing degree a. For what classes I ⊆ P(ω) is there some filter F with
δF(a) = I?

In particular, ensuring closure under Turing reducibility appears difficult.

Question 12. What filters F have the property that δF(a) is a Turing ideal for all a?

Moving on to trying to control the action of δF , we can (as in section 7.4) define a degree
a to be f -low if there is a filter F such that δF(a) = δF(0). Clearly f -lowness is implied by
u-lowness, and DNR2 degrees are not f -low.

Question 13. Which degrees are f -low?
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Ultrafilter jumps of Turing ideals

Our definition of δU makes sense, not just for degrees, but for Turing ideals:

Definition 7.6.2. For I a countable Turing ideal, let δU(I) = {limU(A) : A ∈ I}.

Then we can develop the theory of ultrafilter jumps in this broader context. By and
large, the resulting picture is the same. Most importantly, by essentially the same proof as
Theorem 7.3.1, we obtain:

Corollary 7.6.3. Suppose I is a countable Turing ideal and K ⊇ I. Then the following are
equivalent:

• K is a countable Scott set containing a′ for every a ∈ I.

• There is an ultrafilter U with δU(I) = K.

There are, however, slight differences. For example, note that when generalized to ideals,
Question 7 has a simple negative answer:

Proposition 7.6.4. Let U ,V be ultrafilters, and fix a Turing ideal I. Then there is an ideal
K ⊇ I such that δU(K) = K = δV(K).

Proof. We alternately apply δU and δV infinitely many times to I. Let I0 = I, In+1 =
δU∗V(In), and let

K =
⋃
i∈ω

In.

It is easy to check that K satisfies the desired properties. �

Having already generalized to countable Turing ideals, we can further consider the ques-
tion of characterizing δU(I) for uncountable Turing ideals I. To a large extent, the possible
behavior of ultrafilter jumps on uncountable ideals is already determined by their possible
behavior on countable ideals, and even on individual degrees. However, the proof of Theorem
7.3.1 relied on enumerating the Turing ideals in question, and so breaks down as soon as
we pass to uncountable ideals. This raises the question of whether our characterization still
holds for uncountable ideals, and furthermore, to what extent the answer to this question
depends on the axioms of set theory.

In general, this is unknown. However, at least a certain amount of set-theoretic indepen-
dence does occur. By Theorem 7.3.1, if I is countable and arithmetically closed then there
is some ultrafilter U with δU(I) = I. This can fail to generalize to uncountable ideals in a
strong way. The following theorem was stated without proof in [1]:

Theorem 7.6.5 (S). Suppose V |=ZFC+PD. Then there is a forcing extension V [G] and a
Turing ideal MG ⊆ R such that
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• (ω,MG; +,×,∈) is an elementary substructure of true second-order arithmetic

(ω,P(ω); +,×,∈);

but

• MG is not fixed by any nonprincipal ultrafilter — that is, δU(MG) ) MG for every
nonprincipal ultrafilter U ∈ V [G].

Note that if V = L, then there is a projectively definable ultrafilter on R, and so every
projectively closed set of reals is fixed by an ultrafilter. Also, note that MG will be closed
under projective definability; in fact, assuming PD, this is equivalent to the first bullet point.

Proof. Suppose V |=ZFC+PD, and consider the following notion of forcing P. Elements of
P are ordered pairs (M,A) with M a countable family of sets of natural numbers forming
(the second-order part of) a countable elementary submodel of true second-order arithmetic,
and A a countable family of sets of natural numbers such that A ∩M = ∅. P is ordered by
coordinatewise reverse inclusion. Note that P is countably closed, since the union of a chain
of elementary extensions is an elementary extension. Let G be P-generic over V , and let

MG =
⋃

(M,∅)∈G

M;

we will prove that MG is not fixed by any nonprincipal ultrafilter.
Since P is countably closed, no new reals are added, so the ultrafilters in the generic

extension have only elements from the ground model. Let ν be a name for an ultrafilter, and
p a condition; we will show that it is dense below p to force that MG is not fixed by ν[G].

First, note that there is some q := (M,A) ≤ p such that for every Y ∈ M, either
q 
 Y ∈ ν or q 
 Y 6∈ ν; this is because P is countably closed, and left and right coordinates
of conditions in P are countable. Without loss of generality, assume p itself has this property.

Now let p = (M,A). Let L be the poset consisting of finite partial functions ω → M
ordered by reverse inclusion. L and the forcing relation for L are definable in M (modulo
appropriate coding of functions as sets). Finally, say that a listing of M is a set X ⊆ ω such
that for all Y ∈M, there is some i ∈ ω with Xi = Y .

Claim: If X is L-generic over M, then X is a listing of M, and neither δν(X) (that is,
{j : p 
 δν(Xj) = 1}) nor any element of A is projectively definable from X.

Proof of claim. That X is a listing of M is immediate.
That elements of A are not projectively definable from X is just the standard argument

that any set definable from every sufficiently generic filter extending some condition, is
already definable in the ground model; since M yields an elementary submodel of true
second-order arithmetic, M is closed under projective definability, and hence no element of
A is projectively definable in M.
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The proof that δν(X) is not projectively definable from X proceeds as follows. Suppose
X is a counterexample to the claim. Then there is some condition c ∈ L which is compatible
with X such that c = 〈A0, A1, ..., An〉 
L δν(X) = ϕ(X) for some second-order formula ϕ.
Considering the possible ways to extend c, we must have that for all B ∈M,

∃d ≤L 〈A0, A1, ..., An, B〉(d 
L ϕ(X) = 1) ⇐⇒ B ∈ ν.

But this yields a projective definition of ν ∩M in M; since M ≺ 2ω, by PD there are no
projectively definable ultrafilters on M, so this is a contradiction.

�

So let X be a sufficiently generic listing of M. Let N be the projective closure of
M∪ {X}; by PD, N is an elementary substructure of 2ω. By the claim, δν(X) 6∈ N , so
(N ,A ∪ {δν(X)}) is a condition extending p. But this condition forces δν(MG) 6= MG.

�
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Chapter 8

Computability theoretic aspects of
ordinals

The work in this section remains in progress.

8.1 Introduction

In this chapter we explore computability-theoretic aspects of ordinals. First, we examine
the difficulty of listing certain countable sets of countable ordinals. We show that there is
a class of ordinals whose associated copy-and-diagonalize game (a concept introduced by
Montalban [56]) is undetermined. As a corollary, we get (assuming PD) that there is a
countable collection of ordinals which is “difficult to list” in a precise sense.

We then turn to the question of comparing different ordinals as individual structures. In
terms of Muchnik reducibility, the situation is completely understood: α ≤w β iff α is less
than the first admissible above β. However, once we add uniformity to the picture, things
become much more complicated:

Definition 45. For countable structures A,B, we write A ≤s B if every copy of B computes
a copy of A, uniformly:

∃e∀B̂ ∼= B[ΦB̂
e
∼= A].

Here the B̂ range over copies of B with domain ω.
We study the coarse structure of the Medvedev degrees of countable ordinals. In partic-

ular, we give a strong positive answer a question of Hamkins and Li [26]: we show that there
is a club of countable ordinals which are pairwise Medvedev incomparable.

One important tool we use is the generic analogue of Medvedev reducibility, similar to
≤∗w:
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Definition 46. For possibly uncountable structures A,B, we write A ≤∗s B if — in every
forcing extension in which |A|+|B| ≤ ℵ0 — every copy of B computes a copy of A, uniformly:

For every forcing P, if 
P |A|, |B| ≤ ℵ0, then 
P“∃e∀B̂ ∼= B[ΦB̂
e
∼= A].”

Again, the B̂ range over copies of B with domain ω (which, regardless of the true cardinal-
ity of B, will exist after forcing with P). As with generic Muchnik reducibility, by Shoenfield
absoluteness we could replace “every forcing extension” with “some forcing extension,” and
≤s agrees with ≤∗s on countable structures.

We leave a number of interesting questions open; this part of the chapter is work in
progress, and we hope to resolve some of these questions soon.

8.2 Copying ordinals

Throughout, K will always be a class of countable ordinals, and GK will be the ineffective
array copying game — player 1 (Diagonalize) builds a single structureMR, player 2 (Copy)
builds an array of structures MC,i (i ∈ ω), and player 2 wins iff every MC,i is in K and
MR ∈ K ⇒ ∃i(MR

∼= MC,i). Our first result is — assuming the continuum hypothesis —
the construction of a class of ordinals K such that GK is undetermined.

Lemma 8.2.1. If K is unbounded in ω1, then GK is not a win for II.

Proof. Fix a strategy Π for 2; for each strategy Σ for 1, Π produces a collection of orderings
(Σ⊗ Π)i (i ∈ ω); let LΣ =

⊕
(Σ⊗ Π)i. If for some Σ the order LΣ is ill-founded, then Π is

not winning for II; so LΣ is always an ordinal. But then the set

{α : ∃Σ[α ∼= LΣ]}

is Σ1
1 and hence bounded below ω1, so I can defeat Π by simply playing an ordinal greater

than that bound which is in K - and since K is unbounded in ω1, this is always possible. �

Lemma 8.2.2. Let K ⊂ ω1 be bounded, and r ∈ R. Then there is an ordinal α and some
set X = (Xi)i∈ω such that

• each Xi is a copy of some β ∈ K,

• each β ∈ K is isomorphic to some Xi,

• no copy of α is computable from r ⊕X, and

• α > β for every β ∈ K.

Proof. Fix any such X, and take ωr⊕X1 (note that the fourth condition is trivially implied
by the third). �
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Corollary 8.2.3 (ZFC+CH). There is a class K of ordinals for which the game GK is
undetermined.

Proof. By CH, fix a listing (rη)η∈ω1 of R; using 8.2.2, we will define K in stages; K will have
a “local listability” property which prevents 1 from winning.

Construction. At stage η, suppose we have defined Kη; let αη be the ordinal guaranteed
to exist by 8.2.2 applied to Kη and rη, that is, there is some listing Xη of Kη such that
Xη ⊕ rη does not compute a copy of αη. We then let Kη+1 = Kη ∪ {αη}. At limit stages we
take unions, and we let K =

⋃
η∈ω1
Kη.

Analysis. Since K is unbounded in ω1, by 8.2.1 GK is not a win for 2; so it is enough to
show how to defeat a given strategy Σ for player 1.

Fix η such that Σ ≤T rη, and consider the strategy for 2 which simply plays the listing
Xη of Kη as in two paragraphs previous. By construction of K, rη⊕Xη cannot compute any
element of K other than those in Kη; so if Σ builds an element of K, it must be isomorphic
to one of the orderings played by this strategy for 2. So Σ is not winning. �

Question 10. Can we remove CH from the argument above?

Assuming projective determinacy (PD), we now turn to two corollaries of the argument
above, on the complexity of listing certain countable sets of ordinals:

Corollary 8.2.4 (ZFC+PD). For all reals r on a cone, there is no r-computable listing of
the admissibles below ωr1. Specifically, there is no uniformly r-computable sequence of reals xi
such that each xi (codes a structure which) is isomorphic to an admissible ordinal αi < ωr1,
and every such admissible ordinal is isomorphic to some xi.

Note that this is immediate of ωr1 is a limit of admissibles; the interesting case is when
ωr1 is a successor admissible.

Proof. Let K be the class of admissibles. This class is Π1
1, and so the associated copy-

diagonalize game GK is projective and hence determined. By 8.2.1, GK is not a win for II.
So it is enough to show that, supposing the corollary is false, the game GK is not a win for
I either.

To see this, fix a strategy Σ for I. Now, if the corollary does not hold on a cone, then (by
PD) it fails on a cone, so we can suppose it fails for some real r ≥T Σ. But then the strategy
Π for II which simply plays an r-computable listing of the admissibles below ωr1 must beat
Σ. �

The second corollary is the existence of a countable set of ordinals which is hard to list
— any listing of it provides nontrivial information about arbitrarily large countable ordinals:

Corollary 8.2.5 (ZFC+PD). There is a countable set B ⊂ ω1 of ordinals such that for
every countable ordinal α, there is some real r such that

• r does not compute a copy of α (unless α is recursive), but
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• for every listing X of B, X ⊕ r computes a copy of α.

Proof. Otherwise, we can projectively define an unbounded class K of countable ordinals,
such that for every α ∈ K and every real r, if r does not compute a copy of α then there is
some listing X of Kα = K∩α such that r⊕X does not compute a copy of α. But then this
lets us defeat a given strategy for player I in the game GK, in the same manner as in 8.2.3:
let Σ strategy for player I, and α ∈ K be such that Σ does not compute a copy of α. Then
let X be a listing of K ∩ α such that X ⊕ Σ does not compute a copy of α; the strategy Π
for player II which just plays the list of structures X, regardless of what player I does, will
then beat Σ. So player I does not have a winning strategy in GK. By lemma 8.2.1, player II
does not have a winning strategy either. Since K, and hence the game GK, is projective, PD
implies that this cannot happen. �

8.3 Medvedev degrees of ordinals

In [26], Hamkins and Li initiated the study of the Medvedev degrees of ordinals. They
proved a number of basic results, but the global structure of the Medvedev degrees of ordinals
remained largely mysterious. In particular, they asked:

Question 11. [Hamkins, Li] Are there Medvedev incomparable ordinals?

We give a strong positive answer to this question. The key definition is a set of indices
associated to any structure, and the natural pre-wellordering on that set:

Definition 47. For A a countable structure, we let

• MIO(A) (the set of Medvedev indices of ordinals relative to A) is the set

MIO(A) = {e : for any ω-copies Â, B̂ of A, ΦA
e
∼= ΦB

e ∈ ON}.

• R(A) is the natural ordering on MIO(A):

R(A) = {(e0, e1) ∈MIO(A)2 : ΦAe0 4 ΦAe1}.

We can also confuse R(A) with the corresponding order on ω2, where elements of
ω \MIO(A) are put at the bottom.

• V ar(A) is the Mostowski collapse of the relation R(A). (The variety of ordinals
Medvedev below A.) Alternately, V ar(A) is the ordertype of the ordinals Medvedev
below A.

For uncountable A we define MIO(A), R(A), V ar(A) identically but with “≤∗s” in place
of “≤s”.

Before answer Question 11, we give an upper bound to the complexity of this index set:
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Proposition 8.3.1. MIO(A) is Π1
1 relative to any copy of A; that is, MIO(A) is relatively

intrinsically Π1
1 in A.

Proof. e ∈ MIO(A) iff ΦB
e is a well-ordering for every ω-copy B of A, and ΦB0

e
∼= ΦB1

e for
all copies B0, B1 of A.

The first conjunct — “ΦB
e is a well-ordering for every ω-copy B of A” — is equivalent

to saying that the following tree T is well-founded: a node on T is a pair (π, l) where π

is a finite partial permutation of ω with domain and range at least |π|
4

, and l is a finite

descending sequence in the (finite) structure Φ
π(A)
e . Extension is defined on both coordinates

simultaneously: (π, l) > (π′, l′) if π ) π′ and l ) l′. Clearly if T has no paths, then ΦB
e

is well-ordered for every ω-copy B of A. Conversely, suppose T has a path F ; let f and g
be the left and right projections of F . Then by the domain/range requirement, f is in fact
a total permutation of ω, so yields a copy of A given by f(B), and g is then a descending

sequence through Φ
f(B)
e .

The second conjunct — “ΦB0
e
∼= ΦB1

e for all copies B0, B1 of A” — uses the fact that
we can compare ordinals in a uniformly Π1

1 way. Specifically, suppose α and β are ordinals.
Then α ≤ β iff there is no injection from β + 1 to α. So the second conjunct can be written
as “For all copies B0, B1 of A, there is no embedding of ΦB0

e + 1 into ΦB1
e .” �

Turning now back to Question 11, we give a strong positive answer:

Proposition 8.3.2. There is a club of countable ordinals which forms a Medvedev antichain.

Proof. We “clubbify and thin.”
First, for each n there is a club Cn such that either ∀α ∈ Cn(n ∈ MIO(α)) or ∀α ∈

Cn(n 6∈ MIO(α)); this is because “MIO(α)” is Π1
1 relative to α by Proposition 8.3.1, and

(provably in ZFC) Π1
1 sets of countable ordinals contain or are disjoint from a club. Let

C =
⋂
Cn; then C is again a club, and ∀α, β ∈ C(MIO(α) = MIO(β)) (call this set

“MIO(C)”).
Next, for each pair (e0, e1) ∈ MIO(C)2, there is a club D(e0,e1) such that either ∀α ∈

D(e0,e1)((e0, e1) ∈ R(α)) or ∀α ∈ D(e0,e1)((e0, e1) 6∈ R(α)), since “(e0, e1) ∈ R(α)” is projec-
tive. Let D =

⋂
(e0,e1)∈MIO(C) D(e0,e1); then D is again a club.

Now note that for α, β ∈ D, we must have V ar(α) = V ar(β) since MIO(α) = MIO(β)
and R(α) = R(β). Finally, we thin D as follows: let

E = {α ∈ D : ∀β ∈ D, β < α⇒ ωCK1 (β) < α}.

(Here “ωCK1 (β)” is the least ordinal which is not Muchnik below β; equivalently, the least
admissible above β.) It’s not hard to show that E is a club (clearly E is closed, and note
that E contains the set of elements of D which are the least element of D above γ for some
limit of admissibles γ, which is a club).

We claim E is a Medvedev antichain. Suppose α, β ∈ E with α < β. Then clearly α 6≤s β.
Assume β ≤s α. Then V ar(β) ≥ V ar(α) + 1 (everything Medvedev below β is Medvedev
below α, and then there’s α itself). But then V ar(β) 6= V ar(α), a contradiction. �
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This argument yields a number of immediate corollaries:

Corollary 8.3.3. There is an ordinal θclub such that for club-many ordinals α, we have

V ar(α) = θclub.

Similarly, there is a set Mclub and a relation Rclub on Mclub corresponding to MIO and R.

Corollary 8.3.4. For club-many countable ordinals α, there is some β with α < β < α+ α
such that β 6≤s α.

Proof. Let E be the club antichain produced in Proposition 8.3.2. Take any α ∈ E with
α > θclub. Since α ∈ E, we have V ar(α) = θclub < α. But the interval (α, α + α) has
order-type α, so there must be some β ∈ (α, α + α) which is not ≤s α. �

Using generic Medvedev reducibility, we can strengthen some of the results above —
provided we have appropriate generic absoluteness theorems. For the remainder of this
section, we assume PD (although in fact Σ1

3-forcing absoluteness is sufficient), which among
other things implies that projective sentences are absolute for set forcing.

Question 12. Can the following results be proved in ZFC alone?

We begin with a basic absoluteness result:

Definition 48. For a possibly uncountable structure A, we let gMIO(A) be the set of indices
for Medvedev reductions from A to ordinals, in some generic extension:

gMIO(A) = {e : ∃P(
P A is countable and e ∈MIO(A))}.

Proposition 8.3.5. For any (possibly uncountable) structure A, the set {β : β ≤∗s A} is
countable, and if V [G] is a forcing extension in which A is countable, this set is exactly the
set of ordinals which are Medvedev below A. Moreover, gMIO(A) is forcing absolute: if
V [H] is a forcing extension of V , then gMIO(A)V = gMIO(A)V [H].

Proof. This is a straightforward application of Shoenfield absoluteness. We prove the first
claim; the latter two use the same type of argument.

Suppose V [G] is a generic extension where A is countable, G P-generic over V , and α
is an ordinal such that V [G] |= α ≤s A. Then there is a condition p ∈ G and a number

e ∈ ω such that p 
 “e ∈ MIO(A) and ΦÂ
e
∼= α for every ω-copy Â of A.” Let Q be any

other forcing making A countable, and let H0 ×H1 be P×Q-generic with p ∈ H0. Then by
Shoenfield absoluteness from V [H0] to V [H0 × H1], we have V [H0 × H1] |= “e ∈ MIO(A)

and ΦÂ
e
∼= α for every ω-copy Â of A.”

But suppose B̂ were an ω-copy of A in V [H1]. Then B̂ ∈ V [H0 ×H1], so V [H0 ×H1] |=
ΦB̂
e
∼= α; by absoluteness, V [H1] |= ΦB̂

e
∼= α. So V [H1] |= “e ∈ MIO(A) and ΦB̂

e
∼= α for

every ω-copy B̂ of A.”
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This means that for every ordinal α with α ≤∗s A, we may find some e such that every

forcing making A countable forces that ΦÂ
e
∼= α, whenever Â is an ω-copy of A. Let eα be

the least such e. Clearly eα = eβ ⇐⇒ α = β, since distinct ordinals are not isomorphic in
any forcing extension; but this yields in V an injection from {α ∈ ON : α ≤∗s A} to ω, so
the former is countable. �

Remark 8.3.6. Note that there is no special role played by ordinals, here; if A is any
structure, the same argument shows that there are only countably many structures in V
which are ≤∗s A.

Definition 49. For α an ordinal, let ωM1 (α) be the least ordinal δ > α such that δ 6≤s α.

Under appropriate absoluteness assumptions, such as follow from PD, we are able to
extend 8.3.4:

Proposition 8.3.7. For all but countably many α, ωM1 (α) < α + α.

Proof. Let ωV1 be countable in V [G]. Then V [G] satisfies the following sentence:

∃α < ω1∀β[α < β < ω1 ⇒ ωM1 (β) < β + β].

(Just take α = ωV1 and apply Proposition 8.3.5). Since all quantifiers are (in V [G]) over
countable ordinals, this sentence is projective, so by PD holds in V already. �

Definition 50. For α an uncountable ordinal, let V ar(α) be the order type of the set of
ordinals ≤∗s α.

Proposition 8.3.8. The set {V ar(α) : α < ω1} is bounded strictly below ω1.

Proof. The crucial observation is that “≤∗s” is absolute between forcing extensions: for or-
dinals α, β (more generally, for structures A,B ∈ V ) and a generic extension V [G] of V ,
we have V |= α ≤∗s β iff V [G] |= α ≤∗s β. The proof of this is, again, just Shoenfield ab-
soluteness: given α, β and a generic extension V [G] of V , let P ∈ V be a forcing making α
and β countable, and let H be P-generic over V [G]. Then applying Shoenfield absoluteness
between V [G][H] and V [H], we have that either α ≤s β in each or α 6≤s β in each.

Using this, we have that V ar(α)V [G] = V ar(α)V for every forcing extension V [G]. So
in particular, since V ar(α) is countable in V , we have V [G] |= V ar(α) < ωV1 for every
generic extension V [G]. Let V [G] be a generic extension in which ωV1 is countable; then
V [G] satisfies “There is a countable γ such that every countable ordinal α has V ar(α) < γ”
(namely γ = ωV1 ), which is a projective sentence, so by PD so does V . �

With a bit more work, we can extend this to all ordinals, countable or not:

Corollary 8.3.9. The set {V ar(α) : α ∈ ON} is bounded strictly below ω1. (In particular,
it is a set, even though a priori it is merely a class.)
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Proof. First, we show that the relation “≤∗s” is absolute between V and L; then, we use the
existence of L-indiscernibles.

Claim : if α ≤∗s β, then L |= α ≤∗s β.

Proof of claim. Suppose V |= α ≤∗s β via Φe. Let G be Col(β + α, ω)-generic over V ; note
that Col(β + α, ω) ∈ L, so G is generic over L as well. Now suppose B is an ω-copy of β,
B ∈ L[G]. B ∈ V [G], so since α ≤∗s β we have V [G] |= ΦB

e
∼= α. Since α ∈ L, the tree of

partial isomorphisms between α and ΦB
e is in L[G]. This tree has a path (in fact, a unique

path) in V [G], so by Mostowski absoluteness it also has a path in L[G] — so L[G] |= ΦB
e
∼= α.

Since this is true for any ω-copy B of β in L[G], we have L[G] |= α ≤s β, so L |= α ≤∗s β.
The converse — showing that L |= α ≤∗s β implies V |= α ≤∗s β — uses the same idea. If

V [G] |= α 6≤s β, then — in V [G] — for each e there is an ω-copy B of β such that ΦB
e 6∼= α.

This is a Σ1
2 sentence, so absolute between L[G] and V [G]. �

We now show how the corollary follows from this claim.

Definition 51. Let θsup = sup{V ar(α) : α < ω1}.

By Proposition 8.3.8, we have θsup < ω1. Let C be the proper class of L-indiscernible
ordinals guaranteed by 0# (whose existence follows from PD, which we are assuming here); it
is known that C∩ω1 is club in ω1, so we may find α0 < α1 ∈ C with θsup < α0 < α1 < ω1. In
V , the pair α0, α1 satisfies “If β < α1, then V ar(β) < α0” — by the claim above, this sentence
is true in L as well. So for any α2 ∈ C with α2 > α0, we have L |= ∀γ < α2(V ar(γ) < α0), and
again by the claim this statement lifts to V . Since C is unbounded in ON , this means that
{V ar(α) : α ∈ ON} is bounded below ω1 (specifically, below the least L-indiscernible). �

Remark 8.3.10. If α0, α1 is as above, then sup{V ar(γ) : γ < α0} = sup{V ar(γ) < α1} =
θsup — so by indiscernibility sup{V ar(γ) : γ < α} = θsup for every α ∈ C. This shows that
θsup = sup{V ar(γ) : γ ∈ ON}.

Interestingly, Corollary 8.3.9 holds also for counterexamples to Vaught’s conjecture!

Proposition 8.3.11. Suppose T is a counterexample to Vaught’s conjecture. Then there is
a θTsup < ω1 such that for all A |= T , V ar(A) ≤ θTsup.

Proof. The key fact is that counterexamples to Vaught’s conjecture cannot be “randomly”
added by forcing: if P is a forcing notion, T ∈ V is a counterexample to Vaught’s conjecture,
and A ∈ V [G] is a model of T when G is P-generic over V , then there was a name ν ∈ V P

such that ν[G] ∼= A and 
P×P ν[G0] ∼= ν[G1]; otherwise, we could add a perfect set of
nonisomorphic models of T , contradicting the fact that T is a counterexample to Vaught’s
conjecture in V and that being a counterexample to Vaught’s conjecture is absolute. (Note
that this was also how we reproved Harrington’s theorem in chapter 4.)

But if 
P×P ν[G0] ∼= ν[G1], we must have p 
 “ΦÂ
e
∼= β for every ω-copy Â of A” if

and only if every condition forces this, for e ∈ ω and β ∈ ON . This means that the set
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{β ∈ ON : V [G] |= β ≤∗s A} can be computed in V , as well as the injection from this set to
ω given by sending each β to its least “Medvedev index.” So that set is countable in V , and
hence V [G] |= V ar(A) < ωV1 .

So V [G] satisfies “{V ar(A) : A |= T} is bounded below ω1” (namely, by ωV1 ); this is a
projective sentence, so true in V . �

There are a number of open questions remaining; we close by mentioning one in particular.

Question 13. Does θclub = θsup?
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[11] Christian Delhommé et al. “Representation of ideals of relational structures”. In: Dis-
crete Math. 309.6 (2009), pp. 1374–1384. issn: 0012-365X. doi: 10.1016/j.disc.
2008.02.010. url: http://dx.doi.org/10.1016/j.disc.2008.02.010.

[12] Rod Downey, Noam Greenberg, and Joe Miller. “Generic Muchnik reducibility and
presentations of fields”. In: Israel J. Math. (To appear).

http://dx.doi.org/10.2307/2275144
http://dx.doi.org/10.2307/2275144
http://dx.doi.org/10.2307/2275144
http://dx.doi.org/10.1090/tran/6572
http://dx.doi.org/10.1090/tran/6572
http://dx.doi.org/10.1090/tran/6572
http://dx.doi.org/10.2178/jsl/1140641175
http://dx.doi.org/10.2178/jsl/1140641175
http://dx.doi.org/10.2178/jsl/1140641175
http://dx.doi.org/10.1016/j.disc.2008.02.010
http://dx.doi.org/10.1016/j.disc.2008.02.010
http://dx.doi.org/10.1016/j.disc.2008.02.010


BIBLIOGRAPHY 127

[13] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complexity.
Theory and Applications of Computability. Springer, New York, 2010, pp. xxviii+855.
isbn: 978-0-387-95567-4. doi: 10.1007/978-0-387-68441-3. url: http://dx.doi.
org/10.1007/978-0-387-68441-3.

[14] Lou van den Dries. “A generalization of the Tarski-Seidenberg theorem, and some
nondefinability results”. In: Bull. Amer. Math. Soc. (N.S.) 15.2 (1986), pp. 189–193.
issn: 0273-0979. doi: 10.1090/S0273-0979-1986-15468-6. url: http://dx.doi.
org/10.1090/S0273-0979-1986-15468-6.

[15] Lou van den Dries. Tame topology and o-minimal structures. Vol. 248. London Math-
ematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998,
pp. x+180. isbn: 0-521-59838-9. doi: 10.1017/CBO9780511525919. url: http://dx.
doi.org/10.1017/CBO9780511525919.

[16] Solomon Feferman. “Independence of the axiom of choice from the axiom of dependent
choices”. In: J. Symbolic Logic 29 (1964), p. 226.
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[20] A. M. Gabrièlov. “Projections of semianalytic sets”. In: Funkcional. Anal. i Priložen.
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