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The Application of Functional Genomics, Systems Biology and

Drug Development to the Study of Infectious Diseases

Jingchun Zhu

Abstract

Genomics is creating a paradigm shift in the research of infectious diseases,

transforming it from studying a few targets at a time to a genomic scale. We applied

three genomic approaches to the study of malaria and its causative agents, a type of

intracellular parasites belonging to the genus Plasmodium.

The first approach was to use DNA microarray technology to study the parasite

transcriptome. The peculiarity of the P. falciparum genome made it difficult to produce a

traditional cDNA probe-based microarray. We introduced a long oligonucleotide-based

system in which each probe uniquely represents a single open reading frame and is

optimized for other parameters including sequence complexity, secondary structure, and

melting temperature. In order to produce such an optimal set of probes, we developed

ArrayOligoSelector to automatically select gene specific long oligonucleotide probes for

a complete genome.

In addition to study the parasite transcriptome, we developed a virtual drug

development framework to identify anti-malarial compounds. The framework started

with complete genome sequences and resulted in potential antimalarials; in the process it

integrated a diverse and large amount of informatics data and computational methods.

Using this framework, we identified 152 drug target genes by mining the phylogenomic

patterns of 203 genomes and 77 co-ligands of those target proteins by comparative

:
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protein structure modeling and enzymatic predictions. Using the co-ligands as queries,

we have computationally screened large compound collections to identify 1892 “drug

like” compounds that are structurally similar as well as commercially available.

Our third genomic strategy was to explore host pathogen interactions. We chose

to focus on the pathogenic response to nitric oxide. Nitric oxide is an important mediator

in the human innate immune response and a molecule associated with protection against

severe malaria. The host innate immune response defends against infection by a wide

range of pathogens including fungi and protozoan parasites. Since it is much easier to

perform large-scale functional genomics experiments in a model organism other than in

Plasmodium, we characterized the nitric oxide response in S. cerevisiae and applied a

Bayesian network-driven approach to model the transcriptional response in that system.

Dr. Joseph L. DeRisi
Dissertation Committee Chair
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Chapter 1. Introduction

Malaria is one of the most deadly infectious diseases in the world, causing

approximately 350-500 million clinical episodes and as many as three million deaths

annually [1-3]. Its causative agents are tiny intracellular protozoan parasites of the genus

Plasmodium. This peculiar organism has a complicated life cycle that cycles between its

mammalian host and the mosquito, its insect vector [4]. Although malaria as a disease

has been documented in medical history for thousands of years [5], it was only until a

little more than a hundred years ago that Plasmodium was discovered as the causative

agent and the mosquito as the transmission vector [6]. Malaria has been virtually

eradicated in the United States and most of the developed countries through mosquito

control, yet the disease still plagues most of the developing world in the tropical and

subtropical regions [2,3]. Although malaria has a tremendous impact on world health, it

has been largely ignored by the pharmaceutical industry due to lack of financial interests

and sometimes it has been referred to as a neglected disease.

Basic research using modern molecular approaches on Plasmodium has been

limited due to difficulty in performing many of the standard genetic and biochemical

techniques in the parasites (such as DNA recombination, transformation, and gene

deletion), culturing the parasites (intraerythrocytic stages of P. falciparum can be grown

in the laboratory, but the rest of the life cycle specimen must be salvaged from the

mosquito vector or liver cells), divergence from any of the well-studied model organisms,

and absence of its genome sequence.

In the past decade, advancement in genome sequencing and high-throughput

measurement technologies has created a paradigm shift in biological research that



transformed it from the study of a handful of targets at a time to a genomic scale.

Fortunately for malaria research, the complete genomes of two Plasmodium species (P.

falciparum and P. yoelli yoelli) became available in 2002 [7,8]. The genome sequences

of its human host and mosquito vector Anopheles gambiae also became available

between 2001 and 2004 [9,10]. With the newly available genome information, we can

apply many of the new approaches developed in functional genomics, systems biology

and computational drug development to the study of the malaria parasite [11].

Computational, mathematical and statistical methods play an increasingly

important role in every aspect of this new biology. They are critical for designing the

genome scale reagents that are necessary for performing the genomic experiments,

analyzing large-scale data sets generated by this new biology, building models to

interpret those data, and facilitating drug target identification and drug development.

Functional genomics is one approach to the study of gene function on a genome

scale at different levels of cellular complexities including the transcriptome, proteome,

and metabolome. To successfully perform functional genomics experiments, new kinds

of reagents are required such as DNA microarrays, protein microarrays [12], gene

deletion and small interference RNA (siRNA) libraries [13,14], genome-scale tagging

libraries [15,16], and two-hybrid systems [17]. Generating these genome-scale reagents is

not a simple task, in which robotic technologies, design algorithms, and a scalable

experimental method are all critical components. In malaria research, most of the

functional genomics effort has been focused on studying the parasite transcriptome,

mostly because two critical technical difficulties were overcome: culturing the parasites

in red blood cells, and the development of malaria genome microarrays [18-20].
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The high (80%) AT content of the malaria genome posed a great obstacle to producing a

traditional PCR probe-based microarray due to the high failure rate in PCR reactions

(unpublished data, DeRisi lab). Long oligonucleotide-based DNA microarrays were

proposed as an alternative, using a long probe sequence to represent each open reading

frame [21]. An ideal set of probe sequences should uniquely represent a gene in the

genome, avoid problematic sequence regions, and at the same time maintain a consistent

melting temperature among all the probes. To design such a microarray, we developed a

computational approach to automatically design gene-specific oligonucleotide genome

array probes. The design algorithm and the accompanying software, ArrayOligoSelector,

are described in Chapter 2.

Using ArrayOligoSelector (AOS), we designed a long oligonucleotide microarray

for the complete genome of Plasmodium falciparum. This malaria chip has been used to

study the transcriptome of the parasitic intraerythrocytic developmental cycle and

sequence variation between different P. falciparum strains [18]. Chapter 3 presents the

application of AOS on the Plasmodium genome to characterize the gene expression

profile of the intraerythrocytic trophozoite and schizont stages of P. falciparum.

Ultimately, we want to take advantage of the genomic resource to develop new

medicines to treat malaria. In the past, anti-malarial drug discovery was mainly focused

on a small number of targets. Most the currently used drugs to treat and/or prevent

malaria belong in four categories: quinine and its derivatives, antifolate combination

drugs, artemisinin compounds, and tetracycline and its derivative antibiotics [22]. The

completion of Plasmodium, human and other genomes has provided unprecedented

opportunities for the discovery of new targets with novel modes of action.
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For example, novel broad-spectrum drugs can potentially be identified by searching for

genes that are conserved through evolution in bacteria, fungi and parasites but not present

or exist in a very distinct form in the mammalian lineage [23].

In addition to genome sequence information, there are many resources and

computational tools that can further lead us from drug target genes to identifying small

molecule inhibitors. Compared to a decade ago, there is a much larger collection of

functional, structural and chemical genomics databases [24-29], and more sophisticated

computational methods for molecular docking of small molecules to protein targets

[30,31]. With the development of combinatorial chemistry, large libraries of compounds

have been synthesized and are available in a variety of chemical databases [26]. The

pharmacokinetics properties (absorption, distribution, metabolism, and excretion) and

toxicity of the compounds can be modeled using an in silico approach, which helps to

decrease the late-stage failure in drug development [32-34]. The large number of

available compounds also promoted the development of computational searching

algorithms to retrieve compounds in chemical databases based on 2D or 3D structural

similarities ([35]; reviewed in [36]).

Using these computational resources, a virtual anti-malarial drug development can

be potentially carried out [37]. Chapter 5 describes a drug development framework we

pursued to discover anti-malarial compounds in silico. This framework started with 203

complete genome sequences and resulted in 1893 potential antimalarials; in the process it

integrated a diverse and large amount of informatics data of protein signatures and

profiles, metabolic pathways, protein 3D structure models, and large compound

collections. A large spectrum of computational methods was used or developed in this



framework, which included sequence homology searches, ortholog identification, a

phylogenomic analysis of a complete proteome, prediction for drug-like compounds,

molecular fingerprints, a scoring function to systematically identify drug target proteins

from the complete P. falciparum genome, and a virtual screen procedure composed of a

two-step similarity search followed by “drug-like” properties and diversity filtering

procedures. To evaluate this framework, a subset of the 1893 compounds will be tested

by an in vitro malaria growth inhibition assay for enrichment of anti-malarial activities

[38,39].

Although a virtual drug development strategy is associated with a large degree of

uncertainty and false positives, an informatics method can still increase the possibility of

promising compounds and therefore concentrate future drug development resources on

such compounds [40-42]. More importantly, an in silico approach is much cheaper and

faster. If it is coupled with high-throughput screening, much greater benefits can

potentially be achieved. This can be particularly beneficial for battling many of the

neglected infectious diseases such as malaria [37,43].

In addition to developing synthetic drugs to combat malaria, we can also explore

the natural interactions between host and pathogen. For example, it has been

hypothesized that the production of nitric oxide, a critical component of the human innate

immune response, is an important mediator in the host’s defense against Plasmodium

falciparum malaria and is associated with protection against severe malaria [44-48].

However, the mechanism by which nitric oxide kills the parasite is still elusive [49,50].

A functional genomics study of the pathogenic defensive response to nitric oxide may

shed light on the mechanism and potentially lead to the development of new anti-malarial



therapies. Although genomic toolkits such as microarrays have become available for

Plasmodium, it is still much easier to perform large-scale functional genomics

experiments in model organisms such as S. cerevisiae. Host innate immune response

defends against infection by a wide range of pathogens including fungi, bacteria,

protozoan parasites and viruses [51-55]. Knowledge learned from studying the yeast

response to nitric oxide can help us understand the defense mechanism used by fungi and

other infectious agents against the human innate immune response [56].

Genomic surveys of nitric oxide triggered transcriptional responses have been

carried out in several fungal organisms (S. cerevisiae, Histoplasma capsulatum, and C.

albicans) [57-59]. These genomic experiments produced large datasets that were

generated under various genotypes and experimental conditions. It is of great interest to

mine these complete datasets and be able to decipher the relationships among

environmental signals, genotypes, transcription factors and the corresponding

transcriptional output. A network approach that can model multivariable systems is

highly desirable. Chapter 4 describes a Bayesian network-driven approach to model the

transcriptional response to nitric oxide in S. cerevisiae. We combined data mining,

computational modeling, and experimental feedback in an iterative cycle of hypothesis

generation and testing to build a network model to decode the relationship of nitric oxide,

genotypes, and other environmental signals using the genome-wide transcriptional output

as measured by microarrays. An automatic Bayesian network learning software,

Expression.Net, was developed and has been made freely available.

In summary, this thesis describes three major applications of genomics and

computational methods to malaria research: designing genomic reagents, computational
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drug development, and a systems biology approach to decode transcription networks.

They are a piece of the major genomic transformation in the research on infectious

diseases. In the future, I expect to see a great expansion of mature molecular and genetic

techniques in malaria research, continuing application of genomic technology and

computational methods, and a greater degree of awareness of the disease impact on world

health. And hopefully these will lead to the eradication of malaria.
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Chapter 2. ArrayOligoSelector (AOS)

ABSTRACT

The complete genome sequence of an increasing number of organisms is

becoming available. To exploit these new resources for the purpose of developing whole

genome microarrays, we developed a program, ArrayOligoSelector (AOS), to

systematically design gene-specific long oligonucleotide probes for entire genomes. For

each open reading frame, the program optimizes the oligonucleotide selection based upon

several parameters, including uniqueness in the genome, sequence complexity, probe

secondary structure, GC content, and proximity to the 3' end of the gene.

Using AOS, we designed a long oligonucleotide microarray for the complete

genome of Plasmodium falciparum, the most deadly causative agent of human malaria.

This malaria chip has been used to study the transcriptome of the parasitic

intraerythrocytic developmental cycle and sequence variation between different P.

falciparum strains.

AOS is an open source program and is freely available for public use at

http://arrayoligosel.sourceforge.net. AOS has also been used by scientists all over the

world to design whole genome microarrays for many other organisms such as S.

cerevisiae, M. musculus and H. sapiens.

The first section of this chapter presents the AOS design algorithm. The second

section is the documentation for the program.
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Part I. AOS Algorithms

Background

Two important technological advances have been instrumental in transforming

biological research from the study of a handful of genes at a time to the age of genomics.

The first is whole genome shotgun sequencing and assembly that allows complete

genome sequences be obtained much cheaper and faster. As a result, the number of fully

sequenced genomes, strains or individuals has increased dramatically. The second

advancement is DNA microarray, a powerful technology that allows simultaneous

measurements of gene expression for every gene in a whole genome, which has been

used to gain important insights into processes such as development, responses to

environmental perturbations, gene mutation, and host response to pathogens, and cancer

[1-5].

To efficiently transfer genome sequence resources to functional genomics using

microarrays, a new kind of reagent - whole genome microarrays – is needed. The

traditional method for constructing a whole genome array was to generate PCR products

for every gene in the genome, a laborious and time-consuming process with various rates

of success. This became extremely challenging for genomes with very high AT content

such as that of P. falciparum (80% AT). In addition, PCR probes have difficulty

distinguishing genes with a high degree of sequence similarity. Oligonucleotide probe

based platforms provide an alternative that overcomes these disadvantages [6,7]. The use

of synthetic oligonucleotide probes eliminates the need for PCR. By carefully selecting

probes from the unique regions, this platform provides a means to readily distinguish
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between genes that have a high degree of sequence similarity and avoid other problematic

regions such as the various types of repetitive sequences or secondary structures.

Several competing platforms for producing oligonucleotide-based microarrays

have emerged, differing in probe length, number of probes required per gene, nature of

the production processes, design customization, and cost [7]. Affymetrix (Santa Clara,

CA) pioneered the commercial market by producing high density GeneChips using

photolithography and solid-phase DNA synthesis, on which each gene is represented by a

set (~20) of short oligonucleotides (20–25mer) [8]. Alternative to using chromium

masks in conventional photolithography, NimbleGen’s (Madison, WI) maskless arrays

(24 – 70mers) are produced by light-directed synthesis of oligonucleotides controlled by

a digital micromirror device [9]. Other commercial platforms include Agilent’s (Palo

Alto, CA) microarrays produced by an inkjet printing technology that synthesizes 60mer

probes [10], CodeLink Bioarray" (Amersham Biosciences, Piscataway, NJ) that uses a

3D polyacrylamide gel matrix as the slide surface for depositing 30mer oligonucleotide

probes [11], and Combimatrix's (Mukilteo, WA) CustomArray" (50-70mers) which

contains arrays of individually addressable microelectrodes for in situ oligonucleotide

synthesis by means of an electrochemical reaction [12,13].

Commercial arrays are expensive, relatively difficult to customize probe design,

and often limited to the model organisms. Spotted long oligonucleotide microarrays

provide an inexpensive and highly customizable alternative. These arrays are produced

in a similar fashion as the spotted cDNA arrays by depositing solutions of pre

synthesized oligonucleotide probes on a glass slide. The long oligonucleotide probes,

usually 40 to 70mer in length, can be synthesized commercially. The array production
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can normally be performed in an in-house academic facility used for producing cDNA

arrays, making it an ideal platform for academic laboratories.

Although spotted oligonucleotide arrays can be produced and used with a very

similar method to those widely used for cDNA arrays, the success of oligonucleotide

based arrays are highly dependent on their probe design. To fulfill the objective of an

oligonucleotide-based genome array, several design considerations need to be addressed.

Most importantly, the probe sequence should be unique in the genome to minimize cross

hybridization. In addition, based on empirical rules used in primer designs, sequences

that can form internal secondary structures should be avoided to maximize probe

accessibility. Low complexity sequences should also be avoided to prevent nonspecific

hybridization [14-16]. Other criteria are more unique to the design of a genome array,

such as uniformity in probe melting temperatures and the proximity of probes to the 3’

end of a gene. Another critical consideration is the choice of probe length, a balance

between specificity and synthesis feasibility. In general, longer probes provide better

specificity, but are associated with increasingly lower percentages of full-length probes

(assuming 99% coupling efficiency, less than 50% of 70mer probes are full-length) and

higher cost. Very short probes (<25mer) such as those used by GeneChip arrays require

multiple probes per gene to improve signal specificity.

A computational approach is ideal to find the optimum design solution for this

multi-parameter problem. Existing primer design programs are inadequate for designing

a whole genome array. Therefore, we developed ArrayOligoSelector (AOS) specifically

for the purpose of systematically selecting gene-specific long oligonucleotide probes for

entire genomes. For each open reading frame (ORF), the program optimizes the
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oligonucleotide selection on the basis of several parameters, including uniqueness in the

genome, sequence complexity, lack of self-binding, and GC content. Using AOS, we

designed a long oligonucleotide microarray for the complete genome of Plasmodium

falciparum, the most deadly causative agent of human malaria. This malaria chip has

been used to study the transcriptome of the parasitic intraerythrocytic developmental

cycle and sequence variation between different P. falciparum strains.

Similar approaches to oligonucleotide design have previously been described, but

the exact algorithms, source code, and/or accompanying hybridization data are not

available [8,10,17].

We made the algorithm, AOS source code and software, as well as the

hybridization data publicly available to ensure public usage of the program, which is

especially important for designing genome arrays for organisms like Plasmodium that

hold minimal commercial interest, yet are immensely important for public health. Since

we made AOS available, scientists all over the world have used AOS to design genome

arrays for a wide variety of organisms including mouse, malaria, yeast and bacteria.

Algorithms

To design an optimum set of oligonucleotide probes for a given organism, AOS

uses the ORF sequences and the complete genomic sequence as inputs, and then selects

an optimum oligonucleotide for each ORF. The workflow of AOS consists of four major

steps: 1) data preprocessing to ensure the correct sequence format and user inputs; 2)

cognate sequence identification to discriminate true genomic targets from regions of

potential cross-hybridization; 3) computing the following parameters for every
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oligonucleotide in an ORF sequence: uniqueness in the genome, internal secondary

structures, GC percentage, and sequence complexity; 4) selecting a set of optimum

oligonucleotide sequences using a rule-based filter procedure.

Step I: Data preprocessing

Correct data format, user inputs and computational resource are critical to ensure

a smooth AOS execution. In the data preprocessing stage, AOS interacts with a user to

obtain the sequence files (ORF sequences and the complete genome sequence), the

oligonucleotide probe length, the choice for sequence masking, and the method to

identify cognate sequences. It then verifies that the sequences are in the correct FASTA

format, sequence identifiers do not contain white space characters to interfere with result

parsing, no duplicated sequences in the sequence files, user input parameters are in the

correct numerical range and selections, and the appropriate operating system is used. If

all checks are passed, AOS is recompiled on the user’s computer and proceeds to the next

step.

Step ll: Cognate genomic sequence identification

The cognate region is the genomic region where an ORF originates. Accurate

identification of cognate regions is essential for differentiating true targets for an

oligonucleotide from cross-hybridization regions. Since this information may not be

easily available to all users, AOS opts to derive this information computationally based

on the sequences provided in the two input files.
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As the second step in the program workflow, AOS identifies an ORF's cognate

region by reconstructing its exon structure. Each ORF was first aligned to the genomic

sequences by a sequence homology search (BLAST or BLAT), alignments with 100%

identical matches were stitched back together through a heuristic process to recapitulate

the exon pattern. The principle behind this strategy is that individual exons should be

among those perfect alignments, and the goal is to identify those specific perfect

alignments and the exact order they should be arranged in to form the corresponding

ORF. However, the difficulty comes from the fact that not every 100% identical

alignment region is necessarily a part of the ORF exon structure. Although an exhaustive

search of all possible arrangements of any number of perfect alignment regions can find

the correct exon structure, the number of arrangement combinations increases factorially

as the number of perfect alignments increases( Xºn■ ), which makes an exhaustive strategy

impossible to complete if a great number of perfect alignments was initially identified.

Therefore a heuristic approach is used to decrease the search space. The first

heuristic trick is that a search can only start from either a perfect alignment of >50 bp, or

a “must-use” alignment (see below for details). Secondly, a search can only continue by

adding other perfect alignment regions that satisfy the following spatial constraints: same

chromosome and strand orientation; proximity to all existing alignment regions (<3000

kb); minimum overlap with existing alignment segments (<70% of the smaller of the new

and existing regions); consistent arrangement in both ORF and genome sequences (e.g. if

the new region was to the 5’ end of an existing region in the ORF sequene, it must be so

in the genomic sequence as well). Third, a seach stops when the sum of the existing

regions reaches the length of the ORF. Fourth, a search also stops when the sum of all

—º
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potential regions is highly unlikely to reach the length of the ORF. Fifth, only 100%

perfect alignment regions can be considered (SNPs not allowed). Sixth, if the first high

scoring hit alignment (best alignment) to any chromosome is less than 50bp, alignment

regions from the entire chromosome will not be considered.

In simple terms, the AOS search procedure is to construct combinations of

alignment regions; each combination a solution for the correct exon pattern. Procedurely,

the above heuristics is implemented as first identifying all perfect alignments, followed

by building a connectivity matrix to specify compatible alignments if an alignment has

already been selected as part of an exon pattern (based on the spatial constraints

described above: compatible chromosome, strand direction, proximity, overlap, and

spatial orientation). Subsequently, AOS identifies the “must-use” alignments by

scanning for regions in the ORF sequence that are covered by a single perfect alignment,

and the corresponding alignment is referred to as the “must-use” alignment. After that,

the AOS search starts to construct a list with a single alignment that is either a “must-use”

alignment or a perfect alignment >50 bp. AOS proceeds to add additional perfect

alignments (n) that are allowed by the connectivity matrix. The original list is duplicated

n times and a different alignment is added at the end of each list. This duplication and

extension procedure continues until when existing alignments in a list have reached the

full length of the ORF. If existing alignments in a list plus all their potential additions

(allowed by the connectivity matrix) cannot reach the full length of the ORF, the list is

eliminated from furthur consideration. At the end of the search process AOS finds a

collection of lists; each contains one or more alignments. Each list is a possible solution

for the real exon pattern.

_
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To ensure the accuracy of the results, lists in the final collection are re-examined.

Only combinations within +20 bp of the ORF full length size and able to generate the

original ORF sequence in a correct order are kept as solutions for the exon pattern

reconstruction. Multiple solutions are allowed. The corresponding exon locations in the

genomic sequences are extracted as an ORF's cognate region. This cognate region

information is stored in disk to be used in the uniqueness calculation in Step III.

Users can choose to use either the BLAST or BLAT program for sequence

alignment to identify the perfect alignment regions [18]. BLAST is more sensitive and

typically generates a greater number of alignments, therefore resulting in a bigger search

space and slower speed for exon pattern reconstruction. Using BLAT is faster, but it has

the risk of missing short alignments. It is important to note that the low complexity filter

must be turned off during alignment at this step, otherwise cognate regions will fail to be

identified. However, this is at a great cost of computational speed due to the large

number of short low complexity alignments generated.

Step Ill: Parameter computation

In the parameter computation step, AOS calculates values for the following

features for every oligonucleotide sequence: uniqueness in the genome, internal

secondary structure, sequence complexity, GC percentage, and position in the ORF.

Each feature is computed using an independent module, which can also be used as a

stand-alone program to obtain individual parameter. The parameter values were written

to disk for use in the later selection step.

1. Uniqueness in genome
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The uniqueness of an oligo in the genome was measured as the theoretical binding

energy of the worst potential cross-hybridization to its homologous regions in the

genome. Potential cross-hybridizations are detected by BLASTN alignment, followed by

binding energy calculation using the energy module. The uniqueness score of an

oligonucleotide is the most stable binding energy between the oligo and the genome

excluding the corresponding ORF's cognate region.

In earlier versions of AOS, we used the number of sequence identity in BLAST

alignment between the oligo sequence and the genomic cross-hybridization targets as our

measurement of cross-hybridization. But our experimental results demonstrated that this

metric was a poor predictor for cross-hybridization of different hybridization binding

structures. A DNA-DNA duplex becomes less stable when bulges (sequence

mismatches) are introduced into the middle of the duplex. Given the same number of

perfect base pairing (sequence identity), hybridization signal strength is stronger when

the matches form a continuous stretch compared to a different duplex structure with

mismatches distributed in the middle (Figure 3-4).

To overcome the difficulty to predict cross-hybridization by simple sequence

identities, we implemented the energy module to calculate hybridization binding energy,

in order to unify predictions of different binding structures into a single formulation.

The binding energy calculation is based on the nearest neighbor model for calculating

nucleic acid helix formation and melting temperatures [19], RNA secondary structure

prediction algorithms [20,21], and experimentally estimated thermodynamic free energy

parameters for oligonucleotide duplexes and RNA secondary structures [22-28].
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In addition to careful modeling of the duplex energetic property, the accuracy of

the binding energy calculation is highly dependent on initial accurate identification of

those DNA duplexes. AOS uses BLASTN alignment program to identify those regions

between the ORF and the genome, and then uses the energy module to calculate the

binding energy between the aligned regions.

1.1 Binding energy score

The binding energy score is the summation of the following three terms: the base

pair stacking energy between the two adjacent base pairs (such as dAA/dTT), the initial

binding energy required for helix initiation, the interior and bulge loop destabilizing

energy.

The base pair stacking energy is derived based on the nearest neighbor rules, i.e.,

the energy of the duplex is the addition of free energy terms of each adjacent Watson

Crick base pair, which includes energy contribution for both base pair stacking and

hydrogen bonding. For example, in the following five base pair duplexes, the first two

base pairs (dAT/dAT) have a stacking energy of—0.9 kcal/mol, the second and third base

pairs (dTT/dAA), –1.2 kcal/mol; the third and fourth base pair (dTG/dCA), –1.5 kcal/mol

and so on. The final stacking energy term is (–0.9) + (−1.5) + (–1.2) + (−2.3) = -5.9

kcal/mol.

A T T G C
| | | | |
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Individual stacking energy parameters were obtained by experimentally estimating

nearest neighbor parameters for all ten adjacent base pair combinations [22].
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The helix initiation energy term models the free-energy change for initiation of

DNA duplex, which was estimated experimentally to be +3.4 kcal/mol [22,28].

The interior loop or bulge loop can form when mismatches are closed by at least 2

base pairs. Mismatches on both strands result in the formation of an interior loop. If a

mismatch only exists on one strand, the formation is an interior bulge. Both interior loop

and bulge contributed destabilizing free energy to the duplex. The loop or bulge

destabilizing energy is modeled as the sum of the following three terms: an entropic term

that depends on the size of the loop or bulge; terminal stacking energy for the mismatch

base pairs adjacent to both closing base pairs, which sometimes provides a favorable free

energy; an asymmetric loop penalty for non-symmetric interior loops [20]. The terminal

mismatch stacking energy parameters such as dAA/dTA (+0.61 kcal/mol) were estimated

experimentally using short nucleic acid duplexes [23-27]. The parameters for the

entropic term were derived from parameters used in RNA secondary structure prediction,

which were empirical approximations of experimental measurements (Table 2-1) [21].

The parameter for asymmetric loop penalty was based on a study of internal loops

in oligonucleotides by Peritz et al. [29,30]. An asymmetric internal loop with a size of

N1 and N2 nucleotides should be penalized by N*f(M) kcal/mol, where N=|N1–N2|, M

is the minimum of 5, N1 or N2, and f(1) = 0.7, f(2) = 0.6, f(3) = 0.4, f(4) = 0.2 and f(5)=

0.1.

The nearest neighbor model had good agreement with experimental data on short

duplexes. It is well known that the binding free energy and melting temperature of

double-stranded DNA molecules plateau at a longer length. However, evidence for size

limitation of the nearest neighbor model and parameters is sparse. In addition, the above
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thermodynamic parameters used in our binding energy calculation were estimated from

experimental measurements on short oligonucleotide duplexes (<20 bp). Therefore,

although we used both to model long oligonucleotide duplex binding stability, the

binding energy values should be viewed as a function of binding stability on a relative

scale, rather than be interpreted as the absolute free energy generated during DNA duplex

formation.

1.2 Energy score correlates linearly with measured hybridization strength on

70mer oligonucleotides

Although the energy module and parameters are probably not an accurate

depiction of the true binding energetic property of long oligonucleotide DNA duplexes,

we were interested in using the energy score as a relative measurement of hybridization

strength, which could then be used to estimate potential cross-hybridization. To evaluate

the utility of the binding energy score to measure cross-hybridization, we conducted

experiments on a series of 70mer oligonucleotides with various predicted duplex

StructureS.

We designed several series of 70mer microarray probes that target the

Plasmodium falciparum genome. In each series, there was a perfect 70mer that matched

the coding sequence of an ORF perfectly; the rest of the series was composed of 70mers

with various numbers of mismatched base pairs distributed either at the terminals or in

the middle of the 70mer. We hybridized transcripts extracted from various stages of P.

falciparum parasites and then obtained the relative hybridization signal of the

mismatched 70mers to the perfect 70mer in each series. The binding energy score of

each mismatched 70mer was computed for the duplex (alignment between the
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mismatched and perfect 70mers). Results demonstrated that there existed a linear

relationship (Pearson correlation coefficient r = -0.91) between binding energy scores and

the relative hybridization strength (Figure 3-3).

1.3 Speed Optimization

Binding energy scores are calculated as the sum of many independent terms, such

as the base pair stacking energy and loop destabilizing penalties. Therefore, for two

adjacent oligonucleotide probes (with a single base pair offset), their energy score

calculation involves a large degree of redundancy. In addition, potential cross

hybridization regions were initially identified by BLAST, followed by the binding score

calculation, if we simply used a single oligonucleotide sequence as the input to the

energy module, essentially the same BLAST operation would be carried out for adjacent

oligonucleotides as well. Both kinds of redundancy would dramatically decrease the

speed of the energy module.

To increase the speed, we optimized the energy module by the following

strategies. First, we only performed a single BLAST alignment using the entire ORF

sequence. Second, we computed the free binding energy score for an entire alignment

instead of for a single oligonucleotide, excluding any alignment from the cognate

sequence region. Third, in addition to a single energy score, we recorded the score

contributions from every adjacent base-pair in the entire alignment. To derive the

binding energy score for an oligonucleotide, we simply summed up the score

contributions from the corresponding regions in the alignment. Since an oligonucleotide

sequence could be covered by more than one alignment, the final binding energy score

was the most stable energy score (the largest absolute value).
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2. Internal secondary structure

The secondary structure module measures the potential of forming an internal

hairpin structure within an oligonucleotide. A fast approximation for detecting internal

hairpins is by aligning the oligo sequence with its reverse compliment. We implemented

the Smith-Waterman algorithm to search for the optimal local alignment [31] and used

the alignment score to represent the potential to form internal hairpins. PAM47 DNA

matrix is used (match +5, mismatch –4, gap opening —7, gap extension 0) in the

implementation for local alignment.

Sophisticated RNA secondary structure prediction methods such as Mfold were

available [32] and likely to generate more accurate results, but they are much slower

computationally.

3. Sequence complexity

The sequence complexity module measured the level of oligo sequence

complexity using the LZW compression algorithm [33]. The advantages of this method

are fast computational speed and no need for prior information for low complexity

sequence elements. It is implemented as the size of the oligonucleotide sequence minus

its compressed version in bytes.

4. GC content

GC content is a key factor determining DNA duplex melting temperature. We

used it as the proxy for melting temperature, calculated as the the number of GC base

pairs over the length of the oligo.

Step IV: Optimum selection
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The last step of the AOS algorithm is to select a set of optimum oligonucleotide

sequences based on the parameters computed in Step III. An ideal oligo probe has a

small negative value of binding energy score (unique in the genome), a small secondary

structure score (lack of internal hairpins), a small sequence complexity score, a %GC

close to the user-defined target 9%GC, and close to the 3’ end of the ORF sequence.

We implemented a rule-based filtering procedure to select for the optimum

oligonucleotide. The first filter is the uniqueness filter. Oligos belonging to a single

ORF are ranked first by their uniqueness scores (binding energy score). Oligos scoring

better than both an optional user-defined threshold and the default cutoff are kept in the

candidate pool. The default cutoff is defined as the larger (smaller absolute value, note

energy scores were negative values) of the following two terms: the 5th percentile in the

rank, and the best uniqueness score minus 5 kcal/mol.

The second filter is to eliminate any oligos with user-defined (optional) unwanted

sequences, such as a long stretch of AT sequence.

The third filter operates on the sequence complexity parameter and secondary

structure score in parallel. Similar to the operation on energy scores, oligos that pass the

cutoffs can proceed further. Although it only operates on the current candidate pool

(oligos that passed the previous two filters), the cutoffs are determined using the

complete set of oligos belonging to a single ORF. The initially cutoffs are determined at

the top 33rd percentile of the rank by either the secondary structure score or the sequence

complexity score. If there is no candidate oligo that can pass both thresholds

simultaneously, each cutoff is relaxed incrementally (secondary structure score cutoff
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increases by 10; sequence complexity score cutoff increases by 1) until one or more

oligos pass both thresholds simultaneously.

The fourth filter operates on the 9%GC parameter. Initially, only oligos with the

user-defined target 9%GC can pass. If no oligo in the current candidate pool satisfies this

criterion, the 9%GC boundaries are relaxed by 1 percentage point at a time in each

direction until one or more oligos score within the range.

The final filter operates on the 3’ proximity to select the oligo that is closest to the

3’ end of the parent ORF. This oligonucleotide is our optimum selection. At this point,

AOS reaches its final step to generate program output of the optimum oligo selection.

Occasionally, if a user wants to design more than one oligo per ORF, AOS will

attempt to select non-overlapping (must be >10 bp apart at the oligo starting positions,

but typically ~50bp) oligos from the current pool. If this is not successful using the

current candidates, the selection procedure iterates from the combined secondary

structure and sequence complexity filter to the 3’ proximity filter, until the desired

number of oligos is selected, or when the cutoffs are fully relaxed and the candidate pool

reaches its maximum size.
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Table 2-1 Estimated internal loop destabilizing energy

size Interior loop bulge
1 0.0 3.9
2 4.1 3.1
3 5.1 3.5
4. 4.9 4.2
5 5.3 4.8
6 5.7 5.0
7 5.9 5.2
8 6.0 5.3
9 6.1 5.4
10 6.3 5.5
11 6.4 5.7
12 6.4 5.7
13 6.5 5.8
14 6.6 5.9
15 6.7 6.0
16 6.8 6.1
17 6.8 6.1
18 6.9 6.2
19 6.9 6.2
20 7.0 6.3
21 7.1 6.3
22 7.1 6.4
23 7.1 6.4
24 7.2 6.5
25 7.2 6.5
26 7.3 6.5
27 7.3 6.6
28 7.4 6.7
29 7.4 6.7
30 7.4 6.7

The table is obtained from http://www.bioinfo.rpi.edu/~zukerm/cgi

bin/efiles.cgi?T=37#LOOP. The free energy parameters are for loop size equal or

smaller than 30 bp and the unit is kcal/mol. For loops larger than 30 bp, an extra term,

1.75RTln(size/30), is added.
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Part II. AOS Documentation

License

ArrayOligoSelector (AOS) is freely available under GPL license. Please

acknowledge us approporiately if you use the program or any modules within the

program. BLAT program is included in AOS releases as part of the components, which

requires a license for commercial use. If you intend to use AOS for any commercial

reason AND to use the "blat" or "gfclient" options, you need to obtain the approariate

license for BLAT.

Download and installation

After successfully downloading AOS source code from the program’s webpage

(http://arrayoligosel.sourceforge.net), the code needs to be uncompressed first, and then

the code is ready to use on a Linux system. For other UNIX systems, see section

“System Requirements”.

System requirements

Platform

It is easiest to set up AOS under the Linux operating system. AOS has been

tested on Redhat Linux 6.1, 6.2, 8.0 and 9.0. It can be adapted to other UNIX

environments such as Mac OS X. Users need to replace the following executables,

blastall (NCBI), formatdb (NCBI), blat (UCSC) and gfclient (UCSC), according to the

specific platform.

Mac OS X

* *

-->
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Mac OS X users also need to have the Developers Tools package installed on the

system.

Python

Python interpreter version 2.2 or above is required. It can be downloaded at

http://www.python.org.

Input sequences

Input sequences and the complete genome sequences are needed. Both are

required to be DNA sequences and in FASTA format.

Input sequences are the ORF sequences in the genome. The complete genome

sequences should be either the complete set of gene sequences (exons), or the complete

genomic sequences (exons, introns and intergenic regions). Two versions of AOS are

provided for each scenario: exon version and contig version. Please refer to sections

“Running AOS” and “Exon vs. Contig Version” for the differences in usage and

implementation. If only partial genomic seqeunces are available, AOS will find unique

oligos within the incomplete genome. Users should bear in mind that the oligos might

have homologous sequences in the remaining partsof the genome.

Exon vs. Contig version - How does AOS define the cognate regions?

The cognate region of an ORF is the genomic location where the ORF originates.

Accurate identification of cognate regions is very important because any homologous hits

from these regions will be excluded in the uniqueness caculation.
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The difference between the exon and contig versions lies in the conceptual

definition and the identification of the cognate regions. In the exon version, the cognate

region is simply defined as the input sequence itself. On the contrary, it is more

complicated in the contig version. Each ORF is first aligned against the complete

genomic sequence using BLAST or BLAT (user choice), segments of 100% identical

alignment are then stitched back together through a heuristic combinatorial process to

recapitulate the exon pattern. Only combinations that can generate the original input

sequence in a correct order are defined as the cognate regions. To accommodate cases

where gene duplication exists, multiple cognate regions on different chromosomes are

allowed. The cognate regions are recorded in the file "groupfile" in AOS's root directory.

See section “Output File Description” for detailed description.

Running AOS

AOS has two sub-programs that run in series, the computation program followed

by the selection program. The computation program calculates the following parameters

for oligos starting from every position in the input sequence: uniqueness, sequence

complexity, secondary structure, GC content and base pair starting position. Parameters

generated by the computation program are stored in a series of output files, which are

then used by the selection program to select an optimum set of oligos that are unique in

the genome, with a low level of internal repeats and secondary structure, sharing a narrow

range of GC percentage and close to the 3’ end of the gene.

First Program - the computation program
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Pick?0_scriptl (exon version) and Pick'70_script] contig (contig version) are the

command line scripts to execute the computation program.

To run the scripts, users type "/Pick70 script!" or "./Pick70 script] contig" on

the command line and the usage instruction will show as screen output. Four command

line arguments are required for Pick70_scriptl: filenames of the input and the genome

sequence files, the length of the oligo and the exclusion of lowercase sequences. The

exclusion argument has two choices: yes and no. If it is set as yes, then when an oligo has

greater than 10% of its sequence in lowercase, parameters for the oligo will not be

computed and the oligo will not be selected. Those oligos will be flagged with “F” in the

computation program output files. This feature can be used in combination with a

popular repeat masking program, Repeatmasker, to exclude highly repetitive sequences

(such as low complexity regions and the alu element in the human genome) from

computation and selection, thus speeding up the AOS computation program dramatically.

An additional argument is required for Pick'70_script] contig (five total). The

fifth argument is the method for sequence alignment for cognate sequence identification

and the choices are BLAST, BLAT or "gfclient". Both BLAT and gfclient are Blast-like

alignment tools ideal for fast aligning exons to the genomes (Kent 2002). AOS runs

faster if Blat or gfclient is used. Although BLAT and gfclient are essentially the same,

gfclient requires setting up the gfserver in advance and BLAT uses more memory.

Two test files are provided: "test input" and "test genome".

Usage examples:

./Pick?0_scriptl test input test genome 70

./Pick?0_script] contig test input test genome no blat
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./Pick'70_script] contig test input test genome no blast

./Pick'70_script] contig test input test genome yes blat

./Pick70 script] contig test input test genome yes blast

Second program – the selection program

Pick?0_script2 is the command line script to execute the selection program, which

should be invoked after the computation program finishes.

To run selection program, users type “./Pick?0_script2” on the command line and

the usage instructions will show on the screen. Three command line arguments are

required: the target GC percentage, the length of oligos, and the number of oligos per

input sequence. There are also four optional arguments. The first optional argument is

the user defined uniqueness cutoff as calculated in binding energy (the default value is

top 5% and within 5 kcal/mol from the best uniqueness score in a given input sequence).

The remaining three optional arguments are the nucleotide composition, maximum length

and maximum tolerance level of user-defined exclusion (masking) sequence. These three

optional arguments belong to a set, which should be provided together or neither should

be provided. These masking arguments can be used to exclude stretches of sequences

with only certain nucleotide compositions such as a long stretch of AT sequence. For

example, the following argument combination “AT, 20, 0.1” represents the exclusion of

any oligo with a continuous stretch of sequence that is longer than 20 bp with less than

10% G and C.

Usage Examples:

./Pick70 script2 28 70 1

./Pick70 script2 28 70 1-3520 AT 0.1

* *

==
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./Pick'70_script2 28 70 1 -35 20 AT0

Design parameters can be specified by users

Target average GC content

Number of oligos per input sequence

Uniqueness cutoff (optional; if not specified, use default)

User-defined masking sequence composition, length, and tolerance level

(optional)

What are the ranges for the parameters?

In order to help users gain a better feel of the parameters of the computation program

calculated for each oligo, we show here their ranges for 70mer oligonucleotides

belonging to the test sequences that are included in the software distribution. Note these

ranges will change for oligos of different length or generated from different source

Sequence.

Uniqueness score (binding energy): 0 to -150 kacl/mol; smaller absolute value

means a better oligo which is more unique and has less cross-hybridization.

Secondary structure: 19 to 187; smaller value indicates a better oligo which has

less secondary structures.

Sequence complexity: 27 to 58; smaller value means a better oligo which has less

low complexity sequences.

GC content: GC percentage in the oligo sequence. The range is from 0 to 100

percent.
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Output files

Final results files — generated by the selection program

• oligo fasta

“oligo fasta” has the final selection results of the selected oligonucleotide

probe sequences in FASTA format. The identifier of an oligo is its parent input

sequence identifier plus the starting position of the oligo concatenated by the

underscore character.

• oligo dup

“oligo dup” stores the parameters for every oligo in the final selection.

The parameters are scores for an oligo's GC percentage, secondary structure,

sequence complexity, uniqueness and its genome targets,

“oligo dup” has the following format:

Line 1 >oligo id GC percentage sequence complexity_score

secondary_structure score

Line 2 primary target_identifier binding energy_of_the_primary target

location of the primary target secondary target_identifier

binding energy_of_the_secondary target

location_of_the_secondary target

• nodesign

"nodesign" stores the identifiers of input sequences which do not have any

oligo selected because no oligo in those sequences can pass all the selection filters
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(uniqueness, user-defined exclusion sequence composition, and not flagged by the

lowercase option).

Intermediate results files — generated by the computation program

output■ ), 1, 2, ...

Oligo parameters calculated by the computation program are stored as a

series of files named “output■ )”, “outputl” and ..., depending on the size of the

results. Those files can be used by users who are interested in extracting the oligo

parameters for other purposes or writing costomized selection program.

The format for the “output” files is shown as the following. Each line

records information for a single oligo. Fields are deliminated by the “TAB”

character:

Line 1 oligo start position uniquness score GC percentage

sequence_complexity secondary structure oligo sequence

primary target_identifier primary target binding energy

primary target_location secondary target_identifier

Secondary target binding energy secondary target_location

groupfiles

The “groupfile” stores the information of the cognate genomic region for

the input sequences. The file format is shown as the following:

Line1 [input sequence_identifier]

Line 2 genomic target_identifier

=
>
=º
-**

r:
--£
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Line 3 +/- input start position input end position target start position

target end position

“+/-” represents the plus or minus strand of the cognate region in its

genomic target. If an input sequence is from a multi-exon ORF, lines 2 and 3 are

repeated for each exon.

Speed

It took 12 hours to design the 70mer oligonucleotide genome array for

Plasmodium falciparum (12Mbp coding sequence, 23Mbp genomic sequence) on a dual

700MHz Linux system. The option used for cognate sequence identification was BLAT. º
-*

-* ~.
º
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Chapter 3. Application of the AOS system to the

genome of Plasmodium falciparum

This chapter is a reprint from the following reference:

Zbynek Bozdech, Jingchun Zhu, Marcin P Joachimiak, Fred E Cohen, Brian

Pulliam and Joseph L DeRisi. (2003) Expression profiling of the schizont and

trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray.

Genome Biology, 4(2):R9.
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ABSTRACT

Background

The worldwide persistence of drug-resistant Plasmodium falciparum, the most lethal

variety of human malaria, is a global health concern. The P. falciparum sequencing

project has brought new opportunities for identifying molecular targets for antimalarial

drug and vaccine development.

Results

We developed a software package, ArrayOligoSelector, to design an open reading frame

(ORF)-specific DNA microarray using the publicly available P. falciparum genome

sequence. Each gene was represented by one or more long 70 mer oligonucleotides

selected on the basis of uniqueness within the genome, exclusion of low-complexity

sequence, balanced base composition and proximity to the 3' end. A first-generation

microarray representing approximately 6,000 ORFs of the P. falciparum genome was

constructed. Array performance was evaluated through the use of control oligonucleotide

sets with increasing levels of introduced mutations, as well as traditional northern

blotting. Using this array, we extensively characterized the gene-expression profile of the

intraerythrocytic trophozoite and schizont stages of P. falciparum. The results revealed

extensive transcriptional regulation of genes specialized for processes specific to these

two stages.

Conclusions

DNA microarrays based on long oligonucleotides are powerful tools for the functional

annotation and exploration of the P. falciparum genome. Expression profiling of
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Background

Plasmodium falciparum, a parasitic protozoan, is the causative agent of the most

lethal form of human malaria. It is responsible for 300-500 million infections per year in

some 90 countries and regions throughout the tropical and subtropical world. Of these

clinical cases, approximately 2.1 million result in death annually [1]. In areas where

mosquito abatement has failed, chemotherapy, consisting of a limited selection of

antimalarial agents, is the only defense against this disease. The increase in drug

resistance throughout the malaria endemic regions is cause for great concern and calls for

the development of new antimalarial measures, which would involve a larger variety of

drug targets as well as a wider array of vaccine strategies (reviewed in [2,3]).

The study of malaria will be greatly helped by the publicly available complete

genome sequence of P. falciparum. The sequencing project, driven by the Sanger Centre,

the Institute for Genomic Research (TIGR), and Stanford University is essentially

complete [4]. The sequence of the completed chromosomes are available for download

from each sequencing center and from the Plasmodium Genome Resource, Plasmo■ )B

[5,6]. Preliminary analysis of the 23 megabase-pair (Mbp) P. falciparum genome

indicates the presence of approximately 5,400 genes spread across 14 chromosomes, a

circular plastid genome and a mitochondrial genome. Strikingly, more than 60% of the

predicted open reading frames (ORFs) lack orthologs in other genomes [4]. This fact

underscores the need to elucidate gene function, yet many of the tools that have propelled

the study of model organisms remain inefficient or nonexistent in Plasmodium. Despite

recent improvements in P. falciparum transformation techniques, [7] the efficiency of

stable transfection under a direct drug selection remains approximately 10°, making
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knockout and gene replacement experiments difficult, and genetic complementation

strategies nearly impossible. Genome-wide expression profiling by microarray

technology provides an easy alternative for the functional genomic exploration of P.

falciparum.

In organisms ranging from bacteria to humans, expression profiling has proved a

powerful tool. Profiling has been used to gain important insights into processes such as

development, responses to environmental perturbations, gene mutation, pathogen and

host response, and cancer [8,9,10,11,12,13,14]. Expression profiling has already been

successfully applied to the partial genome sequence of P. falciparum, and has been used

to characterize the role of previously unannotated genes [15,16,17].

Here we present the design and assembly of a long-oligonucleotide P. falciparum

gene-specific microarray using the currently available genomic sequence generated by

the Malaria Genome Consortium [18,19,20). During the course of this work, we have

developed software, improved by experimental data and an open-source policy, for

rapidly selecting unique sequences from predicted ORFs of any genome. Subsequently,

we constructed a long-oligonucleotide-based P. falciparum microarray, which we used to

evaluate changes in the global expression profile between two distinct stages of P.

falciparum erythrocytic-stage asexual development - mid-trophozoite and mid-schizont.

The large number of differentially expressed genes detected in this analysis suggests that

extensive transcriptional regulation has a major role in the functional specialization of

parasite development.

Results and discussion
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P. falciparum ORF predictions

At the outset of these studies, a total of 27.6 Mbp of P. falciparum genomic

sequence was obtained from the publicly available sources presented by the Malaria

Genome Consortium [18,19,20) in October 2000. The sequence comprised two

completely assembled chromosomes, the complete mitochondrial and plastid genomes,

and the sum of all the partial contigs from the remaining chromosomes. ORF predictions

were carried out using GlimmerM, a gene-finding tool trained with P. falciparum specific

sequences [21,22]. Using default parameters, GlimmerM frequently yielded a large

number of overlapping predictions (competing gene models) and thus additional filtering

of the initial prediction output was required. As slight overprediction of ORFs is

generally desirable for the purpose of expression array building, the post-prediction

filtering of the GlimmerM output was modified with respect to the process used by the

Malaria Genome Consortium [21]. Briefly, individual predictions that overlapped and

were on opposite strands or in different reading frames were retained. For competing

predictions within a given GlimmerM gene model, ORFs that were extended downstream

by at least 300 bp and were within 300 bp of the total size compared to the size of the

largest prediction were chosen. In all other cases, the largest predicted ORF was selected.

This selection method resulted in 290 ORF predictions for chromosome 2, whereas the

Malaria Genome Consortium selected 210 for the same chromosome [21].

The first round of predictions, carried out on the publicly available genomic

sequence as of August 2000, yielded 8,008 putative ORFs. The predicted ORFs are

available as additional data with the online version of this paper (see Additional data

files) and from [23]. As a first step to annotation, the translation of all predicted ORFs

*
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were used to search the Astral, SwissProt, and non-redundant (NR) databases for

sequence similarities using the Smith-Waterman algorithm [24]. In addition, all ORF

predictions were linked to their counterparts in PlasmodB [5,6].

ArrayOligoSelector: array element design

To construct a gene-specific microarray of the P. falciparum genome, we

designed 70 mer oligonucleotide array elements. We chose this length for a number of

reasons. Long oligonucleotides are a highly sensitive alternative to PCR products and

provide a means to readily distinguish between genes with high degrees of sequence

similarity [25]. In addition, the presence of various types of repetitive sequences and

highly homologous gene families in the AT-rich P. falciparum genome contributes to a

high rate of PCR failure ([17] and J.L.D., unpublished results). A software program,

ArrayOligoSelector, was developed specifically for the purpose of systematically

selecting gene-specific long oligonucleotide probes for entire genomes. The latest version

and complete source code for ArrayOligoSelector is freely available at [26]. For each

ORF, the program optimizes the oligonucleotide selection on the basis of several

parameters, including uniqueness in the genome, sequence complexity, lack of self

binding, and GC content (Figure 1). Similar approaches to oligonucleotide design have

previously been described, but the exact algorithms, source code, and/or accompanying

hybridization data are not available [25,27,28].

ArrayOligoSelector helps ensure complete genome coverage and optimal array

hybridization while avoiding several potential problems originating from the peculiar

characteristics of the P. falciparum genome. The algorithm attempts to minimize cross

=
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hybridization between the oligonucleotide and other regions of the genome. To evaluate

the potential for cross-hybridization, early versions of ArrayOligoSelector used a simple

BLASTN alignment identity [29]. Although this method prevents the selection of

troublesome sequences, it does not take into account the effect of mismatch distribution

or base composition. Subsequent versions of ArrayOligoSelector were improved by

calculating a theoretical energy of binding between the oligonucleotide and its most

probable cross-hybridization target in the genome ('second best target'). The binding

energy (kcal/mol) is calculated using a nearest-neighbor model using established

thermodynamic parameters [30,31,32,33,34,35]. Thus, a sequence with high cross

hybridization potential will have a more stable binding energy with a larger absolute

value. In contrast, a sequence unique in the genome will yield a smaller absolute value

for the binding energy. A representative plot of the calculated binding energies for all

possible 70 bp oligonucleotides from a putative var gene (Plasmo■ )B v4.0 annotated gene

IDPF08_0140) is shown in Figure 2a.

An important aspect of oligonucleotide design for microarray hybridization is

avoiding secondary structures within the oligonucleotide, as these are likely to be

detrimental to hybridization performance. To avoid selecting oligonucleotides with

secondary complex structure, ArrayOligoSelector uses the Smith-Waterman algorithm

with the PAM47 DNA matrix to calculate the optimal alignment score between the

candidate oligonucleotide sequence and the reverse complement of that sequence [24]. A

high Smith-Waterman score indicates the potential to create secondary structures (Figure

2b).
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The presence of low-complexity sequence could also result in significant

nonspecific cross-hybridization. For example, the P. falciparum genome contains a large

number of low-complexity sequence elements as a result of a high frequency of

continuous stretches of A and T nucleotides in both the non-coding and the coding

regions. ArrayOligoSelector automatically detects such sequences by subjecting

candidate oligonucleotide sequences to a lossless compression [36]. The compression

score, calculated as the difference in bytes between the original sequence and the

compressed version, is inversely proportional to complexity (Figure 2c). Using this score,

repeats of essentially any nature are detected in a computationally efficient manner.

In addition, in order to avoid specific sequence features, ArrayOligoSelector

supports filtering based on user-defined patterns. This feature can be used to implement

filtering rules based on empirically derived data. Finally, the melting temperature of an

oligonucleotide is largely determined by its GC content. As is the case with most ORFs,

there exists a large range of %GC values (< 10 to > 60%) over a 70 bp window (Figure

2d). For this reason, a user-defined 9%GC target range is used by ArrayOligoSelector such

that the majority of the array elements will share a similar base composition and

hybridization properties across the array.

Given the above parameters, ArrayOligoSelector evaluates every 70 mer sequence

within an ORF and chooses an optimal set on the following criteria. The uniqueness-filter

requires oligonucleotides to satisfy two simultaneous threshold criteria based on the

calculation of the binding energy to their second-best target (the best target is itself).

First, the oligonucleotide must rank among the top 5% of the unique or almost unique 70

mers in the entire ORF. Second, its binding energy must be within 5 kcal/mol of the best
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candidate for the ORF. In addition, an optional user-defined energy threshold can operate

in conjunction with the default threshold. Initial settings for the low-complexity and the

self-binding terms allow the top-scoring 33% of 70 mers to pass to the next selection

step. Finally, an optional 'user-defined sequence filter'simply eliminates the 70 mer

candidates containing the defined sequences. These four filters operate on the entire set of

70 mer candidates for a particular ORF and generate four independent output sets. The

intersection of the four outputs is then subjected to the final selection. If no common

oligonucleotide is identified in the first intersection, the self-binding and complexity

filters are incrementally relaxed until an intersection becomes available. The final

selection of candidate oligonucleotides depends upon the 9%GC filter and 3'-end

proximity ranking. Initially, oligonucleotides are allowed to pass if they meet the user

specified 9%GC. If no oligonucleotide with the desired GC content is found, the target

%GC range is relaxed by one percentage point in each direction until one or more

oligonucleotides pass. As a final step, a single candidate, closest to the 3' end of the gene

is chosen. Finally, ArrayOligoSelector generates an output file containing the

oligonucleotide selections for each putative ORF.

From our initial set of predictions, a total of 6,272 70 mer oligonucleotides were

selected and synthesized. For our first pass of malaria oligonucleotide selections, the

earlier version of ArrayOligoSelector utilizing the BLASTN-based identity threshold was

used. The identity cutoff was adjusted to a very conservative value of ~ 30 bp of identity.

The initial setting of the GC content filter was set to 28% GC (73°C Trn. Subsequently,

with the release of additional sequence information, a new set of predictions was

generated in April 2002 and an additional 1,025 oligonucleotides were selected using the
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upgraded version of ArrayOligoSelector. In this selection, the user-defined uniqueness

threshold was set at -35 kcal/mol, the value at which cross-hybridization is essentially

eliminated (Figure 3). The GC content target was set at 28%. The sequence and location

of each oligonucleotide is available online [23]. The experiments described in the

following section were conducted with the first set of predictions only. As additional

annotations become available for the whole genome sequence, additional

oligonucleotides will be selected and added to the existing collection. We expect the final

set to contain approximately 8,500 oligonucleotides.

Oligonucleotide performance

Hughes et al. [25] showed that 60 mer oligonucleotides make highly sensitive

specific microarray elements for expression profiling of Saccharomyces cerevisiae [25].

The oligonucleotides used in that study were synthesized in situ using ink-jet technology

whereas the oligonucleotides used in our study were commercially synthesized and

subsequently printed using mechanical deposition. Similarly to the experiments of

Hughes et al., we wished to test experimentally the effect of mismatches on sensitivity

and specificity of 70 mer oligonucleotides in the context of a complex hybridization

mixture (P. falciparum total RNA). Ten separate malaria ORF predictions were

arbitrarily selected for analysis and for each of these ORFs a set of ten oligonucleotides

were synthesized. The first oligonucleotide in each set represents the original 70 mer

selection from ArrayOligoSelector. Each successive oligonucleotide within a set contains

an increasing number of mutations made in increments of 10%. Thus, the second

oligonucleotide in each set had seven bases (10%) altered, while the last oligonucleotide
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had 63 bases (90%) mutated. For the first set of five ORFs (Figure 4a,4b,4c,4d,4e), which

is referred to as the 'distributed set', both the position and the identity of each mutation

was random. For the second set of five ORFs (Figure 4g,4h,4i,4j.4k), referred to as the

'anchored set', the mutations in each oligonucleotide were limited to the ends of the

sequence. In this manner, a contiguous stretch of perfectly matched bases was always

preserved in the center of each oligonucleotide.

Figure 4 summarizes normalized hybridization intensities of control

oligonucleotides obtained from the global gene-expression comparisons between

trophozoite and schizont stages. The results originate from the six microarray

hybridizations presented in Figure 5 and 10 additional hybridizations available as

additional data files [23]. The resulting hybridization intensity measurements for each

oligonucleotide were averaged across all hybridizations and scaled as a fraction of the

average intensity of the perfect-match oligonucleotide for each set. As is evident from

Figure 4a,4b,4c,4d,4e, the presence of internal mismatches (bubbles and bulges) had a

large effect on hybridization performance: oligonucleotides with 10% mismatches (7

bases) suffered an average reduction of 64% in hybridization intensity when compared to

the perfect match, while oligonucleotides with 20% (14 bases) or more mismatches were

reduced by an average of 97% (Figure 4f). For the anchored set (Figure 44g,4h,4i,4j.4k),

a more gradual hybridization trend was observed. Mutating the terminal 14 bases (7 bases

at each end) resulted in an average loss of 49% of the maximal hybridization intensity.

Not until 42 bases had been mutated (21 bases at each end) did the relative intensity of

hybridization drop by an average of 97.5% (Figure 41). In agreement with the findings of

Hughes et al. [25], the data from the anchored set of oligonucleotides reveal a strong
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relationship between the length of contiguous match (the equivalent of oligonucleotide

length) and overall hybridization performance.

To measure the extent to which the energy calculation implemented in

ArrayOligoSelector matches reality, we have plotted in Figure 3 the calculated energy of

the 100 control oligos shown in Figure 4 and their relative intensities of hybridization.

The calculated energy and relative intensity of hybridization correlate at r = 0.91. For

comparison, the relative intensity of hybridization and number of nucleotide identities

correlate at r = 0.72. This indicates that a calculated binding energy approach may be

used to estimate the potential for cross-hybridization for any sequence relative to the rest

of the genome. The specificity for each oligonucleotide is uniquely and computationally

determined and expressed as a binding energy (kcal/mol).

To further address the question of specificity of oligonucleotide hybridization to

their targets in a complex sample we introduced a set of probes targeting a set of 19 non

repetitive sequences from S. cerevisiae to the microarray. To control for the nucleotide

bias of the malaria genome relative to yeast, the selection criteria for this set were

identical to selection of the plasmodial microarray elements. The average GC content of

the S. cerevisiae oligonucleotides was 31.5%, whereas the average GC content of

plasmodial oligonucleotides is 32.5%. The average signal-to-background ratios across all

hybridizations for these negative control spots was less than twofold, which is well below

the conservative fivefold signal-to-background threshold used to filter data (see Materials

and methods). In addition, a series of 10 hybridizations was carried out where total RNA

from an asynchronous parasite culture was hybridized against PCR products

corresponding to the negative control S. cerevisiae sequences. In these hybridizations the
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yeast PCR fragment hybridized strictly to its cognate sequence, while the average signal

to background value for plasmodial elements in the same channel was 1.17+0.05. In no

individual case did a plasmodial element yield a signal greater than 2.3% of the target

hybridization signal intensity. The results of these microarray hybridizations are available

as additional data files [23].

To assess whether separate oligonucleotides designed to represent the same target

gene perform in a similar manner, we examined three distinct situations: elements

dispersed over a long single exon ORF (Figure 6a), overlapping oligonucleotides (Figure

6b), and oligonucleotides representing multiple exons of a single gene (Figure 6c). In

each case we observed consistent oligonucleotide performance.

Gene-expression profiling of trophozoites and schizonts

We chose a direct comparison of the trophozoite and schizont stages of the P.

falciparum asexual intraerythrocytic life cycle as a first step toward comprehensively

profiling all life-cycle stages of this parasite. The trophozoite and schizont represent two

distinct developmental stages within the 48-hour plasmodial erythrocytic life cycle.

These stages vary greatly in morphology, biochemical properties, and transcriptional

activity (reviewed in [15,37]). The mid-trophozoite stage, 18-24 hours post-invasion,

contains a highly transcriptionally active nucleus with abundant euchromatin. In addition,

trophozoites are characterized by massive hemoglobin ingestion, intake of nutrients from

the surrounding medium, increasing concentration of cytoplasmic ribosomes and rapid

formation of organelles. In contrast, the mid-schizonts, at 36–42 hours post-invasion, are

characterized by DNA replication (16-32 copies) and compaction into newly formed
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nuclei. In addition, maturation of merozoite cells begins at the schizont stage and is

characterized by the appearance of merozoite organelles such as the rhoptry and dense

granules. The several trophozoite- and schizont-specific genes identified previously

provide an excellent source of positive controls for the experiments described below.

For microarray hybridization, total RNA was prepared from synchronized in vitro

P. falciparum cultures representing the trophozoite stage and the schizont stage (see

Materials and methods). Six independent hybridizations were carried out; in three, the

trophozoite-derived cDNA was labeled with Cy3 and the schizont-derived cDNA with

Cy5. In the other three hybridizations, the fluorophore assignment was reversed. Of the

genes assayed, 854 features displayed a differential expression greater than twofold

(Figure 5): 525 showed higher relative transcript abundance in trophozoites than in

Schizonts, whereas 326 had greater relative transcript abundance in schizonts. Linear

regression ratios were calculated for each possible pair of microarray hybridizations

using the filtered dataset. The correlation between hybridizations with the same Cy3/Cy5

assignment was r = 0.94 + 0.02, while correlation of hybridizations with the opposite

Cy3/Cy5 order was r = 0.89 + 0.03.

Northern blot hybridizations

To confirm the microarray results, we examined six genes by northern blot

analysis. In the microarray hybridization, the expression levels of two of the selected

genes were unchanged (< 2-fold) while four additional genes showed a differential

expression between the trophozoite and schizont stage (> 2-fold). An equal mass of total

RNA from both the trophozoite and schizont stages was hybridized with PCR-generated
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DNA probes corresponding to the selected genes. Subsequently, each northern blot was

stripped and rehybridized with a probe specific for the 41 kD antigen (p41), fructose

bisphosphate aldolase (Pfall)O; PlasmodB v4.0 IDPF14_0425; Oligo ID M11919 1)

[38], as a loading control. While the relative amount of PfalDO transcript differs by

more than twofold between trophozoite and schizont stages when equal masses of total

RNA are blotted, we found that the relative amount of PfalDO to be essentially

equivalent when equal masses of poly(A)' RNA were used for the northern blot (Figure

7a). The discrepancy between northern blots with total RNA and poly(A)' mRNA are

probably due to changes in the relative amounts of mRNA and ribosomal RNA during the

intraerythrocytic life cycle. The poly(A)' northern blot measurements agree well with the

replicate array hybridizations, in which PfalDO was consistently less than 1.5-fold

differentially expressed (Figure 7b). To make northern blot measurements comparable to

the normalized expression array ratios, the ratio between the two stages was measured

using a phosphoimager and divided by the ratio obtained for the PfäLDO control in each

case. The normalized ratios of the radiolabel signal were highly consistent with the

averaged ratios from the six microarray hybridizations (Figure 7b).

Biological significance of the gene-expression results

The genome-wide expression data summarized by hierarchical cluster analysis

(Figure 5) resulted in two main gene categories, corresponding to genes differentially

expressed between trophozoite and schizont stages. Serving as internal positive controls,

a number of previously well-characterized plasmodial genes were detected in both

categories. In addition, an evaluation of the homology-based gene identities within these
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categories revealed several functional gene groups. All data from these experiments are

available at PlasmodB and the DeRisi Lab website [23].

Trophozoite genes

The predominant group of features with elevated expression in the trophozoite

stage comprised genes encoding various components of the eukaryotic translation

machinery. This group contained 24 and 33 proteins of the 40S and 60S ribosomal

subunits (RPS and RPL), respectively. In addition, nine orthologs of aminoacyl-tRNA

synthetases, and 10 initiation and seven elongation translation factors were detected

among trophozoite-specific genes. Several previously identified plasmodial genes were

present in this group, including Asp-tRNA synthetase, two plasmodial elongation factors

(PfeF1A and PfeF2) and one ribosome-releasing factor, PfRF1 [21,39]. Consistent with

our findings, PfeF-1A has been previously shown to have peak expression during the

trophozoite stage [40]. Two additional gene groups whose functions are linked to the

process of protein synthesis were present among the trophozoite genes: five DEAD-box

RNA helicases, including a close homolog of P. cynomolgi RNA helicases-1 [41] and 23

molecular chaperone-like molecules, including two P. falciparum heat-shock proteins

such as PfhSP70 (GenBank accession number M19753) and PfhSP86 (accession number

L34028), and a homolog of a DnaJ-domain-containing protein family, DNJ1/SIS1

homolog [42]. These data agree with previous studies that found a group of DEAD-box

RNA helicases to be overexpressed during the trophozoite stage in P. cynomolgi [41].

Along with the genes for the translation machinery a number of genes involved in various

steps of RNA synthesis and processing were located among the 'trophozoite genes',
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including 16 ORFs belonging to various RNA polymerase complexes and 11 splicing

factors (Figure 5). Two previously identified plasmodial RNA polymerase components

were found in this group, including the largest subunit of P. falciparum RNA polymerase

II, PfRNApoll|A (M73770), and a homolog RNApolk (14 kD) [39]. The expression

characteristics revealed are also consistent with several previous studies that suggested

that the plasmodial transcription and translation machinery is active through the late ring

and early trophozoite stage before decaying during the late schizont stage [15,40].

Another functional group of genes that encode enzymes of cellular biosynthetic

pathways was distinguished within the trophozoite category. This gene set includes 16

enzymes of carbohydrate metabolism, 10 ORFs likely to be involved in nucleotide

metabolism, and 11 ORFs involved in the biosynthetic pathways of several amino acids.

Several well-characterized plasmodial genes were identified in this metabolic collection,

including P. falciparum lactate dehydrogenase (PflDH; 027743), enolase (U00152),

triose-phosphate isomerase (PfIPI; L01654), glucose-6-phosphate isomerase (Pf(36PI;

J05544), hypoxanthine-guanine phosphoribosyl-transferase (PfhEPRT; X16279) and

dihydropteroate synthetase (PfIDHPS; U07706). In addition, a group of 11 proteolytic

enzymes potentially involved in hemoglobin degradation was detected among the

trophozoite genes; these include a cysteine protease, falcipain-2 (AF251193), a

metalloprotease falcilysine, (AF123458), and a member of an aspartic protease family,

plasmepsin-2 (L10740). Falcipain-2 and plasmepsin-2 have been the targets of recent

drug discovery research [43,44].

Overall, the emergent gene clusters suggest that the trophozoite stage, a central

phase of plasmodial intraerythrocytic development, is characterized by the activation of
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general cellular growth functions such as transcription, translation and hemoglobin

degradation and biosynthesis of basic metabolites.

Schizont genes

A large number of ORFs found in the schizont-expressed category correspond to

genes previously associated with the various steps by which newly released merozoites

invade new host cells. The initial step of this process, adhesion of the merozoite to the

surface of an erythrocyte, is facilitated by several classes of proteins exposed on the

surface of the parasite. Eighteen ORFs, identical or homologous to proteins associated

with the merozoite surface, were present among the schizont-enriched genes. This group

included four merozoite surface proteins (MSP): MSP1 (M19753), MSP4, MSP5,

(AF033037) and MSP6 (AY007721). Additional members of this group include two

ORFs containing Duffy-like binding domains, erythrocyte-binding antigen, EBA 175

(L07755), a putative erythrocyte-binding protein, EBL1 (AF131999), and proteins known

to be delivered to the surface from apical organelles, including apical membrane antigen,

AMA1 (U65407), and finally two rhoptry-associated proteins (RAP1 (U20985) and

RAP2).

Initial attachment of the merozoite is followed by reorientation of the parasite cell

with its apical part toward the erythrocyte membrane followed by invagination of the

membrane. Previous studies suggested that both steps are facilitated by the action of

actomyosin, which requires ATP hydrolysis [45]. Consistent with these findings, we

found five proteins previously associated with this process, pf-actinI (M19146), pf-myoA

(AF255909), and merozoite cap protein-1 (U14189), and two subtilisin-like proteases
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(PfSUB1 and Pf$UB2 (AJ132422)) differentially enriched in schizonts. Interestingly, one

additional homolog of PfSUB1 was identified among the schizont genes. Moreover, the

expression levels of a set of plasmodial protein kinases were previously found to be

augmented during the late stages of the malarial erythrocytic life cycle [15]. Our findings

confirm and extend this report: 26 unique ORFs sharing a high to medium level of

homology with protein kinases and phosphorylases had elevated mRNA levels during the

schizont stage (Figure 5). Two previously identified representatives were present in this

set: a cAMP-dependent protein kinase, PfPKAc (AF126719), and a plasmodial

serine/threonine protein phosphatase, PfPPJ (AF126719).

A second functional group of genes with increased expression in schizonts

encodes proteins that are thought to function on the periphery of a newly infected

erythrocyte at the early stages of asexual development. Representatives include: the genes

for ring-infected erythrocyte surface antigen (RESA) (X04572) and several close RESA

homologs, CLAG9 (AF055476) the related gene CLAG3.1, and two members of the

serine-repeat rich protein (SERA) family [21]. In addition to these well-characterized

surface proteins, the schizont-enriched set of transcripts contained a number of ORFs

identical or homologous to proteins recognized by antibodies present in plasmodium

immune sera obtained either from model organisms [46] or from acute and/or

convalescent patients [47]. In summary, the schizont stage of plasmodial development

featured genes predominantly occupied with the process of merozoite function as well as

the advance synthesis of transcripts for proteins that facilitate parasite establishment

within the newly infected erythrocyte.
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Taken together, these results suggest that the parasite cell in the trophozoite stage

is dedicated to cell growth, and the predominant function of the mid-late schizont stage is

maturation of the next generation of merozoites. Of particular interest is the large number

of ORFs within both categories (39% in trophozoite and 61% in schizonts) with no

putative functions assigned. These ORFs have little to no homology to any other known

genes and may possibly represent highly specialized functions not likely to be shared

outside this family of parasites.

Conclusion

In this study, we present a P. falciparum ORF-specific microarray utilizing 70

mer oligonucleotides as individual microarray elements. This approach helped to

overcome potential problems originating from low PCR amplification and allowed us to

select probes with a high specificity, thereby minimizing potential cross-hybridization.

Moreover, the oligonucleotide-selection algorithm allowed a balanced GC content

(around 28%) across the entire microarray set, which is significantly higher than the

plasmodial genome average, which is 19.4% with 23.7% in coding regions [4].

Application of the ArrayOligoSelector is not restricted to the P. falciparum

genome, but is broadly useful for the automated selection of hybridization probes for a

range of species. The flexibility of the selection parameters controlling stringency of

uniqueness, self-binding, complexity, user-defined filters and GC content, allows the

selection of oligonucleotides appropriate for any genome.

Evaluation of results from derivative control oligonucleotides showed that long

oligonucleotides could tolerate 10% mismatches; however, alteration of the target
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sequence by more then 20% eliminated most of the hybridization signal. Therefore, small

sequencing errors and natural variation among isolates are not likely to impact on

sensitivity. These performance characteristics imply that the array design for this effort

can accommodate the study of essentially any P. falciparum strain with a high degree of

specificity.

At present, the P. falciparum microarray used in this study consists of

approximately 6,000 gene-specific elements corresponding to the majority of the total

coding content predicted for the P. falciparum genome. As new sequence and improved

gene predictions arise, additional elements will be added to this evolving platform.

Moreover, the present oligonucleotide representation could be further extended for

investigation of several unusual P. falciparum genetic and transcriptional phenomena,

including antisense mRNA transcription [48] and alternative splicing and/or

transcriptional initiation [49,50]. This may be achieved by designing exon-specific array

features, as well as antisense oligonucleotides. The oligonucleotide collection could also

be expanded by sequences corresponding to intergenic genomic regions. Inclusion of

such elements was found to be extremely useful for identifying protein-binding DNA

regions by chromatin-immunoprecipitation as well as genes not detected by automated

gene-prediction algorithms [51].

Within both the trophozoite and schizont categories, large numbers of genes

belong to functionally related processes. These include genes encoding ribosomal

subunits, multiple factors for transcription and translation, enzymes of biosynthetic and

catabolic pathways, or merozoite adherence and invasion machinery. These results are

consistent with predictions that a large number of plasmodial genes undergo strict stage
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specific transcriptional regulation, and that such (co-)regulation is shared among

functionally related genes [15,52]. Naturally, a 'fine-resolution' global gene-expression

profile including the different steps of the plasmodial life cycle for multiple divergent

strains will be necessary to characterize fully the intraerythrocytic life of the parasite. At

present, our laboratory is analyzing a global gene-expression profile of the 48-hour

erythrocytic life cycle with 1-hour resolution for three strains of P. falciparum.

In a number of model organisms, high-resolution gene-expression maps have

served as extremely powerful tools for discovery and characterization of novel genes as

well as exploration of multiple cellular functions [9,11]. The gene-expression maps

typically comprise genome-wide expression profiles at a number of different stages of

cellular development, profiles of multiple strains and genetic variants, and global

expression responses to number of growth perturbations and growth-inhibitory drugs.

Following a similar approach in P. falciparum is most likely to provide substantial

information about the many ORFs that lack functional annotation. Further understanding

of cellular physiology of this parasite including basic metabolic functions and the

intricate interactions between the parasite cell and human host immune system will be a

key step in uncovering new targets for antimalarial drug discoveries and vaccine

development.

Materials and methods

Microarray fabrication

The 70-bp oligonucleotides were synthesized (Operon Technologies, CA),

resuspended in 3 × SSC to a final concentration of 60 pmol/ul, and spotted onto poly-L-
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lysine-coated microscopic slides, as previously described [53]. All oligo sequences are

available at [23].

Cell cultures

P. falciparum parasite cells (W2 strain) were cultured as described [54] with

slight modifications: 2% suspension of purified human red blood cells in RPMI1640

media supplemented with 0.25% AlbumaxI (GIBCO/Invitrogen, San Diego, CA), 2 g/l

sodium bicarbonate, 0.1 mM hypoxanthine, 25 mM HEPES pH 7.4, and 50 pg/I

gentamycin. Cells were synchronized by two consecutive sorbitol treatments on two

consecutive cell cycles (a total of four treatments) and harvested at the subsequent

trophozoite stage (18-24 h post-invasion) and schizont stage (36–42 h post-invasion). For

the trophozoite stage collection, visual inspection of the Giemsa stains show a nearly pure

trophozoite population with less than 1% schizonts. For the schizont stage collection, we

estimate the amount of ring contamination to be around 3%. The cells were harvested in

prewarmed PBS at 37°C, and spun at 1,500 g for 5 min. Cell pellets were rapidly frozen

in liquid nitrogen and stored at -80°C.

RNA preparation and microarray hybridization

Total RNA was prepared directly from the frozen pellets of parasitized

erythrocytes, where approximately 1 ml of cell pellet was lysed in 7.5 ml Trizol (GIBCO)

and RNA was extracted according to the manufacturer's instructions. mRNA was isolated

from total RNA preparations using the Oligotex mRNA Mini Kit (Qiagen, Valencia,

CA). For the hybridization experiments, 12 pig total RNA was used for first-strand cDNA
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synthesis as follows: RNA was mixed with a mixture of random hexamer (pdN6)

oligonucleotides and oligo-(dT20) at final concentration 125 pg/ul for each

oligonucleotide. The mixture was heated to 70°C for 10 min and then incubated on ice

for 10 min. Reverse transcription was started by adding dNTPs to a final concentration of

1 mM dATP and 500 HM each: dCTP, dGTP, dTTP and 5-(3-aminoallyl)-2'-

deoxyuridine-5'-triophosphate, (aa-duTP) (Sigma), with 150 units of StrataScript

(Stratagene, La Jolla, CA). The reaction was carried out at 42°C for 120 min and the

residual RNA was hydrolyzed with 0.1 mM EDTA and 0.2 MNaOH at 65°C for 15 min.

The resulting aa-duTP-containing cDNA was coupled to CyScribe Cy3 or Cy5

(Amersham, Piscataway, NJ) monofunctional dye in the presence of 0.1 M NaHCO3 pH

9.0. Coupling reactions were incubated for a minimum of 1 h at room temperature. The

labeled product was purified using QIAquick PCR purification system (Qiagen).

Hybridizations and final washing procedures were carried out as described [9] with slight

modifications. Briefly, the hybridization medium contained 3 × SSC, 1.5 pg/ml poly(A)

DNA (Pharmacia Biotech, Uppsala), and 0.5% SDS. Hybridizations were incubated at

65°C for 8-16 h. Arrays were washed in 2 × SSC/0.2% SDS and then 0.1 × SSC at room

temperature. The microarrays were scanned with a GenePix 4000B scanner and the

images analyzed using GenePix Pro 3.0 software (Axon Instruments, Union City, CA).

Subsequently, the data were normalized using the AMAD microarray database and

subjected to the cluster analysis using the CLUSTER and TREEVIEW software, as

described [53]. For the CLUSTER analysis, low-quality features and features with a

signal level less than fivefold the background were filtered from the initial raw data set,

yielding 4,737 elements. Subsequently, features with an arbitrary twofold fluorescence
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signal difference in at least four experiments were considered. All programs and

microarray-related protocols are available online [55].

Probe preparation and northern blot analysis

The northern blot probes were generated by PCR using the following

oligonucleotide sequences:

FWD-M11919 1:

REV-M11919 1:

FWD-M1282 7:

REV-M12812_7.

FWD-I12861. 2:

REV-II2861. 2:

FWD-F5910_2:

REV-F5910_2:

FWD-M38757_7:

REV-M38757_7:

FWD-M1282 7:

REV-M12812_7:

FWD-Ks44_1:

REV-Ks44_1:

5'-TAGAAAACAGAGCTAGCTACAGAG;

5'-AGTTGGTTTTCCTTTGGCTGTGTG.;

5'-CTGTAGGTGGTATCCCTTTACAAG;

5'-GACAAATAATAATGCCATACCAGG;

5'-AAATGCAGTTGTTACTGTCCCTG;

5'-GCTCTTTTGTCAGTTCTTAAATCG;

5'-ACAACCAGTTTGCTCTGCTTATC;

5'-GGCCGACATTAATTGCTTATATGC;

5'-TAGAAGTATATCATTCCGAAGGTG.;

5'-GTAGAAGCTTCAATATCAAGCTC;

5'-CTGTAGGTGGTATCCCTTTACAAG;

5'-GCTAATGCCTTCATTCTCTTAGTT;

5'-GGCAAGCTATAACAAATCCTGAGA;

5'-GCTAAAGCGGCAGCAGTTGGTTCA.

Total RNA (10 ug) or poly(A)' RNA (0.4 pg) was resolved on a denaturing 1%

agarose gel, transferred to nitrocellulose membrane and hybridized with a radiolabeled
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probe as described [56]. The blots were analyzed using ImageOuant v1.2 (Molecular

Dynamics, Sunnyvale, CA).

Additional data files

The predicted ORFs and GenePix results (GPR) files containing raw data for

Figure 5 and from 10 additional hybridizations are available as additional data files with

the online version of this paper and from [23]. Data for Figure 5: three hybridizations (1,

2,3) with trophozoite RNA labeled with Cy3 and schizont RNA labeled with Cy5; Three

hybridizations (4,5,6) with trophozoite RNA labeled with Cy5 and schizont RNA labeled

with Cy3. Additional hybridizations: Six hybridizations (7,8,9,10,11,12) with trophozoite

RNA labeled with Cy3 and schizont RNA labeled with Cy5; four hybridizations

(14,15,15,16) with trophozoite RNA labeled with Cy5 and schizont RNA labeled with

Cy3.

ORF predictions of August 2000 were predicted from contig sequences available

in August 2000, using GlimmerM software. These predictions were used to design the

first set of 70 mer oligonucleotides and includes genes from the plastid genome. ORF

predictions of October 2000 were predicted from contig sequences available in October

2000, using GlimmerM software. These predictions also include genes from the plastid

and mitochondrial genomes.
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Figure 3-1 Schematic of the ArrayOligoSelector oligonucleotide-selection algorithm
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All possible 70mers contained
in the coding region of an annotated
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Oligonucleotide selection begins with the collection of all possible 70 mer

oligonucleotides from a given ORF. Four filters are executed in parallel: selection for

uniqueness within the genome, an optional user-defined pattern filter, avoidance of

significant secondary structure (self-binding), and avoidance of low-complexity

sequence. The intersection of the set of all oligonucleotides passing these filters are then

further selected for a desired base composition and then ranked by proximity to the 3' end

of the ORF.
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Figure 3-2 Example of sequence parameters measured by ArrayOligoSelector for a

putative member of the var gene family (PlasmodR v4.0 annotated gene ID

PF08_0140)
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A schematic of the target gene is shown above plots for each filter indicating the

positions of four Duffy binding-like domains (DBL) and a putative transmembrane

domain (TM). For each filter, a 70 bp window was measured for all possible positions
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within the gene. The dashed line represents the average value obtained for each filter

where 6,000 random 70 bp sequences were chosen from the total collection of P.

falciparum predicted ORFs. The black circle denotes the position of the final candidate

oligonucleotide (oligo ID F44871_2) chosen for the array.
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Figure 3–3 Relationship of calculated binding energy to relative hybridization

intensity
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For each of the oligonucleotides shown in Figure 4, a binding energy (kcal/mol) to the

perfect match sequence was calculated using ArrayOligoSelector and plotted against

relative hybridization intensity. The Pearson correlation coefficient r = 0.91 indicates a

strong correlation between the calculated binding energy and hybridization performance.
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Figure 3–4 Hybridization performance of long oligonucleotides in relation to

internal versus terminal mismatches

-
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Ten putative genes were chosen arbitrarily. Each gene is represented by a series often

oligonucleotides. The first (rightmost) oligonucleotide in each series represents a perfect

match to the target sequence. Mismatches were introduced in increasing numbers (10%

steps) into each subsequent oligonucleotide in each series. The pattern of matches and

mismatches within each oligonucleotide is shown below each graph, where a black bar

indicates a perfect match and a gray bar indicates a mismatch. (a-e) Mismatch positions

were randomized ('distributed set'). (g-k) Mismatch positions were chosen such that a
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contiguous stretch of perfect-match sequence remained in the middle of the

oligonucleotide ('anchored set'). The average hybridization performance, measured as the

normalized total intensity for 16 independent experiments, is plotted for each

oligonucleotide. (f) The average plot for a-e; (1) the average plot for g-k.

!

--

** º

-

81



- -

|
-***--- º

º
-- º

- * *

---- . ,

~. -- *. . . . .
* º

* * * * - *. . . . . . . .
*

■ * -- **
! -- _ º

º sº
". --- - º -

- * -

- .
º s"

• * * * * *
- - - * ~ *

e
- º º

* - - . º:
".

*.*, {
* - -

* * **

* *

* *

- -
-

- - - -aº -- t

-
* - **

s - * ** -

-- - -
- * -

:------- * :
* -

* * * *-- *
------ * * *

- a -a-

º

* -- - -

* * *
***

***
º



Figure 3-5 Comparison of trophozoite and schizont stages of P. falciparum

hybridizations
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Hierarchical cluster analysis of six replicate microarray hybridizations is shown for the

854 genes that yielded at least a twofold expression difference in at least four

experiments. In hybridizations 1-3, the schizont RNA was labeled with Cy3 (green

signal) and trophozoite RNA was labeled with Cy5 (red signal) and in analyses 4-6, the º

fluorophore order was reversed. Examples of major functional gene groups enriched in

either studied stage, number of corresponding ORFs and several previously characterized

representatives of each group are indicated. All gene expression data are available at

PlasmodB and the DeRisi Lab website [23].
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Figure 3-6 Hybridization performance of multiple oligonucleotides representing

single ORFs
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■ atio: 7.9t 11.8t 12.1t

... PFA011ow (RESA1)

(c) –––.
oligo ID: A10325_29 A10325_30 A10325_32

ratio 12.6S 12,5s 10,0s

The average expression ratios were calculated for each oligonucleotide overlapping

distinct regions of three ORFs: (a) PFD0985w encoding a predicted hypothetical protein;

(b) PFE0040c encoding PfeMP2; and (c) PFA0110w encoding RESA1. The arrows

indicate the location of oligonucleotide elements within the coding sequence (thick line),

and the ratios express fold enrichment in either trophozoite stage versus schizont stage (t)

or schizont stage versus trophozoite stage (s).
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Figure 3–7 Northern blot validation of the microarray results

(a) mºn mm
H HF

s

- ||
|--

Ratio: t 2.6 s 1.1

|-|--|- |- || ||
M26214 - 1286.1 2 F5910_2 M38,757 1 M1281.2–1 ksaa_1

- || -

Ratio: 1.0 sº.1 t1.5 s32

sl.3 Sl. 2 t1.6Ratio:

(a) Comparison of total RNA and poly(A) RNA for northern analysis. 12 pg total RNA

and 2 pg poly(A)' mRNA from both the schizont (s) and trophozoite (t) stages of P.

falciparum were blotted and probed with a PCR fragment overlapping the genomic

sequence corresponding to oligonucleotide ID M11919 1, which represents the 41 kD

antigen (p41), fructose-bisphosphate aldolase (PlasmodB v4.0 annotated gene ID

PF14_0425). (b) Total RNA northern blots were probed with PCR probes overlapping
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the corresponding oligonucleotide elements ('gene specific') for each gene. The selected

gene set included a probable calcium-transporting ATPase (PlasmoLE MAL13P1.61),

plasmodial heat-shock protein (PlasmoDB PFIO875w), a member of a family of

conserved hypothetical proteins (PlasmoLB PFI1445w) and an ORF with sequence

similarity to a sodium-and chloride-dependent taurine transporter (PlasmodB

MAL13P1.130), lactate dehydrogenase (PlasmoLB PF13_0141), and a heat-shock

protein homolog of Hsp70-3 (PlasmodB PF11_0351). The northern blot membranes

were stripped and reprobed with the fructose bisphosphate aldolase control probe.

Northern blot expression levels were measured by a phosphorimager. For each gene

specific probe, the measured ratio of trophozoite to schizont was divided by the ratio

measured for aldolase on the same membrane. The average ratio from six replicate

hybridizations on the microarray, including fluorophore reversal, is shown in the lower

panel. The ratios express fold enrichment in either the trophozoite stage versus schizont

stage (t) or schizont stage versus trophozoite stage (s).
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Chapter 4. A Bayesian network driven approach to

model the transcriptional response to nitric oxide in

Saccharomyces cerevisiae

Abstract:

The transcriptional response to exogenously supplied nitric oxide in

Saccharomyces cerevisiae was modeled using an integrated framework of Bayesian

network learning and experimental feedback. A Bayesian network learning algorithm was

used to generate network models of transcriptional output, followed by model verification

and revision through experimentation. Using this framework, we generated a network

model of the yeast transcriptional response to nitric oxide and a panel of other

environmental signals. We discovered two environmental triggers, the diauxic shift and

glucose repression, that affected the observed transcriptional profile. The computational

method predicted the transcriptional control of yeast flavohemoglobin YHB1 by glucose

repression, which was subsequently experimentally verified. To derive Bayesian network

models from a combination of gene expression profiles clusters, genetic information and

experimental conditions, a software application ExpressionNet was developed and is

made freely available.
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Introduction:

An extraordinary amount of data has been accumulated measuring genome wide

gene expression patterns under a wide range of biological conditions and genetic

backgrounds (1, 2). A major challenge in understanding the data is to decipher the

relationships between environmental signals, genotypes, cellular phenotypes, protein

functions, and the corresponding transcriptional outputs. As the amount of data and the

combinations of experimental conditions and genetic backgrounds accumulate rapidly, it

becomes increasingly more difficult to form models that seek to explain the observed

patterns and relationships.

A systems biology approach combines data mining, computational modeling, and

experimental feedback in an iterative cycle of hypothesis generation and testing.

Although experimental techniques to generate large-scale microarray data have been well

developed, the application of modeling and analysis methods to large data sets continues

to mature. Clustering is a commonly used initial approach to analyze gene expression

data to identify groups of genes with common or differential expression profiles (3).

Many other analysis techniques have also been applied to microarray data such as the

signature algorithm to identify both genes and experimental conditions of a co-regulated

module (4), algorithms to identify DNA binding motifs using correlation of gene

expression (5), mapping gene expression to pathway knowledge (6), and using

probabilistic graphic models to construct transcription networks (7). Despite the large

amount of data generated through experimental approaches and the increasing application

of computational methods to biological problems, the two fields are still by and large
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separate. The challenge of applying a systems biology approach lies in the integration of

computational modeling and experimental verification.

One computational method employed is a Bayesian belief network. A Bayesian

network is a graphic model that encodes probabilistic relationships among variables. The

following features make it an attractive framework for modeling the complicated

relationships between transcriptional response, experimental conditions and genotypes:

(1) decomposition of a large joint distribution over all the variables into independent

local relationships; (2) generation of interpretable networks; (3) ability to model causal

relationships, hence to gain understanding of a problem domain; (4) ability to handle

missing information. A Bayesian network is a graph composed of nodes and edges. The

nodes represent variables of interest. The edges represent influence from the parent to

child node. The relationships between parent and child nodes are modeled as conditional

probability distributions (CPD). Given a set of observed data, a probability score can be

assigned to all possible Bayesian network models. We can use Bayesian network learning

to search for the most likely network structure given the observed data. The derived

graph is a model for the underlying relationships in the data (8, 9).

Bayesian network learning has been applied to infer gene regulatory networks

from large scale microarray data by using expression levels of individual genes as

network nodes (10-12). In addition, probabilistic graphic models have also been used to

integrate heterogeneous data sources to decompose genes into functional modules based

on the knowledge of binding motifs, protein interaction and gene expression data (13-15).

Although more functionally coherent gene modules were produced in comparison to

simple clustering method, the biological conditions and the relationship between those

:
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conditions and the modules were not modeled. More recently, Bayesian networks have

been used as the computational framework to predict the genes and the combinatorial

constraints that regulate a functional module (16, 17). Many interesting predictions were

generated, but only a few were experimentally verified. The separation of computational

approach from experimental testing has greatly limited its power to make new biological

discoveries.

To overcome this separation, we developed an integrated framework of Bayesian

network learning and experimental feedback to model the relationships between the

transcriptional response, biological conditions, genotypes, and protein functions. We took

advantage of the descriptive power of Bayesian network semantics to formally declare

those variables to model microarray data and applied the learning algorithm to elucidate

their relationships. Follow-up microarray experiments verified the computational

predictions and revealed hidden environmental variables in the original data. Subsequent

iterations of modeling and experiments refined the variable declaration and expanded the

model with the addition of new experimental data. To circumvent the problems caused by

the large data set when inferring gene networks, our approach reduced the number of

network nodes by using gene expression cluster profiles instead of individual gene

expression levels. This simplified interpretation of the learning result. To elucidate the

relationship between transcriptional response and the biological conditions that trigger

the response, we extended the network model to account for genotypes, experimental

conditions, and protein functions in addition to expression profiles.

We used the framework to investigate the transcriptional response of S. cerevisiae

to nitric oxide (NO.). Nitric oxide is an important biological agent used by the immune
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system to defend against fungal and bacterial infections (18). Studying the yeast response

to NO, and the reactive nitrogen intermediates that it generates has important

implications to the development of antimicrobial and antifungal treatments. Exposure to

chemically generated NO in yeast triggers both a general stress response as well as a

specific NO detoxification response mediated by the transcription factor Fzflp (19). The

detoxification gene cluster includes the yeast flavohemoglobin YHB1, and SSU1, a

putative sulfite pump in yeast, plus three additional ORFs with unknown functions (19).

To test our approach and to better understand the genome-wide NO response, we

applied the integrative framework to model the transcriptional response to NO in S.

cerevisiae. We monitored the genome-wide gene expression of various FZF1 genotypic

strains under multiple experimental conditions including NO exposure. Using the

transcriptome data as input, we generated a network model of the transcriptional response

to an extensive panel of environmental perturbations in addition to FZF1 genotype. The

model differentiated the Fzflp mediated NO detoxification response from the

transcriptional response triggered by other environmental perturbations. We discovered

two unappreciated environmental factors that affected the observed expression profiles,

and experimentally verified the model prediction that glucose regulates YHB1 expression.

Results:

Algorithms

Our algorithm iterated through the four steps: data collection and preprocessing,

hypothesis generation, model evaluation and experimental feedback (Figure 1).
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In the data collection and preprocessing step, gene expression profile clusters

were identified from a dataset of microarray experiments and cluster expression levels

were converted to discrete values. Each array was annotated with the strain genotype, the

experimental conditions, and protein functions if they could be inferred based on the

genotype and experimental conditions. The discrete gene expression clusters and the

annotated array attributes were combined to form the learning data set.

In the subsequent hypothesis generation step, discrete random variables (network

nodes) were defined to model the cluster expression, environmental signals, genotypes

and protein functions. Given the learning data set, a probability score could be assigned

to a Bayesian network structure. A high scoring network indicates a good fit of the model

to the data and the Bayesian network learning process automatically searches for

structures with the highest score. The derived model (Bayesian average network) was the

average over all the high scoring networks (materials and methods) found by the learning

process. Each edge was associated with a confidence score (c), calculated as the

percentage of its presence in the high scoring collection (11, 20). The confidence score

was a measurement of the data support for an edge.

The derived model was compared to the current biological hypotheses and new

predictions were then tested experimentally. In the experimental feedback step, new data

was compared to the data underlying the previous model. If the new data conflicted with

the previous one, new environmental variables were proposed to seek to explain the

discrepancy. The predictions could also be proven incorrect. In either case, we initiated a

new iteration of the process to obtain a better random variable definition (i.e. composing

a better gene clustering, including new environmental variables) and a better model to 1)
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explain the conflict in the data 2) predict the role of the new environmental variables on

gene expression 3) eliminate the incorrect predictions.

The initial model

In order to measure the S. cerevisiae transcriptional response to NO, and reactive

nitrogen intermediates, and to examine the role of the transcription factor Fzflp, we

exposed wild type and fº■ ! A strains to chemically generated NO (experiment E1,

materials and methods). To determine whether Fzflp over-expression could mimic the

NO inducible response, we performed similar experiments with wild type and

GALlp:FZF1 strains on galactose. We then measured global mRNA levels over time

using DNA microarrays (experiment E2, materials and methods). These data were

combined with a published dataset from perturbation experiments of yeast treated with

common oxidative agents to identify the oxidative or environmental stress response

(ESR) (1).

A subset of 130 genes with significant expression changes was selected (materials

and methods). We defined five major gene clusters: Fzflp early and late response clusters

(which were up-regulated by NO in an Fzflp dependent manner, but differed in their

initial response time), the ESR cluster, the oxidative phosphorylation cluster, and the

galactose response cluster.

We defined the following ten network nodes and their discrete state values: 1)

five gene cluster nodes -“Fzflp early response”, “Fzflp late response”, “ESR”,

“oxidative phosphorylation” and “galactose response”- for which the change in

transcriptional response was modeled as up-regulation, down-regulation and unchanged
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expression; 2) three experimental perturbation nodes: “nitric oxide” to model the duration

of NO. treatment (0–5, 5-15, 15-45, C-45 min), “galactose” to model the galactose

utilization (utilized, not utilized), and “oxidative stress” to model the exposure to

common oxidative agents (exposed, not exposed); 3) one genotype node “FZF1

genotype” (wild type, deletion, over-expression); 4) and one protein function node

“Fzflp activity” to model Fzflp transcription factor activity (active, inactive).

Given the defined nodes, the learning dataset was composed by combining

discrete values of average cluster expression and manual annotation of experimental

conditions, FZF1 genotype and Fzflp transcription factor activity for each array. The

values of Fzflp activity in the learning dataset were annotated based on FZF1 genotype

and the experimental conditions. For example, if the strain was fº■ ! A, the value was

assigned to “inactive”. Any value that could not be inferred or obtained was set as

missing values (empty data entries) in the learning dataset.

The initial derived model (10 edges with c > 0.9) is shown in Figure 2a.

According to this model, the core NO specific response (Fzflp early and late response

clusters), unlike other transcriptional responses, was controlled through the activation of

the transcription factor Fzflp. NO also triggered a general ESR. Those predictions were

consistent with the current understanding of the transcriptional response to NO. (19). The

remaining model structure was in large part consistent with a manually pre-constructed

network structure derived from a biological interpretation of the data (supplemental data).

The edge confidence scores displayed a bimodal distribution with the value 1 or 0

being the most frequent (Figure 2b). This showed a clear separation of edges that were

supported or unsupported by the data. This bimodal distribution was vastly different (P<
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0.001, Kolmogorov-Smirnov normality test) from the normal distribution generated from

a collection of networks with randomly assigned structures (P=0.35, Kolmogorov

Smirnov normality test), in which all edges showed a low level of support (0.395+0.105)

from data.

As part of the network learning process, CPDs were also computed from the data

(supplemental data). This included the node “Fzflp activity”, which had 80% missing

values in the learning dataset. The derived CPD of “Fzflp activity” (the chance of Fzflp

activity in either “active” or “inactive” state given FZF1 genotype and the duration of

NO. treatment) was consistent with all observations and hypotheses of Fzflp activation

triggered by NO. treatment (19) (Figure 2a CPD table).

Two strongly supported edges (c > 0.9) in the model were unexpected. One

connected from “galactose” to “Fzflp early response” and the other from “galactose” to

“oxidative phosphorylation” (Figure 2a red edges). The CPD of “Fzflp early response”

predicted that the expression of this cluster (containing YHB1 and SSUI) would be up

regulated in response to galactose. Further examination of the microarray data showed

YHB1 was up-regulated by galactose in the absence of Fzflp over-expression. FZF1

levels in wild type yeast were not affected by growth in galactose media (Figure 3a wt).

Although the new model predicted an Fzflp-independent up-regulation of the YHB1 by

galactose; it remained a formal possibility that galactose was acting through endogenous

Fzflp to up-regulate YHB1.

Experimental feedback and second model
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To verify the unexpected YHB1 induction in response to galactose and the

independence of this relationship on Fzflp, additional expression profiling experiments

were performed to monitor the change of mRNA level upon galactose induction in wild

type and fº■ ! A strains (experiment E3). Indeed, the expression of YHB1 was increased by

2 to 4 fold upon switching to galactose containing medium (Figure 3b). This agreed with

the prediction that galactose affects YHB1 expression independently of Fzflp.

In the combined dataset, two galactose induction experiments (experiment E2 vs.

E3) were conducted in an experimentally similar way, yet many genes which were up

regulated in one experiment were down-regulated in the other and vice versa

(supplemental data). For example, the genes in the Fzflp response cluster (except YHB1)

were up-regulated in E2 and down-regulated in E3 (Figure 3a wt vs. 3b wt). In contrast,

many galactose utilization genes such as GAL2, GAL3, GAL7 and GAL10 showed

consistent up-regulation in all the galactose induction experiments (Figure 3a & 3b).

Most of the genes with between-experiment disagreement function to utilize glucose,

such as all four subunits of succinate dehydrogenase tetramer SDH, acetyl-coA

synthetase ACS1, and the key gluconeogenic enzymes FBP1 and PCK1. The opposing

expression change (E2 vs. E3, wild type) in these glycolysis and gluconeogenesis

components were also highly correlated with their transcription profiles during the

diauxic shift, the switch from anaerobic growth to aerobic respiration upon depletion of

glucose (1,21). Examining pre-experimental growth conditions, cell densities during the

experiment, and the duration of the experiment (12 hr), confirmed that the diauxic shift

occurred in the two galactose induction experiments (E2, E3). The diauxic shift also
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explained the unexpected connection from “galactose” to “oxidative phosphorylation”

node predicted by the initial model (Figure 2a, red edge).

Taken together, the second iteration was initiated to seek a better model to explain

the conflict in the data and to predict the effect of the diauxic shift on the gene expression

response to NO. The network nodes were redefined by: 1) the addition of a new

environmental factor node "diauxic shift” to model the direction the diauxic shift

(entering, exiting, static); 2) redefining the gene cluster nodes as: “ESR”, “Fzflp

response”, “YHB1”, “galactose utilization” and “energy” (materials and methods).

The second model was expanded to take into account the transcriptional response

to the diauxic shift (Figure S1a). The new model resolved the conflict in the data and

confirmed the connection between the diauxic shift and the energy cluster, and eliminated

the relationship between galactose and genes in the glucose utilization pathway.

Glucose derepression and third model

In order to avoid complications due to the diauxic shift in the galactose induction

experiments (12 hr), the experiment was repeated using raffinose as the initial sugar

Source (experiment E4). This allowed a much faster induction and a shorter time course

(4 hr). The results showed that the galactose utilization genes such as GAL7 and GAL10

were up-regulated; however, YHB1 induction was not observed (Figure 3c). This result

was unexpected since the previous galactose induction experiments showed YHB1 was

induced by 2 to 4 fold (Figure 3a wt, 3b). The difference could not be explained by the

diauxic shift or other variables considered thus far.

:

97



,
* 2.

- . - a

* - - - - -

- * - -. . . . . ; "
º . . .

- - ~ *
- : * =

t º

º, -- º

{
* * * *

- *-

--- – ** -
. t *...*

! " …



Growth in glucose rich media represses the transcription of a large number of

genes such as enzymes in TCA cycle, the respiratory chain, sporulation genes and genes

needed for the utilization of less efficient sugar sources such as galactose (22). To

address the possibility that YHB1 was partially controlled by glucose repression, a node

“glucose repression” (repression, derepression) was added to account for this effect in a

third model (Figure 2c). The model strongly supported the relationship between glucose

derepression and YHB1 gene expression. The CPD of node “YHB1” predicted YHB1

gene expression was up-regulated by either glucose derepression or Fzflp, but not by

galactose.

To verify the prediction of glucose derepression on YHB1, the protein expression

level of GFP tagged Yhb1p was monitored under glucose repression and derepression

conditions using flow cytometry. The repression results showed Yhb1p level decreased

immediately after the sugar source was changed from either raffinose or galactose to

glucose, and continued to decrease up to 2 to 3 fold after 12 hours. This result was

confirmed by the reciprocal experiment of glucose derepression by changing the sugar

Source from glucose to galactose or raffinose, in which Yhblp level increased by 2 to 4

fold after 12 hours (Figure 4). The ratio and kinetics of the YHB1 derepression measured

by protein level were consistent with the microarray measurements (Figure 3a, 3b).

Glucose repression of YHB1 was not observed in a TUP1A strain, indicting that the effect

of Sugar on YHB1 expression occurred through the canonical glucose repression pathway

(data not shown).

Materials and methods:
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Microarray experiments

E1: NO. perturbation Log phase (OD600 1,0) strains were treated with NO released

from 1mM DPTA-NONOate (DBY7283, BY4741 ffIA) and NO gas bubbling through

the media for 10 seconds (DBY7283). mRNA isolated from treated (DPTA-NONOate

exposure for 10, 20, 40, 80, 120 min; 120 min after gas bubbling) or untreated culture

was used to generate the Cy5 or Cy3 cDNA probes.

E2: Glucose to galactose I DBY7283 strains with plasmids containing either

GALlp:Lacz or GALIp:FZF1 were grown to OD600 1.0 in SD-URA, washed by water,

then transferred to SGal-URA for continuing growth. mRNA isolated from treated (8, 12

hr after the transfer) or untreated culture was used to generate the Cy5 or Cy3 cDNA

probes.

E3: Glucose to galactose II Stationary phase (3 day old Saturated glucose culture)

DBY7283 and S288c fº■ /Astrains were inoculated at OD600 0.5 in SCD, grown for 2 hr,

washed by water, then transferred to SCGal for continuing growth. Total RNA isolated

from treated (4, 8, 12 hr after the transfer) or untreated cultures was used to generate the

Cy5 or Cy3 cDNA probes.

E4: Raffinose to galactose DBY7283 and JZY 100 (DBY7283, FZF1 deleted with

KanMX) strains were grown to early log phase in SC raffinose. Galactose was added into

the media to a final concentration of 2% for continuing growth. mRNA isolated from

sample (0, 30, 60, 120, 240 min after adding galactose) or reference (DBY7283;

combined 0 and 240 min) culture was used to generate the Cy5 or Cy3 cDNA probes.

Differentially labeled cDNA probes were hybridized to yeast cDNA microarrays

containing PCR probes of all yeast genes (21). Microarray production, RNA isolation,
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cDNA synthesis, amino-allyl dye coupling, hybridization and data collection were

performed as described (21). Microarray data were normalized using the NOMAD

database (ucsf-nomad.sourceforge.net). Spots flagged by GenePix@ Pro (Axon

Instruments) were excluded from analysis. Spots also excluded from the analysis were

both Cy3 and Cy5 signal intensities less than 2 times the background (E1, E2) and with

feature intensity less than the background (E3, E4). E4 dataset was transformed (i.e.

normalized) by its 0 min data point. Complete microarray data are available at

http://derisilab.ucsf.edu/network.

Data source and preprocessing for network learning

Initial model The microarray data included those from experiments E1 or E2 (19 arrays)

and the published dataset of yeast treated with H2O2 or menadione over 0 to 160 min (21

arrays) (1). A subset of 130 genes with greater than 2 fold change in 3 or more data

points in the E1 and E2 experiments were selected. The genes were clustered using data

from experiments E1 and E2 (3). 5 major gene clusters were identified using correlation

cutoff 0.75 with subsequent manual adjustment: Fzflp early response, Fzflp late

response, ESR, oxidative phosphorylation, and galactose response clusters. The manual

adjustment consisted of combining galactose up-regulation and down-regulation clusters

to galactose response cluster and splitting Fzflp response cluster into the Fzflp early and

late response clusters based on their initial response times (5-15 min vs. 15-45 min).

Second model The microarray data included those in the initial modeling plus array data

generated from experiment E3 and a published dataset monitoring the transcriptional

response of the diauxic shift (21). The 130 genes selected in the initial modeling were

clustered using all the above microarray data (3). Five major gene clusters were identified
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using cutoff 0.6 with subsequent manual adjustments: ESR, Fzflp response, YHB1,

galactose utilization and energy clusters. The energy cluster included genes in the

previously designated oxidative phosphorylation cluster and genes in the glucose

utilization pathway that were previously in the galactose response cluster. The manual

adjustments consisted of separating YHB1 from the Fzflp response cluster and forming a

YHB1 cluster contained only YHB1. After obtaining the new data, we realized the crucial

separation within the Fzflp response cluster was that between YHB1 and the rest of the

cluster. Therefore, the Fzflp response clusters were not separated into early and late

response clusters as in the initial model.

Third model The microarray data included those in the second model as well as those

generated from experiment E4. Gene clusters were defined using all the above microarray

data with the same procedure as those used in the second model.

The learning dataset was composed of 1) average gene expression change of each

gene cluster converted into discrete values using a 2-fold threshold and 2) manual

annotation of the remaining values (experimental perturbations, FZF1 genotype and

Fzflp activity) based on the experimental conditions and strain genotypes (missing

values were allowed). The complete learning datasets and gene membership of each

cluster are available at http://derisilab.ucsf.edu/network.

Bayesian network learning and software implementation

A software application, Expression.Net, was developed to perform Bayesian

network learning. We used a Bayesian scoring function to assign a probability score for a

network model. The clique-tree technique as well as the variable-elimination technique

were implemented for efficient inference and learning (9, 23). The learning process
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started with random edge combinations, gradually improving the network topology using

a greedy search strategy until the score reached a local maximum. The greedy search was

iterated to generate a collection of high scoring networks. High scoring networks were

subjected to small topology changes by single edge addition, deletion or reversion to

expand the collection. Learning was repeated using two different prior probability

distributions of the network parameters (priors), both set as a Dirichlet distribution:

Dir(1,1, ..., 1) and Dir(Po'o, Po'o, ..., Po'o. ), where P0 is a uniform distribution over the

probability space of each CPD and o-5. Networks scoring within a percentile cutoff

(15% for the initial and second models, 25% for the third model) using both priors were

used to construct average Bayesian network models. We defined all environmental and

genotype nodes as root nodes and all gene cluster nodes as leaf nodes. Missing values

was handled using a Structural Expectation-Maximization algorithm (24). Expression.Net

is available at http://expressionnet.sourceforge.net/. The derived network models and

probability parameters are available at http://derisilab.ucsf.edu/network.

Flow Cytometry

The YHB1-GFP strain is a C-terminus fusion of GFP obtained from a genome

wide tagged library (25). The culture was grown to early log phase in synthetic media

with 2% glucose, raffinose or galactose, washed with PBS, then transferred to synthetic

medium with 2% glucose (from raffinose or galactose), or raffinose or galactose (from

glucose). The cell fluorescence intensities were measured on a Becton Dickison LSR II

flow cytometer at 0, 2, 4.5, 6, 8.25, or 12 hr after the sugar was changed. For each time

point, a minimum of 100,000 cells were measured to derive the mean GFP intensity.
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Discussion

We developed a framework to formally couple Bayesian network learning and

experimental feedback to successfully model a specific biological response in yeast.

Computational modeling formalized biological hypotheses in a probabilistic language

and generated models to elucidate the relationships between environmental perturbations

and the transcriptional output. Experimental feedback verified new computational

predictions and revealed additional environmental factors, which were essential for the

refinement and expansion of the model. We were able to use this integrative approach to

achieve two goals. First, we discovered a relationship that had been difficult to recognize

by using either computational or experimental approach. Secondly, our approach

dissected out specific versus nonspecific responses to NO, and reactive nitrogen

intermediates. The core structure of the Fzflp-dependent NO specific response sub

network (nitric oxide, FZF1 genotype Fzflp activity, and Fzflp response clusters) was

predicted and maintained throughout the three models. The transcriptional responses to

other environmental factors were gradually elucidated by additional iterations of the

process.

Previous studies have suggested that YHB1 is important for the survival of yeast

under oxidative and nitrosative stress (26, 27). Our results showed YHB1 was

transcriptionally regulated by both NO exposure and glucose repression. Taken together,

these data indicated that YHB1 is regulated by many environmental signals, highlighting

the combinatorial control of this gene. While glucose derepression caused a 2 to 3-fold

increase in Yhb1p protein level, studies have shown a 10-fold increase by NO. treatment,

suggesting a more prominent role of Yhblp in NO detoxification (19).
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A common practice in statistical learning is to select one single model that best

fits the data. But in many situations, other models also score very well although not

necessarily the best. Using the best single model to derive a biological conclusion is

potentially risky due to data over-fitting. To circumvent this problem, the average of all

the high scoring networks was found by the searching procedure (20). An added benefit

of this approach is that it yields a confidence score associated with each edge connection

(11). The confidence score is especially useful for filtering low-confidence connections

from complex networks, thus simplifying what might otherwise be a confusing network.

In addition to network averaging, the high scoring networks were the convergence of

learning using two different priors. This strategy overcame network structure bias caused

by using a single prior.

The edges in a Bayesian network represent the influence from parent to child

nodes. These are statistically favorable solely based on the data and priors. After model

averaging, meaningful biological connections may be inferred from the high confidence

edges. Since Bayesian network edges represent statistical instead of causal relationships,

it is possible a derived edge does not represent a direct biological connection. For

example, two gene clusters sharing high mutual information would likely be connected.

One method to eliminate such connections is to merge those highly correlated clusters

into a single node. Additionally, structural constraints may be used to define gene

expression nodes as leaf nodes and the environmental variable nodes as root nodes.

Gene clusters were defined through an automatic hierarchical clustering algorithm

with manual interventions. Those manual interventions were comprised of the selection

of correlation cutoffs and sub-cluster to node assignments. Although it is not purely

-:

:
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automatic, this step is critical for ensuring the quality of gene cluster node definitions,

and therefore critical for producing high quality network models. In our future work, we

will generate gene clusters automatically and integrate clustering with Bayesian network

learning to take advantage of the network structure to optimize both clustering and

network models (28).

This computational framework is not limited to microarray gene expression data.

It can be extended to incorporate data such as protein expression, genetic interactions,

and sequence motifs. As the datasets grows larger and more complex, tightly coupled

computational modeling and experimental feedback provides an efficient approach to

study a biological system.
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Figure 4-1. Illustration of the iterative network learning and experimental feedback

algorithm
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Figure 4–2 The Bayesian average network representation of the models

(a, b) initial model (c,d) third model (a,c) Graphic representation. The green nodes

represent gene expression clusters. Representative genes of each cluster are shown in the

box below each node. ESR: environmental stress response cluster. Energy: glucose

metabolism cluster. Oxidative stress: the application of H2O2 or menadione. Nitric oxide:

the duration of NO exposure. Galactose: galactose utilization. Diauxic shift: direction of

the diauxic shift. Nodes with missing values are colored in gray. The CPD table shows

the conditional probability distribution of Fzflp activity. The red edges represent novel

predictions from the network model. (b., d) Edge confidence score histogram. The dot

filled columns represent edges excluded from the model based on structural constraints.
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Figure 4-3 The change of gene expression of Fzflp response cluster, FZF1 and

galactose utilization genes in response to galactose

(a) Wild type and gal promoter driven FZFI over-expression strains in response to

change from glucose to galactose (experiment E2). (b) Wild type and f.■ l/A in response to

change from glucose to galactose (E3). (c) Wild type and fº■ /A in response to change

from raffinose to galactose (E4). Color unit is fold change of gene expression. Gene

expressions are too low to detect are colored in blue.
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Figure 4-4 Glucose repression and derepression of Yhb1p–GFP measured by flow

cytometry

To calculate a mean GFP intensity, a minimum of 100,000 cells were measured for each

time point.

000 glucose -- raffinose: 0 0 O

-
glucose -- galactose

3000 º - -

2000 *~

1000

0

-- raffinose--glucose
galactose -- glucose

: º .

5–3–7–5–5—f-■ º
time after media switch (hour)

.

111



* =

* * ~ *

* * * *

* * : * ~ *
- * * * * * * *

a

1 - J --
º º

… Sº
- - *

-**
-- - *

-

-- - - -

-- ~~ -

* * *- : * **---,
--

- - * *
- *** - - -
------ -

- * - - - -
*-i- - - - - -

-- --- - *---

* * * * * * * *

r---a -- . .

-- *** -- - -

--- - - - - - - -

sº - - -

*-** -*

*-
**-------
----- - -

******-*------



Figure 4-S1 The Bayesian average network representation of the second model

(a) Graphic representation. The green nodes represent gene expression clusters.

Representative genes of each cluster are shown in the box below each node. ESR;

environmental stress response cluster. Energy: glucose metabolism cluster. Oxidative

stress: the application of H2O2 or menadione. Nitric oxide: the duration of NO

treatment. Galactose: galactose utilization. Diauxic shift: direction of the diauxic shift.

The node with missing values is colored in gray. (b) Edge confidence score histogram.

The dot-filled column represents edges excluded from the model based on structural

constraints.
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Chapter 5. Virtual Drug Development for New

Antimalarials

INTRODUCTION

Malaria is one of the most deadly infectious diseases in the world, causing

approximately 350-500 million clinical episodes and as many as three million deaths

annually. As of 2004, 107 countries reported areas at risk of malaria transmission,

mostly developing countries. In part of Africa, the estimated infection rate is on average

once every two years per person. WHO has estimated that 80% of deaths attributed to

malaria occur in African children under the age of five [1-3].

Malaria is transmitted by mosquitoes but its causative agent is a type of

intracellular protozoan parasite from the genus Plasmodium. There are many species of

Plasmodium, but only four (Plasmodium ovale, Plasmodium vivax, Plasmodium

malariae, Plasmodium falciparum) cause malaria in humans. Of the four species, P.

falciparum has the most severe morbidity and mortality rates [4].

In developed countries, malaria has been virtually eradicated through mosquito

control, yet the disease still plagues most of the developing world in the tropical and

subtropical regions [1,5]. Currently, once a person has been infected with the parasite,

effective treatments are antimalarial drugs that were developed during or after World War

II. Most of the drugs to treat and/or prevent malaria belong in four categories: quinine

and its derivatives, antifolate combination drugs, artemisinin compounds, and tetracycline

and its derivative antibiotics. Chloroquine is a 4-aminoquinoline derivative of quinine,

developed in the 1930s and 40s. Since it is very inexpensive to synthesize, chloroquine

:
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has been historically the most widely used antimalarial. Other quinine family drugs

include quinidine, amodiaquine, primaquine and mefloquine. Even though it has been

the most widely used, the mechanism by which chloroquine kills the parasites is still

unclear, possibly by interfering with the parasitic heme polymerization process [6].

Antifolate combination drugs are various combinations of dihydrofolate reductase

inhibitors such as pyrimethamine and sulfadoxine [7]. The sweet wormwood (also

known as Qinghao in Chinese) has been used by the Chinese for thousands of years to

treat malaria, though its active compound, artemisinin, was discovered only in the 1970s,

working possibly through generating peroxide radicals or forming Fe(IV)=O species as

the toxic agent [8,9]. Tetracycline and its derivative antibiotics such as doxycycline are

potent antimalarials and are used for both treatment and disease prevention [7].

Unfortunately, malaria parasites have developed resistance to most of the

commonly used drugs such as chloroquine and the resistance has been spreading quickly

throughout epidemic regions [1,7,10]. This has been one of the key factors for the failure

of programs by the World Health Organization (WHO) to eradicate and/or control the

spread of disease [3,11]. Chloroquine resistance initially developed in parts of Southeast

Asia in the 1960s and quickly spread to all major malaria transmitting regions except

Africa. By the 1980s, the resistant strains finally reached the African continent. By

2005, only a few areas in South America still have chloroquine-sensitive parasites [1,12].

Resistance to antifloate compounds (sulfadoxine and pyrimethamine) is found frequently

in Southeast Asia and South America. Even more alarming is the occurrence of multi

drug resistant Plasmodium strains in Southeast Asia, which if it spreads widely, can be

devastating to the world [7,10,13-16].
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With such a limited choice of available drugs, there is an urgent need to develop

new antimalarials. This includes both identifying new drug targets, developing new

antimalarial compounds, and testing existing drugs for reuse as antimalarials. Such a

repurposing example is triclosan, a common ingredient in toothpaste, soap and shampoo

for its antimicrobial properties. Recent studies have shown triclosan exhibiting potent

inhibition to malaria growth, working through the same inhibitory mechanism as an

inhibitor for type II fatty acid biosynthesis [17-19].

The complete genomes of P. falciparum and P. yoelli yoelli became available in

2002 and sequencing of other Plasmodium species is underway [4,20,21], which provides

us a complete parasitic gene list to identify potential new drug targets. At the mean time,

the number of organisms whose genomes have been completely sequenced has also

increased dramatically [22]. The wealth of genomic information provides us a genomic

opportunity to identify drug candidates that are most likely to be effective: essential for

the parasites and lacking a significant human homolog [22]. This property can be seen in

targets of many commonly used antibiotic targets, such as penicillin targeting

peptidoglycan transpeptidase, an essential enzyme for synthesizing bacterial cell walls

[23]. It is still very difficult to experimentally validate the essentiality of each

Plasmodium gene; conservation through evolution can be used as a proxy to essentiality.

Using these principles, comparative analysis of the Plasmodium genome with many other

genomes including mammalian, plant, fungal, microbial and archaeal genomes can

identify potential drug targets by finding malaria genes that are conserved through

evolution but not represented or represented in a very distinct form in the human genome.

A likely place to find such genes is the parasite apicoplast, a relic chloroplast of

i
.
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prokaryotic origin, which harbors enzymes and metabolic pathways that are shared by

plants and prokaryotes [18,24].

In addition to genome sequence information, there are many resources and

computational tools that can further lead us from drug target genes to identifying small

molecule inhibitors. For example, comparative protein structure modeling could be used

to predict 3D structures of the drug target proteins [25]; P falciparum metabolic pathway

databases to extract substrate information of drug target enzymes [26]; molecular docking

to identify small molecules targeting specific proteins [27]; molecular profiling to

eliminate molecules without “drug-like” properties [28]; and structure-based similarity

searches for virtual screens of chemical databases [29].

In this manuscript we present an informatics approach that started with genome

sequence information and led to identifying potential antimalarial compounds. We used

this approach to systematically mine the entire P. falciparum proteome for potential drug

targets, and further integrate comparative protein structure modeling, enzymatic

annotations, molecular profiling and virtual screening of chemical databases to identify

small molecular inhibitors. We identified 152 potential antimalarial drug targets, 77

ligands that potentially bind to the drug targets, and 1893 commercially available small

molecules with potential antimalarial activities, which will be tested experimentally.

MATERIALS AND METHODS

Proteome collection

:º-

i
:
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795,685 annotated protein sequences from 203 completely sequenced genomes (including

P. falciparum) were used to generate the phylogenomic profiles. The genomes are listed

in supplemental Table S1.

Phylogenomic profile matrixes

By sequence homology

Two phylogenomic profiles were constructed using the sequence homology

scores as comparison metrics (E values or bits scores). We blasted P. falciparum protein

sequences against 795,685 protein sequences from 202 organisms (BLASTP 2.2.3: E

value threshold = 1.0, low complexity filter on, default values were used for the rest of

program parameters) [30]. The best E-value (logioB-value) or bit score for each P.

falciparum protein within each genome was extracted to construct the phylogenomic

profiles matrix. The matrix was arranged in a way that each row represented a P.

falciparum protein and each column represented a genome. The phylogenomic profile

matrixes were clustered on both the P. falciparum proteome and genome directions.

By sequence homology of orthologs

Two phylogenomic profiles were constructed by sequence homology of orthologs

(either E values or bits scores). A bi-directional blast of P. falciparum genome to other

genomes in the proteome collection was performed using the same BLASTP parameters

as described before. Orthologs were identified as the best reciprocal BLASTP hits (by

either E-value or bit scores) between two genomes. When orthologs were identified,

logloe-value or bit scores generated by blasting P. falciparum proteome to other

:
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proteomes were extracted to construct the phylogenomic profiles matrix with the same

method as described before.

By similarity to protein domain and family signatures

Protein signature profiles from InterPro and its following member databases --

Pfam, ProDom, SUPERFAMILY, SMART, PIRSF, and PRINTS -- were obtained from

InterPro release 8.0 [31]. TIGRFAMs protein family profiles were obtained from

TIGRFAMs release 4.0 [32]. Profile assignments and associated similarity scores to

Swiss-Prot and TrEMBL protein sequences [33] were extracted from InterPro 8.0.

TIGRFAMs profile assignments of P. falciparum protein sequences and similarity scores

were calculated using the InterProScan program [34]. Similarity scores were log10E

values for all profile assignments except for the matches to InterPro entries, which were

binary values (-1 and 0) with -1 representing a match in order to conform to the sign of

log10E-value.

For a given profile, the best score (log10E-value or binary values) in a genome

was used to construct the phylogenomic profile matrixes. A single matrix was

constructed for profiles defined in a single database, in which a row represented a profile

and a column represented a genome.

Drug target scoring function

For each P. falciparum protein, a score was calculated for each phylogenetic

comparison method (corresponding to each phylogenomic matrix). The score had two

components. The first component (So. Co., see below) measured the conservation in

;
}
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non-mammalian genomes, penalized by a second component (Sim - Cim, see below),

which measured the existence of homologs in mammalian genomes. The final drug

target score (S) for a P. falciparum protein was defined as the weighted sum of scores

derived from individual matrix.

S = X w(So. Co-Sin. C.)

i is the index of each phylogenetic comparison method. w; is the weight for each method

(equal weight was used w; = 1).

For sequence homology based methods (4 total), profiles of a P. falciparum

protein were extracted from matrix i. So is the average value, in profile i, of non

mammalian genomes whose values exceed the cutoff (bit score >100, log10E-value <-10).

Cio is the fraction of the non-mammalian genomes with values exceeding the cutoff, in

profile i. Sim and Cim are defined in the same way for mammalian genomes (cutoffs: bit

score ‘0, log10E-value P0).

For protein domain or family signatures based method (8 total), signatures were

first mapped to P. falciparum genes if the signature could be detected in the protein

sequence. The signature profiles were extracted from the phylogenomic matrix i and then

transferred to P. falciparum genes when such mappings were available. For each P.

falciparum gene and each comparison method i, Sio is the expectation value of the

signature i detected in the Pfalciparum gene. Co is the fraction of the non-mammalian

genomes in profile i with values exceeding cutoff (logioB-value <-0.1). Sum of So.Clo

was used in place of So.Clo if multiple signatures (all come from method i) mapped to a

single gene. Sim and Cim were defined in the same way for mammalian genomes (cutoff:

logloe-value P0). For InterPro entries, binary values (-1,0) were used in place of E

}
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values for phylogenomic profile matrix construction as well as Sio, Co, Sim and Cim

calculations (cutoffs: <-0.5 for Sio, Co, and >-0.5 for Sim, Cim.).

Ligand identification based on MODBASE/LIGBASE predictions

MODBASE (generated by ModPipe program on 2003-10-1) and LIGBASE

predictions for P. falciparum proteome were supplied by the Sali lab, UCSF. The

reliability of a predicted model generated by comparative protein structure modeling can

be evaluated by a reliability score [35]. A model is predicted to be reliable in

MODBASE (95% chance having at least 85% of its C alpha atoms superposed within

3.5A of their correct positions) when the score is higher than 0.7. Using 0.7 as the cutoff,

2019 P. falciparum proteins were identified in MODBASE to have 3276 reliably

predicted structure models [36,37].

Ligand identification based on enzymatic annotations

We extracted 911 unique gene and enzymatic reaction relationships, and 3785

small molecule and enzymatic reaction relationships from PlasmoCyc release 3.0 [26].

We mapped genes and the associated drug target scores to small molecules if they shared

the same enzymatic reactions. Two-dimensional chemical structures of the small

molecules represented by SMILE (Simplified Molecular Input Line Entry System)

notation were also obtained from the same release. Three-dimensional structures of the

ligands were extracted from PDB [74].

.
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Computational screening of chemical databases using similarity of molecular

fingerprints

Molecular fingerprints (bit-string representation of compound structures) were

calculated using Pipeline Pilot program (Scitegic Inc., San Diego, CA) with element-class

fingerprints with a diameter of 6 bonds (ECFP_6). Compound similarity was measured

by the Tanimoto similarity coefficient of their fingerprints.

Two compound databases were used for the virtual screens. The bioactive

compound database was composed of approximately 169,000 compounds including FDA

approved drugs, drugs that are in the developmental phase and molecules that are used

for large high throughput screens. The database of commercially available compounds

was composed of approximately 1.5 million compounds from the following companies:

ASINEX Inc, ChemBridge Inc, ChemDiv Inc, and Specs Inc.

Virtual screens were performed with Pipeline Pilot program. The first screen

(against bioactives database) used a Tanimoto coefficient cutoff >=0.4. The second

Screen (against commercially available compound database) used a cutoff >=0.32.

ADME filters

ADME filters were composed of 1) Lipinski criteria: poor absorption or

permeation is more likely when there are >5 H-bond donors, >10 H-bond acceptors,

molecular weight >500 and the calculated Log P(CLogP) > 5 (or MlogP × 4.15) [38]; 2)

Oprea criteria: “drug-like” compounds are more likely to be between the allowing limits:

0<= hydrogen bond donors <= 2, 2 <=hydrogen bond acceptors-9, 2 <= the number of
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rotatable bonds <= 8, and 1 <= the number of rings •4 [39]; 3) aqueous solubility

predictions generated using Pipeline Pilot model (Scitegic Inc.); 4) REOS filters [40].

The ADME filtering procedure was applied to the compound set resulting from

the second screen. Among the 7728 compounds, 3874 failed the solubility criteria

(>10pg/ml), 88 compounds exceeded the maximum allowed number of violations using

the combined Lipinski and Oprea criteria (violation <4), and 17 exceeded the REOS

violations (<2).

RESULTS

Our informatics approach to identify antimalarial compounds involves the

following five steps: (1) Generating phylogenomic profiles of the malaria proteome by

comparing it to 203 completely sequenced genomes; (2) Mining the phylogenomic

profiles for drug target genes by looking for genes that were conserved through evolution

but lack significant mammalian homologs; (3) Identifying ligands that could potentially

bind to those drug target proteins; (4) Screening large compound databases for drug-like

compounds that are structurally similar to the ligands identified in step 3; and (5) testing

antimalarial activity of candidate compounds by an in vitro growth inhibition assay

(Figure 1).

Phylogenomic profiles of the P. falciparum proteome

202 completely sequenced genomes were used to construct the P. falciparum

phylogenomic profile, including two mammalian genomes (Homo sapiens, Rattus

norvegicus), 23 other eukaryotic genomes, 159 bacterial genomes and 18 archaea

■
-

3.

3
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genomes. Three apicomplexan parasitic species were included in this study including P.

falciparum. The two additional species were Plasmodium yoelii yoelii (a causative agent

for rodent malaria) [20] and toxoplasma gondii (an intracellular parasite that infects

virtually all warm-blooded organisms and may cause disease and death in association

with immunosuppressive conditions) [41].

The complete P. falciparum proteome sequence was blasted against all annotated

protein sequences from the 202 genomes. For each malaria protein, the best pair-wise

BLASTP score within each of the 202 genomes was extracted to form the phylogenetic

profile of the P. falciparum protein. A matrix of the scores was compiled and clustered

to form a phylogenomic profile of the P. falciparum proteome with each row representing

a single P. falciparum protein and each column representing a genome (Figure 2).

In addition to sequence homology, several other metrics were used to construct

phylogenomic profiles, which were sequence homology between orthologs (defined as

the best reciprocal BLASTP hits between genomes), similarity to protein domain and

family signatures defined in protein signature databases such as Pfam, TIGRFAMs, }

}ProDom, SUPERFAMILY, SMART, PIRSF, PRINTS and InterPro [31,32,42-48].

Profiles were constructed in a similar way as those generated using sequence homology

(Materials and Methods). Twelve phylogenomic profile matrixes were constructed, one

for each comparison method. The sequence homology-based metrics produced P.

falciparum centric profiles (each row represented a P. falciparum protein); while

similarity of protein signature-based profiles did not (each row represented a single

signature).
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Figure 2 illustrates a sample phylogenomic profile constructed using sequence

homology. The profile contained good phylogenetic signal on both the deep and shallow

levels of the phylogeny scales. The three primary branches of the tree of life: Archaea,

Eukaryota and Bacteria were well separated. Evolutionarily closely related genomes

were clustered together such as the Enterobacteriales (Escherichia, Salmonella, Shigella

and Yersinia), the Bacilli (Streptococcus, Lactococcus, Enterococcus, Listeria, Bacillus,

Oceanobacillus and Staphylococcus) and the two closely related malaria species (P.

falciparum and P. yoelli yoelli). Examining the clustering on the direction of the P.

falciparum proteome, we could identify groups of genes with different phylogenetic

profiles such as genes conserved through evolution and shared by most of the taxons

(enolase PF10_01.55); eukaryotic-specific genes such as proteins in the ubiquitin system

(MAL8P1.23, PF10_0330); and genes conserved within archaea and eukaryotes, such as

DNA replication mini-chromosome maintenance (MCM) proteins (PFE1345c,

PF14_0177, PF07_0023, PFL0580w, PF13_0095, PF13_0291) [49]. An example of

genes detected exclusively in the three apicomplexan parasitic genomes was trophozoite

antigen R45 (PFD1175w) and its gene family [50]. Although most Apicomplexa-specific

genes were annotated as “conserved hypothetical” proteins identified based on

computational predictions, their conservation within Apicomplexa indicated their

function might be related to the parasitic life style and evolved after the divergence of the

common ancestor of apicomplexans. Most P. falciparum genes had homologs in the P.

yoelii yoelii proteome, although 20% of its proteome were specific to the P. falciparum

lineage. After examining the chromosomal locations of those P. falciparum-specific

genes, they were shown to be predominantly located at the sub-telomeric regions. Many

}
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of those P. falciparum-specific genes were members of the var, ri■ in and stevor gene

families, which were expressed on infected erythrocyte membrane and were important

factors possibly contributing to the parasite's antigenic variation [51-54]. These

observations are consistent with the previous hypothesis that the sub-telomeric regions

harbor fast evolving large gene families, indicating a possible functional role in antigenic

variation and immune evasion. [20,54-56].

Mining the phylogenomic profiles for drug target genes

Our goal was to mine the phylogenomic profiles to identify the drug target genes -

P. falciparum genes that are conserved through evolution but lacking significant

mammalian homologs. They are potentially good targets because evolutionarily

conserved genes are more likely to be essential, and lacking mammalian homologs

meaning that they are less likely to cause adversarial effect in human. An added benefit

was that conserved proteins were more likely to have been studied in other organisms.

Information on protein function, structure and inhibitors of the homologous genes could

assist our effort to find inhibitors for the malaria targets.

To identify genes with the above phylogenetic pattern, we developed a scoring

function to estimate its conservation in non-mammalian genomes, panelized by its

conservation in the mammalian genomes. The scoring function balanced the phylogenetic

pattern generated using sequence homology and protein signatures by integrating

information from all phylogenetic profile matrixes. For each P. falciparum gene, the

drug target score (S) was calculated as the weighted sum of a term measuring the

}
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conservation in non-mammalian genomes vs. mammalian genomes by the individual

phylogenetic comparison method (Materials and Methods).

The distribution of the drug target score (S) is illustrated in Figure 3. The score

ranges from -384 to +2.739 with larger negative values meaning better drug targets. The

average score is +48.29+119.19 (Supplemental Table S2). A sharp increase in the

cumulative frequency was observed at approximately S=–1.6 with a majority (50%) of

the proteins located between –1 and +10. To evaluate whether our scoring function was

able to enrich for potential drug targets, we tested the scoring function on a list of 12

known targets compiled through a literature search [17,24,26,57-65], which have an

average score —58+ 83 (Supplemental Table S3). Ten of the 12 (83%) positive controls

scored better than —1.6.

Using S <-1.6 as the threshold, 152 P. falciparum genes (3% of the proteome)

were identified as candidate drug target genes (Table 1). The top 20 of the list is shown

in Table 2. Among them was the entire P. falciparum isoprenoids biosynthesis pathway

(three identified enzymes: 1-deoxy-D-xylulose-5-phosphate synthase, 1-deoxy-D-

xylulose-5-phosphate reductoisomerase, 2C-methyl-D-erythritol 2,4-cyclodiphosphate

synthase [57,64,66] and four predicted enzymes: 2C-methyl-D-erythritol-4-phosphate

cytidyltransferase, 4-diphophocytidyl-2c-methyl-D-erythritol kinase, GcpB, LytB [4,26]).

Their phylogenetic profiles showed that the pathway was conserved in bacteria and

plants, but was absent in vertebrates (Figure 4). This finding was consistent with

previous studies that have identified this pathway as an excellent target for developing

new anti-malarial drugs [57,64,67].
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Identification of ligands bound to the drug target proteins

We identified ligands that could potentially bind to the drug target proteins using

the following two methods: comparative protein structure modeling and enzymatic

annotations.

Our first method was to identify co-binding ligands in protein structural models

generated by comparative protein structure modeling. Comparative protein structure

modeling, or homology modeling, is a computational method to predict three

dimensional protein structure models based primary on its alignment to known structures

[25,68-72). Structural models of high accuracy (in the range of 3Å) can be obtained

when template structures and the modeled sequence share strong sequence homology

(>50% sequence identity) [37,69]. Models for the P. falciparum proteome are available

in MODBASE, a database of predicted structure models to all known protein sequences

[36,37]. We identified 2019 P. falciparum proteins in MODBASE with at least one

known and reliably predicted structure model (Materials and Methods)

If there was a co-crystallized ligand in the template structures, we assumed the

ligands could potentially bind to the predicted models as well. Based on the above

assumption, 704 unique ligands was identified from LIGBASE, a database comprising all

ligand-binding sites of known protein structures in the Protein Data bank (PDB) [73]

(Figure 5).

Our second method to predict binding ligands was to identify natural substrates

and products of P. falciparum enzymes. Enzymatic annotations were obtained from

PlasmoCyc, a pathway database for the P. falciparum genome including information on

737 enzymes, 816 enzymatic reactions, and 525 small molecules compounds [26,75-77].
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335 unique small compounds were identified as natural substrates or products of a

predicted enzyme in the P. falciparum genome (Materials and Methods) (Figure 5).

Two-dimensional chemical structures of the small molecules were also obtained from

PlasmoCyc.

The combined set of small molecules obtained using comparative structure

modeling and enzymatic annotation was filtered to eliminate polymers, duplicates,

molecules with < 5 atoms, and molecules that failed to convert to machine readable

format, which yielded 780 ligands.

Drug target scores for P. falciparum proteins was subsequently transferred to their

corresponding ligands. In some cases, a single ligand was associated with multiple

proteins, which yielded multiple drug target scores. To capture the entire range of scores,

we assigned maximum and minimum scores to each ligand. Using the same cutoff—1.6

as that used for identifying drug target proteins, we obtained 56 ligands with both

maximum and minimum scores passing the threshold and 21 ligands with only the

minimum score passing the threshold. In total, the phylogenetic filter yielded 77 ligands

(Figure 5 and Supplemental Table S4).

Screening large chemical databases for drug-like compounds

In addition to binding to malaria target proteins and causing low toxicity to

human cells, successful antimalarials also possess other drug-like properties such as good

bioactivity and favorable bioavailability in the human body. Studies have shown poor

pharmacokinetics is an important cause of failure in drug development and should be

analyzed as early as possible in the drug discovery process. To facilitate screening out
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compounds with unfavorable bioavailability, computation models for drug absorption,

distribution, metabolism and excretion (ADME) properties have been developed

[28,79,80]. In addition, we desired compounds that could be purchased commercially for

efficient experimental validation.

A series of computational screening and modeling procedures was carried out to

find compounds that were structurally similar to our ligands and optimized for the other

properties (Figure 5).

To improve bioactivity of our compounds, we computationally screened a large

database of bioactives (169 K) to identify compounds with documented bioactivity.

Ligand structural similarity was measured by Tanimoto similarity coefficient of bit-string

representation of molecular structures (molecular fingerprints) [78]. This screen yielded

728 bioactive compounds. Using the 728 compounds from the first screen, a second

screen of a database comprised of commercially available compounds (1.5 M) yielded

7728 compounds. The set of 7728 compounds was subsequently subjected to an ADME

filtering procedure, which yielded 3749 good compounds (Materials and Methods).

Upon examining the distribution of the 3749 compounds by their initial 77 query ligands,

certain ligands dominated the selection. To increase the diversity in the final compound

set, the maximum number of compounds per query ligand was capped at 125 per

commercial vendor, which yielded 1893 compounds from four commercial vendors (300

- 600 if purchased from a single company) (Supplemental Figure S1).

The screening process could best be illustrated by an example of a query ligand,

such as p-aminobenzoate. p-Aminobenzoate was initially identified a natural substrate or

product of dihydropteroate synthetase and para-aminobenzoic acid synthetase. Both
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enzymes were among the list of candidate drug target genes (dihydropteroate synthetase

with a drug target score -36 and para-aminobenzoic acid synthetase scored -68). The

drug target scores were transferred from the enzymes top-aminobenzoate (minimum

score: —68 and maximum score: –36). Since both its minimum and maximum scores

passed the -1.6 threshold, p-aminobenzoate was selected as a query ligand to proceed to

the two-step virtual screen process. In the first step, p-aminobenzoate was screened

against compounds in the bioactive database, which yielded 31 structurally similar

compounds including p-aminobenzoate. In the second step, the 31 compounds were

screened against compounds in four commercial collections. After filtering out

compounds with unfavorable ADME properties and applying the diversity filter, 125

compounds were derived from each commercial vendor database (Figure 6).

DISCUSSION

Experimental validation

The experimental validation step of this study is currently underway. 646

compounds were ordered from Chembridge Inc. (San Diego, CA) (Supplemental Table

S5). The antimalarial activity of those compounds will be tested using a high-throughput

in-vitro growth inhibition assay as described in previous studies [81,82]. The same

experimental assay will be applied on a negative control set, composed of an equal

number of compounds chosen randomly from an in-house collection. The effectiveness

of this informatics approach will be evaluated by the enrichment of antimalarial activity

in selected compounds compared to the negative control.
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The ideal negative control sets

In addition to enriching for antimalarials, our approach was also aimed at

selecting compounds that will cause lower toxicity in human cells by targeting P.

falciparum genes without significant homologs in mammalian genomes. The toxicity of

our candidate compounds could be measured in a human cell line and evaluated by

comparing to a second negative control set composed of compounds selected through the

same informatics procedure except their target genes have a high drug target score

(opposite pattern of phylogenetic profiles: conserved in mammalian genomes without

significant homologs in non-mammalian genomes).

Therefore, the ideal negative control should include two sets of compounds. The

first set would be the randomly selected compounds for the evaluation of antimalarial

activities. The second negative control set for the evaluation of toxicity in a human cell

line. Both sets should also be filtered through the same ADME and diversity filters and

ordered from the same vendor to eliminate any bias introduced by those procedures.

The two ideal negative control sets were generated computationally

(Supplemental Table S6). Due to financial limitations, we did not purchase them; instead

we used an in-house collection as our only negative control. We were therefore unable to

evaluate the human toxicity aspect experimentally. In addition, due to lack of control

over drug-like properties, the antimalarial activity of the negative control set will have

certain level of bias, depending on the specific compounds that will be chosen.

Approximation in the computational process
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Approximation, simplification and their associated errors are unavoidable

components of any computational approach for drug development. Several significant

assumptions and approximations were applied in our computational process.

In the process of drug target identification

In the process of using a phylogenomic profile to identify drug target genes, we

used conservation through evolution as a proxy for gene essentiality. To find out whether

a gene is essential, ideally we need to knock out (or conditionally knockout) the gene

product experimentally. Unfortunately, the genome-wide deletion project in Plasmodium

has not been carried out. Alternative computational approaches to assign essentiality

included mapping essential genes identified in model organisms such as E. coli and S.

cerevisiae to P. falciparum genome [83], identifying components that lack alternative

paths in metabolic networks [26,84], and identifying “network hubs” in protein

interaction networks [85,86). In addition, we used the lack of significant mammalian

homologs as the proxy to low toxicity. The caveat of this assumption was that it did not

consider small molecule cross-reaction to other protein targets. To identify orthologs, we

simply used reciprocal inter-genome best BLASTP hits as biological orthologs without

running full phylogenetic reconstruction. Although more accurate computational methods

were available [87,88], we did not expect they would dramatically change our drug target

gene list since the contribution from ortholog analysis only accounted for a fraction

(1/12) of the final results. In addition to those assumptions, the accuracy of our

phylogenomic analysis was also dependent on the performance of sequence homology

search and protein signature identification.

In the process of predicting binding ligands
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Additional uncertainty was introduced when we used protein structure and co

ligand predictions available in MODBASE and LIGBASE. Comparative structure

modeling can achieve relatively high accuracy (in the range of 3A) when template

structures and the modeled sequence share strong sequence homology (>50% sequence

identity). Sequence alignments on which the models are based generally contain almost

no errors. Models of this level of accuracy can be used for docking of small ligands [89].

If the sequence identity is in the range of 30–50%, models tend to have >85% of the C

atoms within 3.5 Å of their correct positions [37,69]. Models of this range of accuracy

correspond to the reliability score 0.7, which can be used to predict the location of the

binding site, but not enough for docking small molecules [69]. We used 0.7 as the cutoff

for the structure predictions, which meant that a subset of models did not have enough

accuracy for directly predicting co-binding ligands.

An even greater simplification was made when we assumed co-crystallized

ligands in structure templates would bind to the predicted structure models as well (also

the premise of LIGBASE). A more thorough computational approach should compare

the binding sites (under development in LIGBASE, unpublished data) and perform

molecular docking of the ligand to the structure models. These improvements required

either further development of computational methods or a large amount of manual

intervention that were beyond our available resources. With the approximation in both

structure prediction and transferring of co-ligands, not all predicted binding ligands

would bind to the presumed P. falciparum drug targets.

Comparing to structure prediction-based binding ligand identification, we

expected a lower error rate in the method based on natural substrates of enzymes, because
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reaction chemistry, substrate specificity and the structure of the active sites are more

conserved than allover structures and sequences [90-94]. Errors could still exist due to

mistakes in ORF annotations (assigning ORFs as specific enzymes), the existence of

certain P. falciparum pathways, and alternative substrates used by a P. falciparum

enzyme.

In the process of virtual screens

Virtual screens of chemical databases are based on the idea that significant

similarities in molecular structures are attributed to similarity in biological activities [95].

But structure and activity can relate in so many different ways that it is difficult to

capture in bit string representation of molecular structures. Using a sequential two-step

screening procedure with similarity score cutoffs 0.4 and 0.32, we expected a certain

level of false positives and false negatives generated from the screen.

In addition to the similarity search, we implemented several rule-based methods

(Lipinski, Oprea, and REOS rules) to predict “drug-like” properties. These rules were

mostly generated from statistical analysis of structure activity relationships of various

collections of compounds to classify them as “drug-like” or not “drug-like”; each rule

generating somewhat different classifications and with different self-claimed recall rates

for “drug-like” compounds (90% for Lipinski’s “rule of 5”; 70% for Oprea criteria) [38

40]. We used a combination of Lipinski, Oprea, and REOS rules to maximize our chance

to eliminate compounds with unfavorable pharmacokinetics properties. However, we

still expected a subset of our compounds would not be perfect.

Using enrichment of antimalarial activities as the benchmark for evaluation
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These approximations and simplifications introduced errors throughout the

process. In addition, many other factors complicates the in vitro growth inhibition assay

(used as an approximation for in vivo antimalarial activity), such as the ability of the

compounds to cross the red blood cell membrane. With these uncertainties difficult to

account for computationally, a majority of our compounds were not expected to come out

as strong antimalarials. However, this computational approach could still increase the

possibility of promising compounds. Enrichment by an informatics approach can

concentrate future drug development resources on a more promising set. The hit rate for

an experimental high-throughput screening (HTS) of compound libraries (without

selection) is often quite low, typically well below 1% (96-98). Studies have shown that a

virtual screen can improve the hit rate by 20 fold to 1700 fold [96,97]. To demonstrate

the utility of our approach, we will use the enrichment factor (hit rate of selected

compounds divided by that of the negative control) instead of absolute antimalarial

activities for evaluation.

Summary

The most important contribution of this manuscript is the development and

implementation of this virtual drug development framework to discover antimalarial

compounds in silico. This framework started with 203 complete genome sequences and

resulted in 1893 potential antimalarials; in the process it integrated a diverse and large

amount of informatics dataset of protein signatures and profiles, metabolic pathways,

protein 3D structure models, and large compound collections. A large spectrum of

computational methods was used or developed in this framework, which included
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sequence homology searches, ortholog identification, a phylogenomic analysis of a

complete proteome, prediction for drug-like compounds, molecular fingerprints, a scoring

function to systematically identify drug target proteins from the complete P. falciparum

genome, and a virtual screen procedure composed of a two-step similarity search

followed by ADME and diversity filtering procedures. Although most of the informatics

and computational components have been developed, they were rarely put together in a

single pipeline. Even more unusual, the derived compounds can now be tested

experimentally.

Although uncertainties and errors were associated with almost every

computational step, these computational procedures made this framework extremely

high-throughput, much cheaper to perform than a pure experimental screening approach,

and capable of utilizing the tremendous amount of information accumulated in

sequencing projects, functional genomics, structural genomics, and computational

chemistry.

We have demonstrated the utility of this framework to develop inhibitors against

one of the most deadly human parasites in the world. Other infectious diseases, many of

which are associated with poverty and neglect, can benefit from the same pipeline as

well.
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Figure 5-3 Distribution of the drug target score (S) in the P. falciparum proteome
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Figure 5–4 The phylogenetic profile and drug target scores of the isoprenoids

biosynthesis pathway
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Figure 5-5 Flowchart of the virtual drug development process for antimalarials
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Figure 5–6 The identification of compounds that are structurally similar top

aminobenzoate as potential antimalarials

p-Aminobenzoate was identified as a natural substrate or product for two drug target

genes (dihydropteroate synthetase and para-aminobenzoic acid synthetase). Compounds

that are structurally similar top-aminobenzoate were identified using the two-step virtual

screen procedure. A subset of the resulting compounds was shown.
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Figure 5-S1 Compound frequency in the final selected set (per query ligand)

600 -

1234:
company

ASNX
CHDV

* CHMB
- SPEC

152



*º- * :- - - - - *
- * * * *

-- ** º
- *

:
*-*-* -ºº---. r

* * = * *" * *** -
- * -- *** *

r - ---. . . .
. . . . . . * * -- *

- - * - a - "

• * * * * º * * * : ------,
* * * * *- ** ... --- - -

-- * *** *** ** -

---"
--- - - ..." ----ea - - - -

º: -

. . *-***** *----. "

- * 4.
- *.

- º

- - * --
- *:----, -º- - - - -

º

- - º
* =

* * -

s º

* - * * , -
= y = - **

**
- º

i -

- . 1 -

* -

" ... --
- º

- -
-

---
■ -- --

** - /

. sº J T



Table 5-1 Candidate drug target genes

Drug Drug Drug
Plasmo DB Target Plasmo■ ) B Target Plasmo■ )3 Target

ID Score (S) ID Score (S) ID Score (S)
PF14_0334 -384.34 PFIO375W -15.73 MAL6P1.148 -3.58
MAL6P1.110 -281.42 rpoB -15.66 MAL13P1.329 -3.56
PF14_0246 -246.58 PF11_0044 -15.52 PFIO735C -3.30
PF14_0641 -190.23 PF14_0658 -13.43 PFI1160W -3.23
PFA0225w -143.36 PFI1585C -13.27 PFAO340w –3.22
PF14_0541 -128.15 MAL6P1.203 -12.65 MAL6P1.95 -3.18
ORF470 -124.01 PFL1775C -12.62 PF07_0113 -3.17
PF10_0123 -122.64 PFL1140w -12.16 PFE1455W –3.17
PFIO355C -119.39 MAL6P1.291 -10.75 PFE0560C -3.03
PF08_0063 -112.91 PF11_0212 -10.44 PF10_0268 -3.02
PFB0505c -110.78 PF14_0265 -10.25 PFE1275c –2.97
PF10_0221 -108.04 MAL13P1.32 –9.85 PF14_0387 –2.95
PF13_0234 -102.20 PFL1120C –9.59 MAL13P1.111 -2.88
PFB018Ow -100.75 MAL13P1.42 –9.36 PF11_0307 -2.84
PF14_0133 -100.43 PFL2230C –9.17 PFE0050w –2.77
PFI 1340w –97.00 PFEO660C –9.01 MAL6P1.205 -2.77
MAL6P1.199 -87.82 PFB027Ow -8.82 MAL13P1.40 –2.53
PFIO380c -75.78 MAL6P1.97 -8.61 PF07_0064 -2.53
PF07_0062 -73.65 PFCO725C -8.46 PFL1115W -2.44
PF11_0337 -72.66 PF14_0114 -7.90 PFEO150G -2.41
PFB042Ow -69.04 PFD0980W -7.73 MALBP1.103 -2.38
PFI1100w -68.50 MAL6P1.242 –7.49 MALBP1.13 –2.36
PF13_0128 -58.07 PFE0635C -7.16 MAL13P1.31 -2.30
PF13_0176 -51.95 |PFL1350w -7.09 || |PF13_0332 –2.28
MAL6P1.215 -51.60 PF14_0564 -7.09 PFB0390 W -2.24
PFL1920c –49.75 PFIO330c –707 PFD0350w -2.23
PFLO835w -45.38 MAL6P1.285 -7.05 PFB0855C -2.21
PFD0285C –44.18 MALBP1.110 -7.01 PFE0630C -2.19
PF13_0140 -36.89 MAL6P1.175 –6.73 PFCO565W -2.17
PF08_0095 -36.82 PFIO920C –6.04 PF10_0313 –2.17
PFB0890c -34.67 PF14_0481 -5.92 MAL7R1.29 –2.17
PF14_0066 -34.53 PFLO305C —5.85 MAL6P1.217 -2.13
PF07_0068 –34.48 PF11_0092 -5.75 PFIO605C -2.09
PFL1700c -33.14 PF13_0155 –5.61 PFL1795C -2.05
MAL6P1.38 –31.64 MALBP1.27 -4.94 PF10_0040 -1.94
PF14_0357 -31.35 PFI1645C –4.87 || |MAL13P1.138 -1.91
MAL13P1.255 -29.66 PFEO665C –4.73 MAL13P1.260 -1.89
PFE1030c –28.88 PF11_0172 –4.72 PF11_0403 -1.87
MAL13P1.281 –26.90 MAL13P1.304 –4.71 PF07_0018 -1.80
PF11_0175 –24.53 PFL126Ow –4.58 PFE1040C -1.80
PFE0705c –24.38 PF10_0300 –4.50 PFIO72OW -1.72
PFIO230c -23.78 MALBP1.101 –4.47 PFE032Ow -1.71
PFDogzoc —23.48 Cip –4.32 PF14_0662 -1.87
PFL1465C –22.17 MAL7R1.20 –4.32 MALBP1.141 -1.66
PF13_0207 -22.02 PFC0980C –4.21 PFLO205w -1.65
MAL6P1.275 -19.71 PF11_0229 –4.03 MAL6P1.138 -1.64
PFB0585w -18.76 PFLO620C -3.89 PF11_0059 -1.63
PFE0145w -18.45 MAL13P1.214 -3.85 PF13_0172 -1.61
MAL13P1.319 -17.88 PFD0555C -3.66 PF13_0210 -1.61
PFLO175c -1747 PF13_0175 -3.58 PF11_0190 -1.61
PF14 0697 -17.43
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Table 5–2 The top 20 drug target genes in the P. falciparum proteome

PlasmodB Drug Target
Score (S)|D

PF14_0334
MAL6P1.110
PF14_0246
PF14_0641
PFA0225W
PF14_0541
ORF470

PF10_0123
PFI0355C
PF08_0063
PFB05050
PF10_0221
PF13_0234
PFB018OW
PF14_0133
PFI1340w
MAL6P1.199
PFIO380C
PFO7_0062
PF11_0337

-384.34
–281.42
–246.58
-190.23
-143.36
-128.15
-124.01

-122.64
-119.39
-112.91
-110.78
-108.04
-102.20
-100.75
-100.43

–97.00
-87.82
-75.78
-73.65
-72.66

Gene Annotation

NAD(P)H-dependent glutamate synthase, putative
transketolase, putative
phosphoenolpyruvate carboxylase, putative
1-deoxy-D-xylulose 5-phosphate reductoisomerase
LytB protein
V-type H(+)-translocating pyrophosphatase, putative
encodes a well-conserved protein recorded from the plastids of
three red algae, O. sinensis and Mycobacteri
GMP synthetase
ATP-dependent heat shock protein, putative
hypothetical protein
beta-ketoacyl-acyl carrier protein synthase lll precursor, putative
GcpB protein
phosphoenolpyruvate carboxykinase
5'-3' exonuclease, N-terminal resolvase-like domain, putative
ATP-dependent transporter, putative
fumarate hydratase, putative
chorismate synthase
formylmethionine deformylase, putative
GTP-binding translation elongation factor tufamily protein, putative
50S ribosomal protein L2, putative
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Table 5-S1. Genome collection

Number of
Species annotated

ORFs
Aeropyrum permix 1841 Archaea
Archaeoglobus fulgidus DSM 4304 2420 Archaea
Halobacterium sp. NRC-1 2622 Archaea
Methanocaldococcus jannaschi 1785 Archaea
Methanococcus maripaludis S2 1722 Archaea
Methanopyrus kandleri AV19 1687 Archaea
Methanosarcina acetivorans C2A 4540 Archaea
Methanosarcina mazei Goel 3371 Archaea

Methanothermobacter thermautotrophicus str. Delta H 1873 Archaea
Nanoarchaeum equitans Kiné-M 536 Archaea
Pyrobaculum aerophilum str. IM2 2605 Archaea
Pyrococcus abyssi 1896 Archaea
Pyrococcus furiosus DSM 3638 2125 Archaea
Pyrococcus horikoshii 1956 Archaea
Sulfolobus solfataricus 2977 Archaea
Sulfolobus tokodaii 2826 Archaea
Thermoplasma acidophilum 1482 Archaea
Thermoplasma volcanium 1499 Archaea
Acidithiobacillus ferrooxidans ATCC 23270 3172 Bacteria

Agrobacterium tumefaciens str. C58 5402 Bacteria
Aquifex aeolicus VF5 1560 Bacteria
Bacillus anthracis str. Ames 5311 Bacteria
Bacillus cereus ATCC 10987 5844 Bacteria
Bacillus cereus ATCC 14579 5255 Bacteria
Bacillus halodurans 4066 Bacteria
Bacillus subtilis subsp. subtilis str. 168 4112 Bacteria
Bacteroides thetaiotaomicron VP1-5482 4778 Bacteria
Bdellovibrio bacteriovorus HD100 3587 Bacteria
Bifidobacterium longum NCC2705 1729 Bacteria
Bordetella bronchiseptica 4994 Bacteria
Bordetella parapertussis 4.185 Bacteria
Bordetella pertussis 3436 Bacteria
Borrelia burgdorferi B31 1640 Bacteria
Bradyrhizobium japonicum USDA 110 8317 Bacteria
Brucella melitensis 16M 31.98 Bacteria
Brucella ovis 3382 Bacteria
Brucella suis 1330 3264 Bacteria

Buchnera aphidicola str. APS (Acyrthosiphon pisum) 574 Bacteria
Buchnera aphidicola str. Bp (Baizongia pistaciae) 504 Bacteria
Buchnera aphidicola str. Sg (Schizaphis graminum) 546 Bacteria
Burkholderia mallei ATCC 23344 4888 Bacteria
Campylobacter jejuni RM1221 1841 Bacteria
Campylobacter jejuni subsp. jejuni NCTC 11168 1634 Bacteria
Candidatus Blochmannia floridanus 583 Bacteria

Carboxydothermus hydrogenoformans Z-2901 2645 Bacteria
Caulobacter crescentus CB15 3737 Bacteria
Chlamydia muridarum 911 Bacteria
Chlamydia trachomatis 895 Bacteria
Chlamydophila caviae GPIC 1005 Bacteria
Chlamydophila pneumoniae AR39 1112 Bacteria
Chlamydophila pneumoniae CWL029 1054 Bacteria
Chlamydophila pneumoniae J138 1069 Bacteria
Chlamydophila pneumoniae TW-183 1113 Bacteria
Chlorobium tepidum TLS 2252 Bacteria
Chromobacterium violaceum ATCC 12472 4407 Bacteria
Clostridium acetobutylicum 3848 Bacteria
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Clostridium perfringens ATCC 13124 3040 Bacteria
Clostridium perfringens str. 13 2723 Bacteria
Clostridium tetani E88 2373 Bacteria
Colwellia psychrerythraea 34H 4921 Bacteria
Corynebacterium diphtheriae 2291 Bacteria
Corynebacterium efficiens YS-314 2950 Bacteria
Corynebacterium glutamicum ATCC 13032 2993 Bacteria
Coxiella burnetii RSA 493 2045 Bacteria
Dehalococcoides ethenogenes 195 1581 Bacteria
Deinococcus radiodurans 3182 Bacteria

Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough 3531 Bacteria
Enterococcus faecalis V583 3265 Bacteria
Escherichia Coli CFTO73 5379 Bacteria
Escherichia coli K12 4311 Bacteria
Escherichia coli O157:H7 5341 Bacteria
Escherichia Coli O157:H7 EDL933 5324 Bacteria

Fibrobacter succinogenes S85 3275 Bacteria
Fusobacterium nucleatum subsp. nucleatum ATCC 25586 2067 Bacteria
Geobacter sulfurreducens PCA 3445 Bacteria
Gloeobacter violaceus 4430 Bacteria

Haemophilus ducreyi 35000HP 1717 Bacteria
Haemophilus influenzae Ro 1657 Bacteria
Helicobacter hepaticus ATCC 51449 1875 Bacteria
Helicobacter pylori 26695 1576 Bacteria
Helicobacter pylori J99 1491 Bacteria
Lactobacillus johnsonii NCC 533 1821 Bacteria
Lactobacillus plantarum WCFS1 3009 Bacteria
Lactococcus lactis subsp. lactis 2358 Bacteria
Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 3660 Bacteria
Leptospira interrogans serovar lai str. 56601 4727 Bacteria
Listeria innocua 3043 Bacteria
Listeria monocytogenes 4b H7858 3020 Bacteria
Listeria monocytogenes EGD-e 2846 Bacteria
Listeria monocytogenes str. 4b F2365 2821 Bacteria
Mesorhizobium loti 7274 Bacteria

Methylococcus capsulatus Bath 2962 Bacteria
Mycobacterium avium subsp. paratuberculosis str. k10 4350 Bacteria
Mycobacterium bovis subsp. bovis AF2122197 3920 Bacteria
Mycobacterium leprae 1605 Bacteria
Mycobacterium tuberculosis CDC1551 4187 Bacteria
Mycobacterium tuberculosis H37RV 3927 Bacteria
Mycoplasma arthritidis 158L3-1 710 Bacteria
Mycoplasma gallisepticum R 726 Bacteria
Mycoplasma mycoides subsp. mycoides SC str. PG1 1016 Bacteria
Mycoplasma penetrans 1037 Bacteria
Mycoplasma pneumoniae 689 Bacteria
Mycoplasma pulmonis 782 Bacteria
Myxococcus xanthus DK 1622 6291 Bacteria
Neisseria meningitidis MC58 2079 Bacteria
Neisseria meningitidis Z2491 2065 Bacteria
Nitrosomonas europaea ATCC 19718 2461 Bacteria
Nostoc sp. PCC 7120 6129 Bacteria
Oceanobacillus ineyensis HTE831 3500 Bacteria
Onion yellows phytoplasma 754 Bacteria
Parachlamydia sp. UWE25 2031 Bacteria
Pasteurella multocida 2032 Bacteria
Photorhabdus luminescens subsp. laumondii TTO1 4683 Bacteria
Pirellula sp. 7325 Bacteria
Porphyromonas gingivalis W83 1909 Bacteria
Prochlorococcus marinus str. MIT 9313 2265 Bacteria
Prochlorococcus marinus subsp. marinus str. CCMP1375 1882 Bacteria
Prochlorococcus marinus subsp. pastoris str. CCMP1986 1712 Bacteria
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Propionibacterium acnes KPA171202 2297 Bacteria
Pseudomonas aeruginosa PAO1 5567 Bacteria
Pseudomonas putida KT2440 5350 Bacteria
Pseudomonas syringae pv. tomato str. DC3000 5608 Bacteria
Ralstonia Solanacearum 5131 Bacteria

Rhodopseudomonas palustris CGA009 4820 Bacteria
Rickettsia Conorii 1374 Bacteria

Rickettsia prowazeki 835 Bacteria
Salmonella enterica subsp. enterica serovar Typhi 4758 Bacteria
Salmonella enterica subsp. enterica serovar Typhi Ty2 4318 Bacteria
Salmonella typhimurium LT2 4527 Bacteria
Shewanella oneidensis MR-1 4471 Bacteria

Shigella flexneri 2a str. 2457T 4068 Bacteria
Shigella flexneri 2a str. 301 4180 Bacteria
Silicibacter pomeroyi DSS-3 4284 Bacteria
Sinorhizobium meliloti 6213 Bacteria
Staphylococcus aureus COL 2678 Bacteria
Staphylococcus aureus subsp. aureus Mu■ 0 2748 Bacteria
Staphylococcus aureus subsp. aureus MW2 2632 Bacteria
Staphylococcus aureus subsp. aureus N315 2624 Bacteria
Staphylococcus epidermidis ATCC 12228 2485 Bacteria
Staphylococcus epidermidis RP62A 2526 Bacteria
Streptococcus agalactiae 2603WR 2124 Bacteria
Streptococcus agalactiae A909 1966 Bacteria
Streptococcus agalactiae NEM316 2094 Bacteria
Streptococcus mutans UA159 1960 Bacteria
Streptococcus pneumoniae R6 2043 Bacteria
Streptococcus pneumoniae TIGR4 2094 Bacteria
Streptococcus pyogenes M1 GAS 1697 Bacteria
Streptococcus pyogenes MGAS315 1865 Bacteria
Streptococcus pyogenes MGAS8232 1845 Bacteria
Streptococcus pyogenes SS-1 1861 Bacteria
Streptomyces avermitilis MA-4680 7671 Bacteria
Streptomyces coelicolor A3(2) 8154 Bacteria
Synechococcus sp. WH 8102 2517 Bacteria
Synechocystis sp. PCC 6803 3567 Bacteria
Thermoanaerobacter tengcongensis 2588 Bacteria
Thermosynechococcus elongatus BP-1 2475 Bacteria
Thermotoga maritima 1858 Bacteria
Thermus thermophilus HB27 2210 Bacteria
Treponema denticola ATCC 35405 2767 Bacteria
Treponema pallidum 1036 Bacteria
Tropheryma whipplei str. Twist 808 Bacteria
Tropheryma whipplei TWO8/27 783 Bacteria
Ureaplasma urealyticum 614 Bacteria
Vibrio cholerae 3835 Bacteria
Vibrio parahaemolyticus RIMD 2210633 4832 Bacteria
Vibrio vulnificus CMCP6 4514 Bacteria
Vibrio vulnificus YJO16 5024 Bacteria
Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis 611 Bacteria
Wolbachia endosymbiont of Drosophila melanogaster 1195 Bacteria
Wolinella succinogenes 2044 Bacteria
Xanthomonas axonopodis pv. citri str. 306 4427 Bacteria
Xanthomonas campestrispy. Campestris str. ATCC 33.913 4181 Bacteria
Xylella fastidiosa 9a5c 2832 Bacteria
Xylella fastidiosa Temeculat 2036 Bacteria
Yersinia pestis biovar Medievalis str. 91001 4142 Bacteria
Yersinia pestis CO92 4067 Bacteria
Yersinia pestis KIM 4449 Bacteria
Anopheles gambiae str. PEST 15212 Eukaryota
Arabidopsis thaliana 26552 Eukaryota
Caenorhabditis elegans 22228 Eukaryota
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Candida albicans SC5314

cuniculi

lamblia ATCC 50803
theta

623–6C
MCYC 623

castellii
cerevisiae

NRRL Y-12651
kudriavaevii IFO 1802
mikatae
mikatae IFO 1815

NRRL Y-17217
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Table 5-S2 Drug target score (S) for the complete P. falciparum proteome

Due to the large size of this table, the data can be downloaded electronically at the

following location: http://derisilab.ucsf.edu/thesisdata/zhu/chapter5 tableS2.pdf.
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Table 5-S3 Drug target score (S) for known target genes (a positive set)

Drug

EC Pºpe . Gene annotation Inhibitor Pathway
(S)

1-deoxy-D-xylulose 5-
- -

Isoprenoids
1 |1.1.1.267 |PF 14 0641 -190.23 phosphate reductoisomerase fosmidomycin biosynthesis

lfone/
2.7.6.3/

- Su -
Floate

2 2.5.1.15 PF08_0095 -36.82 dihydropteroate synthase sulfonamide biosynthesisdrugs

3 1.5.13 PFD0830w 12330 dihydrofolate reductase ..." ...e.cycloguanil iosynthesis
formylmethionine

- -
Peptide

4 |3.5.1.88 |PFIO380C –75.78 deformylase, putative actinonin deformylation

- -
glyphosate Shikamate

5 |4.2.3.5 MAL6P1.199 87.82 chorismate synthase inhibit pathway biosynthesis

6 2.2.17 PF13 0207 || -22.02 ||:deoxy-D-xylulose-5- Isoprenoids
-

phosphate synthase biosynthesis

-
2C-methyl-D-erythritol 2,4- Isoprenoids

7 |4.6.1.12 |PFB0420w 69.04 cyclodiphosphate synthase biosynthesis
Isoprenoids

8 |1.17.1.2 |PFA0225W -143.36 |LytB biosynthesis
Isoprenoids

9 |1.17.4.3 |PF10_0221 -108.04 GcpE biosynthesis

-
Fatty acid

10|1.3.1.9 |MAL6P1.275 -19.71 enoyl-ACP-reductase (Fab■ ) triclosan biosynthesis II
beta-ketoacyl-acyl carrier

-
... Fatty acid

11 2.3.1.41 |PFB0505c -1 10.78 protein synthase (FabH) thiolactomycin biosynthesis II
3-oxoacyl-(acyl-carrier-

-

12 2.3.1.41 MAL6P1.165 | 40.16 protein) synthase i■ ii thiolactomycin ■ º,
biosynthesis II(FabB/F)
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Table 5-S4 Seventy-seven co-ligands of the drug target genes, identified by

comparative protein structure modeling or enzymatic annotations

Minimum | Maximum

Ligand code Compound name drug target drug target
Score Score

2OG 2-oxo-glutaric acid -384.35 -384.35
ONL 5-oxo-l-norleucine -384.35 -384.35

D-SEDOHEPTULOSE-7-P sedoheptulose-7-phosphate -281.42 –281.42
ERYTHROSE-4P erythrose-4-phosphate -281.42 –281.42

3,3-dichloro-2-phosphonomethyl-acrylic
DCO acid -246.58 –246.58

nicotinamide-adenine-dinucleotide
ADJ adenylateintermediate -122.64 -122.64
N-ACETYLNEURAMINATE_n-acetylneuraminate -110.78 -1 10.78
1-HYDROXY-2-METHYL-2- |1-hydroxy-2-methyl-2-butenyl 4
BUTENYL-4-DIPHOSPHA diphosphate -143.36 -108.04
SRM Siroheme -108.04 -108.04

phosphomethylphosphonic acid-guanylate
GTO ester -102.20 -102.20
BB2 Actinonin –75.78 –75.78

2C-METH-D-ERYTHRITOL- |2-c-methyl-d-erythritol-2,4-
CYCLODIPHOSPHATE cyclodiphosphate -108.04 -69.04
CDF cytidine-5'-diphosphate -69.04 -69.04
CHORISMATE Chorismate -87.82 -68.50

DAC 2-decenoyl n-acetyl cysteamine -58.07 -58.07
XYL d-xylitol -51.95 -51.95
U uridine-5'-monophosphate -51.60 -51.60
THZ 4-methyl-5-(beta-hydroxyethyl)thiazole -49.75 -49.75
TZE 2-(4-methyl-thiazol-5-yl)-ethanol –49.75 –49.75
CADAVERINE Cadaverine -44.18 –44.18

diphosphomethylphosphonic acid adenylate
ACQ ester -36.89 -36.89
TMF 5,10-methylene-6-hydrofolic acid -36.89 -36.89
P-AMINO-BENZOATE -aminobenzoate -68.50 -36.82

7,8-dihydropteroate 7,8-dihydropteroate -36.89 -36.82
2-amino-4-hydroxy-6-hydroxymethyl-7,8-

DIHYDROPTERIN-CH2OH-PP dihydropteridine diphosphate -36.82 -36.82
AMINO-OH
HYDROXYMETHYL- 2-amino-4-hydroxy-6-hydroxymethyl-7,8-
DIHYDROPTERIDINE dihydropteridine -36.82 -36.82
PMM pterin-6-yl-methyl-monophosphate -36.82 -36.82
SAN Sulfanilamide -36.82 -36.82

PROPIONATE ropanoate -31.35 -31.35
AMINO-HYDROXYMETHYL- 4-amino-5-hydroxymethyl-2-
METHYL-PYR-P methylpyrimidine-phosphate –28.88 –28.88
2-D-THREO-HYDROXY-3-
CARBOXY-ISOCAPROATE_2-d-threo-hydroxy-3-carboxy-isocaproate –23.48 –23.48
DEOXYXYLULOSE-5P 1-deoxy-d-xylulose 5-phosphate -190.23 -22.02
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1-(o-carboxy-phenylamino)-1-deoxy-d-
137 ribulose-5-phosphate -143.36 -17.88
CARBOXYPHENYLAMINO- |1-(o-carboxyphenylamino)-1'-
DEOXYRIBULOSE-P deoxyribulose-5'-phosphate -17.88 -17.88

INDOLE-3–GLYCEROL-P indole-3-glycerol-phosphate -17.88 -17.88
KCX lysine nz-carboxylic acid –36.89 -17.43
SCR sucrose octasulfate –9.85 –9.85

1,4-dideoxy-4-aza-1-(s)–(9-
IMH deazahypoxanthin-9-yl)-d-ribitol -9.01 –9.01
DEOXY-RIBOSE-1P deoxy-ribose-1-phosphate –9.01 -9.01

DEOXYGUANOSINE deoxyguanosine -9.01 –9.01
RIBOSE-1P ribose-1-phosphate -9.01 –9.01
DEOXYINOSINE deoxyinosine –9.01 -9.01
A3P adenosine-3'-5'-diphosphate –7.73 –7.73
PAP adenosine-3'-5'-diphosphate –7.73 –7.73

4-methyl-5-(beta-hydroxyethyl)thiazole
THZ-P hosphate –49.75 –7.05
AMINO-HYDROXYMETHYL- 4-amino-5-hydroxymethyl-2-
METHYLPYRIMIDINE-PP methylpyrimidine-pyrophosphate –28.88 –7.05
THIAMINE-P thiamine-phosphate –7.05 –7.05
16A cetyl-trimethyl-ammonium -3.85 -3.85
CPD-406 n-methylethanolamine phosphate -3.85 -3.85
BIO biopterin -3.58 -3.58
P3I tripolyphosphate -3.58 -3.58
2-C-METHYL-D-
ERYTHRITOL-4-PHOSPHATE |2-c-methyl-d-erythritol-4-phosphate -190.23 -3.22

4-diphosphocytidyl-2-c-methylerythritol 2
CPD-78 hosphate -69.04 -2.41
CPD-77 4-diphosphocytidyl-2-c-methylerythritol –3.22 –2.41
CDM 4-diphosphocytidyl-2-c-methyl-d-erythritol -2.41 -2.41
HMO 4'-hydroxy-7-methoxyisoflavone –2.23 -2.23
3-ENOLPYRUVYL
SHIKIMATE-5P 5-enolpyruvyl-shikimate-3-phosphate -87.82 -1.16
L-1-GLYCERO

PHOSPHORYLCHOLINE 1-1-glycero-3-phosphocholine -1.60 -0.77
OROTIDINE-5-PHOSPHATE_lorotidine-5'-phosphate -2.19 20.50
DAT 2'-deoxyadenosine-5'-diphosphate -119.39 95.66
SAI S-adenosyl-l-homoselenocysteine -3.85 100.93
DI-H-OROTATE 4,5-dihydroorotate -17.43 108.78
PROPIONYL-COA propionyl-coenzyme A -31.35 155.83
PRPP 5-phospho-o-d-ribose 1-diphosphate -2.19 157.87

({alpha,beta}-dihydroxyethyl)-thiamin
diphosphate 2-[3-[(4-amino-2-methyl-5-
pyrimidinyl)methyl]-2-(1,2-
dihydroxyethyl)-4-methyl-1,3-thiazol-3-

THD ium-5-yl)ethyl trihydrogen diphosphate –281.42 159.94
CARBAMYUL-L-ASPARTATE carbamoyl-l-aspartate -17.43 162.32
THF 5-hydroxymethylene-6-hydrofolic acid -34.48 187.68

2-acetylamino-4-methyl-pentanoic acid [1-
(1-formyl-pentylcarbamoyl)-3-methyl

CIB butyl]-amide -22.17 198.81
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CC 4.4" -3.85 251.26 to
OSINE-5-PHOSPHATE -122.64 || 260.98 sº

A -51.60 || 260.98 º
-51.60 260.98 *

U -73.65 || 320.63 º
–281.42 342.35 -

-73.65 362.38 º,
-122.64 404.95

acid-adenylate
-119.39 1466.70
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Table 5-S5 Selected compounds for experimental validation

Due to the large size of this table, the data can be downloaded electronically at the

following location: http://derisilab.ucsf.edu/thesisdata/zhu/chapter5 tableS5.pdf.

Table 5-S6 The ideal negative control II (anti-probe set) for the evaluation of

toxicity to mammalian cells

Due to the large size of this table, the data can be downloaded electronically at the

following location: http://derisilab.ucsf.edu/thesisdata/zhu/chapter3_tableS6.pdf.
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