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Abstract

Timed Decision Tables (TDTs) have been used earlier for mod
eling behavioral descriptions, applying presynthesis optimizations for
efficient circuit synthesis and HDL restructuring. We describe here
work that optimizes TDT models for generation of software in a high-
level programming language. The optimization for software synthesis
is targeted at reducing the numbers of conditionals and actions in the
generated code. The TDT-based optimizations and software synthesis
is implemented in C-f-l-. Experimental results on a set of examples
show significant reduction in the number of conditionals checked.
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1 Introduction

Software generation and optimization has been a focus of recent work on

embedded systems due to the increasing role of software in most applications
[1, 7, 8]. The emphasis of embedded software has been primarily on improved
code generation techniques for diverse architectures [2, 3, 4], on optimization
of memory resources [10, 5] and on address optimization [11, 12], However,
as system design process incorporates more abstract models (such as State-
Charts, UML etc) there exists a need to generate software from these models
in a high level language (HLL) to handle increasingly complex software. The
high-level language description can then be input to multilevel optimization
techniques as is the case in conventional compiler frameworks.

Software synthesis refers to the process of generation of high-level lan
guage code from abstract (behavioral) models. Prior work has been done on
code generation from dataflow or synchronous dataflow models [9, 14, 15].
Our work builds upon the Timed Descision Table (TDT) model which has
been used for hardware description language (HDL) based optimizations and
HDL code restructuring [13]. This model captures behavioral system descrip
tions which can then be used for hardware and software synthesis. Behavioral
optimizations are attractive for their potential to apply optimization tech
niques on a broader scope (e.g. beyond basic blocks, loops) while keeping
the computation costs low.

2 Timed Decision Tables

The TDT model has been explained at length in [13]. TDT models in gen
eral can be behavioral or structural. In a structural TDT, actions represent
RTL operations whereas behavioral TDTs may use multi-cycle operations.
A TDT description consists of three tables: (1) a control flow table, which
captures the control-flow for a behavioral model, (or specifies a controller
for a structural TDT); (2) a dependency table that captures the dependency
among operations for a behavioral level model, (or data dependency among
components in a structural model); (3) a delay table, which specifies the



Tdto :
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Figure 1: A TDT description

operation delay. In the sequel, we consider only behavioral TDTs.
An example of a TDT is given in Figure 1. The controlflow table consists

of four quadrants: (1) the condition stub is the set of conditions; (2) the
condition entries indicate possible conjunctions ofconditions as rules; (3) the
action stub is the list of actions (4) the action entries indicate the actions
that are activefor a certain rule. So a rule is a column in the right quadrants
of the table, where the condition entry quadrant corresponds to the decision
part of the rule and the action entry quadrant to the action part of the rule.

The dependency matrix represents the dependencies among actions. De
pendencies can be one of, serial predecessor (s), serial successor (s), concur
rent (c) and mutually exclusive (m). The delay table is used to model the
execution delay associated with a datapath operation, to distinguish between
the timing semantics ofsignals and variables (as given in VHDL) and to spec
ify communication protocols such as to represent bus delays etc. The delay
table completes the TDT description by incorporating information sufficient
to generate timing accurate HDL code from TDTs.

2.1 Hierarchy in TDTs

Hierarchy is represented in TDTs by allowing an action to be another TDT.
The TDT shown in Figure 1 is obtained by flattening the hierarchy of TDTs
shown in Figure 2. The two actions, Tdti and Tdt^ called in Tdto are TDT
models, ofwhich Tdti is also shown in thefigure. Hierarchy isnecessary since
it allows modularity in the specification and more importantly, prevents the
explosion in rules for complex systems. However, since a structure good for



Tdto :
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Figure 2: Hierarchy of TDTs

conceptualization may not always be good for synthesis, the hierarchy of the
TDTs can be re-structured based on resource sharing and frequency of calls
to shared code [13].

A set of behavior preserving transformations have been defined for the
TDT model [13], Various column transformations and row transformations
in both the condition and action quadrants have been developed. Column op
erations are column merging and elimination and action entry modification.
Row operations in the condition quadrant are row elimination, insertion,
negation, encoding and swapping. Similarly, row operations in the action
quadrant are row merging, elimination and swapping. The TDT model also
facilitates easy identification of duplicate actions and subsequent action shar
ing.

3 Software Synthesis from TDTs

Synthesis of software from TDTs requires a selection of a schedule of op
erations and subsequent HLL code generation according to a chosen style
[14, 15]. Scheduling a TDT eliminates concurrent "c" entries from the de
pendency table. Operation scheduling is an important aspect of the software
synthesis process. However, for a given scheduling strategy, choice of coding
style has a significant impact on the quality of the eventual code. Our ap
proach to scheduling is based on relative scheduling that generates software
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Figure 3; Two types of TDTs
Generated from Tdt2
if Ci then

oi;

if C2 then

a2]

if C3 then 03;

«i; ^2; 0^3;

Figure 4; Software corresponding to the TDTs

as a set of threads that begin with non-deterministic (anchor) actions [16].
Here, we focus on the coding style. 'TDTs can be used directly for generation
of ELL code by a mechanistic translation of its operational semantics [13]:
each rule corresponds to a condition clause determined by the condition col
umn and an action part that is sequenced according to the dependency table
and invoked with the delay determined by the delay table. That would be
applicable in case the rules are invoked disjointly. Consider the example in
Figure 3 (we show here only the control flow tables in the TDTs). Software
synthesis from the two tables is shown in Figure 4.

The ELL code from both Tdti and Tdt2 has three conditional checks
corresponding to the three rules in the two TDTs. However, the nesting of
condition checks and reduced number of action activations from Tdt2 leads
to shorter assembly code from most compilers. Some code optimization (for
instance, code motion across conditionals) can optimize the code from Tdti,
for instance, by moving action ci to just after the first IF statement.

Ingeneral, conditions inELL code adversely affect thequality ofcompiled
code generated, particularly, for modern deeply pipelined processors. Code
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qualitycan, therefore, be improved byreducing conditionals. Also, in general,
it is more efficient to use nested conditionals since these reduce the condition

checking work in the generated code.
For the purpose of software synthesis, the TDT optimization goals are:

(a) to minimize the number ofconditionals; (b) within each conditional, min
imize the number of Boolean tests, i.e. minimize the number of condition
entries in the TDT; (c) and finally to minimize action duplication or maxi
mize action sharing by minimizing number of action entries in the TDT. In
the absolute minimum case, after dead code elimination, each condition is
checked only once and each action is invoked only once. However, this is not
always possible since it depends on the semantics of the target ELL.

Consider the example TDT shown in Figure 5 along with corresponding
Verilog (HDL) and C (HLL) descriptions. The Verilog code uses a control
jump statement, disable, to avoid repeating action 0,3, whereas the C code is
completely structured and repeats the action 03 in two control flow paths.
The coding style is affected by the type of the TDT used (Figure 4) and by
the choice of HLL (Figure 5). We consider the TDT types in the following
section.

3.1 Algebraic Model for Control Plow in TDTs

For each condition variable 'c' in a TDT, we define a positive condition
literal, corresponding to a 'Y' value in a condition entry and a negative
condition literal, /g, corresponding to a 'N' value. The operator among
action and condition literals represents a conjunction operation, which is
both commutative and associative.

A TDT is a set of rules consisting of a condition part, which determines
when the rule is selected, and an action part, which lists the actions to be
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begin: blockA if (Cl)
if(Cl) {

begin if (C2)
if (C2) al;

begin else
al; {
disable blockA; a2; a3;

end }
a2; }

end else

a3; a3;
end;

Figure 5: Generated code in (a) Verilog (h) C

executed for this rule. The condition part of a rule, /C,-, is represented as:

Ici : ce{i) = 'F'
n

where numc is the number ofconditions in the TDT andce{i) is the condition
entry value at the ith condit on row for this rule. The action part of a rule,
Qi, is given as 5 where nunia is the number of actions and
ae[i) is the action entry value at the ith action row.

A rule is a tuple, denoted by ri = (JCi : a;), which can be expressed
as a product or cube of corresponding action and condition literals. For
a given TDT, T, we define an algebraic expression, Ej, that consists of a
disjunction of cubes corresponding to the rules in T. Therefore, a TDT can
be represented as,

ncolumn ncolumn

Et= D- = ^ {ICi : ai)
i=l i-l

where ncolumn is the number of columns in Et- For simplicity, we use 'c'
and 'a' instead of and G in the following. A TDT expression is comprised
of the sum of products of the literals. A cube is a conjunction of some or
all of the literals Ic and la- A minterm is a cube in which every literal in
the TDT expression appears. In a TDT, a cube is represented by a rule or



column comprising of the condition part and the action part in the control-
flow table. A column, coli, in a TDT is said to dominate another column,

C0I2, if for every row in coli, C0I2 has the same entry in that row as co/i. As
a coding style, the conditionals in the dominated columns are nested inside
conditionals in dominant columns.

The TDT expressions for the two TDTs in the example shown in Figure
4 are given as:

Tdti — C1C2CI1 + CiC2C'sa\a2 -f CiC2Cz<iiO,2Ci3

Tdt2 = C'lCti 4" (7x^*2^2 T C'iC2C3(X3

Expression Tdti uses 8 condition literals and 6 action literals, whereas ex
pression Tdt2 uses 6 condition literals and 3 action literals. Fewer literals

coupled with nesting of condition checks leads to a shorter code sequence
from Tdt2. In general, TDTs are of two types:

Disjoint Rule TDT (DR-TDT) : In a DR-TDT, the condition clauses
are disjoint. Each condition clause activates only one set of actions.
There exists no assignments of condition variables where two rules are

. activated simulataneously.

• Minimum Condition TDT (MC-TDT) : MC-TDT uses the min
imum number of conditions to activate a rule. This corresponds to
minimum number of condition literals in each rule. For instance, Tdt2
corresponds to the minimum 2-level sum of products representation.
Each action is enabled by a minimum number of conditions.

To improve quality of generated code, TDT optimizations must attempt to
generate TDTs which use fewer action and condition literals and maximally
order the columns according to dominance relation. The number of action
literals is minimized throgh a transformation called Action Sharing that at
tempts to minimize the number of entries in the action table. This transfor

mation is discussed in [17]. Condition literals are minimized by making each
product term in the two-level algebraic expression prime. A prime cover is
generated using two-level logic minimizer followed by column ordering based
on dominance relation. The overall flow for software synthesis is shown in
Eigure 6. Code restructuring has been discussed in [18]. Action sharing cor-
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Behavioral Description Action Sharing

Behavioral TDT Algebraic Minimization

Code Restructuring Software Synthesis

Scheduling High Level Code

Figure 6: Software Synthesis Methodology

responds to the identification of identicalactions in the TDT and subsequent
merging of the corresponding action rows. Merging is valid only when the
serialization relations among actions are maintained.

4 Implementation Results

We have implemented the TDT based modeling system in C++ using the
hardware description language (hdl) VHDL [19] as thefront-end system spec
ification language and the output language as well. The present system per
forms all the TDT optimizations, provides a user interface for specification
of assertions for don't care analysis, performs TDT fiattening and kernel exr
traction and software synthesis.

Benchmark Conditions checked

DR-TDT optimized TDT
prawn cpu 117 52

arm counter 175 47

traffic light 46 29

kalman filter 89 26

Table 1: Num. of conditionals in generated code

In Table 1, we compare the software generated using the disjoint TDTs
versus optimized TDTs. The comparison is based on the number of con
ditionals checked. The benchmarks are the prawn cpu from [19], the arm
counter, the traffic light controller and the Kalman filter [20]. The optimized
TDTs generate 40-70 % fewer conditional checks than the DR-TDTs for all
the benchmarks considered.



Work is ongoing on characterization of the effect of these optimizations

on the final assembly code. Future reports will include results to assess the

impact of TDT generated code on final code size.
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A Implementation Details

The TDT system presented here has been developed in C++ with VHDL

as the front-end language. All the previous work on optimization of TDTs
including all the table operations and flattening and merging of a TDT hier
archy have been implemented. In addition, a assertion based sub-system for
specifying don't care information has also been implemented. A TDT inter
mediate format has been developed in which the TDT model can be output.
The system can also parse the TDT intermediate format and re-create the

TDT model. A "pretty print" function has also been developed to print out
the TDT model in a way which makes it more amenable to reading and un
derstanding the model. As mentioned in the main body of the paper, the
TDT model can be used to generate code in VHDL. Action Sharing has been
implemented such that actions can be shared within a flattened TDT. The

TDT expressions can also be extracted and then, from them the kernels can

be extracted. A TDT model simulator is currently being developed.

A.l Assertion Subsytem

The assertion subsystem allows assertions to be given on the conditions in
the TDT model. For this, all the conditions in the TDTs are first assigned a
unique label in the format C{TDTNum}_CondNum. For example, the second
condition in TDT number ten, would have the label, C10_2. Assertions can
then be specified by a command with the format,

assert {Boolean Combination of Conditions} = zero or one
For example, an assertion may look like,

assert not(ClO-l) AND not(ClO-2) = 0
The assertions are then used to create don't care columns in the TDT

model which are used to optimize the TDTs.

A.2 Kernel Extraction

Kernel extraction starts with determining the TDT expression followed by
extracting the kernels for each condition literal. The algorithm for kernel

13



extraction is as given in [18]. An example is given below:

Tdt 8 =

c8_0 c8_l a8_0 a8_l +

c8_0 c8_l' a8_2 a8_3 a8_4

Extracting Kernels of the Tdt Expressions

Extracting Kernels for Tdt num 8

Printing Kernels

Kernel KO =

c8_0 c8_l a8_0 a8_l

+ c8_0 c8_l' a8_2 a8_3 a8_4

Kernel K1 =

c8_l a8_0 a8_l

+ c8_l' a8_2 a8_3 a8_4

extractedLiterals =

c8_0

A.3 Obtaining the Distribution

A distribution of the TDT Based Optimization System (Topts) is available
on the internet at http://www:ics.uci.edu/^iesag/Topts.

The current release of the Topts distribution is Version 0.1. It has been

developed on a Sun Solaris platform using g++ as the compiler. How

ever, except for the bison and flex files, the rest of the distribution can be
compiled under the Microsoft Visual C-f-f environment. The bison and

fiex files can be compiled by installing their window's port available at
http://www.cygnus.com. The installation can be installed by untaring and
issuing a "make" command in the src directory. The distribution requires
"g-f-1-", "bison" and "fiex". The executable, Topts, resides in the directory
bin after compilation.

The software is invoked by issuing the command Topts. It has an inter
active command-line help. The following commands are supported:

• Help - Prints the help message on given command
Syntax: 'help [command—all]'

14



• Quit - Quits from the FrontEnd system
Syntax: 'quit'

• EnterAssert - Enters the external Assertions sub system
Syntax: 'enter-assert or assert [optionaljscriptJileName]'

• ListAssert - Lists the external Assertions

Syntax: 'list_assert'

• ResetAssert - Clears the entered external Assertions

Syntax: 'reset_assert'

• Flattens the Tdt hierarchy byone level by default. Flattens completely,
if the "all" directive is given
Syntax: 'flatten [all]'

MergeAll - Carry out all the merging transfromations
Syntax: 'merge_air

• Optimize_Tdt - Perform column/row reductions
Syntax: 'op.tdt '

• Merge Actions - Extracts ActionSharing and Merges the actions in the
Tdts

Syntax: 'merge^cts'

• Finds the Same Actions - finds all the same actions in the Tdts

Syntax: 'flnd_same_acts, assignJds'

• Prints the Tdt Expressions of all the Tdts or the specified Tdt Num
Syntax: 'print_tdtExpr [optionaLtdtmum]'

• Extracts the Kernel from the Tdt Expressions of all the Tdts or the
specified Tdt Num

Syntax: 'extract-kernel, ext_kern [optionaLtdt_num]'

• Print-Tdt - Prints the TDT intermediate format

Syntax: 'printtdt'
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• Pretty Print Tdt - Prints the TDT intermediate format in a readable

format - although not parsable
Syntax: 'prettyprinttdt'

• ReadVhdl - Reads Vhdl from a file

Syntax: 'readvhdl, read, r [filename]'

• PrintVhdl - Prints Vhdl of the current Design
Syntax: 'printvhdP

• PrintConditions - Prints the conditions in all the Tdts of the current

Design

Syntax: 'printconds, printconditions'

• ReadSimlnp - Reads Simulator Input from a file and run simulation
Syntax: 'readsiminp, runsim [filename]'
Note: This is not fully implemented in this release

• McToDrTdt - Converts the Minimum Condition Tdt to Disjoint Rule
Tdt

Syntax: 'mctodr'
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