
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Compositional Design of Cyber-Physical Systems Using Contracts

Permalink
https://escholarship.org/uc/item/5hk5w3bg

Author
Nuzzo, Pierluigi

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5hk5w3bg
https://escholarship.org
http://www.cdlib.org/

Compositional Design of Cyber-Physical Systems Using Contracts

by

Pierluigi Nuzzo

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alberto L. Sangiovanni-Vincentelli, Chair
Associate Professor Sanjit A. Seshia

Professor James W. Pitman

Summer 2015

Compositional Design of Cyber-Physical Systems Using Contracts

Copyright 2015
by

Pierluigi Nuzzo

1

Abstract

Compositional Design of Cyber-Physical Systems Using Contracts

by

Pierluigi Nuzzo

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

The realization of large and complex cyber-physical systems (such as “smart” transporta-
tion, energy, security, and health-care systems) is creating design and verification challenges
which will soon become insurmountable with the current engineering practices. These highly
heterogeneous systems, tightly combining physical processes with computation, communica-
tion, and control elements, would substantially benefit from hierarchical and compositional
methodologies to make their design possible let alone optimal. Several languages and tools
have been proposed over the years to enable model-based development of complex systems.
However, an all-encompassing design framework that helps interconnect different tools, pos-
sibly operating on different system representations, is still missing.

In this dissertation, we introduce a design methodology that addresses the complexity
and heterogeneity of cyber-physical systems by using assume-guarantee contracts to for-
malize the design process and enable the realization of system architectures and control
algorithms in a hierarchical and compositional way. In our methodology, components are
specified by contracts, and systems by compositions of contracts. Contracts explicitly define
the assumptions of a component on its environment and the guarantees of the component
under these assumptions. Contract operations and relations, such as composition, conjunc-
tion and refinement allow proving that: (i) an aggregation of components are compatible,
i.e. there exists a legal environment in which they can operate; (ii) a set of specifications are
consistent, i.e. there exists an implementation satisfying all of them; (iii) an aggregation of
components refines a specification, i.e. it implements the specification contract and is able to
operate in any environment admitted by it. While horizontal contracts are used to specify
components and aggregations of components at the same level of abstraction, we introduce
the notion of vertical contracts to reason about richer refinement relations and mappings
between different abstraction levels, possibly described by heterogeneous architectures and
behavior formalisms. Moreover, we further investigate the problem of compatibility for sys-
tems with uncontrolled inputs and controlled outputs, by establishing a link between the
theory of contracts and the one of interfaces, which rely on different mathematical for-
malisms, while sharing the same objectives. From this link, we derive a new projection

2

operator on contracts that enables the preservation of the semantics of interface composition
and compatibility.

Resting on the above contract framework, the design is carried out as a sequence of
refinement steps from a high-level specification to an implementation built out of a library
of components at the lower level. To allow for requirement analysis and early detection
of inconsistencies, top-level system requirements are captured as contracts, by leveraging
a front-end pattern-based specification language and a set of back-end formal languages,
including mixed integer-linear constraints and temporal logic. Top-level contracts are then
refined to achieve independent development of system architectures and control algorithms,
by combining synthesis from requirements and optimization methods.

To enable efficient architecture selection under safety and reliability constraints, we ex-
plore two optimization-based methods that use an approximate reliability analysis technique
to overcome the exponential complexity of exact computations. The Integer-Linear Pro-
gramming with Approximate Reliability (ILP-AR) method generates larger, monolithic op-
timization problems using approximate but efficient reliability computations with an explicit
theoretical bound on the error. Conversely, the Integer-Linear Programming Modulo Reli-
ability (ILP-MR) method breaks the complex architecture selection task into a sequence of
smaller optimization tasks without reliability constraints, interleaved with exact reliability
checks. By relying on efficient mechanisms to prune out candidate architectures that are
inconsistent with the reliability constraints, ILP-MR can run faster than ILP-AR on large
problem instances.

We further explore two methods to systematically design control strategies for a given
architecture. The reactive synthesis-based optimal control mapping (RS-OCM) method
generates controllers by combining reactive synthesis from linear temporal logic contracts
with optimization techniques based on simulation and monitoring of signal temporal logic
contracts. Different design concerns are then addressed by leveraging the most appropriate
abstraction levels, using contracts from the pre-characterized library to accelerate verification
tasks. The programming-based optimal control mapping (P-OCM) method uses, instead, a
discrete-time representation of the system and a formalization of the design requirements
in terms of arithmetic constraints over real numbers to cast the control problem as an
optimization problem over a finite time horizon. The optimization problem is then solved
with a receding horizon approach and scales better than monolithic reactive synthesis from
linear temporal logic.

We demonstrate, for the first time, the effectiveness of a contract-based design flow
on real-life examples of industrial relevance, namely, the design of aircraft electric power
distribution and environment control systems. In our framework, optimal selection of large,
industrial-scale power system architectures can be performed in a few minutes. Design
validation of power system controllers based on linear temporal logic contracts shows up to
two orders of magnitude improvement in terms of execution time with respect to conventional
techniques. Finally, our optimization-based load management scheme allows better resource
utilization than a conventional one.

i

To my family: Antonietta, Corrado, and Alessandro
To my aunt, Mimina

“General Systems theory should be an important means of instigating the transfer of
principles from one field to another (so that it would) no longer be necessary to duplicate

the discovery of the same principles in different fields.”
Ludwig von Bertalanffy

“Perfection (in design) is achieved, not when there is nothing more to add, but when there
is nothing left to take away.”

Antoine de Saint-Exupéry

“Everything must be made as simple as possible. But not simpler.”
Albert Einstein

ii

Contents

Contents ii

List of Figures vi

List of Tables x

1 Introduction 1
1.1 Cyber-Physical System Design Challenges 1

1.1.1 Modeling Challenges . 3
1.1.2 Specification Challenges . 4
1.1.3 Integration Challenges . 5

1.2 Running Example: Aircraft Electric Power System Design 7
1.2.1 Components . 8
1.2.2 System Description . 9
1.2.3 System Requirements . 10

1.3 CPS Design Methodology and Tools: The Challenge of Combining Heteroge-
neous Worlds . 11

1.4 Dissertation Overview . 15
1.5 Main Contributions . 17

1.5.1 Theory: Formalisms for Compositional System Design 17
1.5.2 Design Methodology . 18
1.5.3 Algorithms . 19
1.5.4 Applications . 20

1.6 Organization . 21

2 Preliminaries 24
2.1 Platform-Based Design . 24
2.2 Contracts: An Overview . 26
2.3 Assume-Guarantee Contracts . 27

2.3.1 Components and Contracts . 28
2.3.2 Composition . 30
2.3.3 Compatibility and Consistency . 33

iii

2.3.4 Refinement and Conjunction . 36
2.3.5 Summary . 38

2.4 Formalisms for System Specification and Modeling 39
2.4.1 Temporal Logic . 39
2.4.2 Hybrid Automata . 44

2.5 Languages and Tools for System Modeling and Simulation 46
2.6 System Verification . 48

2.6.1 Exact Reachability Set Computation 48
2.6.2 Reachable Set Approximations . 49
2.6.3 Discrete Abstractions . 50
2.6.4 Automated Theorem Proving . 51
2.6.5 Simulation . 51

2.7 Control Synthesis . 52
2.7.1 Reactive Synthesis . 52
2.7.2 Synthesis by Abstraction . 53
2.7.3 Hybrid Controller Synthesis . 54

2.8 Conclusions . 55

3 A/G Contracts for Cyber-Physical System Design 56
3.1 Introduction . 56

3.1.1 Contracts and Interfaces for Requirement Engineering 58
3.1.2 Contracts for Heterogeneous Refinement and Mapping 60
3.1.3 Chapter Organization . 61

3.2 Mapping Relational Interfaces into A/G Contracts 61
3.2.1 Background on Synchronous Relational Interfaces 62
3.2.2 Contract Associated with an Interface 63
3.2.3 Serial Composition and Compatibility 64
3.2.4 Assumption Projection . 66
3.2.5 Implementing Assumption Projection in Temporal Logic 69
3.2.6 Refinement . 70
3.2.7 Conjunction . 73

3.3 Compatibility and Consistency in A/G Contracts 75
3.4 Heterogeneous Refinement and Vertical Contracts 77

3.4.1 Heterogeneous Refinement . 78
3.4.2 Vertical Contracts . 81

3.5 Conclusions . 87

4 Platform-Based Methodology With Contracts 89
4.1 The Structure of the Methodology . 89
4.2 Requirement Formalization and Validation 91
4.3 Platform Model-Library Development . 93

4.3.1 Platform Components . 94

iv

4.4 Mapping Specifications to Implementations 95
4.4.1 Optimized Mapping and Design Space Exploration 97
4.4.2 Architecture Design . 99
4.4.3 Control Design . 99

4.5 CHASE: An Experimental Platform for Contract-Based Requirement Engi-
neering . 101

4.6 Conclusions . 104

5 Optimized Selection of CPS Architectures 105
5.1 Introduction . 105
5.2 Related Work . 107
5.3 Problem Formulation . 108

5.3.1 Objective Function . 110
5.3.2 Interconnection Constraints . 111
5.3.3 Reliability Constraints . 112

5.4 Approximate Reliability Computation . 113
5.5 Integer Linear Programming With Approximate Reliability 118
5.6 Integer Linear Programming Modulo Reliability 120

5.6.1 Learning Constraints to Improve Reliability 122
5.7 Aircraft Power System Architecture Design 124

5.7.1 Implementation and Application Contracts 125
5.7.2 Optimization Results . 126

5.8 Conclusions . 129

6 Contract-Based Control Design and Verification 131
6.1 Reactive Synthesis-Based Optimized Control Mapping (RS-OCM): Overview 131

6.1.1 Reactive Synthesis . 133
6.1.2 Distributed Synthesis . 133
6.1.3 Optimized Mapping . 136

6.2 Reactive Synthesis-Based Optimized Control Mapping: Power System Design
Example . 138
6.2.1 Synthesis of Reactive Protocols for Electric Power Distribution 139
6.2.2 Simulation-Based Design Space Exploration 143

6.3 Programming-Based Optimized Control Mapping (P-OCM): Overview 145
6.4 Library-Based Contract Refinement Checking for Efficient Verification and

Mapping . 148
6.4.1 More Background on Contract Refinement Checking 149
6.4.2 Problem formulation . 150

6.5 Scalable Contract Refinement Checking Algorithm 152
6.5.1 Library Verification . 152
6.5.2 Refinement Check with Library . 152
6.5.3 Application Example . 157

v

6.6 Conclusions . 161

7 Application to Aircraft System Design Examples 162
7.1 Aircraft Electric Power System Design: Primary Distribution 162

7.1.1 Related Work . 163
7.1.2 Top-Level Requirement Formalization 165

7.2 Co-design of Primary Distribution System Topology and Control 167
7.2.1 Independent Refinement of Topology and Control 168
7.2.2 Architecture Design . 171
7.2.3 Control Design . 173

7.3 Aircraft Electric Power System Design: Load Management 180
7.3.1 Load Management Requirements . 182
7.3.2 Optimal Load Management System Architecture 183

7.4 Optimal Load Management System Design 185
7.4.1 Load Modeling and Requirements . 186
7.4.2 Source Allocation and Switching Policy 187
7.4.3 Battery Dynamics and Requirements 188
7.4.4 Contactor Wear . 189
7.4.5 Cost Function . 189
7.4.6 Putting it All Together . 190
7.4.7 Experimental Results . 192

7.5 Aircraft Air Management System Design Overview 197
7.6 Conclusions . 200

8 Conclusions and Future Work 202
8.1 Conclusions . 202
8.2 Future Work . 205

8.2.1 Theory . 206
8.2.2 Algorithms . 207
8.2.3 Applications . 210

Bibliography 211

vi

List of Figures

1.1 Examples of applications of cyber-physical systems. According to the US maga-
zine EE-Times (http://www.eetimes.com/), approximately 98% of the world’s
processors today are not in a PC but “embedded” in a physical system. For in-
stance, a premium car contains around 80 “computers” (electronic control units),
100 million lines of code, and 2 km of wiring (controller area network bus and
other networks). 2

1.2 Evolution in aircraft electric power system architectures: from traditional archi-
tectures (circa World War II, left side) to more recent ones (Boeing 787, circa
2007, right side). The centralized distribution scheme, relying on mechanical
circuit breakers and relays, has been replaced by a remote distribution scheme,
extensively relying on solid-state power controllers. Courtesy of United Tech-
nology Corporation (UTC), industrial partner of the industrial Cyber-Physical
(iCyPhy) system consortium (http://www.icyphy.org/). 7

1.3 Single-line diagram of an aircraft electric power system adapted from a Honeywell,
Inc. patent [144] (figure from [154]). 9

1.4 Simplified representation of the V-model together with some state-of-the-art lan-
guages and tools providing support for different design tasks. 12

1.5 Contract-Based Design as a unifying, formal, compositional paradigm for system
design. 16

1.6 (a) Structure of the proposed contract-based methodology for cyber-physical sys-
tem design, from top-level requirements to the definition of system architecture
and control algorithm. Demonstration of the different design steps on the aircraft
electric power system example in the dissertation: (b) requirement formalization;
(c) architecture selection; (d) reactive control synthesis; (e) simulation-based ver-
ification; (f) simulation-based design exploration; (g) hybrid power system model
in Simulink for further refinement. 23

2.1 Platform-Based Design and the role of contracts. 25

http://www.eetimes.com/
http://www.icyphy.org/

vii

2.2 Compositional reasoning, contracts, and interfaces in the literature: from assume-
guarantee reasoning in formal verification (blue) and contracts in software engi-
neering and object-oriented programming (blue), to interface theories (green) and
A/G contracts (purple) for system design. The envelope of contracts has grad-
ually extended from transformational systems to reactive systems over the last
decade. 26

2.3 Pictorial representation of the components and interconnections used to illustrate
some of the contract operations and relations: (a) parallel composition, (b) serial
composition, (c) feedback composition. 29

2.4 Pictorial representation of different examples of contract compositions: (a) serial
composition, (b) feedback composition of two contracts, (c) feedback composition
of one contract. 33

2.5 Example of a system obtained by assembling a legacy black-box block L and a
division component Div. 35

2.6 Hybrid automaton specifying a triangle wave generator. 45

3.1 Pictorial representation of the relational interfaces in Example 12 (a) and Exam-
ple 13 (b). 65

3.2 Configurations considered in Example 14. 72
3.3 Example of heterogeneous refinement. 79
3.4 Specification and implementation platform examples used to illustrate vertical

contracts. 82

4.1 Pictorial representation of the class of cyber-physical systems considered in this
dissertation. 90

4.2 Structure of the proposed contract-based methodology for cyber-physical system
design, from top-level requirements to the definition of system architecture and
control algorithm (law). 91

4.3 CHASE uses a contract specification language based on patterns to capture sys-
tem requirements and facilitate their translation into formal specification lan-
guages for their analysis and validation. 101

4.4 Screenshot showing the set of patterns for system specification in CHASE. . . . 102
4.5 Given a set of environment variables, system variables and requirements, CHASE

supports LTL satisfiability checks (“Compatibility” in the screenshot) and LTL
realizability checks (“Synthesize” in the screenshot). 103

5.1 (a) Architecture template example: unconnected nodes represent components
that are not used in the final topology; (b) Architecture analyzed in Example 24. 109

5.2 Electric power system architectures and reliability as obtained at each iteration
of an Integer Linear Programming Modulo Reliability (ILP-MR) run with r∗ =
2× 10−10: (a) r = 6× 10−4; (b) r = 2.8× 10−10; (c) r = 0.79× 10−10. 127

viii

5.3 Electric power system architectures synthesized using Integer Linear Program-
ming with Approximate Reliability (ILP-AR) for different reliability require-
ments: (a) r∗ = 2 × 10−3, r̃ = 6.0 × 10−4, r = 6 × 10−4; (b) r∗ = 2 × 10−6, r̃ =
2.4× 10−7, r = 3.5× 10−7; (c) r∗ = 2× 10−10, r̃ = 7.2× 10−11, r = 2.8× 10−10. . 127

6.1 Programming-based optimized control mapping flow. 146
6.2 Generic feedback control scheme. 146
6.3 Example contract library with refinement assertions. 151
6.4 Representation of the refinement checking algorithm with library. 153
6.5 Representation of a composite contract obtained from the library in Figure 6.3

(a) and its abstraction (b). 156
6.6 Aircraft electric power system plant architecture used to demonstrate the refine-

ment checking algorithm with library. 157
6.7 Subsets of components of the electrical power system plant and number of vari-

ables associated with the related contracts, including communication variables
and variables related to the health status of plant components (e.g. buses, con-
tactors). 158

6.8 Example of refinement relations between local contracts. 159
6.9 Execution time of refinement checking algorithm with library (RCPL) and re-

finement checking algorithm (RCP) for the verification of a set of 13 property
contracts in an aircraft electric power system. 160

6.10 Maximum size reduction of the linear temporal logic (LTL) formulas in the ab-
stract system contract with respect to the concrete system contract for the bench-
marks in Figure 6.9. 160

7.1 Representation of the main mapping phases in the electric power system design
flow, e.g. architecture and control mapping. 164

7.2 Candidate topologies for an electric power system consisting of rows of (from top
to bottom) generators, AC buses, rectifier units, DC buses, and DC loads. . . . 172

7.3 Hybrid model of the electrical power system used for simulation-based design
space exploration. 175

7.4 Real-time requirement violation at the DC bus LD2 in the topology of Figure 7.2
(c), due to a two-generator fault followed by a rectifier fault. 176

7.5 Maximum duration of the violation of the DC bus voltage requirement for the
DC bus LD2 in the topology of Figure 7.2 (c). 177

7.6 Controller (BPCU) reaction times and contactor delays in the blue region satisfy
the DC bus requirement on bus LD2 for the topology of Figure 7.2 (c). 178

7.7 Simplified electric power system architecture used to test the scalability of reactive
synthesis from linear temporal logic specifications for requirements including time
intervals. 179

7.8 Synthesis time versus counter range for a linear temporal logic specification in-
cluding three counter variables (a) and four counter variables (b). 179

ix

7.9 Single line diagram of the electric power system used in the formulation of the
optimal load management problem. Ci, ∀i ∈ {1, . . . , 11} represent contactors. . 182

7.10 Block diagram of the proposed hierarchical load management architecture (top)
and timing diagram for its operation (bottom). 184

7.11 Power required by the AC Buses 1 and 2. 193
7.12 Power allocation in the case of failure under the operation of the low-level load

management system (LL-LMS) only (Ts = 1 s, no battery utilization). 194
7.13 Load shedding in the case failure and under the operation of the low-level load

management system (LL-LMS) only (Ts = 1 s, no battery utilization). Sheddable
loads are labeled as L1, . . . , L10. 194

7.14 Power allocation in the case of failure under the operation of the hierarchical
control scheme, including high-level and low-level management systems. 195

7.15 Battery charge level in the case of failure under the operation of the hierarchical
control scheme (Ts = 1 s, SoC=0.25,SoC = 0.75, tchrg = 30 s). 196

7.16 Load shedding in the case of failure and under the operation of the hierarchical
control scheme. Sheddable loads are labeled as L1, . . . , L10. 197

7.17 Simplified architecture of a Pressurization and Air Conditioning Kit (PACK) of
an aircraft air management system. 198

7.18 Representation of the proposed design flow as applied to an aircraft air manage-
ment system. 199

7.19 Air management system design space exploration example. 200

x

List of Tables

4.1 Notation: Platform components and contracts. 96
4.2 Notation: Discrete Event (DE) and Hybrid abstractions. 97

5.1 Components and attributes used in the aircraft electric power system example. . 124
5.2 Connectivity sub-matrices used in the aircraft electric power system example. . 125
5.3 Number of iterations, reliability analysis and solver time for different electric

power system architecture sizes (r∗ = 10−11, n = 5) using integer linear program-
ming modulo reliability (ILP-MR) with LearnCons (top) and with a “lazier”
strategy, enforcing only one additional path at each iteration (bottom). 129

5.4 Number of constraints, problem generation (setup) and solver times for different
electric power system architecture sizes (r∗ = 10−11, n = 5) using integer linear
programming with approximate reliability (ILP-AR). 129

7.1 Components and attributes used for the electric power system case study. 171
7.2 Load and system failure probabilities for the topologies in Figure 7.2. 173
7.3 Load Priority Table example. 183
7.4 Bus Priority Table example. 183
7.5 Nomenclature used for the optimal load management system formulation in this

section (part 1). 186
7.6 Nomenclature used for the optimal load management system formulation in this

section (part 2). 187
7.7 Number of optimization variables and solver time for a 2-bus 3-generator electric

power system, when the time horizon increases. 196
7.8 Number of optimization variables and solver time for H=30 (B and G stand for

the number of Buses and Generators, respectively). 197

xi

Acknowledgments

This thesis marks the conclusion of an intense academic and research experience, as well as
the end of an exciting, unique “adventure” as a student at Berkeley. I try my best to recall
the persons I met along my path, and to whom I feel greatly indebted. Certainly, they far
outnumber the ones I can mention here.

I wish to first thank my adviser, Alberto Sangiovanni-Vincentelli, for his outstanding,
holistic vision, and his invaluable support from both a technical and a human viewpoint.
Alberto has been a strong inspiration for my research and its interdisciplinary vocation; he
was always available to give me his advice every time I needed it, to carefully review my
results, and boost my enthusiasm with his energy.

I thank Prof. Sanjit Seshia and Prof. Jim Pitman, for serving as members of my disser-
tation committee. I owe to Sanjit my first exposure to formal verification methods and the
beauty of the mathematics behind them. Sanjit has been a brilliant guide and collaborator
for several key projects during my Ph.D. period, always paying great attention to the progress
of my work. I owe to the enthusiasm and guidance of Prof. Jim Pitman and Prof. David
Aldous one of the most rewarding intellectual experiences at Berkeley, my introduction to
probability theory, a fascinating discipline that has deeply shaped my zest for elegant and
rigorous foundations for design methods.

I am deeply grateful to Prof. Kurt Keutzer, for serving as a member of my qualifying exam
committee. Kurt was the first professor I met in a class at Berkeley; his welcoming attitude,
passion, and enthusiasm will always stay impressed in my mind. As Kurt introduced us to
the main algorithms used in electronic design automation, we also started appreciating the
durable impact of elegant solutions to concrete design problems.

I have also been fortunate to pursue part of my research within the industrial Cyber-
Physical (iCyPhy) systems and the TerraSwarm research centers, which allowed me to in-
teract and collaborate with a unique mix of researchers from both academia and industry.
Among the principal investigators of these centers, I would like to thank Prof. Edward Lee
and Prof. Richard Murray, for their appreciation of my work and the many interesting and
insightful discussions we had. They have also largely inspired my research and provided
feedback on some of the results of this thesis. Among the industrial collaborators of the
centers, I would like to express my gratitude to Clas Jacobson, Cong Liu, Richard Poisson,
Eelco Scholte, Jeff Ernst, Earl Lavallee, Claudio Pinello (United Technology Corporation),
Henry Broodney, Yishai Feldman, Amit Fisher, and Michael Masin (IBM), for providing
constructive discussions throughout the development of this research. Working with such a
team was an enriching and enjoyable experience, and I definitely learned a lot in the different
areas of cyber-physical system design, thus developing and refining my skills as a designer
and system engineer.

While at Berkeley, I had the opportunity to interact with several other faculty members.
Some of them were co-authors of some of my publications; others will have a special place
in my mind for having been excellent and passionate instructors. My deepest gratitude goes
to Prof. Elad Alon, Prof. Jaijeet Roychowdhury, Prof. Kris Pister, Prof. Martin Wainwright,

xii

Prof. Murat Arcak, Prof. Michael Jordan, Prof. Venkat Anantharam, Prof. Bernhard Boser,
Prof. Claire Tomlin, Prof. Stavros Tripakis, Prof. Robert Brayton, Prof. Jan Rabaey, for
everything I could learn from them, which contributed to enlarge my cultural and profes-
sional horizons. A special thanks to Elad, for the several interactions during my first years
at Berkeley, and his invaluable guidance and support as a mentor during my teaching expe-
rience. I also thank Stavros for the several insightful and enjoyable discussions we had; his
introduction to the theory of relational interfaces was instrumental to some of the theoretical
results in this thesis.

I also had the fortune to collaborate with several faculty members in other universi-
ties. In particular, I am grateful to Prof. Luca Carloni for always paying a special atten-
tion to my work, and for his support and advice along my Ph.D. path and beyond; to
Prof. Roberto Passerone, for the insightful and pleasant discussions we had during confer-
ences; to Prof. Tiziano Villa, for being an unconditional source of support and encouragement
since I started my Ph.D. at Berkeley. Tiziano has been among the first ones to believe in
my academic potential. Moreover, since he visited Berkeley every summer, he was present
each time I was about to reach a key Ph.D. milestone, thus sharing with me all the ups and
downs along the road.

Berkeley also offered me the opportunity to work at the side of some of the most talented
and creative students and colleagues I have ever had. And I am glad that many of them
became my friends. A grateful appreciation goes to present and past members of Alberto’s
group: Mehdi Maasoumy, Liangpeng Guo, Xuening Sun, Nikunj Bajaj, Chung-Wei Lin, John
Finn, Baihong Jin, Shromona Ghosh, Antonio Iannopollo, Yang Yang, Qi Zhu, Alessandro
Pinto. With all of them I shared some of the most exciting moments and satisfactions of my
research. Special thanks also to all the visiting students and scholars I had the pleasure to
work with over these years: Michele Lora, Marco Marazza, Lv Chen, Elisabetta Alfonsetti,
Safa Messaoud, Piergiuseppe di Marco, Mohammad Mozumdar. Thank you all for the
enjoyable moments (and sometimes weekends) spent together in the office, at lunchtime, or
at the coffee corner in the lounge.

I have also worked or interacted with several students and visiting scholars in other
research teams at Berkeley. I want to extend my gratitude to Baruch Sterin, Yen-Sheng
Ho, Yu-Yun Dai, Fabien Chraim, Sayak Ray, Forrest Iandola, Daniel Holcomb, Chenjie
Gu, Aadithya Karthik, Prateek Bhanshali, Luigi Di Guglielmo, Indranil Saha, Rohit Sinha,
Dorsa Sadigh, Jonathan Kotker, Wei Yang Tan, Ankush Desai, Wenchao Li, Vasu Raman,
Tobias Welp, David Burnett, Ben Zhang, Ilge Akkaya, Fabio Cremona, Chris Shaver, Marten
Lohstroh, Henrik Ohlsson, Ehsan Elhamifar, Wen Li, John Crossley, Yue Lu, Yida Duan,
Chintan Thakkar, Kwangmo Jung, Simone Gambini, Rikky Muller, Armin Wasicek, Patricia
Derler, and all the DOP and BWRC students. I have learnt a lot from everyone, and many of
them became my friends. Thanks to all the students of the classes I taught; ultimately it was
their passion and work that made a successful class. Many thanks also to the exceptional
staff at the DOP center, the CHESS center and the EECS department, in particular to
Christopher Brooks, Barb Hoversten, Jessica Gamble, Mary Stuart and Shirley Salanio.

Some of the results of my research were strongly influenced by the interaction with Mumu

xiii

Xu and Necmiye Ozay at Caltech and Alexandre Donzé at Berkeley. I am very grateful to
them for the enriching and extremely productive collaboration. Special thanks also go to
Yasser Shoukry, who has more recently contributed to revitalize my interest in decision
procedures for convex and nonlinear arithmetic constraints over the reals: our interaction
has already spurred several technical contributions.

My experience at Berkeley would have not been the same without the support of all my
friends. My first thought goes to those who have lived, together with me, in what we call
the “purple house”: Marina Romani, Antonio Rosato, and Margherita Ghetti. In them I
found loyal and sincere friends, whose aid and encouragement was always welcome. I believe
it is because of our long and intense conversations about music, art, history, economics, and
life, that I became a better person, rather than just a better scientist. The years I spent
at the International House will also have a special place in my mind: an incredible number
of friendships started there and are still lasting today. Among others, my sincere gratitude
goes to Maria Rosaria Marsico, Andrea Costa, Caterina Migani, Carlo Visconti, and Catia
Cialani.

I am very fortunate that many other friends I met the first time in Pisa, at Sant’Anna
School, and at IMEC, in Leuven, have still managed during these years to keep in touch with
me, even remotely, and to get informed about my trials and tribulations. To name but a
few, Vito Giannini, Vincenzo Chironi, Angelo Cerulo, Antonio Molfese, Gabriella Semeraro,
Sara Campinoti, Francesco Cusumano, Edoardo Valori, Andrea Barison, Alessio Mazzocco,
Giovanni Coluccia, Carlo Michele Petracca, Nicola Nizza, Massimiliano Solazzi, Giacomo
Oddo, Luca Martone, Alessandro Natalini, Claudio Nani, Francesca Giraudo, Costantino
Armiento. I am deeply grateful to those who visited me: I will never forget the nice time
spent together in our trips around California. I am also thankful to those who took their
time to organize gatherings when I happened to visit Italy. Moreover, I feel indebted to my
friends and former teammates in IMEC for always taking the chance of contacting me and
catching up with me every time a conference would bring them to California.

My grateful thought goes finally to my roots and to my friends at home, who never forgot
about me. To Sonia Santoro and Alessadro Toma, among them, for their constant and lively
interest in my vicissitudes. To my grandparents, my aunts and uncles who have always paid
a special attention to me and my personal growth. To aunt Mimina, for her unconditional
trust and support for whatever choice I have made in my life, no matter how “risky” or
“inconsiderate” it might sound. To my family, for the unquestionable pillar of support they
continuously offer. If I have ever accomplished something in my life, it is because I know I
can always count on their love. To them I finally dedicate this work, since without them I
would not be where I am today.

1

Chapter 1

Introduction

This chapter provides the motivation for the work in this dissertation, and a preview of the
main results. We first discuss some of the challenges for the realization of cyber-physical
systems, and introduce an aircraft electric power system as a running example to illustrate
them. We then offer an overview of the strategies adopted to address these challenges, and
highlight the key technical contributions. Finally, we outline the covered topics and their
organization.

1.1 Cyber-Physical System Design Challenges

A large number of new applications are emerging, which go beyond the traditional bound-
aries between computation, communication and control. The majority of these applications,
such as “smart” buildings, “smart” traffic, “smart” grids, “smart” cities, cyber security,
and health-care wearables (Figure 1.1), build on distributed, networked, sense-and-control
platforms, characterized by the tight integration of “cyber” aspects (computing and net-
working) with “physical” ones (e.g., mechanical, electrical, and chemical processes). In
these cyber-physical systems (CPS) embedded computers and networks monitor and control
the physical processes, usually with feedback loops where physics affects computation and
vice versa [192, 120, 156, 124].

Intelligent systems that gather, process and apply information are changing the way
entire industries operate, and have the potential to radically influence how we deal with a
broad range of crucial societal problems. Moreover, as embedded digital electronics becomes
pervasive and cost-effective, co-design of both the cyber and the physical portions of these
systems shows promise of making the holistic system more capable and efficient. Indeed,
the availability and cooperation of all the elements of a CPS to fulfill common goals can
outperform a system in which such elements are kept separated. However, CPS complexity
and heterogeneity, originating from combining what in the past have been separate worlds,
tend to substantially increase the design and verification challenges.

A serious obstacle to the efficient realization of CPS is the inability to rigorously model

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Examples of applications of cyber-physical systems. According to the US maga-
zine EE-Times (http://www.eetimes.com/), approximately 98% of the world’s processors
today are not in a PC but “embedded” in a physical system. For instance, a premium car
contains around 80 “computers” (electronic control units), 100 million lines of code, and
2 km of wiring (controller area network bus and other networks).

the interactions among heterogeneous components and between the physical and the cyber
sides. While in traditional embedded system design the physical system is regarded as a
given, the emphasis of CPS design is instead on managing dynamics, time, and concurrency
by orchestrating networked, distributed computational resources together with the physical
systems. Functionality in CPS is provided by an ensemble of sensing, actuation, connec-
tivity, computation, storage and energy. Therefore, CPS design entails the convergence of
several sub-disciplines, and tends to stress all existing modeling languages and frameworks,
which are hardly interoperable today. In computer science, logic is emphasized rather than
dynamics, and processes follow a sequential semantics; computer scientists mostly deal with
computational aspects and carefully abstract the physical world. Conversely, physical pro-
cesses are generally represented using continuous-time dynamical models, often expressed
as differential equations, which are acausal, concurrent models; control, electrical and me-
chanical engineering have to directly deal with the physical quantities involved in the design
process. It is, therefore, difficult to accurately capture the interactions between these two

http://www.eetimes.com/

CHAPTER 1. INTRODUCTION 3

worlds.
Moreover, a severe limitation in common design practice is the lack of formal specifica-

tions. Requirements are written in languages that are not suitable for mathematical analysis
and verification. Assessing system correctness is then left for simulation and, later in the
design process, prototyping. Thus, the traditional heuristic design process based on informal
requirement capture and designers’ experience can lead to implementations that are ineffi-
cient and sometimes do not even satisfy the requirements, yielding long re-design cycles,
cost overruns and unacceptable delays. The cost of being late to market or of product mal-
functioning is staggering as witnessed by the recent recalls and delivery delays that system
industries had to bear. Toyota’s infamous recall of approximately 9 million vehicles due
to the sticky accelerator problem1, Boeing’s 787 delay bringing an approximate toll of $3.3
billion2 are examples of devastating effects that design problems may cause.

In the remainder of this section, we further detail the difficulties highlighted above,
and motivate the research developed in this dissertation. While we build on the seminal
elaborations by Derler et al. [72] and Sangiovanni-Vincentelli et al. [177], we offer a new
vista of the main CPS design challenges from the perspective of the system engineers who
are in charge of realizing them. We classify the main issues into three categories: modeling,
specification, and integration.

1.1.1 Modeling Challenges

Model-based design (MBD) [193, 179] is today generally accepted as a key enabler for the
design and integration of complex systems. However, as mentioned above, because CPS
tend to stress all existing modeling languages and frameworks, a set of modeling challenges
stem by the difficulty in accurately capturing the interactions between them. We categorize
these challenges in terms of: (1) modeling timing and concurrency and (2) modeling the
interactions between functionality and implementation.

1.1.1.1 Challenge 1 – Modeling Timing and Concurrency

A first set of technical challenges in the analysis and design of the real-time embedded soft-
ware in CPS stems from the need to bridge its inherently sequential semantics with the
intrinsically concurrent physical world. All the general-purpose computation and network-
ing abstractions are built on the premise that execution time is just an issue of performance,
not correctness. Therefore, timing of programs is not repeatable, except at very coarse
granularity, and programmers have hard time to specify timing behaviors within the current
programming abstractions. Moreover, concurrency, is often poorly modelled. Concurrent
software is today dominated by threads, performing sequential computations with shared
memory. Incomprehensible interactions between threads can be the sources of many prob-
lems, ranging from deadlock and scheduling anomalies, to timing variability, nondeterminism,

1see, e.g., http://www.autorecalls.us
2see, e.g., http://en.wikipedia.org/wiki/Boeing_787

http://www.autorecalls.us
http://en.wikipedia.org/wiki/Boeing_787

CHAPTER 1. INTRODUCTION 4

buffer overruns, and system crashes [122]. Finally, modeling distributed systems adds to the
complexity of CPS modeling by introducing issues such as disparities in measurements of
time, network delays, imperfect communication, consistency of views of system state, and
distributed consensus [72].

1.1.1.2 Challenge 2 – Modeling Interactions between Functionality and
Implementation

Functional models are particularly suitable for prototyping control and data processing al-
gorithms, since they are able to abstract unnecessary implementation details, and can be
evaluated more efficiently. However, computation and communication do take time. There-
fore, to correctly evaluate a CPS model, it is necessary to also model the dynamics of soft-
ware and networks. While implementation is largely orthogonal to functionality and should,
therefore, not be an integral part of a model of functionality, pure functional models tend
to be inaccurate, in that they implicitly assume that data are computed and transmitted in
zero time, so that the dynamics of the software and networks have no effect on the system
behaviors.

It is then essential to provide mechanisms to capture the interactions of functionality and
implementation, while still preserving their separation. Specifically, it should be possible to
conjoin two distinct representation of design with each other, namely a functional model
and an implementation model. The latter allows for design space exploration, while the
former supports the design of control strategies. The conjoined models enable evaluation of
interactions across these domains.

1.1.2 Specification Challenges

Depending on application domains, up to 50% of all errors result from imprecise, incomplete,
or inconsistent and thus unfeasible requirements. The overall system product specification
is somewhat of an art today, since to verify its completeness and its correctness there is little
that it can be used to compare with. We categorize the specification challenges in terms of:
(3) capturing system requirements and (4) managing them.

1.1.2.1 Challenge 3 – Capturing System Requirements

Among the many approaches taken in industry for getting requirements right, some of them
are meant for initial systems requirements, mostly relying on ISO 262623 compliant ap-
proaches. To cope with the inherently unstructured problem of completeness of requirements,
industry has set up domain- and application-class specific methodologies, including learning
processes, such as the one employed by Airbus to incorporate the knowledge base of exter-
nal hazards from flight incidents. Use-case analysis methods as advocated for UML4-based

3http://www.iso.org/iso/catalogue_detail.htm?csnumber=43464
4http://www.omg.org/spec/UML/

http://www.iso.org/iso/catalogue_detail.htm?csnumber=43464
http://www.omg.org/spec/UML/

CHAPTER 1. INTRODUCTION 5

development processes [45] follow the same objective. A common theme of these approaches
is the intent to systematically identify those aspects of the environment of the system under
development whose observability is necessary and sufficient to achieve the system require-
ments. However, the most efficient way of assessing completeness of a set of requirements is
by executing it, which is only possible if semi-formal or formal specification languages are
used, where the particular shape of such formalizations is domain dependent.

1.1.2.2 Challenge 4 – Managing Requirements

Design specifications tend to move from one company (or one division) to the next in non-
executable and often unstable and imprecise forms, thus yielding misinterpretations and
consequent design errors. In addition, errors are often caught only at the final integration
step as the specifications were incomplete and imprecise; further, nonfunctional specifications
(e.g., timing, power consumption, size) are difficult to trace.

It is common practice to structure system level requirements into several “chapters,”
“aspects,” or “viewpoints,” quite often developed by different teams using different skills,
frameworks, and tools. However, these viewpoints, e.g., including function, safety, timing,
energy, are not unrelated. Without a clean approach to handle multiple viewpoints, as also
discussed in Section 1.1.1, the common practice today is to discard some of the viewpoints
in a first stage, e.g., by considering only functions and safety. Designs are then developed
based on these only viewpoints. Other viewpoints are subsequently taken into account (e.g.,
timing, energy), thus resulting in late and costly modifications and re-designs.

Requirement engineering is a discipline that aims at improving the situation described
above by paying close attention to the management of the requirement descriptions and their
traceability (e.g., using commercial tools such as Doors5 in combination with Reqtify6)
and by inserting, whenever possible, precise formulation and analysis methods and tools.
However, the support of formal approaches for requirement structuring and analysis is still
largely missing.

1.1.3 Integration Challenges

CPS integrate diverse subsystems by often composing pieces that have been pre-designed
or designed independently by different groups or companies. This is done routinely, for
example, in the avionics and automotive sectors, albeit in a heuristic and ad hoc way. In
fact, integrating component models to develop holistic views of the system becomes very
challenging. We summarize below the main integration challenges by categorizing them in
terms of: (5) preventing misconnected model components, (6) keeping model components
consistent, and (7) improving scalability and accuracy of model analysis.

5http://www-03.ibm.com/software/products/en/ratidoorfami
6http://www.3ds.com/products-services/catia/capabilities/requirements-engineering/

reqtify/

http://www-03.ibm.com/software/products/en/ratidoorfami
http://www.3ds.com/products-services/catia/capabilities/requirements-engineering/reqtify/
http://www.3ds.com/products-services/catia/capabilities/requirements-engineering/reqtify/

CHAPTER 1. INTRODUCTION 6

1.1.3.1 Challenge 5 – Preventing Misconnected Model Components

The bigger a model becomes, the harder it is to check for correctness of connections between
components. Typically, model components are highly interconnected, and the possibility of
errors increases. Errors may be due to different units between a transmitting and a receiving
port (unit errors), different interpretation of the exchanged data (semantic errors), or just
reversed connections among ports (transposition errors). Since none of these errors would
be detected by a type system, specific measures should be enabled to automatically check
for them [72].

1.1.3.2 Challenge 6 – Keeping Model Components Consistent

Inconsistency may arise when a simpler (more abstract) model evolves into a more complex
(refined) one, where a single component in the simple model becomes multiple components
in the complex one. Moreover, non-functional aspects such as performance, timing, power,
or safety analysis are typically addressed in dedicated tools using specific models, which are
often evolved independently of the functional ones (capturing the component dynamics),
thus also increasing the risk of inconsistency.

In a modeling environment, a mechanism for maintaining model consistency is needed to
allow components to be copied and reused in various parts of the model while guaranteeing
that, if later a change in one instance of the component becomes necessary, the same change is
applied to all other instances that were used in the design. Additionally, more sophisticated
mechanisms would be needed to maintain consistency between the results of specialized
analysis and synthesis tools operating on different representations of the same component.

1.1.3.3 Challenge 7 – Improving Scalability and Accuracy of Model Analysis

As stated above, it is essential that the fundamental steps of system design (functional
partitioning, allocation on computational resources, integration, and verification) be sup-
ported across the entire design development cycle and across different disciplines. CPS may
be modeled as hybrid systems integrating solvers that numerically approximate the solu-
tions to differential equations with discrete models, such as state machines, dataflow models,
synchronous-reactive models, or discrete event models [123]. A survey of languages and tools
for the specification and analysis of CPS models can be found in Chapter 2. However, a ma-
jor set of challenges for CPS integration is the inadequacy of traditional analysis techniques
and their interoperability. In particular, conventional verification and validation techniques
tend not to scale to highly complex or adaptable systems (i.e., those with large or infinite
numbers of possible states or configurations). On the other hand, simulation techniques may
also be affected by modeling artifacts, such as solver-dependent, nondeterminate, or Zeno
behaviors [72].

As a concrete example of industrial CPS which exposes several of, if not all, the challenges
discussed above, we introduce an aircraft electric power system (EPS) in Section 1.2. This

CHAPTER 1. INTRODUCTION 7

Figure 1.2: Evolution in aircraft electric power system architectures: from traditional archi-
tectures (circa World War II, left side) to more recent ones (Boeing 787, circa 2007, right
side). The centralized distribution scheme, relying on mechanical circuit breakers and relays,
has been replaced by a remote distribution scheme, extensively relying on solid-state power
controllers. Courtesy of United Technology Corporation (UTC), industrial partner of the
industrial Cyber-Physical (iCyPhy) system consortium (http://www.icyphy.org/).

is also used as a running example to illustrate the methodology and tools developed in this
dissertation.

1.2 Running Example: Aircraft Electric Power

System Design

The advent of high capability, reliable power electronics together with powerful embedded
processors has enabled an increasing amount of “electrification” of vehicles such as cars and

http://www.icyphy.org/

CHAPTER 1. INTRODUCTION 8

aircraft in recent years [147, 107]. Hydraulic, pneumatic, and mechanical systems are being
replaced by cyber-electrical components that decrease weight and increase the overall system
efficiency [175]. For example, Figure 1.2 shows the evolution of the architecture of an electric
power system in a “more electric” aircraft. Traditional architectures (circa World War II),
based on centralized distribution and mechanical circuit breakers and relays, have been
replaced with more advanced ones (Boeing 787, circa 2007), based on remote distribution
and solid-state power controllers. As this trend is common to almost all the subsystems of
an aircraft, the increased use of electrically-powered elements poses even more challenges to
the power system in terms of the reliability of electrical power generation and distribution
while satisfying safety requirements.

In the following, we provide details on the power generation and distribution system in a
passenger aircraft, using the sample EPS architecture in Figure 1.3, in the form of a single-
line diagram (SLD) [147], a simplified notation for three-phase power systems. We then
summarize the system requirements and expose the main design challenges in its realization.

Typically, aircraft electric power systems consist of generation, primary distribution and
secondary distribution sub-systems. One or more supervisory control units actuate a set
of electromechanical switches to dynamically distribute power from generators to loads,
while satisfying safety, reliability and real-time performance requirements. In this example,
we focus on the primary power distribution system, which includes the majority of the
supervisory control logic, and involves the configuration of the contactors that deliver power
to high-voltage AC and DC buses and loads.

1.2.1 Components

The main components of an electric power system are generators, contactors, buses, and
loads. Primary generators are connected to the aircraft engine and can operate at high or
low voltages. Auxiliary generators are mounted atop an auxiliary power unit (APU). The
APU is normally used on ground (when no engines are available) to provide hydraulic and
electric power, but can also be used in flight when one of the primary generators fails. With a
small abuse of notation, we also refer to auxiliary generators themselves as APUs. Batteries
are primarily used at start-up and in case of emergency. AC and DC buses (both high and
low-voltage) deliver power to a number of loads. Buses can be essential or non-essential.
Essential buses supply loads that should always be powered, while non-essential ones supply
loads that may be shed in the case of a fault or limited power capacity.

Contactors are electromechanical switches that connect components, and therefore de-
termine the power flow from sources to loads. They are configured to be open or closed by
one or multiple controllers (not shown in Figure 1.3), denoted as Bus Power Control Units
(BPCU).

Loads include subsystems such as lighting, heating, avionics and navigation. Bus loads
also include power conversion devices: Rectifier Units (RUs) convert AC power to DC power,
AC transformers (ACTs) step down a high-voltage to a lower one, Transformer Rectifier
Units (TRUs) both decrease the voltage level and convert it from AC to DC.

CHAPTER 1. INTRODUCTION 9

L1

GEN

HVAC Bus 1

RU

L

APU

HVAC Bus 2

R

APU

HVAC Bus 3

R1

GEN

HVAC Bus 4

RU RU RU

HVDC Bus 1 HVDC Bus 2

ACT

LVAC Bus 1

LVAC ESS Bus 3

LVAC Bus 2

LVAC ESS Bus 4

L2

GEN

R2

GEN

RU RU

LVDC ESS Bus 1

LVDC Bus 3

LVDC ESS Bus 2

LVDC Bus 4

TRU TRU

ACT

Batt Batt

Figure 1.3: Single-line diagram of an aircraft electric power system adapted from a Honey-
well, Inc. patent [144] (figure from [154]).

1.2.2 System Description

The main AC power sources at the top of Figure 1.3 include two low-voltage generators, two
high-voltage generators, and two APU-mounted auxiliary generators. Each engine connects
to a high-voltage AC (HVAC) generator (L1 and R1) and a low-voltage AC (LVAC) generator
(L2 and R2). Panels, denoted as dashed square boxes, represent groups of components that
are physically separated on the aircraft. The three panels below the generators include the
HVAC buses, which can be selectively connected to the HVAC generators, to the auxiliary
generators, and to each other via contactors, denoted by double bars.

Four rectifier units are selectively connected to buses as HVAC loads. The two pan-
els below the high-voltage DC (HVDC) buses include the LVAC subsystem. A set of AC
transformers (ACTs) convert HVAC power to LVAC power and are connected to four LVAC
buses. LVAC ESS Bus 3 and LVAC ESS Bus 4 are essential and are selectively connected
to the two low-voltage generators. The LVAC essential buses are also connected to rectifier
units, and thus to low-voltage DC (LVDC) power. The LVDC subsystem also contains two
batteries. Power can be selectively routed directly from the HVAC bus to the LVDC buses
3 and 4 using TRUs.

CHAPTER 1. INTRODUCTION 10

One or more bus power control units use sensors (which are not depicted in Figure 1.3)
to measure physical quantities, such as voltages and currents, and control the state (open
or closed) of the contactors, to dynamically reconfigure the system based on the status and
availability of the power sources. For the rest of the thesis, we also denote this centralized
or distributed supervisory control unit as BPCU.

Each generator is also controlled by a Generator Control Unit (GCU), which is considered
an internal component, and is not explicitly represented in Figure 1.3. The GCU regulates
the output voltage level delivered by each generator to be within a specified range. Therefore,
fluctuations in the power required by the loads can be directly handled by the GCU within
the generator’s power rating. On the other hand, whenever the power demand exceeds the
generator’s capability, the BPCU is responsible for possibly shedding unessential loads or
rerouting some of them to another power source.

1.2.3 System Requirements

Given a set of loads, together with their power and reliability requirements, the goal is
to determine the system’s architecture and control such that the demand of the loads is
satisfied for all flight conditions and a set of predetermined faults. To better formalize this
design objective, we begin with a qualitative analysis of the main system requirements, by
categorizing them in terms of safety, reliability and performance requirements. For each
of these categories, we provide a few examples that serve as a reference for the rest of the
dissertation.

Safety specifications constrain the way each bus must be powered to avoid loss of essential
features, and the maximum time interval allowed for power shortages. For instance, to avoid
generator damage, we proscribe AC sources to be paralleled, i.e. no AC bus can be powered
by multiple generators at the same time. Moreover, we refine the definition of essential loads
and buses (such as flight-critical actuators) provided above by requiring that they be never
unpowered for more than a specified time tmax.

Reliability specifications describe the bounds on the failure probabilities that can be
tolerated for different portions of the system. Based on its failure modes, every component is
characterized by a failure rate. A failure rate of λ indicates that a failure occurs, on average,
every 1/λ hours. For a given mission profile, failure rates can be translated into failure
probabilities so that system reliability specifications are also expressed in terms of the failure
probabilities of the components. Based on the component failure rates, a typical specification
would require that the failure probability for an essential load (i.e., the probability of being
unpowered for longer than tmax) be smaller than 10−9 per flight hour. The actual probability
value depends on the load criticality [147]. In our example, both the electric power system
topology and the controller should be designed to accommodate any possible combination of
faults potentially causing the failure of an essential component, and having a joint probability
larger than 10−9 per flight hour.

Performance requirements specify quality metrics that are desired for the system, in
addition to the safety and reliability requirements reviewed above. For instance, to improve

CHAPTER 1. INTRODUCTION 11

the system performance in response to a failure, each bus may be assigned a priority list
determining in which order available generators should be selected to power it. If the first
generator in the list is unavailable, then the bus will be powered by the second generator, and
so on. A hypothetical prioritization list for the HVAC Bus 1 in Figure 1.3 would require,
for instance, that L1 GEN has the priority, if available. Otherwise, Bus 1 should receive
power from the R1 GEN, then from the L APU, and finally from the R APU. In a similar
way, load management policies are also based on priority tables requiring, for instance, that
the available power be first allocated to the non-sheddable loads and then to the sheddable
loads, in a prescribed order. In general, bus power priorities can be integrated in the BPCU
control logic, while load shedding priorities are handled by a load management controller.

Altogether, an aircraft electric power system, as the one discussed above, offers a con-
crete example of an industrial-scale, heterogeneous cyber-physical system, suitable enough
to illustrate the main concepts of this dissertation, and experiment with the proposed de-
sign techniques. Typical sub-systems in aeronautics, such as the EPS, may easily reach a
few thousands top-level requirements, often ambiguously expressed using textual languages,
and intrinsically heterogeneous, spanning safety, reliability and real-time performance, as
highlighted above. As in any CPS design problem, system engineers are to define both the
system architecture, including the number and type of system components, their dimensions,
and their interconnections, and the control algorithm, possibly exploring trade-offs across
their boundaries. However, as the complexity of this system increases, it is more difficult to
perform design space exploration and trade-off analysis at the system level. Designers are
expected to solve combinatorial problems over a large, discrete variable space that is coupled
to a continuous space, where expensive, high-fidelity simulations must be run to achieve the
desired accuracy and provide strong guarantees on the satisfaction of the requirements.

Current design flows for aircraft EPS are, therefore, experiencing all the severe limitations
discussed in Section 1.1, because of the lack of formalized specifications, and the inability
to rigorously model the interactions among heterogeneous components and between the
physical and the cyber sides of the system. To reduce expensive re-design steps, the design
is generally addressed by minor incremental changes on top of consolidated solutions. A
more systematic approach is hindered by the lack of rigorous design methodologies that
allow estimating the impact of earlier design decisions on the final implementation. In the
following, we summarize the limitations of current design methodologies in addressing the
challenges discussed in Section 1.1, and the strategy proposed in this thesis to overcome
them.

1.3 CPS Design Methodology and Tools: The

Challenge of Combining Heterogeneous Worlds

Several languages and tools have been proposed over the years to overcome the limitations
discussed in Section 1.1 and Section 1.2, provide support for different design tasks, and en-

CHAPTER 1. INTRODUCTION 12

Cost
Optimization

Data & Control

Size/Power
Optimization

System Functional
Specification

. . . Subsystem
Design

Component
Design

System
Architecture

Verification
& Validation

(V&V)

Component
Testing

Subsystem
Testing

Power Thermal
Management

Physical system
(plant)

Embedded system
(computation)

Networking Sensors

Actuators

Controller

Ptolemy II

Verilog
VHDL

Figure 1.4: Simplified representation of the V-model together with some state-of-the-art
languages and tools providing support for different design tasks.

able model-based development of CPS. An overview of some of these languages and tools,
which are also iconically represented in Figure 1.4, is provided in Chapter 2. However, the
largest benefits in design technologies are deemed to arrive by addressing the entire system
design process, rather than just considering point solutions of tools and models that ease
only part of the design. Moreover, as we mentioned before, a major bottleneck in the de-
sign of cyber-physical systems is the inability to foresee the impact of design decisions made
early in the design process, e.g. during the concept design phase, on the final implementa-
tion. While researchers from both academia and industry have chartered the field of design
methodologies with increasing clarity, an all-encompassing framework for CPS design that
helps interconnect different tools, possibly operating on different system representations, is
very difficult to assemble, and most designers still resort to patched flows [156].

Some industrial domains such as automotive and aerospace use the “V-model” that was
proposed several years ago by the German defense companies7. As shown in Figure 1.4, in
this methodology, there is a top-down design process that ends with system decomposition

7http://v-modell.iabg.de/

http://v-modell.iabg.de/

CHAPTER 1. INTRODUCTION 13

(the left arm of the V) followed by an integration and verification process that ends with
the verification of the entire system (the right arm of the V). Specifically, as summarized by
Benveniste et al. [34], following product level requirement analysis, subsequent steps would
first evolve a functional architecture supporting product level requirements. Sub-functions
are then re-grouped taking into account re-use and product line requirements into a logical
architecture, whose modules can be developed independently, e.g., by different subsystem
suppliers. The realization of such modules often involves mechatronic design. The top-level
of the technology-oriented architecture would then show the mechatronic architecture of the
module, defining interfaces between the different domains of mechanical, hydraulic, electri-
cal, and electronic system design. Subsequent phases would then unfold the detailed design
for each of these domains, such as the design of the electronic subsystem involving, among
others, the design of electronic control units (ECUs). These design phases are paralleled
by integration phases along the right-hand part of the V, such as integrating basic and ap-
plication software on the ECU hardware to actually construct the electronic control unit,
integrating the complete electronic subsystems, integrating the mechatronic subsystem to
build the module, and integrating multiple modules to build the complete product. An inte-
gral part of V-based development processes are testing activities, where at each integration
level test-suites developed during the design phases are used to verify compliance of the
integrated entity to the specification.

This presentation is overly simplistic, since it does not directly reflect the multi-site,
multi-domain, and cross-organizational design teams involved in the design of electronic
components in today’s complex systems, as well as the parallelization of design activities
motivated by the partitioning of the design space into different subsystems and domains.
Moreover, re-use strategies lead to separate design activities, which then short-cut or signif-
icantly reduce the effort both in design and integration steps. Therefore, in spite of being
very popular and widely referenced, the V-model tends to hide the complexity of the actual
design processes that system companies develop by themselves. The sequential process that
starts with a specification and moves along the arms of the V may often be replaced, in
practice, by a number of iterations and “out-of-order” executions of activities. Furthermore,
it is often observed that heuristic design processes largely based on the V-model tend to
become soon inadequate in many ways:

• This water-fall methodology produced good results when the complexity of the designs
was relatively small. When complexity scales up, we cannot simply wait to initiate
the verification phase after the design is completed. Conventional Verification and
Validation (V&V) techniques performed too late in the design flow do not scale to
highly complex or adaptable systems. Rather we should favor early verification and
continuous monitoring of the design while the refinement steps are taken. In addition,
we should favor “formality” in all aspects of the design flow to allow analysis and even
synthesis with guaranteed properties of the final outcome of the process.

• In traditional flows, design-space exploration is rarely performed adequately, yielding
suboptimal designs where the architecture selection phase does not consider extensibil-

CHAPTER 1. INTRODUCTION 14

ity, re-usability, and fault tolerance to the extent that is needed to reduce cost, failure
rates, and time-to-market. System-level design exploration is usually the realm of ex-
perienced architects, often relying on their accrued knowledge and a set of heuristic
evaluations to take risky decisions. Rather, we should favor mechanisms to generate
reliable abstractions that enable design space exploration across different domains in a
scalable way.

• Even if model-based design techniques are largely adopted at the module and com-
ponent levels, tools are domain-specific and hardly interoperable. We should instead
favor new modeling approaches that can mix different physical systems, control logic,
and implementation architectures. In doing so, existing approaches, models, and tools
should be subsumed and not eliminated in order to be smoothly incorporated in current
design flows. A design platform should then be developed to host the new techniques
and to integrate a set of today’s poorly interconnected tools.

In the lack of a comprehensive framework for early requirement validation with tight
safety, reliability and performance guarantees, and for scalable, system-level design explo-
ration under a set of heterogeneous constraints, the problem of designing planetary-scale
CPS appears insurmountable unless bold steps are taken to bridge the existing gap between
system science and system engineering.

By reflecting on the history of achievements of electronic design automation in taming
the design complexity of VLSI systems, we advocate that CPS design automation efforts
are doomed to be impractical and poorly scalable, unless they are framed in structured
design methodologies and in a formalization of the design process in a hierarchical and
compositional way. Design methodologies relying on sets of modeling abstractions and related
tools to support analysis and synthesis have been instrumental, in the past, to cope with
complexity in VLSI design. As major productivity gains are needed today in the design
of complex systems, and better verification and validation is a necessity as the safety and
reliability requirements become more stringent, design methodology and tools start to be also
on the critical path to CPS design [177]. Hierarchy has been instrumental to scalable VLSI
design, where boosts in productivity have always been associated with a rise in the level of
abstraction of design capture, from transistor to register transfer level (RTL), to systems-
on-chip. On the other hand, designers typically assemble large and complex systems from
smaller and simpler components, such as pre-designed intellectual property (IP) blocks.
Therefore, compositional approaches offer a “natural” perspective that should inform the
whole design process, starting from its earlier stages [151].

Decomposition and abstraction are indeed key strategies to manage the design complexity
and reduce the number of items to consider, by either breaking the design object into semi-
independent parts (divide-and-conquer approach), or by aggregating objects and eliminating
unnecessary details with respect to the goal at hand. However, while system engineers
routinely make use of decompositions, abstractions and approximations to assemble their
designs, system and computer scientists are lagging behind in their quest for the formal

CHAPTER 1. INTRODUCTION 15

foundations of these concepts and their algorithmic implications in a heterogeneous context.
Advancing our understanding of the intricacies of compositional reasoning, and its interplay
with abstraction and approximation mechanisms, is therefore at the heart of any effort
towards a rigorous design discipline.

1.4 Dissertation Overview

This dissertation is centered on the following thesis:

A contract-based approach provides a formal foundation for a compositional and hierarchi-
cal design flow for cyber-physical systems, covering both horizontal and vertical compositions.
The theoretical results, methods, and algorithms in this dissertation enable such a flow, by
formalizing horizontal and vertical contracts for different levels of abstraction and viewpoints
in the design, and by establishing consistency, compatibility and various refinement relations
between these contracts, including synthesis and optimization-based techniques. The overall
concepts are demonstrated on the design of aircraft electric power distribution and environ-
ment control systems.

This dissertation presents a path towards an integrated framework for CPS design; the
pillars for the framework are a methodology that relies on the platform-based design paradigm
(PBD) [176] and the algebra of contracts to formalize the design process and enable the
realization of systems in a hierarchical and compositional manner.

Contracts are mathematical abstractions, explicitly defining the assumptions of each com-
ponent on its environment and the guarantees of the component under these assumptions.
By hiding the internal details of each component while exposing only the relevant informa-
tion about its interface, contracts often offer a more compact representation of a design.
Moreover, by emphasizing the interface between each component and its environment, they
provide a disciplined way to perform compositional reasoning, by establishing mechanisms
to infer global (system) properties out of local (component) properties. Contracts are then
a key modeling paradigm to build reliable abstractions of complex systems in a modular and
hierarchical way, with the potential to originate verification and synthesis algorithms that
are more efficient.

Contract-Based Design (CBD) can indeed be seen as a unifying, formal, compositional
paradigm for system design, relying on a rich algebraic framework that can support every
step of the design flow. As shown in Figure 1.5, contracts allow structuring and formalizing
system requirements, usually as a conjunction of different aspects or viewpoints, captur-
ing different design concerns (e.g. functional, safety, timing). We can then verify whether
a set of specifications are consistent, i.e. there exists an implementation satisfying all of
them. Contract composition allows reasoning about aggregations of heterogeneous compo-
nents (e.g. physical, embedded and controller subsystems), and checking whether they are
compatible, i.e. there exists a legal environment in which they can operate. Finally, contract

CHAPTER 1. INTRODUCTION 16

1.Reliability
2. Safety
3. Performance
4. Cost (e.g.
energy, weight,…)

Requirements

Physical system

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
Interface

Actuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Controller Embedded system

Structure and formalize
requirements

Component/Environment
Functional/Safety/Timing

Composition:

Compatible?

≼

Refinement:

Satisfy? Replace?

∧ Conjunction:

Satisfy?

Figure 1.5: Contract-Based Design as a unifying, formal, compositional paradigm for system
design.

refinement allows querying whether an aggregation of components refines a specification,
i.e. it implements the specification contract and is able to operate in any environment ad-
mitted by it. Altogether, we adopt a contract-based framework as a “natural” candidate to
lay out the theoretical foundations of our cyber-physical system design tools, with the po-
tential of facilitating a set of design automation efforts, including the creation and exchange
of model libraries, and the integration of multiple formalisms, languages and tools.

We then introduce a design methodology that uses this assume-guarantee contract frame-
work to address the complexity and heterogeneity of cyber-physical systems, and enable the
realization of system architectures and control algorithms in a hierarchical and compositional
way. In our methodology, pictorially represented in Figure 1.6, components are specified by
contracts, and systems by compositions of contracts. The design is carried out as a sequence
of refinement steps from a high-level specification to an implementation built out of a library
of components at the lower level. The top-level specification is first formalized in terms of
contracts to enable requirement validation and early detection of inconsistencies. Then, at
each step, contracts are refined by combining synthesis, optimization and simulation-based
design space exploration methods. Contracts are used for the first time in this disserta-

CHAPTER 1. INTRODUCTION 17

tion to provide a unifying formalization for the vertical refinement steps above, and guide
their execution using a combination of existing techniques with newly developed ones. The
effectiveness of our approach is demonstrated on real-life examples of industrial relevance,
namely the design of aircraft electric power distribution and environment control systems.
In the following, we detail the main contributions of this thesis, and its organization.

1.5 Main Contributions

This dissertation provides contributions to the areas of contract-based design, requirement
engineering, and design space exploration for cyber-physical systems. Based on their nature,
we can categorize these contributions as follows.

1.5.1 Theory: Formalisms for Compositional System Design

1.5.1.1 Relation between contract and interface theories

This dissertation pioneers a new research direction, meant to shed light on the effectiveness
of different contract, interface and specification frameworks (or their combination) for re-
quirement formalization and validation, early detection of integration errors, and principled
use of abstraction-refinement in system design. Rather than relating different theories via a
higher-level meta-theory, as proposed by Benveniste et al. [34], our approach aims at finding
transformations that can draw direct links between different theories. It is then possible to
analyze differences and correspondences between key operators and relations in different the-
ories (i.e. composition, refinement and conjunction) by studying their preservation properties
under the proposed transformations. Ultimately, our goal is to assess which formalisms, or
combination of formalisms, should be used for different steps in the proposed design flow.

Specifically, in Chapter 3, we apply the approach described above to propose a “natural”
transformation between assume-guarantee contracts [33, 34] and synchronous relational in-
terfaces [197]. We then show that refinement is preserved under the transformation, but this
is not generally the case for serial composition and conjunction. This investigation finally
leads to the definition of a new assumption-projection operator that enriches the contract
framework adopted in this thesis, and enables the preservation of the semantics of interface
composition and compatibility.

1.5.1.2 Vertical contracts for design refinement

Contracts are used for the first time in this dissertation to provide a unifying formalization
for several vertical refinement relations that are essential in multi-level and multi-aspect
design, encompassing synthesis from requirements, optimization-based refinement, and op-
timized mapping between abstraction levels. Specifically, in Chapter 3, we introduce the
notion of heterogeneous refinement to extend the notion of contract refinement between

CHAPTER 1. INTRODUCTION 18

two abstraction levels specified by different formalisms. Moreover, we generalize the no-
tion of vertical contracts, previously introduced in the context of analog and mixed-signal
design [152, 155] and embedded software for automotive applications [34], and informally ex-
tended to a platform-based design approach in a control setting [177], to the broader context
of cyber-physical systems.

Traditionally contracts have been used to specify components, and aggregation of compo-
nents at the same level of abstraction; for this reason we refer to them as horizontal contracts.
In this dissertation, we use contracts also to formalize and reason about refinement between
two different abstraction levels in the PBD process; for this reason, we refer to this type of
contracts as vertical contracts. A vertical contract formalizes the interaction between two
abstraction levels via the composition of a model and its vertical refinement, even though
they are not directly connected, by connecting them indirectly through a mapping. Infor-
mally, this kind of composition captures the fact that the actual satisfaction of all the design
requirements and viewpoints by a deployment depends on the supporting execution platform,
the underlying physical system (lower level of abstraction), and on the way in which system
functionalities (higher level of abstraction) are mapped to them. Formally, this composition
can be modelled using two alternative methods, by either contract composition or contract
conjunction, based on the specific shape of the contracts specifying the two abstraction levels.

1.5.2 Design Methodology

1.5.2.1 An all-encompassing contract-based design flow

As stated before, a major contribution of this thesis is a compositional and hierarchical
design methodology for large-scale CPS, which uses horizontal and vertical contracts to pro-
vide formal support for the whole design flow. Contracts were originally developed in a
software engineering context [143]. More recently, contract frameworks have been shown to
be promising for system design [34], in the context of requirement engineering [50], analysis
and verification of hardware and software [10, 58], or requirement monitoring during simu-
lation [141]. In Chapter 4, we introduce instead the first contract-based methodology that
encompasses the whole design flow, from top-level requirement formalization to a lower-level
representation of the design (system architecture and control algorithm), and covers synthe-
sis from requirements, mapping between abstraction levels, and optimization-based design
space exploration.

1.5.2.2 Platform-based design methodology with contracts

The methodology in Chapter 4 also provides the first formal framework capable of combining
the platform-based design paradigm with contracts, thus generalizing previous efforts carried
out in this direction in the context of analog and mixed-signal system design [152]. This
generalization is in turn enabled by a few algorithmic innovations supporting the two main
steps in the proposed design flow, namely architecture and control design.

CHAPTER 1. INTRODUCTION 19

1.5.3 Algorithms

1.5.3.1 Optimized selection of cyber-physical system architectures

In Chapter 5, we address the problem of architecture exploration of cyber-physical systems
to minimize a cost function while guaranteeing the desired reliability. We propose two
novel algorithms that decrease the problem complexity by combining techniques from formal
methods and mathematical programming. Finally, we implement the two algorithms in the
Architecture Exploration (ArchEx) framework, enabling scalable co-design of large systems
for cost and fault tolerance.

We cast the architecture selection problem as an integer linear program on a parametrized
graph which models the system architecture. Because exact reliability analysis of such a
graph is NP-hard [130], or non-compositional [108], we develop instead a compositional,
approximate reliability analysis method which is able to efficiently generate compact ex-
pressions for the system failure probability as a function of the system structure and the
component failure probabilities. We prove a theoretical bound on the error induced by the
approximate algebra and show that it improves on the accuracy of previously proposed ap-
proximation schemes [93]. Furthermore, we show that an approximate reliability constraint
for the system failure probability can be encoded using a number of linear constraints and
associated decision variables that is polynomial in the size of the graph (number of nodes
and types of used components).

The first proposed algorithm, denoted as Integer-Linear Programming with Approximate
Reliability (ILP-AR), uses the approximate reliability algebra to “eagerly” generate a single,
possibly larger, optimization instance which can be efficiently solved to provide a solution
within the theoretical bound. The second algorithm, denoted as Integer-Linear Program-
ming Modulo Reliability (ILP-MR), avoids the expensive generation and solution of a large
optimization problem via an iterative approach that “lazily” combines integer linear pro-
gramming with exact reliability analysis. A sequence of smaller optimization problems are
solved to provide candidate architecture configurations, which are then analyzed, and accord-
ingly modified until the desired reliability is achieved. The approximate reliability algebra is
used to guide these modifications at each step by deriving additional optimization constraints
that can accelerate convergence and reduce the number of iterations.

We believe the algorithms above are concrete instances of two general paradigms in design
space exploration, which can be used to also handle quality metrics other than reliability.

1.5.3.2 Optimized design of CPS control strategies

Given a system architecture, in Chapter 6, we further demonstrate two paradigms for sys-
tematic, contract-based design of control strategies, which merge optimized mapping meth-
ods with pre-existing control design techniques. The first paradigm, denoted as Reactive
Synthesis-Based Optimized Control Mapping (RS-OCM), enables the generation of hierar-
chical and distributed controller architectures by combining reactive synthesis from linear
temporal logic contracts with simulation-based design space exploration, including monitor-

CHAPTER 1. INTRODUCTION 20

ing of signal temporal logic contracts from simulation traces. The second paradigm, denoted
as Programming-Based Optimized Control Mapping (P-OCM) uses instead a formalization of
the design requirements and the plant model in terms of arithmetic constraints over real num-
bers, and formulates the control problem as an optimization problem that is solved within a
receding horizon approach to determine a correct control policy that can also optimize some
performance metrics.

When a design is built by optimized mapping on a composition of contracts from a pre-
characterized library, several instances of contract refinement checking may be required in
an optimization run, which can be very expensive to solve for large systems. We then pro-
pose an efficient library-based contract refinement checking algorithm that relies on a library
of contracts with pre-characterized local refinement relations to break down the refinement
checking problem into multiple successive refinement checks, each of smaller scale. As in
traditional assume-guarantee proof strategies, we decompose the main verification task into
smaller sub-tasks, where an aggregation of components is replaced by a more abstract repre-
sentation from the library [89]. However, in most cases, finding the appropriate abstraction
is an issue, since no general guidelines are available to the verification engineer [64, 91]. We
instead propose to guide the abstraction process by the contract library, which systemati-
cally encodes the available information on both the structural decomposition of the system
architecture and the relevant system domain knowledge. Based on the library and the system
structural decomposition, we can build abstractions automatically on the fly, as we solve the
verification problem by successive refinements.

1.5.4 Applications

In this thesis, we demonstrate, for the first time, the effectiveness of a contract-based ap-
proach on real-life examples of industrial relevance, namely the design of aircraft electric
power distribution and environment control systems. In the context of the aircraft electrical
power system, we show how:

i. Compositional and hierarchical refinement of architectures and control algorithms with
correctness guarantees is made possible using vertical contracts (Chapter 7);

ii. Optimal selection of large, industrial-scale architectures can be performed in a few min-
utes (Chapters 5 and 7);

iii. Design validation of reactive controllers based on linear temporal logic contracts shows
up to two orders of magnitude improvement in terms of execution time with respect to
conventional techniques (Chapter 6);

iv. In addition to guaranteeing system safety, a novel hierarchical optimal load management
scheme, denoted as Holms, relying an an efficient mixed integer-linear program solved
within a receding horizon approach (following the P-OCM paradigm), can bring sub-
stantial performance improvements with respect to state-of-the-art controllers in terms
of percentage of shed loads and number of utilized sources (Chapter 7).

CHAPTER 1. INTRODUCTION 21

Finally, in Chapter 7, we show that the methodology illustrated in detail on the power system
example smoothly generalizes to other case studies, such as an aircraft environment control
system.

1.6 Organization

This chapter has provided the motivation for our research, including an overview of the
aircraft electric power system challenge problem, which will be used throughout this thesis
to illustrate our results. We outlined the challenges in the design and design automation of
cyber-physical systems. We summarized our strategy to tackle these challenges and high-
lighted our main contributions. The remainder of the dissertation is organized as follows.

Chapter 2 provides the background material for the concepts introduced in the thesis.
We give preliminary notions on Platform-Based Design, assume-guarantee contracts, and
formalisms that can be used to express contracts. Moreover, we offer an overview of languages
and tools for cyber-physical system modeling, simulation, formal verification and control
synthesis, which can be used to implement the contract algebra and the main steps of our
design flow. The survey of the related works in this chapter is based on joint work with
Alberto Sangiovanni-Vincentelli, Davide Bresolin, Luca Geretti and Tiziano Villa [151].

Chapter 3 and 4 offer the scaffolding for the rest of the thesis. In Chapter 3, we discuss
our theoretical results relating assume-guarantee contracts with interface theories, which lead
us to further enrich the contract framework at the heart of the methodology, and expose
some key computational implications. Moreover, we introduce the notions of heterogeneous
refinement and vertical contracts, which are instrumental to formalize the mapping mech-
anisms in our methodology. In Chapter 4, we detail the main steps of the methodology
in terms of architecture design and control design. For both of these steps, we investigate
formalisms and tools to formalize requirements using contracts, develop component and con-
tract libraries for design space exploration, and map higher-level specification contracts into
lower-level implementation contracts. We then introduce the prototype Contract-Based Het-
erogeneous Analysis and System Exploration (CHASE) environment as a proof-of-concept
implementation of the methodology. CHASE facilitates requirement capturing using a front-
end pattern-based contract specification language, encodes them using a back-end temporal
logic formalism, and reasons about them by leveraging a set of back-end tools. Some of the re-
sults presented in Chapter 3 and Chapter 4 are based on joint work with Antonio Iannopollo,
Stavros Tripakis, Alberto Sangiovanni-Vincentelli, and Richard Murray [149, 153].

Chapter 5 and Chapter 6 are all centered, respectively, on the architecture and con-
trol design steps. In Chapter 5, after introducing the optimal CPS architecture selection
problem, we discuss both the ILP-AR and ILP-MR algorithms for reliable and cost-effective
architecture design, and their implementation into the ArchEx framework, jointly devel-
oped with Nikunj Bajaj, Micheal Masin, and Alberto Sangiovanni-Vincentelli [23]. In Chap-
ter 6, we detail both the RS-OCM and P-OCM approaches to control design, based on
joint work with John Finn, Antonio Iannopollo, Alberto Sangiovanni-Vincentelli, and Mehdi

CHAPTER 1. INTRODUCTION 22

Maasoumy [148, 135]. Moreover, to speed up the RS-OCM approach, we present a library-
based algorithm for efficient contract refinement checking, jointly developed with Antonio
Iannopollo, Stavros Tripakis and Alberto Sangiovanni-Vincentelli [100].

Chapter 7 illustrates the application of the overall design flow on the two challenge prob-
lems provided by the aircraft electrical power and air management systems. Starting from
top-level system contracts, we leverage the ILP-MR algorithm and the RS-OCM approach
to design both the system architecture and the primary distribution protocol of an electrical
power system, based on the work developed in collaboration with Huan Xu, Necmiye Ozay,
John Finn, Alberto Sangiovanni-Vincentelli, Richard Murray, Alexandre Donzé and Sanjit
Seshia [154]. We then show how the P-OCM approach can be used to design on optimal
load management scheme, implemented in the Holms framework, jointly developed with
Mehdi Maasoumy, Forrest Iandola, Maryam Kamgarpour, Alberto Sangiovanni-Vincentelli,
and Claire Tomlin [134]. Finally, we discuss briefly how the proposed methodology can be
deployed to perform design space exploration for an aircraft air management system. We
draw some conclusions in Chapter 8, and highlight some future research avenues as emerged
from this work.

The methodology proposed in this thesis has been supported by a mixed industrial (IBM
and United Technology Corporation)-University (U.C. Berkeley and Caltech) consortium,
called industrial Cyber Physical systems (iCyPhy), which has been formed in 2013 with the
goal of developing methodologies, models and tools for cyber-physical system design. In addi-
tion to the the iCyPhy consortium, this research was supported in part by an IBM Ph.D. Fel-
lowship, by the Gigascale Systems Research Center and the Multiscale Systems Center, two
of six research centers funded under the Focus Center Research Program (FCRP), a Semicon-
ductor Research Corporation entity, by the TerraSwarm Research Center, one of six centers
supported by the STARnet phase of the FCRP, a Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA, and by the National Science Foundation (NSF),
via the project “ExCAPE: Expeditions in Computer Augmented Program Engineering.”

CHAPTER 1. INTRODUCTION 23

Sy
st

em
 V

er
if

ic
at

io
n

an

d
 S

im
u

la
ti

o
n

-B
as

ed
 O

p
ti

m
iz

at
io

n

C
o

m
p

o
n

e
n

t
D

es
ig

n
/

C

o
n

tr
o

l
Sy

n
th

e
si

s

R
eq

u
ir

em
e

n
ts

(L

o
w

er
 le

ve
l,

e.
g.

 S
ys

te
m

 A
rc

h
it

ec
tu

re
 a

n
d

C

o
n

tr
o

l A
lg

o
ri

th
m

)

A
rc

h
it

ec
tu

re

D
es

ig
n

C
v
e
r/
si
m

C
C
,s
y
n

R
eq

u
ir

e
m

en
ts

(H

ig
h

-l
ev

el
 c

ap
tu

re
 a

n
d

 f
o

rm
al

iz
at

io
n

)

C
A
,s
y
n

Sy
st

e
m

A

rc
h

it
e

ct
u

re

(e
.g

. g
ra

p
h

)

C

o
m

p
o

n
e

n
t

an

d
 C

o
n

tr
ac

t

Li
b

ra
ry

D
is

cr
e

te
 E

ve
n

t
H

yb
ri

d

C
o

n
ti

n
u

o
u

s

Ti
m

e

an
d

 H
yb

ri
d

(a
)

(b
)

(c
)

(d
)

(e
) (f
)

(g
)

D
o

m
ai

n
-S

p
e

ci
fi

c
P

ri
m

it
iv

e
s/

P

at
te

rn
s

St
at

ic
/

Ex
tr

a-
fu

n
ct

io
n

al

(e
.g

. R
e

lia
b

ili
ty

,

C
o

n
n

e
ct

iv
it

y)

(e
.g

. S
ta

ti
c,

To

p
o

lo
gi

ca
l)

(e
.g

. T
e

m
p

o
ra

l
Lo

gi
c)

(e
.g

. T
e

m
p

o
ra

l
Lo

gi
c)

Figure 1.6: (a) Structure of the proposed contract-based methodology for cyber-physical sys-
tem design, from top-level requirements to the definition of system architecture and control
algorithm. Demonstration of the different design steps on the aircraft electric power sys-
tem example in the dissertation: (b) requirement formalization; (c) architecture selection;
(d) reactive control synthesis; (e) simulation-based verification; (f) simulation-based design
exploration; (g) hybrid power system model in Simulink for further refinement.

24

Chapter 2

Preliminaries

This chapter provides the background for the concepts introduced in this thesis. We give
a preliminary description of Platform-Based Design and contracts. We review formalisms,
languages and tools that can be used to specify, analyze or synthesize the design at different
levels of abstractions, including the ones of discrete systems and hybrid systems. For each
formalism, we expose how the contract operators can be computed, or the challenges in their
implementation.

2.1 Platform-Based Design

The pillars for our cyber-physical system design framework are a methodology that relies
on the platform-based design paradigm [176] and the algebra of contracts. Platform-Based
Design (PBD) was introduced in the late 1980s to capture a design process that could
encompass horizontal and vertical decompositions, and multiple viewpoints and, in doing so,
support the supply chain as well as multi-layer optimization [176]. In PBD, at each step,
top-down refinements of high-level specifications are mapped into bottom-up abstractions
and characterizations of potential implementations. Each abstraction layer is defined by
a design platform, which is the set of all architectures that can be built out of a library
(collection) of components according to composition rules. A pictorial representation of a
design step in PBD is shown in Figure 2.1.

In the bottom-up phase of each design step, we build and model the component library
(including both plant and controller). In the top-down phase, we formalize the high-level
system requirements and we perform an optimization (refinement) phase called mapping,
where the requirements are mapped into the available implementation library components
and their composition. Mapping is cast as an optimization problem where a set of perfor-
mance metrics and quality factors are optimized over a space constrained by both system
requirements and component feasibility constraints. Mapping is the mechanism that allows
to move from a level of abstraction to a lower one using the available components within
the library. Note that when some constraint cannot be satisfied using the available library

CHAPTER 2. PRELIMINARIES 25

Figure 2.1: Platform-Based Design and the role of contracts.

components or the mapping result is not satisfactory for the designer, additional elements
can be designed and inserted into the library. For example, when implementing an algorithm
with code running on a processor, we are assigning the functionality of the algorithm to a
processor and the code is the result of mapping the “equations” describing the algorithm
into the instruction set of the processor. If the processor is too slow, then real-time con-
straints may be violated. In this case, a new processor has to be found or designed that
executes the code fast enough to satisfy the real-time constraint. In the mapping phase, we
consider different viewpoints (aspects, concerns) of the system (e.g., functional, reliability,
safety, timing) and of the components.

If the design process is carried out as a sequence of refinement steps from the most
abstract representation of the design platform (top-level requirements) to its most concrete
representation (physical implementation), providing guarantees on the correctness of each
step becomes essential. Specifically, we seek mechanisms to formally prove that: (i) a set
of requirements are consistent, i.e. there exists an implementation satisfying all of them;
(ii) an aggregation of components are compatible, i.e. there exists an environment in which
they can correctly operate; (iii) an aggregation of components refines a specification, i.e. it
implements the specification and is able to operate in any environment admitted by it.
Moreover, whenever possible, we require the above proofs to be performed automatically
and efficiently, to tackle the complexity of today’s cyber-physical systems (CPS). Therefore,

CHAPTER 2. PRELIMINARIES 26

Time

Misra ‘81 Meyer ‘92

Clarke ‘98

Henzinger
‘08

Henzinger ‘01 Benveniste
‘08

Lamport ‘83

Raclet
‘09

McMillan ‘97
Sangiovanni ‘12

Nuzzo ‘09

Interface Theories Assume-Guarantee Contracts

Figure 2.2: Compositional reasoning, contracts, and interfaces in the literature: from assume-
guarantee reasoning in formal verification (blue) and contracts in software engineering and
object-oriented programming (blue), to interface theories (green) and A/G contracts (purple)
for system design. The envelope of contracts has gradually extended from transformational
systems to reactive systems over the last decade.

to formalize the above design concepts, and enable the realization of system architectures and
control algorithms in a hierarchical and compositional manner that satisfies the constraints
and optimizes the cost function(s), we resort to contracts.

2.2 Contracts: An Overview

The notion of contracts originates in the context of compositional assume-guarantee reason-
ing [62], which has been used for a long time, mostly for software verification. In a contract
framework, design and verification complexity is reduced by decomposing system-level tasks
into more manageable subproblems at the component level, under a set of assumptions.
System properties can then be inferred or proved based on component properties. Contract
frameworks were widely developed in the context of software engineering and object oriented
programming [143, 6], and further extended in the context of Model Driven Engineering
(MDE) [178]. However, their adoption in the context of reactive systems, i.e. systems that
maintain an ongoing interaction with their environment, as opposed to transformational sys-
tem, considered in object oriented programming, has been advocated only recently [34, 177].
Unlike contracts in software engineering, contracts (and interfaces) for reactive systems need
to encompass a richer set of behaviors and models of computation, while extending con-
cepts from behavioral typing [29]. As shown in Figure 2.2, different contract theories have
been developed over the years, including assume-guarantee contracts [33] and interface the-
ories [70, 78, 168]. However, a thorough investigation of the relations between them is an
open research field. Moreover, their concrete adoption in CPS design is still in its infancy, a

CHAPTER 2. PRELIMINARIES 27

major challenge being the absence of a comprehensive modeling formalism for CPS, due to
their complexity and heterogeneity [177, 34].

In this thesis, we adopt the assume-guarantee (A/G) contract framework, as introduced
by Benveniste, et al. [33, 34] to reason about requirements and their refinement during the
design process. Because of the explicit distinction between component and environment,
A/G contracts are deemed as a rigorous yet intuitive framework, which directly conforms
to the thought process of a designer, aiming to guarantee certain performance figures for
the design under specific assumptions on its environment. Since A/G contracts are centered
around behaviors, they are expressive and versatile enough to encompass all kinds of models
encountered in system design, from hardware and software models to representations of
physical phenomena [34, 149]. The particular structure of the behaviors is defined by specific
instances of the contract model. This will only affect the way operators in the contract
algebra are implemented, since the basic definitions will not vary.

An integration language incorporating A/G contracts to formalize system requirements
and enable the generation of simulation monitors has been proposed within the META
research program [141], with the aim to compress the product development and deploy-
ment timeline of defense systems. Furthermore, over the last few years, many publications
have demonstrated the application of A/G contracts in different domains, such as automo-
tive [67, 65, 34] and analog integrated systems [152]. In this thesis, we advocate the use
of contracts for the entire CPS design flow, including synthesis and optimized mapping of
system architectures and control algorithms [154, 100, 135, 153], in addition to system ver-
ification. In the following, we start by detailing the notions of components and contracts,
and then illustrate the operations and relations of the contract algebra.

2.3 Assume-Guarantee Contracts

Since PBD is based on the composition of components while refining the design, we start our
analysis of assume-guarantee contracts with a formal representation of a component and we
associate to it a set of properties that the component satisfies expressed with contracts. The
contracts will be used to verify the correctness of the composition and of the refinements.
A richer notion of a component in the context of PBD will be provided in Chapter 4, as we
detail our methodology. In this section, for the sake of conciseness, we refer to the typical,
intuitive notion of component as an open system, containing some inputs that are provided
by other components in the system or the external world, and generating some outputs. We
denote the collection of other components and the exterior world as the environment of the
component, which is often not completely known when the component is being developed.
Components cannot constrain their environment; however, they are designed to be used in
a particular context constrained by their contracts.

CHAPTER 2. PRELIMINARIES 28

2.3.1 Components and Contracts

We regard a component M as an abstraction representing an element of a design, charac-
terized by a set of (input or output) variables, a set of (input or output) ports, and a set of
behaviors over its variables and ports. Components can be connected together by sharing
certain ports under constraints on the values of certain variables. In what follows, to simplify,
we use the same term variables to denote both component variables and ports. Components
can respond to every possible sequence of input variables, i.e. they are receptive to their
input variables. Behaviors are generic and could be continuous functions that result from
solving differential equations, or sequences of values or events recognized by an automata
model. In the following, we also use [[M]] to denote the set of behaviors of a component. A
system can then be assembled by parallel composition and interconnection of components.
We denote the composition of two components M1 and M2, when it is defined, as M1 ×M2.
Then, the behaviors of the composition can be described, in general, as the intersection of
the behaviors of its components, i.e. [[M1 ×M2]] = [[M1]] ∩ [[M2]]. Moreover, a component M
may be associated with a contract, offering a specification for it.

A contract C for a component M is a triple (V,A,G), where V is the set of component
variables, and A and G are assertions, each representing a set of behaviors over V [33].
A represents the assumptions that M makes on its environment, and G represents the
guarantees provided by M under the environment assumptions. A component M satisfies
a contract C whenever M and C are defined over the same set of variables, and all the
behaviors of M satisfy the guarantees of C in the context of the assumptions, i.e. when
[[M]] ∩ A ⊆ G. We denote this satisfaction relation by writing M |= C, and we say that M
is an implementation of C. However, a component E can also be associated to a contract C
as an environment. We say that E is a legal environment of C, and write E |=E C, whenever
E and C have the same variables and [[E]] ⊆ A.

Example 1 (Components and Contracts). As an example, we consider the amplifier com-
ponent Amp represented in Figure 2.3 (a), whose amplification gain is two. To specify its
operation, we can then formulate a simple (stateless) contract as follows:

Camp = ({u, y}, {(u, y) ∈ R2| |u| ≤ 1}, {(u, y) ∈ R2| y = 2u}),

where we use |u| to denote the absolute value of u, and constraints (predicates) on the real
variables u and y to characterize the sets of assumptions and guarantees of Camp. For brevity’s
sake, when the domain of all the component variables is known, we can also represent assump-
tions and guarantees directly in terms of predicates, e.g., Camp = ({u, y}, |u| ≤ 1, y = 2u),
where we implicitly assume that an assumption predicate φA and a guarantee predicate φG
are both interpreted over the whole set of contract variables. Moreover, A and G will be,
respectively, the set of all the behaviors satisfying φA and φG.

The component Amp duplicates the value of any real number u in the interval [−1, 1],
provided as an input. Because the behavior of Amp is only determined for a specific input
range, there is potentially an infinite number of implementations for Camp. In particular,

CHAPTER 2. PRELIMINARIES 29

(a)

Amp

u y ×2

Sine

θ x 2sin()

(b)

Sine

θ x 2sin()

Amp

y ×2

(c)

Square

𝒛

Diode

𝒘

()2

Figure 2.3: Pictorial representation of the components and interconnections used to illus-
trate some of the contract operations and relations: (a) parallel composition, (b) serial
composition, (c) feedback composition.

a component Mamp, defined over the same set of variables {u, y}, and enforcing y = 2u
for all u ∈ R, is certainly an implementation for Camp, i.e. Mamp |= Camp. In fact, its
set of behaviors [[Mamp]] = {(u, y) ∈ R2|y = 2u}, coincides with the guarantees of Camp,
and therefore [[Mamp]] ∩ Aamp ⊆ Gamp trivially holds. On the other hand, let M ′

amp be an
amplifier with saturation, defined over the same set of variables {u, y}, and characterized by
the following behavioral model:

M ′
amp :

y = 2u ∀u ∈ R : −1 ≤ u ≤ 1,
y = −2 ∀u ∈ R : u < −1,
y = 2 ∀u ∈ R : u > 1.

(2.1)

M ′
amp blocks its output to a constant value when the magnitude of its input exceeds one.

However, in the context of the assumptions Aamp, it satisfies Gamp; therefore, by definition
of contract satisfaction, M ′

amp is also an implementation of Camp.
Any component satisfying the assumptions of Camp is a legal environment for it; specifi-

CHAPTER 2. PRELIMINARIES 30

cally, a component Eamp, defined over {u, y}, and providing as an output u = 0 for all y ∈ R
is legal, i.e. Eamp |=E Camp. Moreover, given a legal environment Eamp, the composition
Eamp ×Mamp, for all implementations Mamp, generates a closed system.

Two contracts C and C ′ with identical variables, identical assumptions, and such that
G′ ∪A = G∪A, where A is the complement of A, possess identical sets of environments and
implementations. Such two contracts are then equivalent. In particular, any contract C is
equivalent to a contract in saturated (canonical) form C ′, obtained by taking G′ = G ∪ A.
In what follows, we assume that all contracts are in saturated form.

Example 2 (Saturated Form). The contract C ′amp = ({u, y}, |u| ≤ 1, |u| ≤ 1 → y = 2u)
is equivalent to Camp in Example 1, since it has the same sets of environments and imple-
mentations. However, differently than Camp, C ′amp is in saturated form; its set of guarantees
G′amp = ({u, y}, |u| > 1 ∨ y = 2u) is maximal, and coincides with the union of the behaviors
of all its implementations.

2.3.2 Composition

Contracts associated to different components can be combined according to different rules.
Similar to parallel composition of components, parallel composition (⊗) of contracts can
be used to construct composite contracts out of simpler ones. Let C1 = (V,A1, G1) and
C2 = (V,A2, G2) be contracts (in saturated form) over the same set of variables V . The
composite contract C1 ⊗ C2 is defined as the triple (V,A,G) where:

A = (A1 ∩ A2) ∪ (G1 ∩G2) (2.2)

G = G1 ∩G2. (2.3)

The composite contract must satisfy the guarantees of both, which explains the operation
of intersection in (2.3) [34]. Intuitively, the assumptions of the composite contract should
also be the conjunction of the assumptions of each contract, since the environment should
satisfy all the assumptions. However, in general, part of the assumptions A1 will be already
satisfied by composing C1 with C2, acting as a partial environment for C1. Therefore, G2 can
contribute to relaxing the assumptions A1 and vice versa.

Example 3 (Producer-Consumer System). Let us consider a simple producer-consumer sys-
tem, where the producer M1 is interconnected in series with the consumer M2, sharing the
variable y ∈ R. Let C1 = ({y}, T, y > 0) and C2 = ({y}, y > 0, T) be the two contracts
specifying the behaviors of M1 and M2, respectively, both in saturated form. In this example,
both assumptions and guarantees are expressed as predicates on y, and T is the Boolean value
True. M1 guarantees that y is a positive number, which coincides with the assumption made
by M2 on its environment. Then, by applying (2.2) and (2.3), we obtain G = (y > 0) and
A = (y > 0) ∨ (y ≤ 0) = T, denoting that the composite system is able to operate in any
environment, which is intuitive, since the assumptions of M2 on its environment are relaxed
by the guarantees of M1.

CHAPTER 2. PRELIMINARIES 31

Specifically, when computing (2.2), we are interested in the maximum set of behaviors A
such that A ∩ G2 ⊆ A1 and A ∩ G1 ⊆ A2, where “maximum” refers to the order of sets by
inclusion [34]. This is equivalent to finding:

A = max{A′|A′ ⊆ A1 ∪G2, A
′ ⊆ A2 ∪G1}

= (A1 ∪G2) ∩ (A2 ∪G1)

= (A1 ∩ A2) ∪ (A1 ∩G1) ∪ (A2 ∩G2) ∪ (G1 ∩G2)

= (A1 ∩ A2) ∪G1 ∪G2,

(2.4)

which reduces to (2.2). The last equality in (2.4) stems from the fact that G = G∪A holds for
a contract C = (V,A,G) in saturated form. Contract composition preserves saturated form,
that is, if C1 and C2 are in saturated form, then so is C1⊗C2. Moreover, ⊗ is associative and
commutative and generalizes to an arbitrary number of contracts. We therefore can write
C1 ⊗ C2 ⊗ · · · ⊗ Cn.

For composition to be defined, contracts need to be over the same set of variables V .
If this is not the case, then, before composing the contracts, we must first extend their
behaviors to a common set of variables using an inverse projection type of transformation,
which we call alphabet equalization. Formally, let C = (V,A,G) be a contract and let V ′ ⊇ V
be the set of variables on which we want to extend C. The extension of C on V ′ is the
new contract C ′ = (V ′, A′, G′) where A′ and G′ are sets of behaviors over V ′, defined by
inverse projection of A and G, respectively. In what follows, we freely compose contracts C1

and C2 over arbitrary sets of variables V1, V2, by implicitly first taking their extensions to
V = V1 ∪ V2.

Example 4 (Parallel Composition). Consider the component Sine shown in Figure 2.3 (a),
which receives as input an angle θ and produces an output proportional to the sine of θ. We
would like to characterize the contract Csin⊗C ′amp, specifying the parallel composition of Amp
and Sine, where Csin = ({θ, x}, T, x = 2 sin θ). Moreover, we assume that the components
interact by sharing their input variables, which we capture by renaming u as θ. Then, to
combine correctly the assumptions and guarantees according to (2.2) and (2.3), we first need
to extend them to the variable set {θ, x, y}, thus obtaining

C ′′amp = ({θ, x, y}, |θ| ≤ 1, (|θ| ≤ 1)→ (y = 2θ))

C ′sin = ({θ, x, y}, T, x = 2 sin θ) .

Finally, we can compute the assumptions and guarantees of the composite contract as follows:

G⊗ := (x = 2 sin θ) ∧ ((y = 2θ) ∨ (|θ| > 1))

A⊗ := (|θ| ≤ 1) ∨ (x 6= 2 sin θ) ∨ ((y 6= 2θ) ∧ (|θ| ≤ 1))

= (|θ| ≤ 1) ∨ (x 6= 2 sin θ).

CHAPTER 2. PRELIMINARIES 32

As informally introduced by the producer-consumer example above, both serial and
feedback compositions of contracts can be defined using the notion of parallel composition.
Feedback composition in the context of contracts has also been investigated in a seminal
paper by Benvenuti et al. [36]. Let C1 = (V1, A1, G1) and C2 = (V2, A2, G2) be two contracts,
in which the variable sets V1 = U1 ∪ Y1 and V2 = U2 ∪ Y2 are, respectively, partitioned into
finite sets of input (U1, U2) and output variables (Y1, Y2). Then, a serial interconnection
structure σ, defined as a subset of pairs of Y1 × U2, i.e. σ ⊆ Y1 × U2, generates a renaming
on C2 where, for each pair (y, u) ∈ σ, u is renamed as y. Let Y σ

1 = {y|∃u : (y, u) ∈ σ} and
Uσ

2 = {u|∃y : (y, u) ∈ σ}. As represented in Figure 2.4 (a), we can then define a renaming
operator on C2, renσ(C2), which returns a new contract Cσ2 = (U2\Uσ

2 ∪Y σ
1 ∪Y2, A

σ
2 , G

σ
2), where

Aσ2 and Gσ
2 are obtained from A2 and G2 after renaming their respective variables according

to σ. Finally, we can define the serial composition of C1 and C2 as C1
σ
 C2 := C1 ⊗ Cσ2 .

Example 5 (Serial Composition). We compute the cascade composition Csin
σ
 Camp for

σ = {(x, u)}, as shown in Figure 2.3 (b). After renaming and alphabet equalization, by
using (2.2) and (2.3), we obtain:

Gσ := (x = 2 sin θ) ∧ ((y = 2x) ∨ (|x| > 1))

Aσ := (|x| ≤ 1) ∨ (x 6= 2 sin θ),

where both predicates are now to be interpreted on {θ, x, y}.

Similarly, a feedback interconnection structure κ can be defined as a subset of pairs
κ ⊆ (Y1 × U2) ∪ (Y2 × U1), thus generating a renaming on both C1 and C2 where, for each
pair (y, u) ∈ κ, u is renamed as y. Let Y κ

1 = {y ∈ Y1|∃u ∈ U2 : (y, u) ∈ κ}, Uκ
2 = {u ∈

U2|∃y ∈ Y1 : (y, u) ∈ κ}, Y κ
2 = {y ∈ Y2|∃u ∈ U1 : (y, u) ∈ κ}, and Uκ

1 = {u ∈ U1|∃y ∈ Y2 :
(y, u) ∈ κ}. We can then define a renaming operator renκ on C1 and C2, , which returns the
new contracts Cκ1 = (U1 \ Uκ

1 ∪ Y κ
2 ∪ Y1, A

κ
1 , G

κ
1), and Cκ2 = (U2 \ Uκ

2 ∪ Y κ
1 ∪ Y2, A

κ
2 , G

κ
2), as

represented in Figure 2.4 (b). Finally, we can define the feedback composition of C1 and C2

as C1 ◦κ C2 := Cκ1 ⊗ Cκ2 .

Example 6 (Feedback Composition). We compute the feedback composition of a Square
component, which squares any input value, with a Diode component, which propagates its
input to the output only if it is larger or equal to zero, as shown in Figure 2.3 (c). We assume
that the components are formally specified by the contracts Csquare = ({w, z}, T, z = w2) and
Cdiode = ({w, z}, z ≥ 0, (z < 0) ∨ (w = z)). Then, we obtain

Gκ := (z = w2) ∧ (z < 0 ∨ w = z) = (z = w2) ∧ (w = z) = (w = z) ∧ (z = 0 ∨ z = 1)

Aκ := (z ≥ 0) ∨ (z 6= w2) ∨ (z ≥ 0 ∧ w 6= z) = T.

A special case of feedback interconnection occurs when a set of outputs of a contract
is directly connected to a set of its inputs, as represented in Figure 2.4 (c). For instance,
given a contract C = (V,A,G), in which V = U ∪ Y , with U and Y finite sets of input and

CHAPTER 2. PRELIMINARIES 33

(a)

C1

U1

𝑌1
𝜎

Y1∖ 𝑌1
𝜎

C2

Y2

U2∖ 𝑈2
𝜎

(c)

C
𝑈 ∖ 𝑢

y

𝑌 ∖ 𝑦

(b)

C1

U1∖ 𝑈1
𝜅

𝑌1
𝜅

Y1∖ 𝑌1
𝜅

C2

U2∖ 𝑈2
𝜅

 Y2∖ 𝑌2
𝜅

𝑌2
𝜅

Figure 2.4: Pictorial representation of different examples of contract compositions: (a) serial
composition, (b) feedback composition of two contracts, (c) feedback composition of one
contract.

output variables, and U ∩ Y = ∅, let κ = (y, u) ∈ Y ×U be a feedback interconnection on C,
connecting an output of C to one of its inputs, and let Cid,κ = ({y, u}, T, y = u) a contract
which guarantees that the variables supposed to be connected in κ are set to be equal. To
simplify, we express the guarantees of Cid,κ by using a stateless constraint over its variable
set; however, stateful extensions, including temporal constructs, are straightforward. We can
then reduce the feedback connection on a contract to the general case of feedback composition
defined above, by redefining the new contract generated by κ as κ(C) := C ◦κ Cid,κ = Cκ.

2.3.3 Compatibility and Consistency

C is compatible if there exists a legal environment E for it, i.e. if and only if A 6= ∅. The intent
is that a component satisfying contract C can only be used in the context of a compatible
environment, to be assured that its behaviors conform with the ones specified by the contract.
Similarly, a contract is consistent when the set of implementations satisfying it is not empty,
i.e. it is feasible to develop implementations for it. For contracts in saturated form, this
amounts to verify that G 6= ∅.

When there is a clear distinction between input (uncontrolled) and output (controlled)
variables, different notions of contract compatibility and consistency can be defined [33, 177,

CHAPTER 2. PRELIMINARIES 34

149]. Let U ⊆ V and Y ⊆ V be, respectively, the subset of input and output variables of
C, with U ∩ Y = ∅. Then C is compatible if and only if A is Y -receptive, i.e. if and only if
for all behaviors ρ′ restricted to variables in Y , there exists a behavior ρ ∈ A, such that ρ′

and ρ coincide over Y . Intuitively, an environment has no control on the variables set by an
implementation, and therefore A accepts any history offered to the subset Y of its variables.
Similarly, C is consistent if and only if G is X-receptive.

Example 7 (Compatibility and Consistency). Based on these definitions, Camp and Csin are
both compatible and consistent, while a contract

Camp1 = ({u, y}, |u| ≤ 2, |u| ≤ 1→ (y = 2u) ∧ (y > 3))

is compatible but inconsistent. In fact, compatibility checking amounts to ask whether
∀y : |u| ≤ 2 is satisfiable, which is true. On the other hand, consistency checking pro-
duces ∀u : |u| ≤ 1 → (y = 2u) ∧ (y > 3) = F (F being the Boolean value False), since it is
impossible to satisfy the guarantees of Camp1 for any u in the interval [−1, 1].

In several practical situations, we are interested in contracts that are compatible and
consistent at the same time, i.e. satisfying G ∩ A 6= ∅, to discard pathological situations of
contracts which are compatible but not consistent, or consistent but not compatible.

The definitions above can be lifted to pairs of contracts, so that C1 and C2 are compatible
(consistent) if and only if C1 ⊗ C2 is compatible (consistent). As an example, we consider
compatibility and consistency conditions for the cascade of contracts in Figure 2.4 (a). To
be concrete, we assume that the assumptions and guarantees of C1 and C2 are represented
in terms of predicates or logic formulas on their variables, i.e. C1 = (U1 ∪ Y1, φA1, φG1) and
C2 = (U2 \ Uσ

2 ∪ Y σ
1 ∪ Y2, φA2, φG2). We can then compute assumptions and guarantees for

the composite contract Cσ = C1
σ
 C2 by applying (2.2) and (2.3) as follows:

φGσ = φG1 ∧ φG2 (2.5)

φAσ = (φA1 ∧ φA2) ∨ ¬φG1 ∨ ¬φG2, (2.6)

where φGσ and φAσ must be interpreted as predicates or formulas over the entire set of
variables U1 ∪ Y1 ∪ U2 \ Uσ

2 ∪ Y2. In a general case, we would already conclude that C1 and
C2 are compatible if and only if φAσ is satisfiable. Similarly, C1 and C2 are consistent if and
only if φGσ is satisfiable. However, this result may not be satisfactory in the special case
of contracts with a distinction between controlled and uncontrolled variables, which is still
relevant to several application domains, as illustrated by the following examples.

Example 8 (Detecting Incompatibility). We would like to analyze a system model built
by interconnecting two blocks in a modeling environment such as Simulink1, as shown in
Figure 2.5. L is a legacy block, seen as a black box, on the behaviors of which we have no
information. Div produces a real output z which is the inverse of its real input y. The goal
for the overall system would be to provide the inverse of any “legal” output of L.

1http://www.mathworks.com/products/simulink

http://www.mathworks.com/products/simulink

CHAPTER 2. PRELIMINARIES 35

L Div
y z x

Figure 2.5: Example of a system obtained by assembling a legacy black-box block L and a
division component Div.

To specify the behavior of Div, we can use a simple (static) contract CD, expressed as
follows, in terms of assumptions on the environment and guarantees of the component:

CD :

variables: y, z ∈ R

assumptions: y 6= 0
guarantees: z = 1/y

, (2.7)

where behaviors are specified using constraints on real numbers. On the other hand, a contract
CL1 for L would allow any real value both as an input and as an output.

In such a situation, we would like to conclude that the two specifications (contracts) for
L and Div are “incompatible,” since there is no way to guarantee that the output of L is
always a “legal” input for Div, i.e. is different than zero. Interestingly, such a concept of
incompatibility could be directly detected while computing the composition of the specifications
using the theory of relational interfaces [197]. However, this is not necessarily the case in
the generic A/G contract framework. In fact, using the formulas reported in Section 2.3.2,
it is possible to compute the composition of CL1 and CD as follows:

CL1 ⊗ CD :

variables: x, y, z ∈ R

assumptions: y 6= 0
guarantees: (z = 1/y) ∨ (y = 0).

(2.8)

The contract in (2.8) seems to suggest that any environment capable of enforcing y 6= 0 would
be legal for CL1⊗CD. Yet, y has now become an “internal” variable for CL1⊗CD, and cannot
be modified by any environment of the composite contract.

Example 9 (Inferring Environment Assumptions). We consider again the system in Fig-
ure 2.5. However, we assume now that a more detailed specification is available for the
behaviors of L, stating that L accepts any real input x and provides an output y > x. Such
a specification can be expressed using the contract:

CL2 :

variables: x, y ∈ R

assumptions: (x, y) ∈ R2

guarantees: y > x.
(2.9)

CHAPTER 2. PRELIMINARIES 36

In this situation, we would like to conclude that CL2 and CD are now “compatible.” Intuitively,
we can observe that any value of x ≥ 0 is guaranteed to provide a nonzero input for Div.
Hence, there is a way to guarantee that the output of L is always “legal” for Div. On the
other hand, for all x < 0, there is always a possibility for L to violate the assumptions of
Div, which would make the interconnection “illegal.” We would like to automatically derive
such a conclusion from the contract composition of CL2 and CD. However, CL2 ⊗ CD will be
of the form:

CL2 ⊗ CD :

variables: x, y, z ∈ R

assumptions: y 6= 0 ∨ y ≤ x
guarantees: y > x ∧ (z = 1/y ∨ y = 0)

,

where the desired information about the set of legal environments is still somewhat “hidden”
into the assumptions of the composite contract. Again, the desired “compatibility” condition
x ≥ 0 can be directly obtained out of composition within the theory of relational interfaces.

As suggested by the examples above, to fully recover some useful features of specification
theories for compositional design, such as automatic compatibility checking, some of the basic
definitions introduced in this chapter for the A/G contract operators may need to be refined.
In Chapter 3, we aim to do so by reconciling the input/output (controlled/uncontrolled)
“view” of interface theories with the behavioral approach of A/G contracts. Specifically, we
propose a mapping of relational interfaces into A/G contracts, and analyze the preservation
properties of key operators and relations (composition, refinement and conjunction) of the
two theories under this mapping. Therefore, we defer to Chapter 3 the full treatment of
compatibility and consistency checking under composition, including serial and feedback
interconnections.

2.3.4 Refinement and Conjunction

Refinement is a preorder on contracts, which formalizes a notion of substitutability. We
say that C refines C ′, written C � C ′ (with C and C ′ both in saturated form), if and only
if A ⊇ A′ and G ⊆ G′2. Refinement amounts to relaxing assumptions and reinforcing
guarantees, therefore strengthening the contract. In other words, contract C refines C ′, if C
admits less implementations than C ′, but more legal environments than C ′. This is a standard
concept inspired by the notion of behavioral subtyping [29]. Clearly, if M |= C and C � C ′,
then M |= C ′. On the other hand, if E |=E C ′, then E |=E C. We can then replace C ′ with C.

Example 10 (Refinement). Let Crange = ({u, y}, |u| ≤ 1
2
, |y| ≤ 1) be a contract specifying

the input and output ranges for the component Amp in Figure 2.3 (a); we would like to
show that Camp � Crange, that is, when operating in the context of the assumptions of Crange,

2It can be useful to recall an equivalent characterization of refinement that also holds for contracts that
are not in saturated form. We say that C � C′, where C and C′ need not be in saturated form, if and only if
A′ ⊆ A and G ∩A′ ⊆ G′.

CHAPTER 2. PRELIMINARIES 37

Camp produces an output within the range prescribed by the guarantees of Crange. To do this,
we apply the definitions above to the saturated versions of the two contracts; then, refine-
ment checking translates into proving the validity of the following two predicates involving,
respectively, the assumptions and the guarantees of both contracts:

|u| ≤ 1/2→ |u| ≤ 1 (2.10)

(y = 2u) ∨ (|u| > 1)→ (|y| ≤ 1) ∨ (|u| > 1/2). (2.11)

While (2.10) is trivially true, to show the validity of (2.11), we recall that the antecedent
in (2.11) is true when either (|u| > 1) or (y = 2u) holds, and prove that in both cases the
consequent is also true. In fact, in the former case, we also have that (|u| > 1/2) holds and
the implication is true; in the latter case, if (1/2 < |u| ≤ 1) is true, then the implication
is still trivially true. If instead (|u| ≤ 1/2) is true, we can still conclude |y| = 2|u| ≤ 1,
hence (2.11) is true.

Alphabet equalization is also needed as a preliminary step to define refinement when C
and C ′ are defined over a different alphabet. A more general case of refinement occurs when
C and C ′ are also expressed by using different formalisms, which we denote as heterogeneous
refinement. In this case, we need to enrich the notion of refinement between contracts via a
transformation M (e.g. a type of projection or inverse projection) that maps the behaviors
expressed by one of the contracts to the domain of the other contract, which is generally more
involved than alphabet equalization. Heterogeneous refinement is essential in platform-based
design flows, and will be discussed in Chapter 3.

To compose multiple requirements on the same component, possibly representing different
viewpoints that need to be satisfied simultaneously, we can also define the conjunction (∧)
of contracts. Let C1 = (V,A1, G1) and C2 = (V,A2, G2) be contracts (in saturated form) over
the same set of variables V and on the same component M . We would like to combine C1

and C2 into a joint contract C1 ∧ C2 so that, if M |= C1 ∧ C2, then M |= C1 and M |= C2. We
can compute the conjunction of C1 and C2 by taking their greatest lower bound with respect
to the refinement relation, i.e. (i) C1 ∧ C2 is guaranteed to refine both C1 and C2, and (ii)
for any contract C ′ such that C ′ � C1 and C ′ � C2, we have C ′ � C1 ∧ C2. For contracts in
saturated form and on the same alphabet, we have

C1 ∧ C2 = (A1 ∪ A2, G1 ∩G2). (2.12)

Example 11 (Conjunction). Let Crange1 and Crange2 be two contracts restricting the input
and output ranges of an Amp component, and defined as follows

Crange1 = ({u, y}, 0 ≤ u ≤ 1/2, 0 ≤ u ≤ 1/2→ y ≥ u)

Crange2 = ({u, y}, 0 ≤ u ≤ 1, 0 ≤ u ≤ 1→ 0 ≤ y ≤ 3u),

CHAPTER 2. PRELIMINARIES 38

where u, y ∈ R. Then, we can compute the conjunction Crange1 ∧ Crange2 as

A∧ := (0 ≤ u ≤ 1/2) ∨ (0 ≤ u ≤ 1) = 0 ≤ u ≤ 1

G∧ := (0 ≤ u ≤ 1/2→ y ≥ u) ∧ (0 ≤ u ≤ 1→ 0 ≤ y ≤ 3u)

= (u ≤ y ≤ 3u) ∨ (u > 1/2 ∧ 0 ≤ y ≤ 3u) ∨ (u < 0) ∨ (u > 1).

Since Camp admits a larger set of inputs, the whole interval [−1, 1], and promises y = 2u for
u ∈ [0, 1], it clearly refines the conjunction contract, hence it refines both Crange1 and Crange2.
Therefore, any implementation of Camp, such as Mamp, will also implement both Crange1 and
Crange2.

2.3.5 Summary

Contract-based design is emerging as a unifying compositional paradigm for the specifica-
tion, design, and verification of large-scale complex systems. Indeed, contract and interface
theories promise to offer a scaffolding for the deployment of formal methods in a principled
and scalable way [34]. However, in spite of the efforts towards unification, different con-
tract frameworks are currently available, and we lack a clear understanding of the relations
between them.

In this dissertation, as mentioned in Section 2.2, we choose the theory of A/G contracts
proposed by Benveniste et al. [34] as the underlying framework for the development of our
methodology, because of its intuitive nature and its generality. A/G contracts mimic the
thought process of a designer, who aims at guaranteeing certain behaviors under specific
assumptions on its environment. Since requirements are often naturally seen as assertions
(sets of behaviors), A/G contracts seem an adequate framework for use in requirements
capture. Moreover, unlike previous interface theories3, A/G contracts are designed as a
generic framework that can be instantiated using different formalisms, and can support a
rich composition algebra. Therefore, they also seem adequate to manipulate requirements
along the different steps of the design flow, and reason about hierarchies of components (via
refinement) and multiple viewpoints (via conjunction).

In spite of their promise of dealing with heterogeneous models, two potential limitations
of a generic A/G contract framework emerged from our analysis. First, A/G contracts
do not preserve the semantics of composition and compatibility of other interface theories,
when applied to “signal-flow” models that make a distinction between uncontrolled inputs
and controlled outputs (Section 2.3.3). Second, the basic A/G contract operators are not
sufficient to deal with hierarchies of models characterized by heterogeneous architectures,
or behaviors expressed in heterogeneous formalisms, possibly capturing richer refinement

3Interface theories are prevalently based on automata-based formalisms. In most of the instances, con-
junction is also not supported [34], or solely defined under suitable restrictions [197]. Moreover, restrictions
are often needed (e.g., the notion of Moore interface) to guarantee compositional refinement under feedback
connection [197].

CHAPTER 2. PRELIMINARIES 39

relations, including synthesis and optimization-based methods (Section 2.3.4). We propose
appropriate extensions to address these issues in Chapter 3.

Finally, we point out that other versions of A/G contracts were proposed over the years,
in addition to the theory considered in this thesis. Another form for A/G contracts supports
reasoning about complex component interactions by avoiding using parallel composition of
contracts to overcome the problems that certain models have with the effective computation
of the operators [167, 88]. Instead, composition is replaced with the concept of circular
reasoning [17]: when circular reasoning is sound, it is possible to check relations between
composite contracts based on their components only, without taking expensive composi-
tions. However, compatibility and conjunction are not addressed in this theory. Finally,
Doyen et al. [78] propose an interface model where assumptions on input variables and
guarantees on output variables are separated in two different logic formulas. This type of
“assume-guarantee interfaces” are less expressive than contracts, since the latter can model
relations between input and output variables, which cannot be captured in the former.

2.4 Formalisms for System Specification and

Modeling

The behaviors captured by contract assumptions and guarantees can be of different kinds
(e.g., discrete or continuous, finite or infinite in length) and they can be concretely repre-
sented using different formalisms, e.g., automata, temporal logic, differential equations. In
the sequel, we review some of the existing formalisms for the specification and modeling of
dynamical systems, which can be used to develop concrete contract frameworks for require-
ment analysis and manipulation within our methodology. Then, in the next sections, we will
review languages and tools associated with these formalisms.

2.4.1 Temporal Logic

Temporal logic is a symbolism for representing and reasoning about the evolution of a system
over time. Starting from the ‘80s [164] it has been successfully applied in formal verification,
and a flourishing family of temporal logics has been developed both by academy and industry.
Because of its “declarative” flavor, temporal logic seems a “natural” language to formalize
high-level requirements in terms of contracts. Moreover, especially for discrete-time, discrete-
state system representations, the wealth of results and tools in temporal logic and model
checking can provide a substantial technological basis for requirement analysis [62].

Classical discrete-time temporal logics like linear temporal logic (LTL) and computation
tree logic (CTL) [62, 139, 79], originally developed to state requirements of hardware and
software electronic systems, can indeed be effectively used to describe discrete event (DE)
abstractions of CPS. As an example, in the abstraction offered by LTL, a component can
be represented as a set of Boolean variables SDE. Then, the behaviors of a component
can be described by the infinite sequences of states of the form σ = s0s1s2 . . . satisfying an

CHAPTER 2. PRELIMINARIES 40

LTL formula, each state s being a valuation of the Boolean variables in SDE. A sample
requirement expressible by LTL is the property “An alert must be eventually resolved,”
which can be formalized by the formula �(alert → 3 sys ok), where alert and sys ok are
Boolean component variables. This formula states that every occurrence of the alert event
(i.e. when alert is asserted), as denoted by the always (�) operator, must eventually (3)
be followed by an occurrence of a sys ok event.

Discrete-time temporal logics, however, lack the expressiveness needed to capture the
continuous aspects of the system in a faithful way. To overcome this limitation, temporal
logics have been extended in many ways. A first extension, routinely used in the verification
of discrete-time hybrid systems, is to replace Boolean variables with first order atoms, in-
cluding non-linear arithmetic constraints on real numbers [66]. In this way, LTL can express
properties like “If the temperature reaches 90 degrees, then it must eventually decrease below
60,” using formulas of the form �(t ≥ 90→ 3 t < 60), which constrains any state where the
temperature t is greater or equal to 90 to be followed by a state where the temperature is
below 60.

A second possibility is to add operators to express timing constraints between dis-
crete events. This leads to the development of real-time temporal logics such as Metric
Temporal Logic (MTL) [112]. For instance, real-time temporal logics can express prop-
erties like “An alert must be resolved in 10 seconds,” by means of the MTL formula
�(alert → 3[0,10] sys ok), which forces the sys ok event to occur at most 10 time units
after the alert event.

Real-time temporal logics have been further extended by providing a continuous notion
of time, and by making them capable of expressing properties of continuous quantities. The
most relevant language in this family of continuous-signal logics is signal temporal logic
(STL) [136], which combines first order atoms with timing constraints and is able to express
properties like “If the temperature reaches 90 degrees, then it must decrease below 60 in at
most 10 seconds.” Such a property can be formalized by the formula �(t ≥ 90→ 3[0,10] t <
60), which constrains any time instant τ0 where the temperature t is greater or equal to
90 to be followed by a time instant τ1 where the temperature is below 60 and such that
τ1 − τ0 ≤ 10.

More recently, some logics for hybrid-systems have been introduced, which can express
properties of both the discrete and continuous behaviors of a system. Two relevant members
of this class are Hybrid Linear Temporal Logic with Regular Expressions (HRELTL) [61],
which extends the LTL with regular expressions (RE), and Differential Dynamic Logic
(dL) [161], which can specify correctness properties for hybrid systems given operationally as
hybrid programs. An example of a hybrid property is “If the temperature reaches 90, then
an alert is raised,” which can be formalized by the HRELTL formula �(t ≥ 90 → # alert),
where # is the “next discrete event” operator. On the other hand, the hybrid property “for
the state of a train controller train, the property z ≤ 100 always holds true when starting in a
state where v2 ≤ 10 is true,” can be expressed by the dL formula v2 ≤ 10→ [train]z ≤ 100,
where z and v are the position and the velocity of the train, respectively.

In the remainder of this section, we provide further details about LTL and STL, which

CHAPTER 2. PRELIMINARIES 41

will be widely used in this thesis for the design of reactive controllers, to capture top-
level requirements, reason about their correctness, consistency and compatibility, and derive
implementations by synthesis and optimized mapping, as discussed in Chapter 4 and 6. We
then describe how contracts can be expressed using temporal logic.

2.4.1.1 Linear Temporal Logic

While in platform-based design the “component” is regarded as the fundamental entity of
a design, and systems are denoted as interconnections of components, as we describe the
basics of LTL, we adhere to the classical terminology, which is historically consolidated [22],
and defines design abstractions in terms of “systems.”

Definition 2.4.1 (System). A system Σ consists of a set S of variables, and a set [[Σ]] of
behaviors over S. The domain of S, denoted by dom(S) or S, is the set of valuations of S.

Definition 2.4.2 (Atomic Proposition). An atomic proposition is a statement on system
variables that has a unique truth value (T and F, denoting respectively the Boolean values
True or False) for a given value s. Let s ∈ dom(S) be a state of the system (i.e., a specific
valuation of its variables) and p be an atomic proposition. Then s |= p if p is True at the
state s. Otherwise, s 6|= p.

LTL also includes Boolean connectors such as negation (¬), disjunction (∨), conjunction
(∧), material implication (→), and two basic temporal modalities, next (#) and until (U).
By combining these operators, it is possible to specify a wide range of requirements. Given a
set AP of atomic propositions, LTL formulas are formed according to the following grammar:

ϕ := T | p | ¬ϕ | ϕ1 ∧ ϕ2 |# ϕ| ϕ1 U ϕ2

where p ∈ AP . Formulas involving other operators, including eventually (3) and always
(�), can be derived from these basic ones.

LTL formulas over AP are interpreted over infinite sequences of states. In the LTL
abstraction, we denote such a sequence as a behavior of the system. Let σ = s0s1s2 . . . be
a behavior and ϕ be an LTL formula. We say that ϕ holds at position i ≥ 0 of σ, written
si |= ϕ, if and only if ϕ holds for the remainder of the sequence starting at position i. Then,
a sequence σ satisfies ϕ, denoted by σ |= ϕ, if s0 |= ϕ. Then, a system Σ composed of the
variables S is said to satisfy ϕ, written Σ |= ϕ, if all sequences in [[Σ]] satisfy ϕ. For the
formal semantics of LTL we refer the reader to the book by Baier and Katoen [22].

2.4.1.2 Signal Temporal Logic

LTL allows formal reasoning about temporal behaviors of systems with Boolean, discrete-
time signals (variables) or sequences of events. To deal with dense-time real signals and
hybrid dynamical models that mix the discrete dynamics of a controller with the contin-
uous dynamics of the plant, several logics were introduced over the years, such as Timed

CHAPTER 2. PRELIMINARIES 42

Propositional Temporal Logic [16] and Metric Temporal Logic [112]. Signal Temporal Logic
(STL) [136] has been proposed more recently as a specification language for constraints on
real-valued signals in the context of analog and mixed-signal circuits. In this thesis, we use
STL to refine LTL system requirements into constraints on physical variables (e.g. voltages
and currents) expressed using STL constructs.

For a hybrid dynamical model (system, component), we define a signal as a function
mapping the time domain T = R≥0 (real numbers larger than or equal to zero) to the
reals R. An n-dimensional signal q is then a function from T to Rn such that ∀t ∈ T,
q(t) = (q1(t), · · · , qn(t)), where qi(t) is the i-th component of vector q(t). When using STL,
we conveniently represent the behaviors of the system’s variables over time using multi-
dimensional signals or sets of signals. Therefore, we assume that a hybrid system (e.g. im-
plemented in a simulator or described by a set of differential equations) takes as input a
signal u(t) and computes an output signal y(t). A collection of signals resulting from a
simulation of the system is a trace, which can also be viewed as a multi-dimensional signal.
A trace s(t) that includes all the system input and output signals can then denote a system
behavior.

In STL, constraints on real-valued signals, or predicates, can be reduced to the form
µ = g(q) ∼ π, where g is a scalar-valued function over the signal q4, ∼∈ {<,≤,≥, >,=, 6=},
and π is a real number. As in LTL, temporal formulas are formed using temporal operators,
always, eventually and until. However, each temporal operator is indexed by intervals of
the form (a, b), (a, b], [a, b), [a, b], (a,∞), or [a,∞), where each of a, b is a non-negative
real-valued constant. If I is an interval, then an STL formula is written using the following
grammar:

ϕ := T | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2.

The always and eventually operators are defined as special cases of the until operator as
follows: �Iϕ , ¬3I¬ϕ, 3Iϕ , T UI ϕ. When the interval I is omitted, we use the default
interval of [0,+∞).

The semantics of STL formulas are defined informally as follows. The signal q satisfies
µ = g(q) < 2 at time t (where t ≥ 0), written (q, t) |= µ, if g(q(t)) < 2. It satisfies ϕ =
�[0,2) (q > −1), written (q, t) |= ϕ, if for all time 0 ≤ t′ < 2, q(t + t′) > −1. The signal
q1 satisfies ϕ = 3[1,2)q1 > 0.4 iff there exists a time t such that 1 ≤ t < 2 and q1(t) > 0.4.
The two-dimensional signal q = (q1, q2) satisfies the formula ϕ = (q1 > 10) U[2.3,4.5] (q2 < 1)
iff there is some time t0 where 2.3 ≤ t0 ≤ 4.5 and q2(t0) < 1, and for all times t in [2.3, t0),
q1(t) is greater than 10. We write q |= ϕ as a shorthand of (q, 0) |= ϕ. Formal semantics
can be found in the original paper by Maler and Nickovic [136].

Parametric Signal Temporal Logic (PSTL) is an extension of STL introduced by
Asarin et al. [19] to define template formulas containing unknown parameters. Syntacti-
cally speaking, a PSTL formula is an STL formula where numeric constants, either in the
constraints given by the predicates µ or in the time intervals of the temporal operators, can
be replaced by symbolic parameters. These parameters are divided into two types:

4It is common to drop time t in the signal notation.

CHAPTER 2. PRELIMINARIES 43

• A scale parameter π is a parameter appearing in predicates of the form µ = g(q) ∼ π,

• A time parameter τ is a parameter appearing in an interval of a temporal operator.

An STL formula is obtained by pairing a PSTL formula with a valuation function that as-
signs a value to each symbolic parameter. For example, consider the PSTL formula ϕ(π, τ) =
�[0,τ]q > π, with symbolic parameters π (scale) and τ (time). The STL formula �[0,10]q > 1.2
is an instance of ϕ obtained with the valuation w = {τ 7→ 10, π 7→ 1.2}.

2.4.1.3 Temporal Logic and Contracts

Consistent with the representation of component behaviors, both assumptions A and guar-
antees G of a contract C can be specified as temporal logic formulas ϕA and ϕG, respectively.
In this case, a component M satisfies the contract C if it satisfies the logical implication
ϕA → ϕG, while it is a legal environment for C if it satisfies the formula ϕA. Contract sat-
isfaction can thus be reduced to two specific instances of model checking [62]. Composition
and conjunction of contracts C1 and C2 can be represented by appropriate Boolean combi-
nation of the formulas ϕA1, ϕA2, ϕG1 and ϕG2. Other operations on contracts, as defined
in Section 4.3.1, can be reduced to special instances of the validity or satisfiability check-
ing problem for temporal logic (or quantified temporal logic, as discussed in Chapter 3) as
follows:

• In its simplest formulation, compatibility and consistency can be checked by testing
whether ϕA or ϕG are satisfiable. More complex instances of the problem, which rule
out contracts that are “trivially” compatible or consistent, can be solved by vacuity
checking [115];

• Refinement is an instance of validity checking : C1 � C2 if and only if ϕA1 → ϕA2 and
ϕG2 → ϕG1 are valid formulas (i.e., tautologies for the language).

A solution of the above problems for HRELTL, based on SMT techniques, has been pro-
posed by Cimatti et al. [61]. Contracts expressed as temporal logic formulas have recently
appeared in the literature to instantiate a concrete contract framework and proof system for
compositional system verification [58].

2.4.1.4 LTL A/G Contracts

As mentioned earlier, LTL is a widespread formalism to reason about reactive systems and
perform analysis and synthesis of embedded control software [164, 160, 208]. It may then be
useful to concretely express the sets of behaviors A and G of a contract as formulas in LTL.
In what follows, we briefly recall how the main A/G contract operators can be mapped into
entailment of LTL formulas.

An LTL A/G contract can be seen as a triple (V, ϕA, ϕG), where ϕA and ϕG are LTL
formulas over the set of variables V . For instance, if V = {x, y} and x, y are both integer

CHAPTER 2. PRELIMINARIES 44

variables, a possible LTL A/G contract is (V,�x ≥ 0,�y ≥ 0). Indeed, an LTL formula can
be used to represent a set of behaviors. For example, the formula �x ≥ 0 represents the set
of all behaviors where x is never negative.

Most operations on contracts can then be implemented as operations on LTL formulas in a
straightforward way. Saturation of (V, ϕA, ϕG) can be achieved by setting ϕG := ϕA → ϕG.
The parallel composition of contracts C1 = (V, ϕA1, ϕG1) and C2 = (V, ϕA2, ϕG2) can be
directly defined in terms of LTL formulas as

C1 ⊗ C2 = (V, (ϕA1 ∧ ϕA2) ∨ ¬(ϕG1 ∧ ϕG2), ϕG1 ∧ ϕG2).

We say that contract C1 = (V, ϕA1, ϕG1) refines contract C2 = (V, ϕA2, ϕG2) if formulas ϕA2 →
ϕA1 and ϕG1 → ϕG2 are both valid, or equivalently, if ¬(ϕA2 → ϕA1) and ¬(ϕG1 → ϕG2) are
both unsatisfiable. Similarly, compatibility and consistency checking, in their simplest forms,
may be reduced to LTL satisfiability problems. Finally, the conjunction of two contracts
C1 = (V, ϕA1, ϕG1) and C2 = (V, ϕA2, ϕG2) can be obtained as

C1 ∧ C2 = (V, ϕA1 ∨ ϕA2, ϕG1 ∧ ϕG2).

2.4.2 Hybrid Automata

Formalisms following an “imperative” style, such as hybrid automata, can be used to specify
functional requirements especially for system portions of limited complexity. For example,
describing the intended behavior of a controlled continuous system together with its discrete
controller. Then, one can verify the intended behavior versus generic properties such as
safety, which requires the automata to stay away from a set of “bad” states, as well as verify
whether an implementation is a refinement of the hybrid automaton.

Intuitively, a hybrid automaton is a “finite-state automaton” with continuous variables
that evolve according to dynamics specified at each discrete location (or mode). The evolution
of a hybrid automaton alternates continuous and discrete steps. In a continuous step, the
location (i.e., the discrete state) does not change, while the continuous variables change
following the continuous dynamics of the location. A discrete evolution step consists of the
activation of a discrete transition that can change both the current location and the value of
the state variables, in accordance with the reset function associated to the transition. The
interleaving of continuous and discrete evolutions is decided by the invariant of the location,
which must be true for the continuous evolution to proceed, and by the guard predicate of
the transition, which must be true for a discrete transition to be active.

For example, the hybrid automaton in Figure 2.6 can be used to specify the required
behaviors of a triangle wave generator with period T and amplitude A. In the Up mode,
the output y of the generator is required to increase with a constant slope until the internal
variable t, initially set to zero, and increasing with a slope of one, reaches T

2
. The generator

will then switch to the Down mode, where y is required to decrease with the same slope,
while t will keep on increasing until it crosses T . Once this threshold is crossed, the generator
commutes back to the Up mode, while t is reset to zero.

CHAPTER 2. PRELIMINARIES 45

Up

𝑦 = 4𝐴
𝑇

𝑡 = 1

0 ≤ 𝑡 ≤ 𝑇 2

Down

𝑦 = −4𝐴
𝑇

𝑡 = 1

𝑇 2 ≤ 𝑡 ≤ 𝑇

𝑡 ≥ 𝑇 2

𝑡 ≥ 𝑇

𝑡 →0

𝑡=0

Figure 2.6: Hybrid automaton specifying a triangle wave generator.

Verifying safety of a hybrid automaton with respect to a prescribed set of bad states is
equivalent to verifying that all legal behaviors of the automaton do not go through any of
the bad states, i.e., the bad states are unreachable. The computation of the reachable set,
which consists of all the states that can be reached under the dynamical evolution starting
from a given initial state set, is non-trivial for hybrid automata. Since the states of a
hybrid automaton are pairs made by a discrete location together with a vector of continuous
variables, they have the cardinality of continuum. Therefore, in general, it is not possible to
perform exact reachability analysis.

Hybrid automata come in several flavors. The original model allows for arbitrarily com-
plex dynamics and was developed primarily for algorithmic analysis of hybrid systems [11].
The class of hybrid input/output automata enables compositional analysis of systems [132].
In timed automata [14] all the continuous variables are clocks (they have derivative 1) that
can only be reset to zero. Many verification problems are decidable for this class, making it
an interesting formalism for verification and requirement analysis. Rectangular automata [99]
extend timed automata by allowing piecewise constant dynamics, while still keeping decid-
ability of the reachability problem. Linear hybrid automata [94] extend rectangular automata
by allowing guards and resets to be general linear predicates, at the price of losing decid-
ability.

2.4.2.1 Hybrid Automata and Contracts

We can express contracts with hybrid automata by following the approach proposed by Ben-
venuti et al. [38]. We model the assumptions A with a hybrid automaton that generates all
the admissible input sequences for a component (uniform assumptions), while we model the

CHAPTER 2. PRELIMINARIES 46

guarantees G as the set of admissible output sequences for the component. Then, a compo-
nent M satisfies the contract if the behaviors of the composition of the hybrid automata for
A and M are contained in G. When the guarantees are limited to safety guarantees (“noth-
ing bad can happen”), then the contract satisfaction problem can be reduced to reachability
analysis of a composition of automata.

Composition of contracts can be represented by appropriate composition operators on
automata. For instance, the conjunction of assumptions corresponds to intersection of the
associated automata, while their disjunction can be expressed by non-deterministic choice.

Under suitable restrictions, the other operations on contracts, as defined in Section 4.3.1,
can also be reduced to special instances of the reachability problem for timed or hybrid
automata. Indeed, compatibility and consistency can be solved by checking whether the set
of behaviors of the automaton describing, respectively, A and G is empty.

Checking refinement between two contracts C1 and C2 is more involved. For uniform
assumptions and safety guarantees [38], it is possible to associate to each contract the au-
tomaton HA ‖ HG, obtained by composition (‖) of the two automata HA and HG, respec-
tively describing the contract assumptions and guarantees. HA ‖ HG models the behaviors
admitted by the contract in the context of its legal environments. Then, if A2 ⊆ A1, contract
refinement can be verified by checking the inclusion of the reachable sets of the two hybrid
automata HA1 ‖ HG1 and HA2 ‖ HG2 associated with the contracts. When the evolution of
the two hybrid automata cannot be computed exactly, this becomes a difficult task, since it
requires computing both over-approximations and under-approximations of the evolution, a
capability supported by very few tools.

2.5 Languages and Tools for System Modeling and

Simulation

A number of modeling and interchange languages have been proposed over the years to
enable checking system properties, exploring alternative architectural solutions for the same
set of requirements, and exchanging the system descriptions between the different tasks of
the design flow (e.g. controller design, validation, verification, testing, and code generation).
An exhaustive survey is out of the scope of this dissertation. Among the several languages
and tools, we recall here:

• Generic modeling and simulation frameworks, such as Matlab/Simulink5 and
Ptolemy II6;

• Hardware description languages, such as Verilog7, VHDL8, or transaction-level mod-

5http://www.mathworks.com/products/simulink
6http://ptolemy.eecs.berkeley.edu
7http://www.verilog.com/
8http://www.vhdl.org

http://www.mathworks.com/products/simulink
http://ptolemy.eecs.berkeley.edu
http://www.verilog.com/
http://www.vhdl.org

CHAPTER 2. PRELIMINARIES 47

eling languages, such as SystemC9, together with their respective analog and mixed-
signal extensions10;

• Modeling languages specifically tailored for acausal multi-physics systems, such as
Modelica11, supported by tools such as Dymola12 or JModelica13;

• Languages for architecture modeling, such as the Systems Modeling Language
(SysML)14 and the Architecture Analysis & Design Language (AADL)15.

While some of these languages and tools mostly focus on simulation, some others are also
geared towards modeling, analysis and verification of extra-functional properties.

A number of proposals have also appeared towards modeling languages specifically tai-
lored to CPS. One of the first examples of these languages is Charon [15]. Charon supports
the hierarchical description of system architectures via the operations of instantiation, hid-
ing, and parallel composition. Continuous behaviors can be specified using differential as well
as algebraic constraints, all of which can be declared at various levels of the hierarchy. A few
years later, Giotto [97] provided an abstract programming model for the implementation of
embedded control systems with real-time constraints. Giotto allows the designer to specify
time-triggered sensor readings, task invocations, actuator updates, and mode switches in a
way that is independent from the implementation details. The code can then be annotated
with platform-dependent constraints to automatize the validation of the model and the syn-
thesis of the control software. A more recent modeling language proposal is the Hierarchical
Timing Language (HTL) [85]. In HTL critical timing constraints are specified within the
language, and forced by the compiler. Programs in HTL are extensible by adding new pro-
gram modules, and by refining individual program tasks. This mechanism is invariant under
parallel composition, and allows individual tasks to be implemented using external languages
to ease interoperability.

All the above languages are not intended to be interchange formats, in that they generally
lack the capability to easily interface with other tools. A first proposal for a truly platform-
independent interchange format based on hybrid automata is the Hybrid System Interchange
Format (HSIF) [145]. HSIF can represent networks of hybrid automata, albeit without
hierarchy or modules. Variables can be shared or local, and the communication mechanism
is based on broadcasting of Boolean signals. Other examples are the Metropolis meta-
model [159], which also accounts for implementation considerations, such as equation sorting

9http://www.accellera.org/downloads/standards/systemc
10http://www.eda.org/verilog-ams/, http://www.eda.org/vhdl-ams/, http://www.systemc-ams.

org/
11https://www.modelica.org/
12www.dynasim.se/
13http://www.jmodelica.org/
14SysML is an object oriented modeling language largely based on the Unified Modeling Language (UML)

2.1, which also provides useful extensions for systems engineering (http://www.omg.org/spec/SysML).
15http://www.aadl.info/aadl/currentsite

http://www.accellera.org/downloads/standards/systemc
http://www.eda.org/verilog-ams/
http://www.eda.org/vhdl-ams/
http://www.systemc-ams.org/
http://www.systemc-ams.org/
https://www.modelica.org/
www.dynasim.se/
http://www.jmodelica.org/
http://www.omg.org/spec/SysML
http://www.aadl.info/aadl/currentsite

CHAPTER 2. PRELIMINARIES 48

and event detection, and the interchange format for switched linear systems defined by Di
Cairano et al. [74]. More recently, the Compositional Interchange Format (CIF) has been
proposed to overcome some of the limitations of previous languages [8], such as the absence of
hierarchy in HSIF, and the limitation to linear dynamics only [74]. CIF is a generic exchange
format, integrating compositional semantics with automata, process communication and
synchronization based on shared events, differential algebraic equations, different forms of
urgency, and process definition and instantiation to support re-use and large scale system
modeling. It can interface with a number of other languages and tools (e.g. Uppaal [31],
PHAVer [81], Ariadne [37], Modelica, Matlab), and is currently used in both academia
and industry.

As an alternative approach to facilitate the integration of different domains and models
within a unifying framework, Shah et al. [184] propose the customization of SysML [3] by
using profiles and domain specific languages to support multiple representations (or archi-
tectures) of the system, and graph transformations to describe the relations between them.

Finally, particularly appealing for CPS modeling and simulation is the Functional Mockup
Interface (FMI), an evolving standard for composing component models, which are better
realized and characterized using distinct modeling tools [41, 146]. Initially developed within
the MODELISAR project, and currently supported by a number of industrial partners and
tools16, FMI shows promise for enabling the exchange and interoperation of model com-
ponents. The FMI standard supports both co-simulation, where a component called FMU
(Functional Mock-up Unit) implements its own simulation algorithm, and model exchange,
where an FMU exports sufficient information for an external simulation algorithm to execute
simulation. However, while in principle FMI is capable of composing components represent-
ing timed behaviors, including physical dynamics and discrete events, several aspects of the
standard, e.g. to guarantee that a composite model does not exhibit non-deterministic and
unexpected behaviors, are currently object of investigation [48].

2.6 System Verification

As shown in Section 2.4.1 and Section 2.4.2, the operations and relations on temporal logic
and hybrid automata contracts can be reduced to basic verification tasks. In this section,
we discuss some of the approaches reported in the literature to perform these tasks, together
with the tools embodying them. Specifically, we focus on formal verification of hybrid models,
which generates, in general, intractable problems, and classify the verification tools into five
categories, based on the strategies adopted to deal with intractability.

2.6.1 Exact Reachability Set Computation

When the system dynamics are simple enough to be captured by timed or rectangular au-
tomata, their evolution can be computed exactly, and most of the verification techniques for

16https://www.fmi-standard.org/

https://www.fmi-standard.org/

CHAPTER 2. PRELIMINARIES 49

finite-state models can be used to obtain an exact answer to verification problems.
A seminal tool in this category is KRONOS [212], which verifies real-time systems

modeled by timed automata with respect to requirements expressed in the real-time logic
TCTL (Timed Computation Tree Logic), using a backward-forward analysis approach.

The same approach was then extended to support rectangular automata in HyTech [98],
by dealing with polyhedral state sets. A key feature of HyTech is its ability to perform
parametric analysis, that is, to determine the values of design parameters for which a rect-
angular hybrid automaton satisfies a temporal-logic requirement. It can then be used as an
evaluation engine for optimization-based design exploration, as discussed in Section 4.4.

Modern tools use a different approach, based on an on-the-fly verification algorithm that
does not need to build the entire reached set of the system. The most relevant tool using
this approach is Uppaal [31], written in Java and C++, and equipped with a graphical
user interface. It handles real-time systems modeled as networks of timed automata, and
complex properties expressed in a subset of CTL. Since the dynamics are represented just
by clocks, it can support models with up to 100 of them. A comparison of the performance
of the three tools above on the well-known railroad crossing example can be found in the
literature [39].

The above tools are mostly based on a compact, symbolic representation for the infinite
component of the state space of a timed automaton (over clock variables), and explicit repre-
sentations for the finite component (over Boolean state variables). An alternative approach
to the verification of timed automata is, instead, based on fully symbolic methods, which
employ a single symbolic representation for both finite and infinite components of the state
space. Examples of fully symbolic model checkers include Red [200] and TMV [180], which
was demonstrated on the verification of timed circuits, and is based on a Boolean encoding
of difference logic (DL) formulas together with efficient decision procedures for first-order
logics involving arithmetic.

2.6.2 Reachable Set Approximations

When the dynamics is more complex, the reachable set cannot be computed exactly. Nev-
ertheless, approximation techniques can be used to obtain an answer in some cases. This
approach is mainly used to verify safety properties : the system is safe if the reachable set is
included in the safe set of states. Hence, over-approximations may be used to obtain positive
answers, while under-approximations give negative answers.

One of the first tools that enabled verification of hybrid systems with complex dynamics is
d/dt [20]. The tool approximates reachable states for hybrid automata where the continuous
dynamics is defined by linear differential equations. Being one of the first approaches, the
tool does not allow the composition of automata, and is limited in scalability.

PHAVer [81] handles affine dynamics and guards and supports the composition of hybrid
automata. The state space is represented using polytopes. Results are formally sound
because of the exact and robust arithmetic with unlimited precision. Scalability is, however,

CHAPTER 2. PRELIMINARIES 50

limited: models with more than 10 continuous variables are usually out of the capabilities
of the tool.

SpaceEx [82] improves upon PHAVer in terms of scalability: models with 100 variables
have been analyzed with this tool. It combines polyhedra and support functions to represent
the state space of systems with piecewise affine, non-deterministic dynamics. Differently
from PHAVer, the result of SpaceEx is not guaranteed to be numerically sound. This
means that when the tool states that the system is safe, we can only conclude that more
sophisticated methods are necessary to find bugs for that system.

Flow* [56] supports systems with non-linear ODEs (polynomial dynamics inside modes,
polyhedral guards on discrete transitions) by representing the state space using Taylor models
(bounded degree polynomials over the initial conditions and time, bloated by an interval).
Results are guaranteed to be numerically sound but scalability is limited to a dozen variables.

Ariadne [37, 38] uses numerical methods based on the theory of computable analysis
to manipulate real numbers, functions, and sets in the Euclidean space, in order to verify
hybrid systems with non-linear dynamics, guards, and reset functions. It supports compo-
sition to build complex systems from simpler components, and can compute both upper-
approximations and lower-approximations of the reachable set, which play the role of over
and under approximations. By combining them, Ariadne can provide both positive and
negative answers to the verification of safety properties and other more complex problems.
Its expressivity, however, affects performance and scalability, which is currently limited to
models with up to 10 continuous variables.

An alternative approach to approximate the reachable set of a hybrid automaton is to
drop the standard infinite precision semantics, and adopt an ε-semantics where states whose
distance is less than a fixed ε are indistinguishable. Under this assumption the reachability
problem for hybrid automata becomes decidable [52]. pyHybridAnalysis [51] is a Python
package that implements the ε-semantics approach to symbolically compute an approxima-
tion of the reachability region of hybrid automata with semi-algebraic dynamics.

2.6.3 Discrete Abstractions

In this setting, the hybrid model under verification is first abstracted by a finite-state discrete
model that approximates the original one. If the abstraction is not accurate enough to
obtain an answer to the verification problem, it is improved until either an answer is found
or the maximum number of refinement steps is reached [13, 63]. The main advantage of this
approach is that, in some cases, an answer to the verification problem can be obtained with
few refinement steps, even for very complex models.

The refinement algorithm proposed Clarke et al. [63] has been implemented by Check-
Mate [188], a Matlab/Simulink toolbox for the simulation and verification of hybrid
systems with linear and affine dynamics. The abstraction of the system is obtained with a
method called flow pipe approximation, where the reachable set over a bounded time interval
[0, t] is approximated by the union of a sequence of convex polyhedra.

CHAPTER 2. PRELIMINARIES 51

One of the first tools to extend this approach to non-linear systems is HSOLVER [173],
which uses constraint propagation and abstraction-refinement techniques to discretize the
state space of the system and verify safety properties. HSOLVER supports systems with
complex non-linear dynamics and guards, but it does not support the composition of au-
tomata. Because of the particular state-space representation, it cannot provide a graphical
output of the reachable set, but only a safe/possibly-unsafe answer to the verification prob-
lem.

HybridSAL [194] uses predicate abstraction to abstract the discrete dynamics and qual-
itative reasoning to abstract the continuous dynamics of polynomial hybrid systems. The
algorithm can be applied compositionally to abstract a system described as a composition of
automata. Results are guaranteed to be sound. Its scalability is limited: only 10 continuous
variables can be handled.

HyCOMP [60] uses a different approach, where the system is abstracted with a discrete
but infinite-state model using an SMT approach. The abstraction is precise for piecewise
constant dynamics and is an over-approximation for affine dynamics. Results are guaran-
teed to be sound (the SMT-solver uses infinite-precision arithmetic). The tool was tested
successfully on models with 60 continuous variables with piecewise constant dynamics and
150 Boolean variables.

2.6.4 Automated Theorem Proving

Given a sufficiently expressive logic, the verification problem can be reduced to test whether a
formula of the form Sys→ Prop is valid (a logical tautology), where Sys is a representation
of the system under verification and Prop is the property of interest. Automated theorem
proving techniques can thus be used to solve the problem. While in principle this approach
can easily manage parametric and partially specified systems, and properties of arbitrary
complexity, very few tools exploit it in the context of hybrid systems. This is mainly due to
the need for a complex temporal logic to describe the system in detail, and to the fact that
automated theorem provers usually need some intervention from the user to guide the proof
search and find an answer.

A tool using theorem proving techniques in the context of hybrid systems is Key-
Maera [161], which combines deductive, real algebraic, and computer algebraic prover
technologies. Systems and properties are specified using the temporal logic dL. To automate
the verification process, KeyMaera implements automatic proof strategies that decompose
the hybrid system specification symbolically. The tool is particularly suitable for verifying
parametric hybrid systems and has been used successfully for verifying collision avoidance
in case studies from train control to air traffic management.

2.6.5 Simulation

A simulation-based approach can be used to verify black-box models (when the internal
dynamics is unknown), or models of more complex systems, since simulation can be made

CHAPTER 2. PRELIMINARIES 52

more computationally feasible. Clearly, simulation is simply a virtual test bench that gives
answers as good as the questions that are asked, hence there is no guarantee that the system
behaves correctly under all conditions. Simulation-based verification explores the state space
of the system by computing a set of trajectories while hoping to cover as much as possible
the relevant parts of the state space. If one of the trajectories violates the property, a coun-
terexample is found and a negative answer to the verification problem is given. Otherwise,
no conclusion can be made on the truth of the property, since simulation cannot cover the
entire state space. Similarly, simulation-based verification cannot be used, in general, to
certify the satisfaction of a contract, but rather to monitor and detect possible violations.

A first tool based on simulation is Breach [77], a Matlab/C++ toolbox for the simula-
tion, verification of temporal logic properties, and reachability analysis of dynamical systems,
defined as systems of ordinary differential equations (ODEs) or by external modeling tools
such as Simulink. It uses systematic simulation to compute an under-approximation of
the reachable set based only on a finite (though possibly large) number of simulations. It
supports complex properties in STL and parameter synthesis.

S-TaLiRo [18] is also a suite of tools for the analysis of continuous and hybrid dynam-
ical systems using linear time temporal logic. Distributed as a Matlab toolbox, it uses a
robustness metric to guide the state space exploration, exploiting randomized testing and
stochastic optimization techniques to maximize the chance of finding a counterexample. Sim-
ilarly to Breach, it supports complex properties in Metric Temporal Logic and parametric
systems.

Finally, System Level Formal Verification (SLFV) [138] can prove system correctness
notwithstanding uncontrollable events (such as faults, variation in system parameters, ex-
ternal disturbances) by exhaustively considering all the relevant simulation scenarios.

2.7 Control Synthesis

Control synthesis deals with the problem of mapping (synthesizing) high-level formal require-
ments and a description of the plant, into a lower-level, correct-by-construction, controller
that implements the desired requirements once it is composed with the plant. We review
below the main techniques for the synthesis of control algorithms for CPS.

2.7.1 Reactive Synthesis

When requirements are expressed using a discrete-time temporal logic (e.g. LTL or CTL),
controller synthesis can be solved using techniques from reactive synthesis, which has been
an active area of research since the late 1980s, and it is still attracting a considerable at-
tention today [160, 111, 113, 209]. In this case, the specifications are mapped on a DE
implementation of the controller, e.g. in terms of a state machine that represents a lower
level of abstraction in the design refinement process.

CHAPTER 2. PRELIMINARIES 53

Let E and D be sets of environment (input) and controlled (output) variables, respec-
tively, of a DE controller. Let s = (e, d) ∈ E × D be its state, and CLTL an LTL contract
of the form (E ∪ D,ϕe, ϕe → ϕs), where ϕe characterizes the assumptions on the environ-
ment and ϕs characterizes the system requirements. Reactive synthesis can then be viewed
as a two-player game between an environment that attempts to falsify the specification in
CLTL and a controlled plant that tries to satisfy it. A control strategy is a partial function
f : (s0s1 . . . st−1, et) 7→ dt, which selects the value of the controlled variables based on the
state sequence so far and the behavior of the environment so that the (controlled) system
satisfies ϕs as long as the environment satisfies ϕe. If such a strategy exists, the specification
is said to be realizable. For general LTL, the synthesis problem has a doubly exponential
complexity. However, a subset of LTL, namely generalized reactivity (1) (GR(1)), generates
problems that are polynomial in |E × D|, the number of valuations of the variables in E
and D [160]. Given a GR(1) specification, there are game solvers and digital design synthe-
sis tools that generate a finite-state automaton that represents the control strategy for the
system [165, 209, 106, 43, 42].

When the requirements also involve continuous variables, by “replacing” continuous dy-
namics by discrete abstractions it is possible to reduce the synthesis problem to a purely
discrete one and therefore within the realm of reactive synthesis, or other established DE sys-
tem control synthesis methods [170, 53], as available for instance in the third revision of the
CIF language for supervisory control synthesis [199]. More recently, a synthesis method for
discrete-time CPS subject to STL specifications has been proposed based on a model predic-
tive control framework [171, 172], which can be seen as an instance of the programming-based
optimized control mapping (P-OCM) paradigm in Chapter 6. The STL specifications are en-
coded as mixed integer-linear constraints on the system variables of an optimization problem
that is solved at each step, following a receding horizon approach. The synthesis problem
is addressed in both the cases of deterministic environment (non-reactive setting) [171] and
potentially adversarial environment [172], which results into a robust optimization problem,
as the ones formulated in Chapter 4 and Chapter 6.

2.7.2 Synthesis by Abstraction

Because of the limited applicability of existing tools to large-scale CPS hybrid models, con-
structing effective abstractions in a compositional way is key in order to tackle the synthesis
problem. Indeed, the notion of approximate bisimulation [86] has been recently introduced
to obtain correct and complete abstractions of differential equations that can be used to
solve controller design problems. Pessoa [142] is a software toolbox, which exploits approx-
imate bisimulation to implement efficient synthesis algorithms operating over the equivalent
finite-state machine models. The resulting controllers are also finite-state and can be readily
transformed into code for any desired digital platform. This transformation assigns the finite-
state controller operation to a processor, where code is the result of mapping the controller
equations into the instruction set of the processor.

CHAPTER 2. PRELIMINARIES 54

Another approach to mapping a controller into a processor is the control software syn-
thesis tool QKS [140]. Given the sampling time of the controller and the precision of the
analog-to-digital conversion of state measurements, QKS can compute both the controllable
region and an implementation in C code of a controller driving the system into a goal region
in finite time.

A library-based compositional synthesis approach that directly conforms to the PBD
paradigm has recently been presented to solve high-level motion planning problems for multi-
robot systems [174]. The desired behavior of a group of robots is specified using a set of
safe LTL properties (top-down step of the flow). The closed-loop behavior of the robots
under the action of different lower-level controllers is abstracted using a library of motion
primitives, each of which corresponds to a controller that ensures a particular trajectory
in a given configuration (bottom-up step of the flow). By relying on these primitives, the
mapping problem is then encoded as an SMT problem and solved by using an off-the-shelf
SMT solver to efficiently generate control strategies for the robots.

2.7.3 Hybrid Controller Synthesis

Several real-time constraints, mostly related to the physical plant and the hardware imple-
mentation of the controller, may require the full expressiveness of continuous and hybrid
models. However, solving the controller synthesis problem by directly mapping to these
abstractions is a very difficult task [46]. Even in the context of timed automata, where the
synthesis problem is known to be solvable in an exact way [137], efficient and practical tools
are lacking. One of the few exceptions is Uppaal-Tiga [30, 4], an extension of Uppaal that
implements on-the-fly algorithms for solving the controller synthesis problem on timed au-
tomata with respect to reachability and safety properties expressed using timed computation
tree logic.

Most of the algorithms for controller synthesis of hybrid automata subject to a safety
specification are based on solving a differential game in which the environment is trying
to drive the system into its target set at the same time as avoiding the target set of the
controller. A general formulation for this problem can be found in the literature [195,
26]. Examples include the symbolic semi-algorithm to compute the controllable region of a
linear hybrid automaton with respect to a safety goal [206], and a procedure to synthesize
the maximal safe controller for more general hybrid systems with a lower bound on event
separation [26]. One of the few publicly available tools implementing this two-person game
approach is PHAVer+ [32], an extension of PHAVer that can automatically synthesize
discrete controllers for linear hybrid automata with respect to safety and reachability goals.

A few works have appeared in the literature addressing the problem of synthesizing
switching logic for hybrid systems [102, 103]. See, for example, [104] for a discussion of these
techniques as well as an extensive literature survey related to hybrid controller synthesis.
Two synthesis (mapping) approaches have also been presented that can incorporate finite-
precision sensors and actuators as well as the finite response time of the controller [47, 75].
In these works, the synthesis problem is addressed for two sub-classes of hybrid automata,

CHAPTER 2. PRELIMINARIES 55

namely elastic controllers, and lazy linear hybrid automata, operating in an environment
represented by hybrid automata. Elastic controllers are timed automata without invariants
and with closed guards [210, 71]. They were introduced together with a parametric seman-
tics for timed controllers called the Almost ASAP semantics, which relaxes the standard
idealized ASAP (As Soon As Possible) semantics that cannot be implemented by any phys-
ical device no matter how fast it is. The result is that any correct Almost ASAP controller
can be implemented by a program on a hardware if this hardware is fast enough. The first
paper [47] presents a corresponding automated tool chain that can extract from an elastic
controller a correct-by-construction HW/SW implementation described in SystemC. On the
other hand, lazy linear hybrid automata [7, 101] are used in the second paper [75] to model
the discrete-time behavior of control systems containing finite-precision sensors and actua-
tors interacting with their environment under bounded delays. The result is a methodology
and a corresponding tool chain to synthesize an implementable control strategy for lazy
linear hybrid automata.

2.8 Conclusions

We offered an outlook over the main components of our methodology: platform-based design
and contracts. We argued that A/G contracts are an intuitive, rich, and flexible contract
model that can solidify all the steps in our design flow. We thoroughly illustrated the
key operations and relations of the generic A/G contract theory, and pointed out possible
gaps in terms of (i) supporting compatibility and consistency in models with uncontrolled
inputs and controlled outputs, and (ii) formalizing richer refinement relations between layers
described by heterogeneous architectures and behavior formalisms. Addressing these gaps
is the object of Chapter 3. We then surveyed formalisms, languages and tools that can
be used to build model libraries, concretize the contract algebra, and perform contract-
based requirement validation, system verification, and synthesis. While some of the existing
languages and tools go already a long way towards efficiently handling several design tasks,
a big leap towards managing complexity and heterogeneity is only made possible by an all-
encompassing framework that is able to construct appropriate abstraction layers and reason
about complex hierarchies of verification and synthesis steps by combining the most suitable
tools. Developing such a framework is the objective of Chapter 4.

56

Chapter 3

Assume-Guarantee Contract
Framework for Cyber-Physical
System Design

In this chapter we propose two additions to the contract theory introduced in Chapter 2, to
fully support multi-view and multi-layer design flows with heterogeneous models. We further
investigate the notions of contract compatibility and consistency, and introduce a new projec-
tion operator to preserve the semantics of compatibility supported by other interface theories,
and encompass models that make a distinction between uncontrolled inputs and controlled
outputs. We then extend the notion of refinement, by introducing the concepts of heteroge-
neous refinement and vertical contracts to deal with hierarchies of models characterized by
heterogeneous architectures (“structural heterogeneity”), or behaviors expressed in heteroge-
neous formalisms (“semantic heterogeneity”). The resulting contract framework, at the heart
of the methodology in Chapter 4, can encompass a richer set of refinement relations, includ-
ing synthesis methods and optimized mappings of specification platforms into implementation
platforms.

3.1 Introduction

Methodologies such as component-based design [69] and contract-based design [177] (CBD)
are emerging as unifying formal compositional paradigms. They support requirement en-
gineering by providing rigorous formalisms to reason about different abstraction levels in
system design. Moreover, they offer mechanisms for early detection of integration errors,
e.g., by checking compatibility between the components locally, before performing global
system verification.

Yet, different formal theories of components and contracts have been proposed in the lit-
erature, and there is currently not enough understanding of the relations between them. As
an example, we consider the so-called interface theories [69], such as interface automata [70]

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 57

and relational interfaces [197], on the one hand, and the assume-guarantee (A/G) contract
framework [33, 34], on the other hand. Examining the relation between these two frame-
works is interesting because, while having the same overall objectives, they are supported by
different mathematical formalisms. For instance, in an A/G contract the assumptions made
on the environment and the guarantees provided by the system are modeled as separate sets
of behaviors, whereas in interface theories the two are “merged” into a single model, called
an interface.

In addition, interfaces generally rely on the distinction between inputs and outputs. The
fact that an interface may not be input-complete (i.e., accept any input at any time) is
essential and leads to game-theoretic definitions of composition and refinement. On the
other hand, A/G contracts capture assumptions and guarantees as sets of behaviors over a
common set of variables, in general with no distinction between inputs and outputs (e.g., for
composition). These differences result in different definitions of key elements of the theories,
such as composition and refinement, possibly leading to unsatisfactory results when either
one of the frameworks is applied to certain types of models, as highlighted by Examples 8
and 9 of Section 2.3.3.

As discussed in Section 2.3, a behavioral framework such as A/G contracts is, in general,
preferable since it is expressive and versatile enough to encompass all kinds of models encoun-
tered in system design, from hardware and software models to representations of physical
phenomena. A/G contracts specify components in terms of sets of behaviors which assign
a history of “values” to their variables or ports. Behaviors are generic and abstract; for in-
stance, they could be continuous functions that result from solving differential equations, or
sequences of values or events recognized by an automata model [177]. The particular struc-
ture of the behaviors is defined by specific instances of the contract model. This will only
affect the way operators in the contract algebra are implemented, since the basic definitions
will not vary.

A framework centered around behaviors over variables, without a priori distinction be-
tween inputs and outputs, is certainly suitable to model the majority of physical (e.g. me-
chanical, electrical, hydraulic or thermal) components, which are generally governed by laws
that merely impose relations (rather than functions) among system variables, and where
interconnections mean that variables are shared (rather than assigned) among subsystems.
However, there are some important situations, in which a signal flow approach is more ap-
propriate, e.g. in signal processing, feedback control based on sensor outputs and actuator
inputs, and in systems composed of unilateral devices [202]. In these cases, relations between
system variables are better viewed in terms of inputs and outputs, and interconnections in
terms of output-to-input assignments. Inputs are used to capture the influence of the en-
vironment on the system, while outputs are used to capture the influence of the system on
the environment. When developing a concrete instance of a specification theory, it is, there-
fore, beneficial to support both the behavioral and signal-flow approaches. In this respect, a
first gap in the basic A/G contract formulations, stems from the fact that, in spite of their
generality, they fall short of supporting signal-flow models that make a distinction between
uncontrolled inputs and controlled outputs.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 58

Furthermore, an additional set of challenges arises when contracts are to be formulated
and manipulated along the design flow, and across different abstraction levels. As mentioned
before, there is no universal modeling formalisms that can capture every aspect of a complex
cyber-physical system, and guarantee, at the same time, tractable analysis techniques. As
a result, designers need to “decompose” the underlying system into semantically different
models, by adopting the most convenient formalisms to represent different system portions
or viewpoints at different abstraction levels, and the most suitable tools to analyze and syn-
thesize them separately. However, the abstraction methods in compositional reasoning and
contract-based design are prevalently defined in the context of a single formalism, e.g. us-
ing language inclusion, simulation relations, or compositional methods based on deduction.
In system design, abstractions should instead be able to bridge heterogeneous formalisms
(“semantic heterogeneity”) and heterogeneous decomposition architectures (“structural het-
erogeneity”), to make system analysis and synthesis tractable, by consistently combining
different verification and synthesis results. In this respect, while A/G contracts promise to
encompass any kind of formalism and decomposition, they fall short of supporting the correct
transitions between them.

This chapter aims to fill the above gaps, with the ultimate goal of developing a truly
general contract framework for cyber-physical system (CPS) design that provides formal
support to all the steps of our methodology. In the following, we summarize our approach
to address both of the issues.

3.1.1 Contracts and Interfaces for Requirement Engineering

To shed light on the subtleties of contract compatibility and consistency for signal-flow
models, our approach is to relate the theory of A/G contracts with the one of interfaces, which
make a clear distinction between uncontrolled inputs and controlled outputs. To be concrete,
we start from the theory of synchronous relational interfaces [197]. We choose stateless
relational interfaces rather than other, more general interface theories, such as interface
automata, as the former are simpler and can offer more intuitive support to our investigation.
To correctly relate the two frameworks, we need to refer to a common “semantic domain.” We
therefore provide an operator which transforms a relational interface into an A/G contract,
in the natural way. In particular, a relational interface represented as a formula φ on inputs
and outputs is mapped into a set of behaviors representing the safety property that φ holds
at every (synchronous) step. This can be concretely represented by the linear temporal logic
(LTL) formula �φ.

We then highlight differences and correspondences between key operators and relations
in the two theories by studying their preservation properties under the above transformation.
We show that, perhaps surprisingly, the basic operation of serial composition of interfaces is
not preserved. Specifically, composing two interfaces I1 and I2, and then transforming the
result to an A/G contract, is not equivalent to first transforming each of I1 and I2 to an
A/G contract, and then composing the contracts. The reason for this is that the interface
compatibility check is “built into” the interface composition operator, so that if the interfaces

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 59

are incompatible, the result of the composition is F. On the other hand, A/G contracts have
no way of checking compatibility a priori during composition. Although compatibility can
be checked a posteriori on the composite contract using the notion of c-receptiveness [33],
the latter provides a yes/no answer and does not infer new environment assumptions, as in
the case of interface composition.

To remedy this, we introduce an assumption-projection operator for A/G contracts. The
latter eliminates (“hides”) a given set of variables (only) from the assumption, using univer-
sal (i.e., game-theoretic) rather than the usual existential quantification. We show that with
this hiding operator the transformation preserves the semantics of interface composition and
compatibility. Moreover, the result can be extended to the notion of contract consistency,
which is not explicitly formalized by relational interfaces1, by defining a similar projection
operator for the contract guarantees, thus incorporating the concept of u-receptiveness [33]
into contract consistency. Unfortunately, LTL formulas are not generally closed under vari-
able elimination (projection). It is, therefore, necessary to resort to a strictly more expressive
extension of LTL, such as Quantified Linear Temporal Logic (QLTL) [190, 162], to implement
this hiding operator. The satisfiability problem for QLTL has been shown to be decidable,
but with non-elementary complexity [190].

We also show that our transformation preserves refinement, that is, interface refinement
between interfaces I1 and I2 is equivalent to A/G contract refinement between the corre-
sponding A/G contracts. However, another interesting operator, that of conjunction (also
called shared refinement [197]) is not preserved. The reason is another crucial difference
between the two frameworks. While A/G contracts reason about global behaviors of compo-
nents, possibly spanning infinite sequences of reactions, relational interfaces can also capture
punctual relations between the inputs and outputs of a component, at the granularity of a
single reaction index. Therefore, computation of conjunction as the greatest lower bound
(GLB) with respect to the refinement order, generates a smaller set of allowed environments
and a larger set of guaranteed behaviors for A/G contracts, which translates into a tighter,
less conservative, bound. As a result, the contract associated with the conjunction of in-
terfaces I1 and I2 refines, but is generally different than, the conjunction of the contracts
associated with I1 and I2.

Despite the proliferation of work on compositional theories in general, and interface and
contract theories in particular, there is little work that attempts at drawing links between the
existing frameworks, as we propose in this chapter. Benveniste et al. [34] propose a general
“meta-theory” of contracts, expressed in terms of sets of implementations and environments,
and from which both interface theories and A/G contracts can be instantiated. Following
a similar approach, Bauer et al. [29] attempt at providing an abstract formalization of the
notion of contracts by relating “specification theories” to “contract theories.” Our approach
is novel in that, instead of recurring to a common, more abstract, meta-theory, we aim to

1Since “assumptions” and “guarantees” are merged together in interface theories, the concept of interface
compatibility is equivalent to both compatibility and consistency in contracts. In other words, an interface
is compatible if and only if the associated contract (via the proposed transformation) is both compatible
and consistent.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 60

directly map interfaces to A/G contracts and, as a result, reveal some of the subtle differences
in the two frameworks.

3.1.2 Contracts for Heterogeneous Refinement and Mapping

To truly support multi-level and multi-view design in a compositional way, we need to equip
the general A/G contracts framework with relations and operations for abstraction/refinement
between pairs of heterogeneous formalisms as well as pairs of heterogeneous modeling ar-
chitectures. In this chapter, we introduce the concept of heterogeneous refinement to deal
with the first form of heterogeneity, denoted as semantic heterogeneity ; we further introduce
the concept of vertical contracts, to encompass different notions of refinement and deal with
the latter form of heterogeneity, denoted as as structural heterogeneity, at the same time as
semantic heterogeneity.

In model-based verification, heterogeneous abstractions have been used in the past for
specific pairs of formalisms, such as hybrid abstractions of nonlinear systems [96, 68], linear
hybrid automata abstractions of linear hybrid systems [81], discrete abstractions of hybrid
systems [12, 13, 57]. We presented some of the tools based on these abstractions in Chapter 2.
By casting heterogeneous refinement within a generic A/G contract framework, we layout
the foundations for a general compositional framework for heterogeneous abstraction that
applies to any pair of heterogeneous formalisms.

Heterogeneous reactive systems can be compared and composed using the tagged-signal
semantics [121]. This approach uses system trajectories or behaviors as a mathematical
framework for creating relations between the semantics of different modeling formalisms. A
formal framework that addresses the semantic heterogeneity of CPS by relating the semantics
of different models defined in different formalisms using behaviors and their mappings has
also been developed recently by Rajhans et al. [169]. In a similar spirit, we use mathematical
functions between behavior domains as the semantic mappings between heterogeneous be-
haviors and contracts. However, in addition to verification, our intent is to provide support
for other forms of heterogeneous refinement, such as synthesis and optimized mapping, as
well as incorporate the concept of orthogonalization of concerns, such as communication-
computation, function-architecture and behavior-performance [110].

At some point in the design flow, specifications must be realized by using resources. Re-
sources can be pre-defined or newly developed components, including, e.g., computing units
or communication media (networks, buses, and protocols). When deploying an application
over a computing platform, in addition to the functional viewpoint, non-functional view-
points (e.g., safety, timing, energy) are of importance as well. While it is still convenient
to keep the separation between the “specification platform” used for initial prototyping and
the supporting “execution platform” for deployment, the actual satisfaction of design re-
quirements will heavily depend on the execution platform. It is often the case that the two
platforms have distinct structural decompositions. Moreover, combining different viewpoints
of the lower-level platform (e.g. timing and functional) may be necessary to effectively prove
the correctness of the refinement of a single viewpoint (e.g. functional) of the higher-level

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 61

platform. In other words, refinement also depends on the “mapping” of the application into
the execution platform.

In this chapter, we formalize this notion of mapping using vertical contracts. We first in-
troduced and demonstrated the concept of vertical contracts in the context of platform-based
design for analog and mixed-signal systems [152, 155]. Their generalization for system design,
with application to control systems, was then advocated by Sangiovanni-Vincetelli et al. [177].
A formalization of vertical contracts in terms of contract conjunction was proposed by Ben-
veniste et al. [34]. In this chapter, we build on this formalization to provide a richer vista
on vertical contracts, showing that they can be expressed by using both composition and
conjunction operators, based on the specific shape of the contracts attached to the different
abstraction levels and viewpoints in the design. Such a generalization is key to enable any
logical breakdown of complex system verification and synthesis tasks into arbitrary conjunc-
tive and disjunctive combinations of smaller sub-tasks.

Finally, we observe that ontologies have been used in the past as a knowledge-management
approach to combine verification or analysis results across heterogeneous models in a consis-
tent way. For instance, lattice-based ontologies can be used to infer semantic relationships
between elements of heterogeneous models [125]. However, contracts are a strictly more ex-
pressive framework than ontologies. Moreover, rather than treating verification activities as
knowledge to be combined, we use logical combinations of verification and synthesis tasks,
mediated by contracts, to develop complex hierarchies. In a similar spirit, the temporal logic
of actions proof system deploys a proof manager that breaks down a complex verification
task logically into proof obligations that are proved using theorem provers and satisfiability-
modulo-theories solvers [55], but this framework is primarily aimed towards software systems,
whereas our framework aims to rather develop a “design manager,” supporting more general
(e.g., continuous, hybrid) dynamics, non-deductive analysis techniques as well as synthesis
and optimization methods.

3.1.3 Chapter Organization

The rest of the chapter is organized as follows. We discuss our mapping between contracts
and relational interfaces in Section 3.2, and show its implications on contract compatibility
and consistency in Section 3.3. Section 3.4 deals with heterogeneous refinement and vertical
contracts, while Section 3.5 draws some conclusions.

3.2 Mapping Relational Interfaces into A/G

Contracts

In this section, we first recall the salient parts of synchronous relational interfaces. Then, we
detail our mapping between synchronous relational interfaces and A/G contracts. Relational
interfaces have been proposed as an interface theory for synchronous systems that can capture
functional relations between the inputs and the outputs of a component [197]. Input/output

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 62

relations are expressed as first-order logic formulas over the input and output variables.
The developed theory supports two types of composition, serial connection and feedback, as
well as refinement, compatibility and conjunction (denoted as shared refinement). On the
other hand, as mentioned earlier, the A/G contract framework is more abstract in the sense
that it does not predefine the type of behaviors and supports a richer composition algebra.
Therefore, to establish our results, we concretely instantiate the A/G contract theory by
considering a specific type of behaviors. Specifically, given a finite set of variables V , we
define a behavior over V as an infinite sequence of valuations over V , ρ = v0v1v2 · · · . Then,
in this section, we consider A/G contracts defined as triples (V,A,G) where A and G are
sets of behaviors over V .

3.2.1 Background on Synchronous Relational Interfaces

For simplicity, we restrict ourselves to stateless interfaces. A (relational) interface is a tuple
I = (X, Y, φ) where X and Y are finite sets of input and output variables, respectively, and
φ is a first-order logic formula on the variables in X ∪Y [197]. The sets of input and output
variables must be disjoint: X ∩ Y = ∅. We assume that each variable in V = X ∪ Y ranges
over the set of values V . A valuation over V is a function v : V → V . A valuation v over
V satisfies a formula φ over the same set of variables V , written v |= φ, if replacing free
variables in φ by their value as specified by v yields a formula that evaluates to T. A formula
φ defines the following set of behaviors:

[[φ]] := {v0v1v2 · · · | ∀i : vi |= φ}.

Note that [[φ]] is a safety property. By defining the above set of behaviors, φ governs the
operation of the component specified by I, evolving in a sequence of synchronous steps. At
each step, a valuation over V must be found which satisfies φ.

Given interface I = (X, Y, φ), the input assumption defined by φ is the formula in(φ) :=
∃Y : φ, where ∃Y : φ is ∃y1 : ∃y2 : · · · ∃yn : φ when Y = {y1, y2, ..., yn}. in(φ) characterizes
the legal inputs. An input is considered illegal if there is no output which can satisfy φ for
that input. Note that in(φ) is a formula on X only, as variables in Y have been eliminated
by existential quantification. For example, if X = {x}, Y = {y}, and φ is x ≥ 0 ∧ y = x,
then in(φ) is x ≥ 0. If φ is x ≥ 0→ y = x, then in(φ) is T.

3.2.1.1 Composition

Serial composition of two interfaces I1 = (X1, Y1, φ1) and I2 = (X2, Y2, φ2) can be defined
provided that I1 and I2 are disjoint, i.e. all sets X1, Y1, X2, Y2 are pairwise disjoint, except
possibly the pair Y1, X2. Let Vc = Y1 ∩ X2. The interpretation is that variables in Vc are
outputs of I1 which are connected to inputs of I2. Note that we allow Vc to be empty, in
which case serial composition reduces to parallel composition (where no connections between
the two interfaces exist). Then, the composite interface I1 I2 is defined to be the interface

I1 I2 := (X1 ∪X2 \ Y1, Y1 ∪ Y2, φ)

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 63

where
φ = φ1 ∧ φ2 ∧ ∀Y1 :

(
φ1 → in(φ2)

)
.

I1 and I2 are said to be compatible interfaces if φ is satisfiable, i.e., if φ is not equivalent to
F. Interface compatibility can then be checked while computing the serial composition.

3.2.1.2 Refinement

Given two interfaces I1 = (X1, Y1, φ1) and I2 = (X2, Y2, φ2), we say that I1 refines I2,
written I1 v I2, iff X1 ⊆ X2, Y1 ⊇ Y2 and the following formula is valid (i.e., true under all
valuations):

in(φ2)→
(
in(φ1) ∧ (φ1 → φ2)

)
.

3.2.1.3 Shared refinement

Two interfaces I1 = (X, Y, φ1) and I2 = (X, Y, φ2) are said to be shared-refinable if the
following formula is true:

∀X :
((

in(φ1) ∧ in(φ2)
)
→
(
∃Y : (φ1 ∧ φ2)

))
.

This amounts to state that for every input that is legal in both I1 and I2, the corresponding
sets of outputs of I1 and I2 must have a non-empty intersection. If I1 and I2 are shared-
refinable, their shared refinement, denoted I1 u I2, is defined to be the interface I1 u I2 :=
(X, Y, φu), where

φu :=
(
in(φ1) ∨ in(φ2)

)
∧
(
in(φ1)→ φ1

)
∧
(
in(φ2)→ φ2

)
.

It can be shown that I1 u I2, when it exists, acts as the greatest lower bound (GLB) for
the refinement relation, i.e. (i) I1 u I2 is guaranteed to refine both I1 and I2, and (ii) for
any interface I ′ such that I ′ v I1 and I ′ v I2, we have I ′ v (I1 u I2). The existence
of such a GLB is an important feature for hierarchical component-based design supporting
multiple viewpoints [33, 78, 95]. Shared refinement in relational interfaces has the same
properties of conjunction of A/G contracts. However, shared refinement of interfaces is not
always defined, whereas conjunction of A/G contracts is always defined as the GLB for the
refinement preorder, which is guaranteed to exist.

3.2.2 Contract Associated with an Interface

We map interfaces into contracts based on the following definition.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 64

Definition 3.2.1 (Contract Associated with an Interface). An interface I = (X, Y, φ) can
be transformed into a contract C = F(I) = (V,A,G) where

V := X ∪ Y, A := �in(φ), G := �in(φ)→ �φ.2

We call C the contract associated with I under the transformation F.

Even though in(φ) is a formula over only the set of input variables X, when we define
A we choose to interpret in(φ) over the entire set of variables V = X ∪ Y . In fact, both A
and G in a contract are defined as behaviors over the same set of variables. Moreover, we
conveniently express the sets of behaviors in A and G as LTL formulas, where �φ denotes
the set of behaviors [[φ]]. A relational interface represented as a formula φ on inputs and
outputs is then mapped into sets of behaviors representing the safety property that φ holds
at every (synchronous) step, under the assumption that in(φ) holds at every step.

The contract F(I) in Definition 3.2.1 preserves the semantics of the associated interface
I. Any legal environment of F(I) provides, at every step, a legal input for I (while accepting
any output from I), and vice versa. On the other hand, any system satisfying φ at every step
is an implementation for F(I), since it satisfies �φ in any context in which �in(φ) holds.
Finally, by definition, contract F(I) is in saturated form. In what follows, we analyze the
properties of serial composition, refinement and conjunction in both interfaces and contracts
with respect to the proposed transformation.

3.2.3 Serial Composition and Compatibility

In this section, by abuse of notation, we use the parallel composition operator ⊗, defined in
Section 2.3.2, to also denote the serial composition of contracts. As shown in Section 2.3.2,
serial composition can be obtained from the parallel composition of contracts, in which every
pair of shared variables are given the same name to denote the presence of an interconnection.
However, while parallel composition is commutative, serial composition is generally non-
commutative.

To establish a correspondence between interfaces and contracts, we would like serial
composition and compatibility to be preserved under F, i.e., for the interfaces I1 and I2,
F(I1 I2) = F(I1)⊗ F(I2) to hold. However, this is not true in general, as shown by the
following example.

Example 12. Consider the interfaces I1 = ({x}, {y}, T) and I2 = ({y}, ∅, y ≥ 0), shown in
Figure 3.1(a), where x, y ∈ R. We have F(I1) = ({x, y}, T, T) and F(I2) = ({x, y},�(y ≥
0), T). Moreover, since I1 I2 = ({x}, {y}, F), we have F(I1 I2) = ({x, y}, F, T). On the
other hand, we also obtain F(I1)⊗ F(I2) = ({x, y},�(y ≥ 0), T), which is clearly not equal
to F(I1 I2).

2 � takes precedence over →, so �in(φ) → �φ means
(
�in(φ)

)
→ �φ. Moreover, in this and the

following subsections, we use A and G to interchangeably denote sets of behaviors as well as the logic
formulas specifying these behaviors.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 65

True I1
I2

y x
y ≥ 0

(a)

y ≥ x I3
I2

y x
y ≥ 0

(b)

Figure 3.1: Pictorial representation of the relational interfaces in Example 12 (a) and Ex-
ample 13 (b).

The difference highlighted by Example 12 can be intuitively explained by the incompat-
ibility of I1 and I2. This is correctly expressed by φI1 I2 being F and reflected into the
assumptions of F(I1 I2), which are also F. The contract F(I1 I2) is also incompatible,
i.e. any component satisfying F(I1 I2) cannot be hosted by any environment. However,
such incompatibility is not immediately detected using F(I1)⊗ F(I2), which seems to indi-
cate that any sequence yn satisfying yn ≥ 0 for all n ∈ N is admitted. Only after observing
that y is a controlled variable, we can finally conclude that F(I1) ⊗ F(I2) is incompatible,
since its assumptions are not y-receptive.

As a second attempt, we may try to prove that serial composition is preserved provided
the interfaces are compatible. Example 13 shows that this is not the case either.

Example 13. Consider the interfaces I3 = ({x}, {y}, y ≥ x) and I2 = ({y}, ∅, y ≥ 0), shown
in Figure 3.1(b). We have F(I3) = ({x, y}, T,�(y ≥ x)), F(I2) = ({x, y},�(y ≥ 0), T),
I3 I2 = ({x}, {y}, x ≥ 0 ∧ y ≥ x), and

F(I3 I2) = ({x, y},�(x ≥ 0),�(x ≥ 0)→ �(y ≥ x)).

On the other hand, we also obtain

F(I3)⊗ F(I2) = ({x, y},�(y ≥ x)→ �(y ≥ 0),�(y ≥ x)),

which is clearly not equal to F(I3 I2). In fact, the sequence (xn, yn) where xn = −1 and
yn = −3 for all n ∈ N satisfies the assumptions of F(I3) ⊗ F(I2) but does not satisfy the
ones of F(I3 I2).

Again, we see that the assumptions of F(I3) ⊗ F(I2) in Example 13 refer to output
variables, and do not contain the important new assumption x ≥ 0 induced by interface
composition, and which is crucial to guarantee interface compatibility. Note that we can
still conclude that F(I3)⊗F(I2) is indeed compatible, since its assumptions are y-receptive.
However, we are also interested in inferring the set of environments that is allowed by the
composite contract, as captured by the new assumption �x ≥ 0. To obtain this, we introduce
a new projection operation on contracts, which we call assumption projection (AP).

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 66

3.2.4 Assumption Projection

Definition 3.2.2 (Assumption Projection). Given a contract C = (V,A,G), and a subset
W ⊆ V , the assumption projection of C with respect to W (APW) returns the new saturated
contract

APW (C) = (V, ∀W : A, (∀W : A)→ G).

We use the fact that the universal quantifier is commutative and associative to lift it
to sets of variables in Definition 3.2.2, so that ∀W : A := (∀w1 : ∀w2 : . . . : ∀wn : A)
when W = {w1, w2, . . . , wn}. Moreover, when the assumptions are expressed by an LTL
formula, universal quantification is meant over sequences of valuations over the variables in
W [162]. We are now ready to state the following theorem, which relates serial composition
of interfaces with serial composition of contracts.

Theorem 3.2.3 (Assumption Projection Mapping). Given two disjoint relational interfaces
I1 and I2, with sets of output variables Y1 and Y2, respectively, we have

F(I1 I2) = APY1∪Y2(F(I1)⊗ F(I2)). (3.1)

Moreover, I1 and I2 are compatible iff APY1∪Y2(F(I1)⊗ F(I2)) is compatible.

According to Theorem 3.2.3, the contract associated with the composition of two inter-
faces is equivalent to the assumption projection contract of the composition of the associated
contracts with respect to the output variables, i.e. we can still map the contract associated
with the composition of two interfaces F(I1 I2) to the composition of the associated
contracts F(I1)⊗F(I2) only after applying the AP operator. Before proving Theorem 3.2.3,
we introduce the following lemma, which will be used in the proof.

Lemma 3.2.4. Given the interfaces I1 = (X1, Y1, φ1) and I2 = (X2, Y2, φ2), let ψ = �(∀Y1 :
φ1 → in(φ2)), and ψ′ = (∀Y1 : �φ1 → �in(φ2)). Then, if �(in(φ1)) is T, we have ψ ↔ ψ′.

Proof (Lemma 3.2.4). Suppose first that ψ is T, and suppose that on all sequences y1,n

of valuations over Y1, �φ1 holds. Then, for all n, for all valuations (x1,n, x2,n, y1,n) over
(X1, X2, Y1), we have (x1,n, x2,n, y1,n) |= φ1. Hence, by ψ, we also have that for all n, for
all the valuations over (X1, X2, Y1), (x1,n, x2,n, y1,n) |= in(φ2). This implies that �in(φ2) is
also valid for all sequences of valuations over Y1, and ψ′ is T. Therefore, we conclude that
ψ → ψ′.

To prove that ψ′ → ψ, we now assume that ψ is F, and prove that ψ′ must also be F. In
fact, if ψ is F, then there exists a sequence (x1,k, x2,k) of valuations over (X1, X2), an index
i ∈ N and a valuation y∗ over Y1 such that (x1,i, x2,i, y

∗) |= φ1 and (x1,i, x2,i, y
∗) 6|= in(φ2).

Consider such a sequence (x1,k, x2,k). Then, since �in(φ1) holds by hypothesis, we know
that, for all k, it is possible to find ŷ1,k such that (x1,k, ŷ1,k) |= φ1. Therefore, starting
from (x1,k, x2,k), we can construct a new sequence sk = (x1,k, x2,k, y1,k) such that ∀k 6= i,
y1,k = ŷ1,k, and for k = i, y1,i = y∗. By construction, sk |= �φ1 but sk 6|= �in(φ2), i.e. sk
falsifies ψ′. We can therefore conclude ¬ψ → ¬ψ′, which is what we wanted to prove.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 67

We can now prove Theorem 3.2.3.

Proof (Theorem 3.2.3). Both the left and right-hand side contracts CL and CR in (3.1) are
in saturated form by definition of F and of AP. To prove that CL and CR are equal we
need to prove that they have the same assumption and guarantee sets. We first compute
assumptions and guarantees for CR. By applying (2.2) and (2.3) and the definition of F we
obtain:

G⊗ = (�in(φ1)→ �φ1) ∧ (�in(φ2)→ �φ2) (3.2)

A⊗ = (�in(φ1) ∧�in(φ2)) ∨ ¬G⊗
= �(in(φ1) ∧ in(φ2)) ∨ (�in(φ1) ∧ ¬�φ1) ∨ (�in(φ2) ∧ ¬�φ2)

(3.3)

where A⊗ and G⊗ are the assumptions and guarantees of F(I1) ⊗ F(I2). Finally, after
assumption projection, we obtain:

AR = ∀Y1∀Y2 : A⊗

= ∀Y1 : �(in(φ1) ∧ in(φ2)) ∨ (�in(φ1) ∧ ¬�φ1) ∨ (∀Y2 : (�in(φ2) ∧ ¬�φ2))

= ∀Y1 : �(in(φ1) ∧ in(φ2)) ∨ (�in(φ1) ∧ ¬�φ1)

= ∀Y1 : �in(φ1) ∧ (�in(φ2) ∨ ¬�φ1)

= �in(φ1) ∧ (∀Y1 : �φ1 → �in(φ2))

(3.4)

GR = AR → G⊗

= �in(φ1) ∧ (∀Y1 : �φ1 → �in(φ2))→ (�φ1 ∨ ¬�in(φ1)) ∧ (�φ2 ∨ ¬�in(φ2))
(3.5)

Consider now the assumptions of CL. We obtain:

AL = �in(φ) = � [∃Y1∃Y2 : φ1 ∧ φ2 ∧ (∀Y1 : φ1 → in(φ2))]

= � [(∀Y1 : φ1 → in(φ2)) ∧ (∃Y1 : φ1 ∧ in(φ2))]

= � [(∀Y1 : φ1 → in(φ2)) ∧ in(φ1)]

= �(∀Y1 : φ1 → in(φ2)) ∧�in(φ1)

(3.6)

while for GL we obtain

GL = �(∀Y1 : φ1 → in(φ2)) ∧�in(φ1)→ �(φ1 ∧ φ2 ∧ (∀Y1 : φ1 → in(φ2))). (3.7)

The equivalence of the assumptions AL and AR directly descends from Lemma 3.2.4. To
prove the equivalence of GL and GR it is enough to prove that, if AL or AR is T, then

(�in(φ1)→ �φ1) ∧ (�in(φ2)→ �φ2)↔ �(φ1 ∧ φ2). (3.8)

Clearly, if the formula on the left side of the double implication in (3.8) is T, the formula
on the right side is also trivially T when AR and AL are T. Suppose now that the left-hand

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 68

side of (3.7) is T. Since AL and AR are T then �in(φ1) is T, which implies �φ1 is T. On the
other hand, by AL and AR being again T, we also have

�(∀Y1 : φ1 → in(φ2)) ∧�φ1 → �in(φ2).

This allows us to conclude that �φ2 is also T and finally (3.8) holds. We have therefore
proved (3.1).

Let now φ = φ1∧φ2∧(∀Y1 : φ1 → in(φ2)) be the formula associated with I1 I2. I1 and
I2 are compatible if and only if φ is satisfiable. On the other hand, APY1∪Y2(F(I1)⊗F(I2)) is
compatible if and only if its assumptions AR are satisfiable. Then, to prove the last statement
of the theorem, we need to prove that φ is satisfiable if and only if AR is satisfiable. This
can be directly inferred from the fact that AR = AL = �in(φ). In fact, �in(φ) is satisfiable
if and only if in(φ) is satisfiable, i.e. if and only if φ is satisfiable, which concludes our
proof.

The assumption projection mapping allows preserving the semantics of interface com-
position; we demonstrate its application to Examples 8 and 9 discussed in Chapter 2, and
Examples 12 and 13 in Section 3.2.3. In Example 8, while computing the assumptions of
APy(CL1 ⊗ CD), we obtain, as expected, Aex1 = (∀y : y 6= 0) = F, which corresponds
to CL1 and CD being incompatible. A similar result is obtained in Example 12, where
Aex3 = (∀y : �(y ≥ 0)) = F are the assumptions of APy(F(I1) ⊗ F(I2)). By applying
assumption projection to CL2 ⊗ CD in Example 9, we instead obtain

Aex2 = ∀y : y 6= 0 ∨ x ≥ y = ¬ (∃y : (y = 0 ∧ x < y))

= ¬ ((∃y : y = 0) ∧ x < 0)

= x ≥ 0,

which corresponds to the desired set of legal environments for the composite specification.
Finally, in Example 13, we need to compute Aex4 = (∀y : �(y ≥ x)→ �(y ≥ 0)). To do this,
it is convenient to exchange the order between the quantifier and the temporal construct, by
using Lemma 3.2.4, with ψ = �(∀y : (y ≥ x)→ (y ≥ 0)) and ψ′ = Aex4 = (∀y : �(y ≥ x)→
�(y ≥ 0)). Then, since the hypothesis of the lemma is satisfied, we conclude that ψ is
equivalent to ψ′ and, in particular,

Aex4 = ψ = �(∀y : (y ≥ x)→ (y ≥ 0))

= �¬ (∃y : (y ≥ x) ∧ (0 > y))

= �¬ (∃y : x ≤ y < 0) = �¬(x < 0) = �x ≥ 0,

which, as expected, preserves the equivalence with the contract associated with the composite
interface.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 69

3.2.5 Implementing Assumption Projection in Temporal Logic

Assumption projection hides the controlled (output) variables of a composite contract from
its assumptions, thus enabling preservation of serial composition and compatibility between
interfaces and their associated contracts. However, we observe that this operator is not
straightforward to implement, since LTL is not closed under projection [205]. For instance,
consider the LTL formula φ over two Boolean variables s and p:

φ := p ∧�(s→ p) ∧�(s→ #¬s) ∧�(¬s→ #s).

It can be shown that there is no LTL formula over p that characterizes exactly the set of
infinite traces obtained by projecting the traces characterized by φ onto the p variable.

It is, however, possible to resort to an extension of (propositional) LTL, namely Quanti-
fied (Propositional) Linear Temporal Logic (QLTL/QPTL), which introduces quantification
over propositions [190, 162]. Having an expressive power equal to that of ω-automata, QLTL
is strictly more expressive than LTL, and has been used for formulating and verifying re-
finement relations between reactive systems or programs [109]. However, we may pay for
the augmented expressive power with a substantial increase in complexity. In fact, checking
compatibility between two (Q)LTL A/G contracts after assumption projection can always be
reduced to solving a satisfiability problem for QLTL, which is decidable with non-elementary
complexity [190].

Every QLTL formula can be written in normal form as

(Q1p1Q2p2 . . . Qkpk : ϕ), (3.9)

where {Q1, Q2, . . . , Qk} is a finite sequence of existential or universal quantifiers, P =
{p1, p2, . . . , pk} a finite sequence of propositional variables, and ϕ is a quantifier-free formula.
For each alternation of existential and universal quantifiers in (3.9) the space complexity in-
creases by exactly one exponential. For instance, a QLTL formula of the form (∃P : ϕ),
where ϕ is an LTL formula of size n, is said to be in the set ΣQLTL

1 . The satisfiability
problem for this set of formulas, which are also denoted as Existentially Quantified LTL
(EQLTL) formulas, is PSPACE-complete, like that for LTL. On the other hand, a formula
of the form (∀P : ϕ) is instead said to be in ΠQLTL

1 . For this set of formulas the satisfiability
problem becomes complete for SPACE(2n). A sound and complete proof system for QLTL
is provided by French and Reynolds [83].

Finally, we may be tempted to assimilate the assumption-projection operator with the
elimination (or hiding) operator introduced by Benveniste et al. [33, 35], in that they both
allow hiding internal variables from the assumptions of a composite contract. For a contract
C = (V,A,G) and a variable p ∈ V , the elimination of p in C is given by

[C]p = (V \ {p},∀p : A, ∃p : G),

where A and G are seen as predicates or logic formulas. However, unlike elimination, in
assumption-projection, quantification is performed only on the contract assumptions, with-

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 70

out the intent of eliminating variables from the entire contract. Moreover, assumption-
projection performs universal quantification over all the output variables, rather than just
the internal ones.

3.2.6 Refinement

While F does not generally preserve serial composition, it preserves refinement, i.e. the
mapping is monotonous, as the following theorem shows.

Theorem 3.2.5 (Refinement Preservation). Given two relational interfaces I1 and I2, then
I1 v I2 if and only if F(I1) � F(I2).

Proof. Let I1 = (X1, Y1, φ1) and I2 = (X2, Y2, φ2). By definition of refinement, we recall that
I1 v I2 if and only if (in(φ2) → in(φ1) ∧ (φ1 → φ2)) is valid or, equivalently, the following
two formulas

in(φ2)→ in(φ1) (3.10)

in(φ2) ∧ φ1 → φ2 (3.11)

are both valid. Moreover, by definition of F, we have

F(I1) = (Y1 ∪X2,�in(φ1),�in(φ1)→ �φ1)

F(I2) = (Y1 ∪X2,�in(φ2),�in(φ2)→ �φ2).

We first prove that I1 v I2 → F(I1) � F(I2). Let Ai and Gi be, respectively, the assump-
tions and the guarantees of F(Ii). We need to show that formulas (3.10) and (3.11) imply
A2 → A1 and G1 → G2. Assume A2 = �in(φ2) is T, then, by (3.10), A1 = �in(φ1) is also
T; therefore, A2 → A1. Assume now that G1 is T, i.e. either �in(φ1) is F or �φ1 is T. If
�in(φ1) is F, then from A2 → A1, �in(φ2) is also F, which makes G2 T. If �φ1 is T, then,
by (3.11), we conclude �in(φ2) → �φ2, hence G2 is again T. We therefore conclude that
G1 → G2.

We now prove that if F(I1) � F(I2), i.e. A2 → A1 and G1 → G2, then (3.10) and (3.11)
are valid. To do so, we assume instead that I1 6v I2 and show that F(I1) 6� F(I2). In fact,
if (3.10) is not valid, then we can create a sequence xn of valuations over X2 and an index
i such that xn |= in(φ2) for all n, and xi 6|= in(φ1). Then, for such a sequence, �in(φ2) is T

while �in(φ1) is F, which means that A2 → A1 is not valid. Similarly, assume (3.11) is not
valid; then we can create a sequence of valuations (xn, yn) for the variables in X2∪Y1 and an
index i such that (xn, yn) |= in(φ2) and (xn, yn) |= φ1 for all n, while (xi, yi) 6|= φ2. However,
this implies that �φ1, hence G1 is T while G2 is F, since �in(φ2) is T without �φ2 being T.
Therefore, G1 → G2 is also not valid, which allows us to conclude (I1 6v I2) → (F(I1) 6�
F(I2)), as we wanted to prove.

To enable compositional methods in system design, it is useful to investigate whether
refinement is preserved by composition. For both relational interfaces and A/G contracts

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 71

refinement is preserved by parallel composition and serial composition [197, 33]. For instance,
given the A/G contracts C1, C2, C ′1, C ′2, if C ′1 � C1, C ′2 � C2 and C1 is compatible with C2,
we are allowed to conclude that C ′1 is also compatible with C ′2 and C ′1 ⊗ C ′2 � C1 ⊗ C2.
Therefore, compatible contracts can be independently refined, which is key to enable top-
down incremental design, by iteratively decomposing a system-level contract C into sub-
system contracts Ci for further independent development.

However, refinement is not always preserved by feedback composition in both frameworks.
In relational interfaces, there is no composition operator that supports feedback loops for
stateless interfaces. For feedback, an interface is required to be Moore with respect to the
input variables involved in the connection. In a Moore interface, if an output y is fed-back
to an input x, then y may only depend on state variables and on the current value of the
input variables which are not connected to it, i.e. the ones in X \ {x} [197]. This definition,
inspired by Moore machines, allows forming feedback loops without creating causality cycles.
As a result, in relational interfaces, feedback preserves refinement only if the interfaces are
Moore with respect to the input variables involved in the connection.

Mapping feedback composition of relational interfaces into A/G contracts would require
dealing with stateful interfaces, which is out of the scope of this thesis. In what follows,
we discuss just one property of interest. Since feedback connection in A/G contracts can
be defined based on the parallel composition operator, contract refinement is preserved by
feedback composition. In Theorem 3.2.7, we show that this is also the case for the contracts
associated with two relational interfaces, even if the original interfaces are not Moore. To
do this, we first provide a definition of feedback which extends the one in Section 2.3.2 to
LTL A/G contracts.

Definition 3.2.6 (Feedback Composition of LTL A/G Contracts). Given a contract C =
(V,A,G) and a feedback connection κ = (x, y) ∈ V 2 on C, let Cid be the contract defined as
Cid = ({x, y}, T,�(x = y)). Then, κ defines a new contract κ(C) := C ⊗ Cid3.

Theorem 3.2.7 (Refinement under Feedback Composition). Let I1 = (X, Y, φ1) and I2 =
(X, Y, φ2) be two relational interfaces and κ = (x, y) ∈ X × Y a feedback connection on the
associated contracts F(I1) and F(I2), then

(I1 v I2)→ (κ(F(I1)) � κ(F(I2))) , (3.12)

provided that κ(F(I2)) is compatible.

Proof. By Theorem 3.2.5, we know that if I1 v I2, then F(I1) � F(I2). By definition of
κ, we also have κ(F(I1)) = F(I1) ⊗ Cid and κ(F(I2)) = F(I2) ⊗ Cid, Cid being the contract
({x, y}, T,�(x = y)). Then, by the property of independent implementation of the parallel
composition of contracts [34], if κ(F(I2)) is compatible, we can conclude that κ(F(I1)) is
also compatible and κ(F(I1)) � κ(F(I2)), as we wanted to show.

3Although x is not renamed as y in this case, the definition is consistent with the one in Section 2.3.2;
x remains in the variable set of C, but is bound to be identical to y.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 72

(a) (b)

True IA

x

z
y

x ≠ y IB

x

z
y

True IA

x

z
y

x ≠ y IB

x

z
y

True ∧ (x=y)

κ(IA)

x
z

y
(x ≠ y)∧(x=y)

κ(IB)
z

y

x

Figure 3.2: Configurations considered in Example 14.

As observed above, (3.12) holds even if I1 and I2 are not Moore with respect to x. A
similar definition of feedback as the one stated in Definition 3.2.6 can also be extended to
non-More interfaces as follows.

Definition 3.2.8 (Feedback for Non-Moore Interface). Given an interface I = (X, Y, φ), a
feedback connection κ = (x, y) ∈ X×Y defines a new interface κ(I) = (X \{x}, Y ∪{x}, φ∧
(x = y)).

However, if I1 and I2 are not Moore, κ(I1) v κ(I2) is not guaranteed. This may happen
either because φκ(I1) is F or because φκ(I1) is T, but φκ(I1) 6→ φκ(I2). We conclude this section
by illustrating how the two cases above are mapped into the A/G contract framework, using
the following two examples.

Example 14 (Feedback-Induced Inconsistency). Consider IA = ({x, z}, {y}, T) and IB =
({x, z}, {y}, x 6= y) as in Figure 3.2 (a). IA does not make any assumptions on the inputs
and any guarantee on the outputs, while IB guarantees that the value of the output is different
from the value of the input. We have IB v IA since in(φA) = in(φB) = T and φB → φA.
However, given κ(IA) = ({z}, {y, x}, x = y) and κ(IB) = ({z}, {y, x}, F), obtained as shown
in Figure 3.2 (b), clearly κ(IB) 6v κ(IA) since φκ(IB) is F.

Consider now the associated contracts A = (V, T, T) and B = (V, T,�(y 6= x)) on variables
V = {x, y, z}. We have B � A, κ(A) = (V, T,�(y = x)), κ(B) = (V, T, F), and κ(B) � κ(A).
Therefore, refinement is preserved by feedback composition. However, the feedback connection
has caused an inconsistency internal to κ(B); φκ(IB) = F reflects κ(B) being inconsistent.

Example 15 (Feedback-Induced Incompatibility). Consider the two interfaces IA and IB
defined as follows:

IA = ({x}, {y}, (x 6= 0) ∧ (xy = 1)),

IB = ({x}, {y}, (x 6= 0)→ (xy = 1)).

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 73

We have IB v IA since in(φA) = (x 6= 0), in(φB) = T and (φB → φA) = (x 6= 0). However,
given κ(IA) and κ(IB) computed as follows:

κ(IA) = (∅, {y, x}, (x2 = 1) ∧ (x = y)),

κ(IB) = (∅, {y, x}, (x 6= 0→ x2 = 1) ∧ (x = y)),

we obtain in(φκ(IB)) = in(φκ(IA)) = T, φκ(IB) 6→ φκ(IA), and therefore κ(IB) 6v κ(IA). In
fact, κ(IB) admits all sequences of the form (xn, xn), with xn ∈ {−1, 0, 1} for all n ∈ N,
while xn = 0 is not allowed by κ(IA). Consider now the associated contracts A and B defined
below on variables V = {x, y}:

A = (V,�(x 6= 0),�(x 6= 0)→ �(xy = 1)),

B = (V, T,�((x 6= 0)→ (xy = 1)).

We can compute κ(A) and κ(B) as

κ(A) = (V,�(x 6= 0) ∨ ¬�(y = x), (�(x 6= 0)→ �(x2 = 1)) ∧�(y = x)),

κ(B) = (V, T,�((x 6= 0)→ (x2 = 1)) ∧ (y = x)).

In this case, κ(B) is compatible and consistent. Moreover, we have κ(B) � κ(A), i.e. re-
finement is preserved by feedback. However, even if κ(A) is compatible for the general A/G
contract framework, the assumption projection of κ(A) with respect to either x or y unveils
a potential source of incompatibility induced by feedback. For example, the assumptions of
APy(κ(A)) would require �x 6= 0. However, such a condition may not be guaranteed per se
by the feedback connection.

3.2.7 Conjunction

In this section, we will use the term conjunction to also denote shared refinement, which is
the counterpart of conjunction for relational interfaces. We show that even if F preserves
refinement, it does not preserve conjunction. First, as mentioned in Section 3.2.1, conjunc-
tion cannot always be defined for relational interfaces. For A/G contracts, conjunction is
instead always defined as the GLB of the refinement relation. However, when the set of
shared refinements of two interfaces is empty, the conjunction of their associated contracts
can become inconsistent, as illustrated by the following example.

Example 16 (Inconsistent Conjunction). Consider I00 = ({x}, {y}, x = 0 → y = 0) and
I01 = ({x}, {y}, x = 0 → y = 1). They are not shared refinable, since it is not pos-
sible to guarantee both y = 0 and y = 1 when x = 0 [197]. However, conjunction can
still be defined for the associated contracts F(I00) = ({x, y}, T,�(x = 0 → y = 0)) and
F(I01) = ({x, y}, T,�(x = 0→ y = 1)), although it corresponds to the inconsistent contract
({x, y}, T, F), i.e. the “bottom” element for the refinement preorder.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 74

When conjunction is well-defined in relational interfaces, the contract associated with the
conjunction of two interfaces is, in general, a refinement of the conjunction of the contracts
associated with the interfaces, as stated by the following theorem.

Theorem 3.2.9 (Interface Conjunction Refines Contract Conjunction). Let I = (X, Y, φ)
and I ′ = (X, Y, φ′) be two shared-refinable relational interfaces. Then we have

F(I u I ′) � F(I) ∧ F(I ′), (3.13)

where, in general, F(I u I ′) 6= F(I) ∧ F(I ′).

While (3.13) can be easily proved as a direct consequence of Theorem 3.2.5, our main goal
is to gather insight into the reason why the equality does not generally hold, and the GLB
is not preserved by F. Therefore, we present an alternative proof, which directly reasons
about the assumption and guarantee sets of the contracts in (3.13).

Proof (Theorem 3.2.9). We recall that I u I ′ = (X, Y, φu), where

φu = (in(φ) ∨ in(φ′)) ∧ (in(φ)→ φ) ∧ (in(φ′)→ φ′),

and in(φu) = in(φ) ∨ in(φ′) by Lemma 8 in [197]. Therefore, by transforming I u I ′, we
obtain F(I u I ′) = (X ∪ Y,Au, Gu), where Au = �(in(φ) ∨ in(φ′)) and

Gu = �(in(φ) ∨ in(φ′))→ (�(in(φ)→ φ) ∧�(in(φ′)→ φ′)).

Moreover, by definition of conjunction, we obtain F(I) ∧ F(I ′) = (X ∪ Y,A∧, G∧), where
A∧ = �in(φ) ∨�in(φ′) and

G∧ = (�in(φ)→ �φ) ∧ (�in(φ′)→ �φ′).

It is easy to see that A∧ → Au. On the other hand, we also notice that Au 6→ A∧ in general.
In fact, any sequence xn such that x1 |= in(φ), x1 6|= in(φ′), and xn |= in(φ′) for all n > 1,
satisfies Au but does not satisfy A∧.

We also observe that Gu → G∧. In fact, G∧ is trivially T if both �in(φ) and �in(φ′)
are F. If �in(φ) is instead T, then, because Gu is T, �(in(φ) → φ) is T, which implies that
�φ is also T. Similarly, if �in(φ′) is T, �φ′ will also be T. Therefore, in all cases, both the
implications in G∧ will be T under the assumption that Gu is T. On the other hand, we
also notice that G∧ 6→ Gu in general. In fact, any sequence (xn, yn) such that x1 |= in(φ),
x1 6|= in(φ′), xn |= in(φ′) for all n > 1, and (x1, y1) 6|= φ, would certainly satisfy G∧ but not
Gu.

As stated by Theorem 3.2.9, the contract associated with the conjunction of I and I ′
is not generally equal to the conjunction of the contracts associated with I and I ′. More-
over, the expressions of the assumptions and guarantees computed in our proof highlight
another crucial difference between the two frameworks, which explains this result. While an

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 75

A/G contract reasons about the entire behavior of a component, possibly spanning infinite
sequences of reactions, a relational interface can constrain the inputs and outputs of a com-
ponent at the granularity of a single reaction index. Therefore, computation of conjunction
generates a smaller set of allowed environments and a larger set of guaranteed behaviors for
A/G contracts, which translates into a tighter, less conservative, greatest lower bound.

3.3 Compatibility and Consistency in A/G Contracts

Based on the results of Section 3.2, we can now complete our discussion of compatibility and
consistency of contracts that make a distinction between input (uncontrolled) and output
(controlled) variables.

Let U ⊆ V and Y ⊆ V be, respectively, the subset of input and output variables of a
contract C, with U ∩ Y = ∅. Moreover, to be concrete, we assume that the assumptions and
guarantees of C are represented in terms of predicates or logic formulas on their variables,
i.e. C = (U∪Y, φA, φG). Then, checking that C is compatible by the definition in Section 2.3.3
translates into checking that A is Y -receptive. In our case, this is equivalent to verifying
that (∀Y : φA) is satisfiable. We observe that we can conveniently restate this compatibility
condition using the assumption-projection operator in Definition 3.2.2, by requiring that the
APY (C) is compatible. Similarly, C is consistent if and only if G is X-receptive, i.e., for
contracts in saturated form, that (∀X : φG) 6= F.

The definitions above can be lifted to pairs of contracts, so that C1 and C2 are compatible
(consistent) if and only if C1⊗C2 is compatible (consistent). In particular, we can reconsider
compatibility and consistency conditions for the cascade of contracts in Figure 2.4 (a), where
C1 = (U1 ∪ Y1, φA1, φG1) and C2 = (U2 \Uσ

2 ∪ Y σ
1 ∪ Y2, φA2, φG2). We assume that the original

contracts C1 and C2 are themselves compatible and consistent. In fact, if any contract is
incompatible, then it cannot be used in any context; if any contract is inconsistent, it trans-
lates into a specification that generates per se a contradiction, and cannot be implemented.
Assumptions and guarantees for the composite contract Cσ = C1

σ
 C2 have been computed

in (2.5) and (2.6), where φGσ and φAσ are interpreted as predicates or formulas over the
entire set of variables U1 ∪ Y1 ∪ U2 \ Uσ

2 ∪ Y2. Finally, since C1 and C2 are in saturated form,
we recall that both φA1 ∨ φG1 = T and φA2 ∨ φG2 = T must hold.

When there is a distinction between controlled output and uncontrolled input variables,
we can assume that each component only controls its outputs, while the inputs are assigned
by the external environment. In this scenario, the assumptions of each contract will only
involve its input variables, since the outputs will be under the responsibility of the implemen-
tations. Specifically, for the system in Figure 2.4 (a), φA1 and φA2 will depend, respectively,
only on U1 and Y σ

1 ∪ U2 \ Uσ
2 , while φG1 and φG2 will describe relations involving both the

input and output variables of each contract. Our objective is to determine the conditions
on the input variables U1 ∪U2 \Uσ

2 that make the composite contract Cσ compatible. To do
so, since the variables in Y1 ∪ Y2 cannot be controlled by the environment, we derive new
assumptions for Cσ by assumption-projection, i.e. by using universal quantification over the

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 76

output variables Y = Y1 ∪ Y2 as follows:

φ′Aσ := ∀Y : φAσ

= ¬∃Y : (¬φA1 ∧ φG1 ∧ φG2) ∨ (¬φA2 ∧ φG1 ∧ φG2)

= (¬∃Y : ¬φA1 ∧ φG1 ∧ φG2) ∧ (¬∃Y : ¬φA2 ∧ φG1 ∧ φG2)

= (¬∃Y : ¬φA1 ∧ φG2) ∧ (¬∃Y : ¬φA2 ∧ φG1)

= (φA1 ∨ (∀Y : ¬φG2)) ∧ (∀Y : φG1 → φA2). (3.14)

In the derivations above, we leverage the fact that ¬φA1 → φG1 and ¬φA2 → φG2 must
always hold for contracts in saturated form (thus implying, e.g., ¬φA1 ∧ φG1 ∧ φG2 = ¬φA1 ∧
φG2). Furthermore, since the contrapositive ¬φG2 → φA2 is also true for Cσ2 (implying
¬φG2 = ¬φG2 ∧ φA2), we obtain

(∀Y : ¬φG2) = (∀Y : ¬φG2 ∧ φA2) = F, (3.15)

since for any input set satisfying φA2, there always exists a set of outputs Y2 that satisfies
φG2. Given that φA1 does not depend on Y , we can then conclude from (3.14) that

φ′Aσ = φA1 ∧ (∀Y : φG1 → φA2), (3.16)

and that Cσ is compatible if and only if φ′Aσ is satisfiable. Intuitively, this is equivalent to
require that there exists an environment satisfying the assumptions of C1, and capable of
driving the guarantees of C1 to become a subset of the assumptions of Cσ2 for any possible
assignment of the output variables. For example, we apply the result above to the serial
composition Csin

σ
 Camp in Figure 2.3 (b).

Example 17 (Compatibility and Serial Composition). Both Csin and Camp are compatible and
consistent contracts. Moreover, φA,sin = T. However, for their composition to be compatible,
we also need to enforce (∀Y : φG1 → φA2):

∀x : ∀y : (x 6= 2 sin θ) ∨ (|x| ≤ 1) =

= ¬∃x : (x = 2 sin θ) ∧ (|x| > 1)

= ¬∃x : (x = 2 sin θ) ∧ (2| sin θ| > 1)

= ¬ ((2| sin θ| > 1) ∧ (∃x : x = 2 sin θ))

= | sin θ| ≤ 1

2
∨ ¬∃x : (x = 2 sin θ)

= | sin θ| ≤ 1

2

⇐⇒
∨
k∈Z

(
−π

6
+ kπ ≤ θ ≤ π

6
+ kπ

)
.

In fact, if θ violates this condition, there is no way for Csin to provide a legal environment
for Cσamp.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 77

Compatibility and consistency conditions for the feedback composition in Figure 2.4 (b)
can be determined in a similar way. Computation of the composite contract Cκ = Cκ1 ◦κ Cκ2
generates expressions for the assumptions φAκ and the guarantees φGκ that are analogous
to (2.5) and (2.6). However, in the special case of controlled outputs and uncontrolled inputs,
we obtain

φ′Aκ := ∀Y : φAκ = ∀Y : (φG2 → φA1) ∧ (φG1 → φA2), (3.17)

stating that Cκ is compatible if and only if there exists an environment such that, for all
possible assignments on the output variables, the guarantees of Cκ1 are included into the
assumptions of Cκ2 , and vice versa.

Example 18 (Compatibility and Feedback Composition). We investigate the feedback com-
position of the Square component with the Diode component in Figure 2.3 (c), where Csquare =
({w, z}, T, z = w2) and Cdiode = ({w, z}, z ≥ 0, (z < 0) ∨ (w = z)). Then, since

∀w : ∀z : ((z < 0) ∨ (w = z)→ T) ∧ (z = w2 → z ≥ 0) = T,

we conclude that the two contracts are compatible, which is consistent with the results com-
puted in Example 6 for the assumptions of the composite contracts. Moreover, the admitted
behaviors can be obtained from the joint guarantees φG,square ∧ φG,diode := (w = z)∧ (z = 0∨
z = 1).

Finally, for a contract κ(C) = (U ∪ Y \ y, φA, φG) as in Figure 2.4 (c), compatibility
checking reduces to verifying that

φ′A := ∀Y : φA = ∀Y : φA ∨ ¬φG = ∀Y : φG → φA (3.18)

is satisfiable, where we use again the fact that ¬φG → φA is always true for a contract in
saturated form.

Special cases of (3.16), (3.17), and (3.18) have been previously reported in the literature,
under some restrictive conditions that contract assumptions and guarantees are attached,
respectively, at each input and output port of a component independently, and they can
be expressed uniquely as functions of the attached ports [36]. By embedding compatibility
and consistency within the generic A/G contract framework, we can instead provide more
general results.

3.4 Heterogeneous Refinement and Vertical Contracts

A key challenge in CPS design is relating the semantics of different models, which are at-
tached to the same underlying system, but are defined in different formalisms. To create a
formal framework that can work with every formalism, while being at the same time inde-
pendent of the specifics of any of them, we rely on the fact that A/G contract are defined
out of sets of behaviors. Therefore, as a first step, we use behavior mappings to introduce a

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 78

new relation, heterogeneous refinement, which extends the classical relation of refinement to
contracts expressed using different formalisms.

Heterogeneous refinement is, however, not enough to express refinement between the spec-
ification contract and the implementation contract, when they are attached to heterogeneous
modeling architectures, and present heterogeneous structures. Therefore, as a second step,
we also equip our framework with a new notion of composition that can relate a contract and
its vertical (heterogeneous) refinement, including their different viewpoints, independently of
their modeling structures. Checking compatibility and consistency of the resulting vertical
contract becomes then instrumental to assess the overall design correctness.

3.4.1 Heterogeneous Refinement

The notion of refinement introduced in Section 2.3.4 can be generalized to the case of two
contracts, C1 and C2, which are also expressed by using different formalisms. In this case,
before a refinement relation can be defined, we need to map the behaviors expressed by one
of the contracts to the domain of the other contract via a transformation M (e.g. a special
type of projection or inverse projection) which is generally more involved than alphabet
equalization.

Let B1 and B2 be two sets of behaviors, possibly defined in the different formalisms B1

and B2, respectively. Behavior formalisms may include, for instance, event traces, continuous
signals, or hybrid trajectories. We define mappings between different behavior domains in
terms of abstraction functions as follows.

Definition 3.4.1 (Behavior Abstraction Function). Given two behavior domains B1 and B2

in possibly different behavior formalisms B1 and B2, a behavior abstraction function is a
functionM : B1 → B2 that associates each behavior β1 ∈ B1 with one and only one behavior
β2 =M(β1) ∈ B2.

Abstraction functions are often problem-specific and they are usually assumed informally
any time two different models M1 and M2 of the same system are created with behaviors
[[M1]] and [[M2]] expressed in different formalisms B1 and B2; our framework aims to facilitate
the explicit and rigorous definition of abstraction functions as the models get created.

Let us assume that behaviors in B1 and B2 are defined, respectively, over the sets of
variables V1 and V2. Then, while mapping behaviors in B1 to behaviors in B2, M will also
establish a mapping between the variable sets V1 and V2; this mapping will be, in general, a
relation RM ⊆ V1 × V2. In the following, we use the notation M(B′1) to denote the image
of a behavior set B′1 ⊆ B1 via the mapping M, i.e. M(B′1) = {b2|b2 = M(b1),∀b1 ∈ B′1}.
Furthermore, for a subset of variables V ′1 ⊆ V1, we use the notation RM(V ′1) to denote the
subset of variables in V2 associated with the variables in V ′1 , i.e. RM(V ′1) = {v2 ∈ V2|∃v1 ∈
V ′1 : (v1, v2) ∈ RM}. Similarly, we denote the inverse image of a behavior set B′2 ⊆ B2 via
the mappingM asM−1(B′2), i.e.M−1(B′2) = {b1|M(b1) ∈ B′2}, and the subset of variables
in V1 associated with the set of variables V ′2 ⊆ V2 as R−1

M(V ′2), i.e. R−1
M(V ′2) = {v1 ∈ V1|∃v2 ∈

V ′2 : (v1, v2) ∈ RM}.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 79

Figure 3.3: Example of heterogeneous refinement.

Based on the definitions above, we can then introduce the notion of heterogeneous re-
finement.

Definition 3.4.2 (Heterogeneous Refinement). Let B1 and B2 be two behavior domains,
including, respectively, behaviors over the variable sets V1 and V2, and possibly expressed
using different formalisms B1 and B2; let M be a behavior abstraction function from B1 to
B2. Given contracts C1 = (V1, A1, G1) and C2 = (V2, A2, G2), both in saturated form, and
such that A1, G1 ⊆ B1, A2, G2 ⊆ B2, and V1 = R−1

M(V2), we say that C1 refines C2 via M,
written C1 �M C2, if and only if A1 ⊇M−1(A2) and G1 ⊆M−1(G2).

Example 19 (Heterogeneous Refinement). Let Cdis = ({powered}, T,3[0,3)powered) be the
contract specifying the dynamics of a load in an electrical system, which is powered at startup.
Cdis offers a discrete-time discrete-state abstraction of the dynamics, prescribing that, in all
contexts, the Boolean variable powered must be asserted within three time units. On the
other hand, let Ccon = ({v}, T, v(t) = vf (1− e−

t
τ), t ∈ R, t ≥ 0) be the contract describing the

voltage level of the electrical load as a continuous function of time t. The load responds as
a first order dynamical system with time constant τ and steady-state voltage vf . Then, we
can reason about refinement between Ccon and Cdis only if we provide a mechanism to map
continuous time and voltage levels into discrete ones. In this case, given a time step T , such

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 80

a mechanism could be provided by the following transformation M:

M :

{
powered := (v ≥ 2

3
vf)

k := b t
T
c , (3.19)

stating that powered is asserted if and only if the voltage is greater than or equal to two
thirds of the steady-state value, while the discrete time index k is obtained by discretizing t
according to the quantization step T . Resting on this mapping, we can then conclude that
Ccon �M Cdis if and only if v(3T) > 2

3
vf , i.e. if and only if the system time constant satisfies

τ < 3T
ln 3

. This condition is illustrated in Figure 3.3, where v2(t) (in green) satisfies the
constraint on τ and refines the guarantees of Cdis, whereas v1(t) (in blue) does not, since
it reaches the desired value 2

3
vf exactly at time t = 3T (k = 3), while the interval in the

guarantees of Cdis is right-open.

As shown in Example 19, heterogeneous refinement allows checking refinement between
contracts in different formalisms. Finally, it is also possible to show that heterogeneous
refinement is preserved by composition, as stated by the following proposition.

Proposition 3.4.3 (Compositional Heterogeneous Refinement). Let B and B′ be behavior
domains over the variable sets V and V ′, expressed in formalisms B and B′, respectively;
let M : B → B′ be a behavior abstraction function, with B′ = M(B) and V = R−1

M(V ′).
Let C1, C2 be A/G contracts defined in the behavior domain B, and C ′1, C ′2 be A/G contracts
defined in the domain B′, all in saturated form. If C1 �M C ′1, C2 �M C ′2, and C ′1 is compatible
with C ′2, then C1 is also compatible with C2 and C1 ⊗ C2 �M C ′1 ⊗ C ′2.

Proof. Let C ′1 = (V ′, A′1, G
′
1) and C ′2 = (V ′, A′2, G

′
2), with A′1, G

′
1, A

′
2, G

′
2 ⊆ B′, and C1 =

(V,A1, G1) and C2 = (V,A2, G2), with A1, G1, A2, G2 ⊆ B. By hypothesis, we have G1 ⊆
M−1(G′1), G2 ⊆ M−1(G′2), A1 ⊇ M−1(A′1), A2 ⊇ M−1(A′2). Therefore, for the guarantees
of C1 ⊗ C2 we obtain

G12 = G1 ∩G2 ⊆M−1(G′1) ∩M−1(G′2) =M−1(G′1 ∩G′2) =M−1(G′12). (3.20)

On the other hand, for the assumptions of C ′1 ⊗ C ′2 we obtain

M−1(A′12) =M−1
(
(A′1 ∩ A′2) ∪G′1 ∩G′2

)
=
(
M−1(A′1) ∩M−1(A′2)

)
∪M−1(G′1 ∩G′2)

=
(
M−1(A′1) ∩M−1(A′2)

)
∪M−1(G′1 ∩G′2)

⊆ (A1 ∩ A2) ∪G1 ∩G2 = A12, (3.21)

where we use (3.20) in the last step of (3.21)4. By definition of heterogeneous refinement,
(3.20) and (3.21) allow us to conclude C1⊗C2 �M C ′1⊗C ′2. Moreover, by compatibility of C ′1
and C ′2, and by B′ being the image of B under M, we have that M−1 (A′12) is not empty,
hence A12 is not empty, which means that C1 is also compatible with C2.

4We also use the fact that M−1(A′) = M−1(A′) for any subset A′ of the universal set B′. In fact, we
have B = M−1(B′) = M−1(A′ ∪ A′) = M−1(A′) ∪M−1(A′), ∅ = M−1(A′ ∩ A′) = M−1(A′) ∩M−1(A′),
which jointly lead to M−1(A′) =M−1(A′).

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 81

Therefore, compatible contracts can be independently refined, which is key to enable
top-down incremental design with heterogeneous formalisms, by iteratively decomposing a
system-level contract C in formalism B′ into sub-system contracts Ci in formalisms B for
further independent development.

3.4.2 Vertical Contracts

Traditionally contracts have been used to specify components, and aggregation of compo-
nents at the same level of abstraction, as in the A/G framework presented in Section 2.3; for
this reason we refer to them as horizontal contracts.

We use contracts also to formalize and reason about refinement between two different
abstraction levels in the PBD process [152, 34]; for this reason, we refer to this type of
contracts as vertical contracts. To illustrate this concept, consider the problem of mapping
a specification platform of a system at level l+ 1 into an implementation platform at level l.
In general, the specification platform architecture (i.e. interconnection of components) may
be defined in an independent way, and may not directly match the implementation platform
architecture. Such a heterogeneous architectural decomposition will also reflect on the con-
tracts associated with the components and their aggregations. For instance, the contract
describing the specification platform C =

∧
k∈K

(⊗
i∈Ik Cik

)
may be defined as the conjunc-

tion of K different viewpoints, each characterized by its own architectural decomposition
into Ik contracts. On the other hand, the contract describing the implementation platform

M =
⊗

j∈J

(∧
n∈NjMjn

)
may be better represented as a composition of J contracts, each

defined out of a conjunction of its different viewpoints. Because there may not be, in general,
a direct matching between contracts and viewpoints of M and C, checking that M � C in
a compositional way, by reasoning on the elements of M and C independently, as discussed
in Section 2.3.4 (for classical refinement) and Section 3.4.1 (for heterogeneous refinement),
may not be effective.

However, it is still possible to reason about refinement betweenM and C by resorting to a
contract which specifies the composition of a model and its vertical refinement, even though
they are not directly connected, by connecting them indirectly through a mapping, e.g., by
synchronizing pairs of events, as if co-simulating a model and its refinement. Informally,
this kind of composition captures the fact that the actual satisfaction of all the design
requirements and viewpoints by a deployment depends on the supporting execution platform,
the underlying physical system, and on the way in which system functionalities are mapped
into them. Formally, this composition can be modelled using two alternative methods, based
on the specific shapes of C and M:

• The interaction between the specification and the implementation platforms can be
modeled using the contract composition C ⊗ M. In this case, assumptions made
by the specification platform on the implementation platform can be discharged by
the guarantees of the implementation platform, and vice versa, as indicated by (2.2)
and (2.3). Refinement can then be checked by checking that C ⊗M is compatible and

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 82

Controller

in

on

EPS

powered ∆ out

C

HW

in

on

powered
out

M

v(t)

vref

Comparator

Figure 3.4: Specification and implementation platform examples used to illustrate vertical
contracts.

that C ⊗M � C, which can be performed compositionally, by matching the elements
of C with the ones of C ⊗M.

• The interaction between the specification and the implementation platforms can also
be modeled using the contract conjunction C ∧ M. In this case, assumptions and
guarantees combine as in (2.12), and C ∧ M is assured to refine C by construction.
However, being a conjunction, it can still be a source of inconsistencies. Therefore,
to guarantee that the design can be implemented, the consistency of C ∧M must be
checked or enforced by the designer.

Composite contracts such as C ⊗M and C ∧M are both called vertical contracts, and
can be used to formalize mechanisms for mapping a specification over an execution platform,
such as the ones adopted in the RT-Builder tool5, in the Metropolis [24] and MetroII [25]
frameworks, and, more recently, the Metronomy framework [90], which provides support
for timing contract verification. We refer the reader to the literature on timing analysis of
embedded software, e.g. [201, 182, 183], for further references on timing verification. We
exemplify below the use of vertical contracts by referring to the virtual model of a simple
system pictured in Figure 3.4.

5http://www.geensoft.com/en/article/rtbuilder

http://www.geensoft.com/en/article/rtbuilder

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 83

Example 20 (Vertical Contracts as Parallel Composition). The specification platform ar-
chitecture at the top of Figure 3.4 consists of two interconnected components. At startup,
the Controller interacts with an external subsystem through its in and out ports to perform
some high-priority task. Then, it switches on a safety-critical electric power system EPS, by
asserting its output on, and makes sure that the system is actually powered, i.e. the signal
powered is asserted, by the deadline td.

At the application level, to conveniently explore different control strategies, the designer
abstracts the physical system EPS using a simple delay block, which propagates the value of its
input on to its output powered with a delay ∆. We therefore obtain tpow−ton = ∆, where tpow
and ton are, respectively, the times at which powered and on are asserted, and ∆ is selected to
accommodate the delay of the physical platform. Then, the designer implements the required
functionality by allocating the Controller to its higher priority task, while guaranteeing a
worst case switch-on time tmaxon = td −∆ to meet the deadline on the powered signal.

While the functional platform described above is very convenient to explore different con-
trol strategies, it is not sufficient to determine the correctness of the final design. In fact,
the satisfaction of the timing viewpoints heavily relies on the assumptions on the delay of the
physical system, which can only be discharged by the implementation platform. The architec-
ture of the implementation platform is shown at the bottom of Figure 3.4. The functionality
of the Controller is mapped to a hardware execution platform HW, while the EPS is modelled
by a cascade of a first order filter with time constant τ , represented in the figure as an electri-
cal network, and an ideal Comparator block, with reference voltage vref . If the filter output
voltage v is larger than vref , the Comparator asserts its output powered. The reference vref
corresponds to 90% of the final value vf reached by v at steady state.

To show that the implementation platform refines the specification platform, hence satis-
fies the system requirements, we can formalize the interaction between the two levels in terms
of the composition Ct ⊗Mt between two timing contracts:

• Ct = ({δon, ton, tpow}, δon ≤ ∆, (ton ≤ td − ∆) → (tpow ≤ td)) specifies the timing
behavior of the specification platform, by emphasizing its vertical assumptions on the
implementation platform. If the implementation platform provides a delay δon less
than or equal to ∆ when on is asserted, then the application guarantees to satisfy the
requirement on the powered signal, if on is asserted by at least an interval ∆ before
the deadline td.

• Mt = ({δon, ton, tpow}, T, (δon = τ ln 10)∧ (tpow = ton+δon)) exposes the timing behavior
of the implementation platform, as derived from the step response of a first-order filter.
Mt states that, whenever on is asserted, the delay at which v reaches 90% of its steady-
state level, hence tpow is asserted, is δon = τ ln 10.

In this simple example, the assumptions and guarantees of both Ct and Mt are assertions
over variables denoting the time of occurrence of certain events or their separation.

Resting on the above contracts, because the assumptions of Ct trivially imply the ones
of Mt, we obtain Ct ⊗Mt � Ct. Moreover, for the contracts in this example, it is also

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 84

possible to show that Mt � Ct⊗Mt holds. Therefore, checking the correctness of the design
finally requires checking that the vertical contract Ct ⊗Mt is compatible. In this case, by
applying (3.16) in Section 2.3.3, whereMt and Ct act, respectively, as C1 and C2, we conclude
that it is enough to check the satisfiability of ∀δon : ∀tpow : (δon = τ ln 10)∧(tpow = ton+δon)→
(δon ≤ ∆), which provides

τ ln 10 ≤ ∆. (3.22)

This inequality can also be used at design time, as a practical guideline to dimension either
the specification platform, by increasing its margin ∆, or the implementation platform, by
decreasing its time constant τ , to deploy a correct design.

It is also possible to obtain the same result as in Example 20 by following an alternative
formulation based on contract conjunction.

Example 21 (Vertical Contracts as Conjunction). We consider the same setup as in Ex-
ample 20. However, we suppose that the designer chooses instead to describe the timing
behaviors of the system in Figure 3.4 using a different contract pair:

• C̃t = ({ton, tpow}, ton ≤ (td −∆), tpow ≤ td), the specification contract, is no longer bound
to the implementation platform. It simply states that the requirement on tpow is satisfied
if on is asserted by at least an interval ∆ before the deadline td.

• M̃t = ({ton, tpow}, T, tpow = ton + τ ln 10), the implementation contract, is also inde-
pendent of the specification platform (except for being defined on the same variables),
and exposes the timing behavior of the powered signal. M̃t states that, whenever on
is asserted, powered will be asserted with a delay τ ln 10, due to the physical system (a
first-order filter).

Then, to check the correctness of the refinement, a binding mechanism between the two
contracts, each linked to its own platform, can now be provided by the conjunction of M̃t and
C̃t. C̃t ∧ M̃t ensures that both contracts are jointly satisfied, and refines C̃t by construction.
Therefore, all we need to check is that M̃t does not create inconsistencies in C̃t ∧M̃t, in the
sense that (∀ton : ∃tpow : GM̃t ∩GC̃t) is true6, where GM̃t and GC̃t are the guarantees of the
two contracts in saturated form. In our case,

∀ton : ∃tpow : (tpow = ton + τ ln 10) ∧ ((ton > td −∆) ∨ (tpow ≤ td))

= ∀ton : (∃tpow : tpow = ton + τ ln 10) ∧ (ton > td −∆) ∨ (ton ≤ td − τ ln 10)

= ∀ton : (ton > td −∆) ∨ (ton ≤ td − τ ln 10)

6We are actually interested in checking consistency ∀ton : ton ≤ (td − ∆), which is the set of legal
environments for C̃t. In fact, we want to show that, for each ton satisfying the assumptions of the specification
contract C̃t, there exists an implementable tpow, according to the implementation contract M̃t, which also

satisfies the deadline td, as required by C̃t. When ton > (td −∆), C̃t ∧ M̃t is trivially consistent, since the
guarantees of C̃t are vacuously true.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 85

leads to the condition τ ln 10 ≤ ∆, which is the result found in (3.22). Intuitively, this
amounts to requiring that, if ton and tpow have to synchronize so that M̃t refines C̃t and the
overall system satisfies the timing requirement on tpow, then the delay implemented by the
physical system in M̃t must be smaller than or equal to the one defined by the application
platform in C̃t.

The approach illustrated above has been previously adopted in the design of analog
and mixed-signal integrated circuits [155, 152], by leveraging effective approximations of
implementation constraints to formulate vertical contracts representing different viewpoints
(e.g., timing, energy, noise), and then checking their compatibility or consistency during
design space exploration. More recently, a similar approach has also been advocated in the
context of Autosar [34]. Alternatively, when vertical assumptions and guarantees cannot be
effectively expressed by compact models, compatibility and consistency of vertical contracts
can be checked by co-simulation of the application and implementation platforms under a
mapping mechanisms, such as the one in the Metronomy framework [90], in which tuples of
signals in the two platforms are synchronized. In the context of our example, this technique
can be applied by unifying both occurrences and values of the on and powered signals, as
shown in red in Figure 3.4, and then checking that the synchronized models satisfy the
requirements.

We finally observe that the formal notion of vertical contracts we have presented is gen-
eral, in that it encompasses other notions of contracts that were previously introduced in
a control setting to capture the interactions between the controller and its execution plat-
form [177, 73]. In this scenario, a controller takes as assumptions several aspects that include
the timing behavior of the control tasks and of the communication between tasks, e.g., delay,
jitter, as well as the accuracy and resolution of the computation (vertical assumptions in C).
On the other hand, the controller provides guarantees in terms of the amount of requested
computation, activation times and data dependencies (vertical guarantees in C). Vertical
contracts can then be effectively used to formalize the agreement between control, software,
and hardware engineers when specifying both system functionality and timing requirements.
As a result, several design approaches and guidelines, which have been previously established
in the literature in terms of “design contracts” [73], can be derived by formulating vertical
contracts for both the software and control layers, and by enforcing their compatibility and
consistency as illustrated by the example in Figure 3.4.

3.4.2.1 Top-Down and Bottom-Up Vertical Contracts in Platform-Based
Design

In this section, we provide further insight into the use of vertical contracts in platform-based
design, as reported by previous works in the literature [152, 177]. Our goal is to show how
previous approaches can be smoothly framed within the contract framework proposed in this
chapter, based on the notions of heterogeneous refinement and vertical contracts.

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 86

In PBD, horizontal contracts can be used to formalize the conditions for correctness
of element integration at the same level of abstraction, while vertical contracts formalize
the conditions for lower levels of abstraction to be consistent with the higher ones, and for
abstractions of available components to be faithful representations of the actual parts. If
vertical contracts are satisfied, the mapping mechanism of PBD can be used to produce
design refinements that are correct by construction.

Informally, vertical contracts in PBD have often been decomposed into bottom-up and
top-down contracts [152, 177]. When analyzing the behavior of complex cyber-physical
systems, simplified macro-models are typically used to capture the relevant behaviors of
the components at higher levels of abstraction. Therefore, guarantees should be provided
on the accuracy of the macro-models with respect to models at lower levels of abstraction.
These guarantees can be captured via bottom-up vertical contracts. On the other hand, in
a top-down design approach, top-down vertical contracts can be used to encode top-level
requirements that system architects introduce to craft the behavior of a chosen architecture
according to the desired functionality. In the following, we show how both these concepts of
bottom-up and top-down vertical contracts in the literature can be related to the notion of
heterogeneous refinement and vertical contracts introduced in this chapter.

Specifically, when reasoning about a virtual system M at level l+1, a bottom-up vertical
contract Cl+1

B can be used to capture what is expected to be offered by possible implemen-
tations of M at level l, so as to be able for M to perform its intended function at level l+ 1,
as expressed by a top-down vertical contract Cl+1

T . The correctness of the design using M
at level l + 1 will then depend on the existence of an implementation of M meeting this
bottom-up vertical contract. Moreover, Cl+1

B adds to the horizontal contract Cl+1
H , which

is also attached to M , to capture the conditions imposed on its context at level l + 1 for
its correct integration. Such a structural breakdown into Cl+1

H , Cl+1
B and Cl+1

T can be used
to enforce orthogonalization of concerns, by separating function (Cl+1

T) from communication
(Cl+1
H) and from implementation (Cl+1

B). In this setup, Cl+1
T captures the top-level require-

ments on M , while Cl+1
H and Cl+1

B can be regarded as two different viewpoints, used to specify
the conditions imposed, respectively, on the integration environment at level l + 1 and the
implementation platform at level l.

We now assume that the system M at level l+1 is to be implemented by an aggregation of
subsystemsM1, . . . ,Mn at level l, and show how the aforementioned structural decomposition
can be leveraged to generate a hierarchy of verification (or synthesis) tasks during the design
flow. When using budgeting in a top-down approach, the designer assigns responsibilities
to the subsystems implementing M , by deriving top-down contracts ClT1, . . . , ClTn for each
of them. These contracts must jointly establish M ’s bottom-up vertical contract Cl+1

B by
construction, and can be derived, for instance, by using synthesis methods. In this example,
we assume that levels l and l + 1 may use, in general, different behavior formalisms, which

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 87

are related by a mapping M. We can then formalize the condition stated above as follows:(
n⊗
i=1

ClHi

)∧(
n⊗
i=1

ClT i

)
�M Cl+1

B , (3.23)

where we highlight the fact that the execution of this cross-layer design step must assume
that the integration of the different subsystems is successful, as prescribed by the horizontal
contracts7. Alternatively, when using a bottom-up approach, the top-down vertical contracts
of M1, . . . ,Mn at level l are given, and we need to establish that the bottom-up contract of
M at level l + 1 is satisfied by checking (3.23). Horizontal contracts can also be used this
time as additional premise in the verification of refinement. The verification step in (3.23)
can be performed in different ways. In particular, a convenient way could be to resort to
a vertical contract, in the sense of Section 3.4.2, and prove that it is consistent. Given
Cl+1
B = (V l+1

B , Al+1
B , Gl+1

B), and M−1(Cl+1
B) := (R−1

M(V l+1
B),M−1(Al+1

B),M−1(Gl+1
B)), such a

vertical contract can be defined as follows:

M−1(Cl+1
B) ∧

(
n⊗
i=1

ClHi

)∧(
n⊗
i=1

ClT i

)
,

which refines Cl+1
B by construction.

In both the top-down and bottom-up approach, the design finally proceeds with the
additional verification steps required for each component Mi to demonstrate that, based on
the expected capabilities of its realization, as expressed by its bottom-up vertical contract,
the functionality of the component as expressed by its top-down vertical contract can be
achieved, i.e.,

∀i ∈ {1, . . . , n} : Cl+1
Bi ∧ C

l+1
Hi � C

l+1
T i . (3.24)

Again, as shown in (3.24), these proofs can take the horizontal contracts of the components
as additional supportive argument. Moreover, they can be performed by leveraging the
vertical contracts Cl+1

T i ∧ C
l+1
Bi ∧ C

l+1
Hi , for each component Mi, and proving their consistency.

3.5 Conclusions

In this chapter, we developed the contract framework at the heart of our methodology for
cyber-physical system design. Starting with the generic A/G contract theory presented in
Section 2.3, we established a link between the theory of relational interfaces and the one of
A/G contracts, shedding light on some of their key features for system specification, early
detection of incompatibilities, and use of abstraction-refinement. Specifically, we proposed a

7We observe that the structural decomposition adopted in (3.23) is just an example. Another alternative
could be to represent the left-hand side contract as

⊗n
i=1(ClHi ∧ ClT i).

CHAPTER 3. A/G CONTRACTS FOR CYBER-PHYSICAL SYSTEM DESIGN 88

natural transformation from interfaces to LTL A/G contracts, and we found that it does not
generally preserve serial composition and interface compatibility. To address this, we pro-
posed a new projection operator on contracts that captures the distinct nature of inputs and
outputs during hiding, thus enabling preservation of the semantics of interface composition
and compatibility. We then formalized the concepts of heterogeneous refinement and vertical
contract to deal with hierarchies of models characterized by both semantic and structural
heterogeneity, i.e. using different formalisms and architectural decompositions. Such an aug-
mented A/G contract framework, fully supporting multi-view and multi-layer design flows,
is used to provide the formal foundations of the methodology developed in Chapter 4.

89

Chapter 4

Platform-Based System Design
Methodology With Contracts

In this chapter we distill the main steps of our methodology, including architecture design and
control design. For each step, we link to formalisms and tools that can be used to formalize
requirements, build component and contract libraries, and map the specification into an im-
plementation. We exemplify our integrated approach with CHASE, a prototype environment
designed to experiment with contract-based requirement formalization and manipulation.

4.1 The Structure of the Methodology

We consider in this thesis a particular case of cyber-physical system (CPS) that incorporates
most, if not all, of the features of general CPS, to help explain the methodology: a control
system, composed of a physical plant, including sensors and actuators, and an embedded con-
troller. The controller runs a control algorithm to restrict the behaviors of the plant so that
all the remaining (closed-loop) behaviors satisfy a set of system requirements. Specifically,
we consider reactive controllers, i.e. controllers that maintain an ongoing relation with their
environment by appropriately reacting to it. Our goal is to design the system architecture,
i.e. the interconnection among system components, and the control algorithm, to satisfy the
set of high-level requirements. The CPS scenario of interest is pictorially represented in
Figure 4.1.

As shown in Figure 4.2, the design methodology consists of two main steps, namely, sys-
tem architecture design and control design. The system architecture design step instantiates
system components and interconnections among them to generate an optimal architecture
while guaranteeing the desired performance, safety, and reliability. Typically, this design step
includes the definition of both the embedded system and the plant architectures. The em-
bedded system architecture consists of software, hardware, and communication components,
while the plant architecture depends on the physical system under control, and may consist
of mechanical, electrical, hydraulic, or thermal components. Sensors and actuators reside at

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 90

Figure 4.1: Pictorial representation of the class of cyber-physical systems considered in this
dissertation.

the boundary between the embedded system and the plant [152]. Given an architecture, the
control design step includes the exploration of the control algorithm and its deployment on
the embedded platform.

The above two steps are however connected. The correctness of the controller needs
to be enforced in conjunction with the assumptions on the plant. Similarly, performance
and reliability of an architecture should be assessed for the plant in closed loop with the
controller.

At the highest level of abstraction, the starting point is a set of requirements, predomi-
nantly written in text-based languages that are not suitable for mathematical analysis and
verification. The result is a model of both the architecture and the control algorithms to be
further refined in subsequent design stages. We place this process in the form of Platform-
Based Design (PBD) and we use extensively the contract framework in Chapter 3 to verify
the design and to build refinements that are correct by construction.

In PBD, the design is carried out as a sequence of refinement steps from a high-level
specification to an implementation built out of a library of components at the lower level.
Section 4.2 deals with requirement formalization and analysis for both architecture and con-
trol design. In Section 4.3, we provide a richer notion of platform component, and detail
the development of the component (and contract) libraries for the methodology. Section 4.4

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 91

Top-level Requirements
(System Contract)

Lower-level Requirements
(System Architecture and Control Algorithm)

Component and
Contract Library

Static/
Extra-functional
(e.g. Reliability,

Energy, Cost)

Discrete Event
and Hybrid

Continuous Time
and Hybrid

CC,syn
(e.g. temporal
logic)

Verification and Simulation-Based
Design Space Exploration (e.g. SIMULINK)

System
Architecture
(e.g. graph) Control Design

(e.g. TULIP)

Control Algorithm

Cver/sim

(e.g. temporal
logic)

CA,syn
(e.g. static,
topological)

Architecture Design
(e.g. ARCHEX)

CS Domain-Specific
Language/Patterns

Figure 4.2: Structure of the proposed contract-based methodology for cyber-physical sys-
tem design, from top-level requirements to the definition of system architecture and control
algorithm (law).

delves into techniques for mapping requirements into an implementation. Finally, we present
our experimental platform to benchmark our approach in Section 4.5 and draw some con-
clusions in Section 4.6.

4.2 Requirement Formalization and Validation

We use contracts to formalize top-level requirements, allocate them to lower-level compo-
nents, and analyze them for early validation of design constraints. Requirement analysis can
often be challenging, because of the lack of familiarity with formal languages among system
engineers. Moreover, it is significantly different from traditional formal verification, where
a system model is compared against a set of requirements. Since there is not yet a system
at this stage, requirements themselves are the only entity under analysis. By formalizing
requirements as contracts, it is instead possible to provide effective tests to check for re-
quirement consistency, i.e. whether a set of contracts is realizable, or whether, in contrast,
facets of these are inherently conflicting, and thus no implementation is feasible. Moreover,
it is possible to exclude undesired behaviors, e.g. by adding more contracts, by strengthening
assumptions, or by considering additional cases for guarantees. Since contracts are abstrac-

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 92

tions of components, their concrete representations are typically more compact than a fully
specified design, as further illustrated in Chapter 6. The above tests can then be performed
more efficiently than traditional verification tasks.

A framework for requirement engineering has been recently developed by leveraging
modal interfaces, an automata-based formalism, as the underlying specification theory [34].
However, to retain a correspondence between informal requirements and formal statements,
declarative, “property-based” approaches using some temporal logic are gaining increasing
interest. They contrast imperative, “model-based” approaches, which tend to be impracti-
cal for high-level requirement validation. In fact, constructing a model to capture all the
behaviors allowed by the requirements often entails considering all possible combinations of
system variables. Moreover, these models are usually hard to parametrize, small changes in
the requirements become soon hard to map into changes in the corresponding models.

As also mentioned in Section 2.3, we follow an approach based on the A/G contract
framework as introduced in Chapter 3, which allows specifying different kinds of requirements
using different formalisms, following both the declarative and imperative styles, to reflect
the different viewpoints and domains in a heterogeneous system, as well as the different
levels of abstraction in the design flow. As shown in Figure 4.2, to facilitate reasoning at the
level of abstraction of requirement engineers, a viable strategy is to drive engineers towards
capturing requirements in a structured form, using a set of predefined high-level primitives,
or patterns, from which formal specifications can be automatically generated. This approach
is similar to the one advocated in the Statemate verification environment [40], within the
European projects SPEEDS and CESAR [65] (linked to automata-based formalisms), or to
the higher-level domain-specific language (DSL) exemplified in Chapter 7.

From a set of high-level primitives, different kinds of contracts can be generated. When
specifying the system architecture, steady-state (static) requirements, interconnection rules,
component dimensions can be captured by static (stateless) contracts, expressed via arith-
metic constraints on Boolean and real variables to model, respectively, discrete and continu-
ous design choices. Then, compatibility, consistency and refinement checking translate into
checking feasibility of conjunctions or disjunction of constraints, which can be solved via
queries to Satisfiability Modulo Theory (SMT) solvers [28, 150] or mathematical optimiza-
tion software, such as mixed integer-linear, mixed integer-semidefinite-positive, or mixed
integer/non-linear program solvers.

When specifying the control algorithm, representing dynamic behaviors becomes the main
concern; safety and real-time requirements can then be captured by contracts expressed using
temporal logic constructs. In particular, linear temporal logic (LTL) [164] can be used to
reason about the temporal behaviors of systems characterized by Boolean, discrete-time
signals or sequences of events (discrete event abstraction in Figure 4.2). Signal temporal
logic (STL) [136] can deal with dense-time real signals and continuous dynamical models
(continuous abstraction in Figure 4.2). Sometimes, discrete and continuous dynamics are
so tightly connected, that a discrete-event (DE) abstraction would result inaccurate, while
a continuous abstraction would turn out to be inefficient, thus calling for a hybrid system
abstraction, mixing discrete and continuous behaviors, such as Hybrid Linear Temporal

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 93

Logic with Regular Expressions (HRELTL) [61] and hybrid automata [11]. We reviewed
the main formalisms and tools for the specification of dynamical systems in Section 2.4 and
Section 2.6. These formalisms and tools can be used to implement the algebra of contracts
and perform requirement analysis within our framework.

4.3 Platform Model-Library Development

In the bottom-up phase of the design process, a library of models of the components and
the related contracts is developed for the plant and the embedded system. As shown in
Figure 4.2, components and contracts are hierarchically organized to represent the system at
different levels of abstraction, e.g. steady-state, discrete-event, and hybrid levels. Typically,
at the highest levels of abstraction, a signal-flow approach is more appropriate to CPS
modeling, as is the case in signal processing, feedback control based on sensor outputs
and actuator inputs, and in systems composed of unilateral devices [202]. In these cases,
relations between system variables are better viewed in terms of inputs and outputs, and
interconnections in terms of output-to-input assignments. Inputs are used to capture the
influence of the environment on the system, while outputs are used to capture the influence
of the system on the environment. At the lowest levels of abstraction, acausal models,
without a-priori distinction between inputs and outputs, may be more suitable to model the
majority of physical (e.g. mechanical, electrical, hydraulic, or thermal) components, which
are generally governed by laws that merely impose relations (rather than functions) among
system variables, and where interconnections mean that variables are shared (rather than
assigned) among subsystems. The A/G contract framework proposed in Chapter 3 can
support both signal-flow and acausal models.

Reflecting the taxonomy of requirements, the model library is also viewpoint and domain
dependent, following a similar approach as in the “rich component” libraries which were
first proposed for automotive embedded systems [67]. At each level of abstraction, compo-
nents are capable of exposing multiple, complementary viewpoints, associated with different
design concerns and different formalisms (e.g. graphs, linear temporal logic, algebraic differ-
ential equations). Moreover, for platform components (and their contracts), models include
extra-functional (performance) metrics, such as timing, energy and cost, in addition to the
description of their behaviors, as further detailed in Section 4.3.1 below.

Components and contracts can then be expressed using the same formalisms introduced in
Section 2.4 and Section 2.6, in the context of requirement analysis and system verification.
As also mentioned in Section 1.1.3, a major challenge in this multi-view and hierarchical
modeling scenario remains to maintain consistency among models and views, often developed
using domain-specific languages and tools, as the library evolves. In this respect, the algebra
of contracts can offer an effective way to incrementally check consistency or refinement among
models. This information can then be stored in the library to speed up verification tasks at
design time, as we will show in Chapter 6. Moreover, the mappings used in the definition of
heterogeneous refinement and vertical contracts in Section 3.4 can also be used to establish

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 94

conditions for an abstract, approximate model, to be a sound representation of a concrete
model, i.e. to define when a model still retains enough precision to address specific design
concerns, in spite of the vagueness required to make it manageable by analysis tools (e.g.,
see the notions of top-down and bottom-up vertical contracts in Section 3.4.2.1).

We briefly reviewed the main languages and tools for system modeling and simulation,
as well as a few attempts at their integration, in Section 2.5. In the following, since PBD is
based on the composition of components while refining the design, we discuss a representation
of a platform component that is richer than the one introduced in Section 2.3.1, in that it also
includes extra-functional attributes in addition to the functional ones. To such a component
we associate a set of properties that the component satisfies, and which are expressed with
contracts. The contracts will be used to verify the correctness of the composition and of the
refinements.

4.3.1 Platform Components

A component M can be seen as an abstraction representing an element of a design, charac-
terized by the following attributes :

• a set of input U , output Y and internal X variables (including state variables); a set
of configuration parameters K, and a set of input, output and bidirectional ports Λ.
Components can be connected together by sharing certain ports under constraints on
the values of certain variables. In what follows, to simplify, we use the same term
variables to denote both component variables and ports;

• a set of behaviors, which can be implicitly represented by a dynamic behavioral model
F(u, y, x, κ) = 0, uniquely determining the values of the output (y ∈ Y) and internal
(x ∈ X) variables given the values of the input variables (u ∈ U) and configuration
parameters (κ ∈ K). Components can respond to every possible sequence of input vari-
ables, i.e. they are receptive to their input variables. Behaviors are generic and could
be continuous functions that result from solving differential equations, or sequences of
values or events recognized by an automata model. In the following, to simplify, we
also use [[M]] to denote the set of behaviors of a component, as defined in Section 2.3.1;

• a set of non-functional (extra-functional) models, i.e. maps that allow computing non-
functional attributes of a component, corresponding to particular valuations of its input
variables and configuration parameters. Examples of non-functional maps include the
performance model P(.) = 0, computing a set of performance figures (e.g. bandwidth,
latency) by solving a behavioral model, or the reliability model R(.) = 0, providing the
failure probability of a component.

Components can be hierarchically organized to represent the system at different levels of
abstraction. A system can then be assembled by parallel composition and interconnection
of components at level l, and represented as a new component at level l + 1. Moreover, by

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 95

exporting multiple models (both functional and extra-functional), which can be expressed
via different formalisms and analyzed by different tools, a component exposes, at each level
of abstraction, multiple, complementary viewpoints, associated with different design concerns
(e.g. safety, performance, reliability).

A contract offers a specification for a component M . To simplify, we associate contracts
with non-parametric components, i.e. components in which the configuration parameters K
are fixed. Then, a contract C for a component M is a triple (V,A,G), where V = U ∪Y ∪X
is the set of component variables, and A and G are assertions, each representing a set of
behaviors over V [33]. A represents the assumptions that M makes on its environment,
and G represents the guarantees provided by M under the environment assumptions. All
the definitions, operations and relations of the A/G contract framework in Section 2.3 and
Chapter 3 will then hold. We provide examples of platform components and models below,
and summarize the notation used for components and contracts in this thesis in Table 4.1
and Table 4.2.

Example 22 (Discrete Event and Hybrid Components for an Aircraft Power System). A
power generator component at the discrete event (DE) level can be seen as a “source” com-
ponent GDE, whose output variable g communicates its healthy (1) or unhealthy (0) status.
FG,DE can be expressed as an automaton or an LTL formula describing the time behavior of
g. RG provides instead the failure probability pG as a function of the flight duration.

DE representations of generators, contactors, buses, rectifiers and loads can be composed
and interconnected to build a DE representation PDE of the power system plant. At a lower
abstraction level, a hybrid representation PH of the plant can instead be assembled as shown
in Figure 1.6 (g). FP,H includes components described by algebraic differential equations.
A trace obtained by simulating FP,H includes three-phase voltage and current signals whose
behaviors can be specified by STL formulas.

The DE representation of the controller MDE includes as environment (input) variables
the health status of generators, APUs, and rectifier units. Controlled (output) variables
denote the contactors’ status, and can each take values of open (0) or closed (1). Under
the assumption of a synchronous system, the timing viewpoint of MDE can be just captured
by the clock period or reaction time Tr, which can be used as a configuration parameter to
describe a family of possible controller implementations.

4.4 Mapping Specifications to Implementations

In the absence of a unified framework for automated synthesis of CPS simultaneously subject
to a heterogeneous set of requirements, we reason about different aspects or representations of
the design by using specialized analysis and synthesis (mapping) frameworks that can operate
with different formalisms. During design space exploration, both horizontal and vertical
contracts can be used to define both the specification and the implementation platforms,
thus playing an essential role in checking or enforcing that an aggregation of components is
compatible, and that the implementation is a correct refinement of the specification.

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 96

Table 4.1: Notation: Platform components and contracts.

Symbol Definition
M Generic platform component
U Input variable set
U Input variable domain
Y Output variable set
Y Output variable domain
X Internal (and state) variable set
X Internal variable domain
S = U ∪ Y ∪X Component (or system) variable set
S, dom(S) Component (or system) variable domain
K Configuration parameter set
K Configuration parameter domain
Λ Port set
L Port domain
F(u, y, x, κ) = 0 Behavioral model
[[M]] Set of component behaviors
P(u, y, x, κ) = 0 Performance model
R(u, y, x, κ) = 0 Reliability model

C = (V,A,G) Contract
V Contract variable set
V Contract variable domain
A Contract assumptions (set of behaviors)
G Contract guarantees (set of behaviors)
M Contract implementation (component)
E Contract legal environment (component)

At each abstraction level, mapping to a lower level can be performed by either leveraging
a synthesis tool, or by solving an optimization problem that uses constraints from both the
specification and the implementation layers to evaluate global tradeoffs among components.
Accordingly, we denote as Csyn a contract that can be used as input of a specialized synthe-
sis tool, and as Copt a contract that serves as a conjunction of constraints in a more generic
optimization problem. Copt can be further characterized as Cver ∧ Csim, where Cver denotes
a contract whose satisfaction can be formally verified, e.g. using the tools introduced in
Section 2.6, while Csim refers to a contract that can only be checked by simulation. In the
following, we first provide an overview of optimization-based mapping for design space explo-
ration; then, we give examples of mapping techniques combining synthesis and optimization
to perform the main design tasks in our methodology.

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 97

Table 4.2: Notation: Discrete Event (DE) and Hybrid abstractions.

Discrete Event (LTL) Abstraction

Symbol Definition
Σ Generic system (component)
[[Σ]] System behavior set
S = E ∪D System variable set
S, dom(S) System variable domain
s System variable valuation (state)
σ = s0s1s2 . . . System behavior
E Uncontrolled (environment) variable set
E , dom(E) Environment variable domain
e Environment variable valuation
D Controlled variable set
D, dom(D) Controlled variable domain
d Controlled variable valuation
CLTL = (S, ϕe, ϕe → ϕs) LTL contract

Hybrid Model (STL) Abstraction

Symbol Definition
u(t) (u(t)) Input signal
y(t) (y(t)) Output signal
x(t) (x(t)) Internal (state) signal
s = (u,y,x) (s(t) = {u(t), y(t), x(t)}) System trace or behavior
κ Configuration parameter vector
F(u,y,x,κ) = 0 Behavioral model
CSTL = (S, ϕe, ϕe → ϕs) STL contract

4.4.1 Optimized Mapping and Design Space Exploration

In Section 2.7 we have discussed the challenges posed by the synthesis of a correct-by-
construction system implementation, e.g. a controller, directly from a high-level formal spec-
ification (e.g. CC,syn in Figure 4.2), and the tools developed over the years to address these
challenges. Whenever correct-by-construction synthesis from requirements results into in-
tractable problems, it is however possible to cast the design exploration problem, in its more
general terms, as an optimization problem, where the system specifications are checked by
a formal verification engine or by monitoring simulation traces.

For instance, let Csim = (S, φe, φe → φs) be a contract that must be checked by simu-
lation, where φe and φs are temporal logic formulas. Then, given an array of costs C, the
mapping problem can be cast as a multi-objective robust optimization problem, to find a set
of configuration parameter vectors κ∗ that are Pareto optimal with respect to the objectives
in C, while guaranteeing that the system satisfies φs for all possible traces s satisfying the

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 98

environment assumptions φe. More formally,

min
κ∈K,π∈Π

C(κ, π) (4.1)

s.t.

F(s, κ) = 0

s |= φs(π) ∀s s.t. s |= φe(π)

where π is a set of formula parameters that can be used to capture degrees of freedom that are
available in the system specifications, and whose final value can also be determined as a result
of the optimization process. For a given parameter valuation κ′, s′ is shorthand notation
for s′(t) = (u′(t), y′(t), x′(t)), the set of traces of input, output and internal signals (which
are also represented as sets of traces over time t ∈ R≥0) that are obtained by simulating the
behavioral model F(.), defined in Section 4.3.1. A multi-objective optimization algorithm
with simulation in the loop can then be implemented to find the Pareto optimal solutions κ∗.
While this may be expensive in general, it becomes the only affordable approach in many
practical cases.

The mapping methodology above can also encompass contracts of the form Cver =
(S, φe, φe → φs) whose satisfaction can still be efficiently verified via formal methods, even
if the synthesis problem is intractable. Moreover, it can be used to perform joint design
exploration of the controller and its execution platform, while guaranteeing that their spec-
ifications, captured by vertical contracts, are consistent. Typically, the controller require-
ments are defined in terms of several aspects that are related to the execution platform,
including the timing behavior of the control tasks and of the communication between tasks,
their jitter, the accuracy and resolution of the computation, and, more generally, require-
ments on power and resource consumption. These requirements are taken as assumptions
by the controller, which in turn provides guarantees in terms of the amount of requested
computation, activation times and data dependencies. As mentioned in Section 3.4.2, the
association of functionality to architectural services to evaluate the characteristics (such as
latency, throughput, power, and energy) of a particular implementation by co-simulation of
both a functional model and an architectural model of the system is supported by frameworks
such as Metronomy.

Finally, we observe that formal verification and synthesis algorithms usually operate on
abstract and approximate representations of the design, which are only valid under certain
assumptions. Some of these assumptions might not be discharged until high-fidelity models
are considered. Therefore, a final set of simulations is often required to discharge any residual
assumptions from previous design steps, and verify the overall design correctness, by mon-
itoring the satisfaction of (some of) the contracts on high-fidelity models. Clearly enough,
only by constructing appropriate abstractions at the early stages of the design process can
we drastically reduce the number of final simulations and tests at the end.

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 99

4.4.2 Architecture Design

In the design of the system architecture, CA,syn in Figure 4.2 includes the specification con-
tract, e.g. expressed in terms of linear (or quadratic) arithmetic constraints on Boolean and
real variables, as well as the steady-state models of the architecture, e.g. represented as
constraints on a graph. Then, an implementation can be directly synthesized via optimized
mapping, by solving a mixed integer-linear (or quadratic) program to minimize a cost func-
tion (e.g. component number, weight, cost, energy) while satisfying the constraints above.
As shown in Chapter 5, the formulation above encompasses a variety of requirements, such
as connectivity, safety, reliability, and energy balance. These requirements are mapped on
a representation of the system architecture, e.g. in terms of a labelled graph, where nodes
represent the (parametrized) components and edges represent their interconnections. Based
on the specific shape of the resulting constraints, the mapping problem can then be solved
by using either a “lazy” or an “eager” paradigm [92, 150].

The ArchEx framework introduced in Chapter 5 instantiates both of these paradigms to
efficiently handle reliability requirements. Specifically, we implement two algorithms to de-
crease the complexity of exhaustively enumerating all failure cases on all possible graph con-
figurations, namely, Integer-Linear Programming Modulo Reliability (ILP-MR) and Integer-
Linear Programming with Approximate Reliability (ILP-AR). ILP-MR “lazily” combines
an ILP solver with a background exact reliability analysis routine. The solver iteratively
provides candidate configurations that are analyzed and accordingly modified to satisfy the
reliability requirements. Although exact reliability analysis is an NP-hard problem, the idea
is to perform it only when needed, i.e. a small number of times, and possibly on smaller
graph instances. Conversely, ILP-AR “eagerly” generates a monolithic problem instance by
leveraging approximate reliability computations that can still provide estimates to the cor-
rect order of magnitude, and with an explicit theoretical bound on the approximation error.
The synthesized architecture can then serve as a specification for the control design step.

4.4.3 Control Design

For a given architecture, the controller requirements can be defined as a contract CC , where
the assumptions AC encode the allowable behaviors of the environment (including the phys-
ical plant) and the guarantees GC encode the desired behaviors of the closed-loop system.
Chapter 6 introduces two paradigms for systematic, contract-based design of control strate-
gies, which merge optimized mapping methods with pre-existing control design and synthesis
techniques.

The first paradigm, denoted as Reactive Synthesis-Based Optimized Control Mapping
(RS-OCM), enables the generation of hierarchical and distributed controller architectures
by combining reactive synthesis from linear temporal logic contracts with simulation-based
design space exploration, including monitoring of signal temporal logic contracts from sim-
ulation traces. In this paradigm, CC can be expressed as the conjunction between an LTL
contract CLTL (CC,syn in Figure 4.2) and an STL contract CSTL (CC,sim). The STL formulas

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 100

in CSTL can either be obtained by heterogeneous refinement of a subset of LTL formulas in
CLTL or generated anew to capture design aspects related to the plant and the hardware
implementation of the control algorithm, which cannot be expressed using the Boolean, un-
timed, or DE abstractions offered by LTL. CLTL ∧ CSTL is then a vertical contract for the
controller, since CLTL and CSTL refer to two different controller representations, possibly
involving different viewpoints (e.g. functional and timing).

To guarantee the consistency of CLTL ∧ CSTL and refine it towards an implementation,
the controller design process consists of two steps:

1. Reactive Synthesis. As shown in Figure 4.2, CLTL is first used together with DE models
of the plant components (also described by LTL formulas) to synthesize a reactive
control protocol in the form of one (or more) state machines using reactive synthesis
techniques, as described in Section 2.7.1. A distributed (global) controller can also be
built, in this phase, by composition from a library of pre-synthesized (local) controllers,
using optimized mapping techniques. The resulting high-level controller will satisfy
CLTL by construction.

2. Optimized Mapping. The functional model of the synthesized controller is embedded
into a high-fidelity hybrid model of the system, including an acausal representation of
the plant. The entire system is simulated and the satisfaction of CSTL is assessed by
monitoring simulation traces, while optimizing a set of system parameters and costs,
as described in Section 4.4.1. The resulting optimal controller and plant configurations
are returned as the final design, as shown in Figure 4.2.

We observe that the joint execution of the controller with the plant in the mapping step
effectively implements the synchronization mechanism which is instrumental in: (i) checking
the consistency of the vertical contract, (ii) discharging the timing assumptions made during
the previous design steps, and (iii) ultimately verifying the satisfaction of both the functional
and timing viewpoints. However, mapping via simulation may be expensive to perform
for certain kinds of requirements; reactive synthesis is then key to make it affordable, by
guaranteeing that several functional, safety and reliability requirements are already satisfied
by construction.

The second paradigm, denoted as Programming-Based Optimized Control Mapping (P-
OCM) uses, instead, a formalization of the design requirements and the plant model in
terms of arithmetic constraints over real numbers, and formulates the control problem as
an optimization problem that is solved within a receding horizon approach to determine a
correct control policy that can also optimize some performance metrics. It is then possible to
extend our contract-based approach to the design of model predictive control algorithms [84].

Specifically, in the P-OCM paradigm, we leverage a discrete time abstraction of the con-
tinuous behaviors of the system, and express CC using either first order difference equations
involving the component variables and parameters (time varying properties), or arithmetic
constraints on real variables that must hold at each time step (time invariant properties). The

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 101

1. No AC bus shall be
simultaneously powered by
more than one AC source.
2. The aircraft electric
power system shall provide
power with the following
characteristics: 115 +/- 5 V
(amplitude) and 400 Hz
(frequency) for AC loads and
28 +/-2 V for DC loads.
3. The failure probability at
an essential load must be
less than 10-9 during a
mission.

4. DC buses shall not be
unpowered for more than
50 ms.

Pattern-
Based

Contract
Specification

Language
Signal Temporal Logic
Contracts (e.g. Real-
Time Performance)

Signal Temporal Logic
Contracts (e.g. Real-
Time Performance)

Linear Temporal Logic
Contracts (e.g. Safety)
Linear Temporal Logic
Contracts (e.g. Safety)

Mixed Integer-Linear
Contracts

(e.g. Steady-state,
Topological)

Mixed Integer-Linear
Contracts

(e.g. Steady-state,
Topological)

…

Figure 4.3: CHASE uses a contract specification language based on patterns to capture
system requirements and facilitate their translation into formal specification languages for
their analysis and validation.

algebra of contracts can then be implemented by simply combining constraints via conjunc-
tion or disjunction to express, respectively, intersections or unions of behaviors. Component
models can also be developed by adopting the same discrete-time abstractions, i.e. by using
difference equations for behavioral models, and polynomial constraints for performance and
cost models. An optimal control problem can then be formulated aiming at minimizing the
cost over a time horizon H, while satisfying the system dynamics and the contracts. Such
a formulation, to be solved in a receding horizon fashion, is returned as the final design.
Examples of this approach will be provided in Chapter 6 and Chapter 7, where we propose
Holms, a hierarchical, optimal load management scheme for aircraft power systems based
on an efficient mixed integer-linear program formulation.

4.5 CHASE: An Experimental Platform for

Contract-Based Requirement Engineering

As shown in Figure 4.3, our methodology uses different formalisms to formalize and manip-
ulate different kinds of requirements at different stages of the design process. As discussed
before, we use automata or temporal logic constructs to express safety requirements for
control design; we use arithmetic constraints on Boolean variables, to express structural re-
quirements for architecture selection; we use linear or nonlinear real constraints on models
governed by integro-differential equations, to express real-time requirements. Our goal is

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 102

Figure 4.4: Screenshot showing the set of patterns for system specification in CHASE.

to orchestrate a set of analysis and synthesis tasks involving this heterogeneous set of for-
malisms by leveraging an appropriate combination of verification, synthesis, and simulation
tools. Examples of tools may include ArchEx, used to reason about mixed integer-linear
constraints, TuLiP, used for synthesis from LTL specifications, Simulink and Breach,
used for monitoring STL specifications from simulation traces.

To experiment with contract-based requirement engineering and compositional design
methodologies, as the one described in this chapter, we have developed the prototype frame-
work CHASE (Contract-Based Heterogeneous Analysis and System Exploration). CHASE
leverages A/G contracts expressed using logic specification languages and a set of back-end
synthesis and verification tools to analyze requirements and help reason about their correct-
ness, completeness, and consistency.

As represented in Figure 4.3, CHASE adopts a structured front-end language for con-
tract specification based on patterns to facilitate requirement capture and formalization. As
described in Section 4.2, patterns can be regarded as templates, which can be easily used by
system and requirement engineers, typically unfamiliar with formal specification languages,
to encode their requirements. Translation into a set of mathematical constraints or logic
formulas can then be done automatically. Figure 4.4 shows the set of patterns used to
capture and translate requirements into LTL A/G contracts, which are supported by the

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 103

Figure 4.5: Given a set of environment variables, system variables and requirements, CHASE
supports LTL satisfiability checks (“Compatibility” in the screenshot) and LTL realizability
checks (“Synthesize” in the screenshot).

current Python implementation1. CHASE provides a syntax-constrained editor to declare
environment and system variables as well as the list of requirements using a combination of
predefined primitives. The conjunction of requirements is internally converted into a contract
which can be given as an input to different analysis and synthesis tools.

As shown in Figure 4.5, CHASE provides effective tests to check for requirement con-
sistency, i.e. whether a set of contracts is realizable, or whether, in contrast, facets of these
are inherently conflicting, and thus no implementation is feasible. To do so, it implements
the algebra of LTL A/G contracts, as summarized in Section 2.4.1.4, by using the NuSMV
model checker [59] to formulate and solve LTL satisfiability problems (e.g. used for refine-
ment checking) and synthesis tools, such as TuLiP [209] and Acacia+ [44], to check for
requirement realizability. It is then possible to interactively exclude undesired behaviors in a
design, e.g. by adding more contracts, by strengthening assumptions, or by considering addi-
tional cases for guarantees. Finally, it is possible to incorporate higher-level domain-specific
languages, as the one proposed in Chapter 7.

1A similar approach was proposed in the past for robotic motion planning applications (http://ltlmop.
github.io/)

http://ltlmop.github.io/
http://ltlmop.github.io/

CHAPTER 4. PLATFORM-BASED METHODOLOGY WITH CONTRACTS 104

While still a prototype tool, CHASE offers already a meaningful example of how contracts
can serve as a unifying formal framework for system design, by effectively coordinating
different verification and synthesis tools to enable rigorous analysis of requirements including
complex behaviors, and in a way that is easily accessible to system engineers.

4.6 Conclusions

We argued that system-level design of complex cyber-physical systems can be seen as a
layered process with three main articulation points. After mapping a set of steady-state,
structural, and reliability requirements into a high-level system architecture (architecture de-
sign step), a control design step is used to map functional, safety, and reliability requirements
into a lower-level, discrete, dynamical representation of the system. Real-time performance
requirements are finally mapped into higher-fidelity hybrid models by a simulation-based
optimization step, which is also used to verify all the assumptions made in the earlier de-
sign stages. The above steps are all mediated by A/G contracts, and can be supported
by an appropriate mix of formalisms and tools for requirement formalization, model library
development, and optimized mapping. A proof-of-concept framework, CHASE, shows how
contracts can effectively be used to coordinate different tools and enable rigorous analysis of
complex behaviors in a way that is practically usable by system engineers. The remainder
of the thesis delves into the single design steps and the results of their application to our
case studies.

105

Chapter 5

Optimized Selection of
Cyber-Physical System Architectures

This chapter deals with the design of safety-critical cyber-physical system architectures, by
casting the design problem in terms of mapping of a higher-level “application” contract into
a lower-level “implementation” contract. Mapping is formulated as a mixed integer-linear
optimization problem on a reconfigurable graph which models the architecture, aiming at
minimizing a cost function, while guaranteeing a desired bound on the reliability. To decrease
the cost of generating symbolic probability constraints by exhaustive enumeration of failure
cases on all possible graph configurations, we propose an efficient method to approximate
the system reliability with an explicit bound on the estimation error. We then introduce
the Integer-Linear Programming with Approximate Reliability (ILP-AR) and Integer-Linear
Programming Modulo Reliability (ILP-MR) algorithms to solve the mapping problem, and
demonstrate their effectiveness on the selection of aircraft electric power system architectures.

5.1 Introduction

Informally, a cyber-physical system (CPS) architecture can be seen as an interconnection of
heterogeneous components assembled to perform a certain function. In a typical scenario,
software components running on a hardware computing platform are connected in feedback
with physical processes to form a large, distributed, control system subject to tight cost,
safety, and reliability constraints. As mentioned before, the design of such a network is a
challenging task, usually carried out based on pre-existing implementations and heuristic
approaches, which hardly scale to the complexity of today’s systems. System-level design
exploration is indeed the domain of experienced architects, mostly relying on their accrued
knowledge and a set of heuristic evaluations to take risky decisions. In fact, the result of ad
hoc design practices is often at the origin of unsustainable delays, lengthy redesign cycles,
and severe financial consequences.

In addition to the increasing complexity of these systems, a major obstacle to the devel-

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 106

opment of effective design tools for system-level architecture exploration is the heterogeneity
of the design requirements, often expressed using different mathematical formalisms, and
hard to be accounted for at once. It is, therefore, highly desirable to devise effective abstrac-
tions that enable co-design and optimization of CPS architectures under several, possible
conflicting concerns, while guaranteeing design correctness and fault tolerance. In this chap-
ter, we propose an optimization-based methodology for the selection of CPS architectures
whose reliability is a function of the interconnection structure. Our goal is to minimize
the overall system cost (e.g. number and weight of components) while guaranteeing that an
upper bound on system failure probability is met. The contributions of this chapter can be
summarized as follows:

• We provide a general graph representation of an architecture that allows an efficient
casting of the design problem as a mixed integer-linear program (MILP), capable of
modeling a variety of system requirements, such as connectivity, safety, reliability and
energy balance.

• We propose an approximate, compositional, reliability computation method that alle-
viates the burden of exhaustively enumerating all failure cases on all possible graph
configurations to provide a symbolic expression for the system failure probability as a
function of the component failure probabilities and the interconnection structure. We
denote this approximate computation method as approximate reliability algebra. While
exhaustive enumeration has exponential complexity in the worst case, and results in
the generation of nonlinear, non-convex, polynomial constraints, the approximate reli-
ability algebra can instead generate linear reliability constraints, albeit with the intro-
duction of auxiliary variables. However, the number of the additional variables (and
associated auxiliary constraints) is polynomial, as opposed to exponential, in the size
of the graph. Moreover, the algebra is particularly suitable for system-level design
exploration, in that it generates estimations to the correct order of magnitude, and
with an explicit, theoretical bound on the approximation error.

• We propose two algorithms to solve the optimal architecture selection problem: Integer-
Linear Programming with Approximate Reliability (ILP-AR) and Integer-Linear Pro-
gramming Modulo Reliability (ILP-MR). ILP-AR eagerly formulates a tractable, mono-
lithic problem instance using the approximate algebra to generate the reliability con-
straints. Conversely, ILP-MR lazily combines an integer linear programming (ILP)
solver (without reliability constraints) with an exact reliability analysis routine. The
solver iteratively provides candidate configurations that are analyzed and accordingly
modified, only when needed, to satisfy the reliability requirements. The approximate
algebra is used by ILP-MR to generate additional constraints that can prune a large
number of “conflicting” architecture configurations out of the search space whenever a
reliability constraint is violated, thus dramatically decreasing the number of iterations
and calls to the exact analysis routine.

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 107

• We implement the algorithms above in a prototype framework for CPS architectural
exploration, ArchEx, and compare their performance on the design of architectures
for aircraft electric power distribution.

The rest of the chapter is organized as follows. After a brief overview of related work in
Section 5.2, we present the problem formulation in Section 5.3 and the approximate reliabil-
ity computation method in Section 5.4. Section 5.5 and Section 5.6 introduce, respectively,
the ILP-AR and ILP-MR algorithms, while Section 5.7 reports on their application to the
power system case study. Lastly, conclusions are drawn in Section 5.8.

5.2 Related Work

In spite of the proliferation of techniques and tools for system reliability assessment, inter-
operability with automatic design exploration and optimization frameworks is still an open
problem. In addition to the complexity of exact network reliability analysis, which is an
NP-hard problem [130], techniques such as Fault Tree Analysis (FTA) or Reliability Block
Diagrams (RBD) often rely on a set of system abstractions, which are hard to incorporate
into system design flows [108]. For instance, in FTA, causal chains leading to some failure
are depicted as a tree, inherently describing a hierarchical breakdown. However, in FTA,
decomposition into modules mostly relates to the hierarchy of failure influences rather than
to the actual system architecture. Therefore, the integration of fault trees with other system
design models, or the automatic generation of fault trees from design artifacts, is not directly
possible.

Differently than previous work, mostly focused on efficient methods for reliability anal-
ysis, the main focus of this chapter is on exploring approximate reliability computation
techniques for architecture synthesis. For this purpose, we propose to evaluate reliability
directly from the system structure, by associating a compact, albeit approximate, reliability
model to each system component and interconnection, as also proposed by Kaiser et al. [108].
This compositional approach results into a practical abstraction to concurrently optimize for
reliability and cost and guide design decision in a quantitative way at the system level.
The ILP-AR algorithm aims to efficiently solve a single optimization problem, albeit of a
large size, to provide an approximate solution to the architecture selection problem, without
expensive calls to an exact reliability analysis function. On the other hand, instead of for-
mulating a large, “flat” optimization problem, the ILP-MR algorithm avoids the expensive
generation and manipulation of symbolic reliability constraints in the first place, via an iter-
ative approach inspired by the lazy ILP Modulo Theory [92] or Satisfiability Modulo Theory
(SMT) [28, 150] paradigms.

Helle et al. [93] have also proposed an approximate method for reliability calculations.
However, our algebra is richer, since it accounts for the number of redundant paths im-
plementing a certain function as well as the number of components of the same type that
are actually used in these paths, as defined in Section 5.3. As a result, we can relax the

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 108

simplifying assumption made by Helle et al., that any used component is either maximally
redundant (i.e., it participates in just one path) or essential (i.e., it participates in all paths).

5.3 Problem Formulation

Consistently with the methodology described in Chapter 4, we assume that a design is assem-
bled out of a library (collection) L of components and contracts. As discussed in Section 4.3.1,
each component is associated with a set of attributes, which are used to capture both its
functional and extra-functional properties, such as energy, performance, and cost. Compo-
nents can be connected via terminals (also denoted as ports in Section 4.3.1) and terminal
variables. At this level of abstraction, terminals are logical in nature. Input terminals are
used to receive a signal or the value of a terminal variable; output terminals are used to send
a signal or assign a value of a terminal variable. Contracts define, for each component and
its environment, how terminals are connected and terminal variables are assigned. For the
purpose of the architecture selection framework in this chapter, we can neglect the compo-
nent dynamics, and express their behaviors in terms of stateless input-output relations. The
same formalism is then used to define contract assumptions and guarantees. Specifically,
each component in L is parametrized by a set of terminal variables W = U ∪ Y , and a
type, defining its functionality (role or task) in a system, as detailed below. Finally, each
component is characterized by a cost c (cost model), and a failure probability p (reliability
model). We can then formalize the notion of architecture as follows.

Definition 5.3.1 (Architecture). A system architecture is a directed graph G = (V,E),
where V is a set of nodes and E is a set of edges. Both nodes and edges represent system
components. Edge eij ∈ E denotes the interconnection from vi to vj (i, j ∈ {1, . . . , |V |}, |V |
being the cardinality of V)1.

In practice, every node and edge in an abstract architecture can be mapped to a library
element that implements it; for instance, edges can be conveniently associated with switches
to denote interconnections that are selectively activated. Nodes and edges can then be
labeled with the same attributes as the associated library elements. A template T is an
architecture, in which the number and types of nodes are fixed, while the interconnection
structure is variable and can be reconfigured. In a template, edges can be represented by a set
of Boolean variables E = {eij}, each denoting the presence or absence of an interconnection.
An assignment over E defines an architecture topology. We then use the edge variables E of a
template to formulate a topology selection problem. An example of architecture template is
shown in Figure 5.1 (a), where different colors denote different types of nodes. Unconnected
nodes are template elements which are not used in the final topology, determined by a specific
assignment over E.

An architecture is assembled to perform one or more functions. We formalize this notion
with the concept of functional link, involving a set of paths from source nodes to sink nodes,

1In the following, we also use evi,vj to denote eij .

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 109

(a) (b)

Figure 5.1: (a) Architecture template example: unconnected nodes represent components
that are not used in the final topology; (b) Architecture analyzed in Example 24.

which are available to perform a certain function. We also assume that the link (edge)
configuration can be modified by activating or deactivating paths from sources to sinks to
react to component failures. The reliability of an architecture is then determined by its
topological structure and the redundancy in the paths of the functional link. To define a
functional link, we first introduce a partition on T , with which we associate the notion of
component type as follows.

Definition 5.3.2 (Graph Partition and Component Type). A partition Π = {Π1,Π2, . . . ,Πn}
over the set of nodes V of T is a set of nonempty subsets of V such that V is a disjoint
union of these subsets. We say that two nodes a and b have the same type, written a ∼ b,
when they belong to the same set in Π. If a is in Πi, then we also say that its type is i.

We also recall that a walk µ(va, vb) of a graph G is a sequence of nodes {n0, . . . , nk} such
that n0 = va, nk = vb and enini+1

∈ E for each i ∈ {0, . . . , k}. When all nodes in µ are
distinct, we say that µ is a (simple) path, and write |µ| to denote the length of µ. Let Π1

and Πn be the subsets of V including, respectively, all sources and sinks. Then, a functional
link Fi is the set of paths from any source in Π1 to a sink vi ∈ Πn that are used to perform
an essential system function, on which a reliability requirement is given; in practice, such
a function may consist in transferring data or energy from a source to the sink through a
sequence of input-output links.

Example 23 (Functional Link). In Figure 5.1 (a) nodes of different colors represent different
types. Source nodes at the top are in green, while magenta is used for sinks (at the bottom).
The set of paths from source nodes to node L1 is a functional link, given by {{G1, B2, R1,

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 110

D2, L1}, {G1, B2, R3, D2, L1}, {G2, B2, R1, D2, L1}, {G2, B2, R3, D2, L1}, {G4, B3, R4,
D3, L1}, {G4, B3, R5, D3, L1}}.

Based on the definitions above, we cast the architecture selection problem as an optimiza-
tion problem. Given a library L and a template T , our goal is to derive a configuration that
satisfies a set of interconnection and reliability requirements, while minimizing the cost and
the complexity (number of components) of the overall network. The set of Boolean variables
E will then include our decision variables. Based on the final assignment over E, some of the
edges and nodes in T will be selected to generate an optimal architecture; unnecessary nodes
and edges will instead be pruned away to minimize the overall cost. In our contract-based
framework, the architecture is specified as an aggregation of contracts from the library L,
encoding some of the interconnection requirements, and which we denote as implementation
contract CT . The top-level requirements (both interconnection and reliability) are specified
by a system-level application contract CA. The refinement (mapping) between CA and CT is
then modeled as the vertical contract CA ∧ CT , given by the conjunction of the implementa-
tion and application contracts. Therefore, we are interested in an optimal edge configuration
e∗ subject to the constraint that CA ∧ CT is consistent, i.e. there exists an implementation
satisfying both the guarantees of CA ∧ CT in the context of their assumptions. In the follow-
ing, we provide example formulations for the objective function and the Boolean arithmetic
optimization constraints.

5.3.1 Objective Function

Let e be the adjacency matrix of T = (V,E), i.e. eij = 1 if there is one connection from vi to
vj, and 0 otherwise. Then, the objective function can be expressed as the sum of the costs
of all components (associated with both nodes and edges) used in the topology, i.e.

|V |∑
i=1

δici +

|V |∑
i=1

|V |∑
j=i+1

(eij ∨ eji)c̃ij (5.1)

where ci and c̃ij are the costs associated with node i and edge eij, respectively. δi is a
binary variable equal to one if the node is instantiated in a configuration (topology) and

zero otherwise. We express δi in terms of the edge variables as δi =
∨|V |
j=1(eij ∨ eji), meaning

that δi is one if there exists at least an edge (either ingoing or outgoing) between vi and
any other node in the graph (we assume eii = 0 for all i, and include it as an assumption in
the contract of each node). Moreover, we use (eij ∨ eji) when computing the cost associated
with an edge, to avoid double counting the contribution of a component implementing a
bidirectional interconnection. If two components with different costs are actually used to
implement a bidirectional link, (5.1) can be modified accordingly.

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 111

5.3.2 Interconnection Constraints

A set of interconnection constraints originates from the component (horizontal) contracts in
L and are used to enforce legal connections among components. For instance, the behavior
of a component implementing node vi may be defined by an assertion, such as (yi = κi),
meaning that vi assigns the value κi to its output yi. Then, the contract for vi may guarantee
this behavior under the assumption that there is no self-loop, i.e. that its output is not
connected to its input via an edge component. We then include the constraint eii = 0 in
the optimization to require that the assumptions of vi get discharged by the guarantees of
its context (the other nodes and edges in the graph) for the composite contract CT to be
compatible.

Another set of interconnection constraints derives instead from the application contract
CA, formalizing the requirements on the functional link and its set of paths to guarantee its
correct operation. For example, let D, L, and B be subsets of V . Then, we can prescribe
that there exists at least (most) one connection from a node in L and a node in D as follows:

|D|∑
i=1

eljdi ≥ (≤) 1 ∀ j ∈ N : 1 ≤ j ≤ |L|, (5.2)

where eljdi is the edge from node lj to node di, and the inequality turns into an equality
when one and only one connection is admitted. Moreover, we can state that if there exists
an interconnection from any node in L to a node dj in D, then dj must be connected to at
least one node in B, using a constraint of the form:∨

1≤i≤|L|

elidj ≤
∨

1≤k≤|B|

edjbk ∀ j ∈ N : 1 ≤ j ≤ |D|. (5.3)

A third category of interconnection constraints can be used to enforce conservation laws
or balance equations in physical systems, e.g. by requiring that the maximum power provided
by a source in T is greater than or equal to the maximum power required by the connected
sinks. Let d be a node in the graph, which is neither a source nor a sink. Let B be the set
of direct predecessors of d, and L be the set of its direct successors. Then, a “local” balance
equation at the terminals of d can be written as

|B|∑
i=1

xbiebid ≥
|L|∑
j=1

yljedlj , (5.4)

where xbi is the input value imposed by bi and ylj is the output value assigned to lj. Such
a “local” assertion can be used, for instance, to express the guarantees of d. Alternatively,
given a set of sources G and sinks Z, we can directly write a “global” balance equation for
each source node as

ygi ≥
|Z|∑
j=1

xzjηgizj ∀ i ∈ N : 1 ≤ i ≤ |G|, (5.5)

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 112

where the path variable ηgizj = 1 if there exists a path from source gi to sink zj, and 0
otherwise. Such path variables can then be related to the edge variables through a set of
arithmetic constraints, as discussed in Section 5.5 and Lemma 5.5.1. Assertions as in (5.5)
can be used to express the guarantees of a source node.

We have grouped together the set of constraints above, since they all generate linear
arithmetic expressions in the decision variables, or include logical operations (conjunctions
and disjunctions) that can be linearized with standard techniques [203]. The situation is
different for reliability constraints.

5.3.3 Reliability Constraints

A typical reliability requirement prescribes that the failure probability of a sink, i.e. the
probability that a sink gets disconnected from a source because of failures, should be less
than a desired threshold. Therefore, to formulate a reliability constraint, as a part of CA,
we need to compute the probability of composite failure events in the system, starting from
the failure probabilities of the components. Specifically, we denote as system failure Ri an
event in which there is no possible connection between any of the available sources and a
sink i, i.e. when the functional link Fi breaks, and as reliability level ri the probability of
Ri. Practically, the above notion of failure models the interruption of any information or
energy transfer to an essential portion of the system. We assume that when a component
fails, it cannot be recovered, and the adjacent links are no longer usable. Moreover, failures
in different components are independent.

Let Pi be the event that component i fails (self-induced failure). Then, the event Ri of
a system failure affecting component i can be recursively computed as follows

Ri = Pi ∪
⋂

1≤j≤|V |,eji 6=0

Rj, (5.6)

where eji is jth-row, ith-column element of the adjacency matrix e of T . In other words,
component i fails when either a failure is generated in itself, or when failures are induced
through its predecessors. A symbolic constraint for ri can then be generated using (5.6) to
enumerate all possible failure events while traversing T from node i to the sources, and then
imposing ri ≤ r∗ to express the desired reliability requirement. However, such an exact com-
putation, based on the enumeration of all possible component failure events, has exponential
complexity on a fixed graph configuration [130]. The problem is further exacerbated when
compiling a symbolic expression for a reconfigurable graph, since, in general, enumerating
all possible configurations has also exponential complexity. Finally, the resulting reliabil-
ity constraint would still include a nonlinear polynomial function of the decision variables
(a sum of products of edge variables), and would either require a mixed integer-nonlinear
programming (MINLP) solver, or a linearization step using a set of auxiliary variables and
associated constraints that is linearly proportional to the number of products of Boolean
terms in the original expression [203]. To overcome the above complexity issues, we propose

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 113

an approximate, more efficient, reliability computation method, and two algorithms for the
solution of the optimal architecture selection problem based on it.

5.4 Approximate Reliability Computation

We propose an approximate algebra, where components contribute to the system failure
probability based on their degree of redundancy, which is defined based on the notions of
functional link and component type in Section 5.3. The system failure probability is then
estimated as the sum of all the components’ contributions. In this respect, the proposed
reliability measure is additive and compositional.

We recall that any path in a functional link Fi consists of an interconnection of nodes,
each having a role or performing a sub-task defined by its type. Nodes of the same type can
be interchanged and introduce redundancy in the system architecture. We say that a type
j, associated to a partition Π of G, jointly implements a functional link Fi, written Πj ` Fi,
if all paths in the functional link Fi include at least one node in Πj, i.e. Πj ` Fi iff ∀µ ∈
Fi : µ ∩ Πj 6= ∅. Trivially, we have Π1 ` Fi and Πn ` Fi for all i. Moreover, multiple nodes
of the same type are allowed in a path as far as they are adjacent to each other. Given a
path µ, possibly including multiple instances of the same type, we denote as µ̂ the reduced
path obtained from µ after replacing all the instances of the same type with a single node,
still of the same type. Therefore, after reducing all paths, each path µk in a functional link
Fi, with k ∈ {1, . . . , |Fi|}, is a sequence of distinct nodes {nk,1, . . . , nk,m+1}, each of different
type, interconnected through edges. Moreover, nk,1 is a source (nk,1 ∈ Π1) for all k, nk,m+1

is the same sink node (nk,m+1 = vi) for all k, and nk,j ∼ nl,j for all k, l ∈ {1, . . . , |Fi|}, with
k 6= l, and for all j ∈ {2, . . . ,m}2.

Let cij the number of nodes of type j used in at least one reduced path of Fi, i.e. cij =
|(∪µ∈Fiµ̂)∩Πj|. We say that type j is maximally connected in Fi if each node of type j in Fi
is connected to all the nodes of both the preceding and subsequent types in Fi. Clearly, if
cij = 1 then type j is maximally connected. Let Ii = {j|Πj ` Fi} the set of component types
jointly implementing Fi and Hi = {cij|j ∈ Ii, cij > 1} the set of node numbers for all types
with redundancy. We can then define the degree of redundancy hij associated with type j
and link Fi as hij = cij if type j is maximally connected; otherwise, we set hij = minHi.
In other words, the degree of redundancy of type j is the number of nodes of type j if
type j is maximally connected; if type j is, instead, not maximally connected, its degree of
redundancy is the minimum number of nodes over all types with redundancy. Finally, we
approximate the failure probability ri of a functional link Fi by

r̃i =
∑
j∈Ii

cijp
hij
j (5.7)

2Since the approximate algebra is mostly meant to be used for system-level architecture exploration,
relying on reduced paths to define the approximate computation method is not a restrictive assumption. If
needed, any node in a reduced functional link can be locally “refined” in terms of series interconnections of
nodes of the same types at a later stage of the design process, by following a hierarchical approach.

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 114

where Ii = {j|Πj ` Fi} is the set of all component types that jointly implement Fi, pj is the
probability of failure of any of the components of type j, and hij is the degree of redundancy
associated with type j and link Fi.

Example 24. We illustrate the application of (5.7) to the architecture E represented in
Figure 5.1 (b). We consider a partition where Π1 = {G1, G2}, Π2 = {B1, B2}, Π3 = {D1, D2}
and Π4 = {L}. Sink L is connected to sources G1 and G2 via two (reduced) paths, each using
components of all the four types listed above. No type is maximally connected except for the
sink; moreover we obtain minH = 2. Therefore, the approximate expression for the failure
probability of L would be r̃L = pL + 2p2

D + 2p2
B + 2p2

G, while exact calculations lead to

rL = pL + (1− pL){pD + (1− pD)[pB + (1− pB)pG]}2 = pL + (pD + pB + pG)2 + h.o.t.,

where h.o.t. (higher order terms) indicates higher order powers of the component probabilities.
When all components are assumed to fail with the same probability p � 1, we obtain r̃L =
p+ 6p2 and rL = p+ 9p2 +O(p3).

The estimation in Example 24 has the same order of the exact calculation, and the error
becomes negligible for small p. In general, (5.7) can provide “optimistic” estimations, but
the bound to such optimism can be explicitly estimated for a given functional link. It is then
possible to state the following theorem, providing a bound on the error of the approximate
reliability algebra.

Theorem 5.4.1. Given a graph G, a partition Π, and a functional link F , let r̃ and r be,
respectively, the approximate and exact failure probability for F . Let I = {j|Πj ` F} the
set of component types jointly implementing F . We assume that the degree of redundancy
is higher than one for at least one type in I, i.e. H = {hi|i ∈ I, hi > 1} 6= ∅. Then, the
following inequality holds:

r̃

r
≥ h

mh−1
, (5.8)

where h = minH and m = |I| − 1.

Proof. Without loss of generality, let I = {1, 2, . . . ,m,m + 1}, where the ordering in I
denotes the sequence of types that jointly implement F , from sources (type one) to the sink
(type m+ 1). Let ci be the number of nodes of type i ∈ I used in F ; by definition of F , we
have cm+1 = 1. Moreover, we assume that a failure in the sink node vm+1 of F can only be
induced by the failure of all the paths connecting it to any of the source nodes. Otherwise,
since the degree of redundancy of vm+1 is one, i.e. vm+1 has no redundancy, the probability
of a self-induced failure pm+1 would dominate the overall reliability of F .

To prove (5.8), we look for specific configurations of functional links for which the ratio
r̃/r is minimum. In this respect, we can immediately observe that any functional link in
which hj = 1 for at least one type j ∈ I, with j 6= (m + 1) can be disregarded. In fact, it
is straightforward to show that r̃ ≥ r in this case, hence the approximate computation is
conservative, and does not achieve the minimum r̃/r. Intuitively, this results stems from the

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 115

fact that, if any component in F has no redundancy, then the probability of a self-induced
failure would dominate the overall reliability of F . In this scenario, the approximate algebra
provides a result which is very close, and possibly larger, than the exact failure probability
of F , hence r̃/r is close to (or slightly larger than) one, and does not achieve its minimum.
We shall prove this result analytically below.

Similarly, we can conclude that any maximally redundant functional link Fmax can be
disregarded, since it does not achieve the minimum ratio r̃/r. To do so, let Pv and Rv denote,
respectively, the events of a self-induced and system-induced failure of a node v ∈ V . We aim
to find an expression for Rmax

vm+1
in a maximally redundant functional link Fmax that satisfies

all of our hypotheses. Since interconnections are only allowed between consecutive types in
Fmax, according to the ordering in I, a maximally redundant link is obtained if and only if
every node of type i ∈ I is connected to all the nodes of type i− 1, i ∈ {2, . . . ,m+ 1}. In a
maximally redundant functional link, every type is maximally connected. It is then possible
to prove, e.g. by induction, that, if a maximally redundant functional link includes m types
of nodes (other than the sink), the event of a system failure at vm+1 can be computed as
follows

Rmax
vm+1

=
m⋃
i=1

(
ci⋂
j=1

Pij

)
, (5.9)

where Pij is the failure event of node j of type i. Intuitively, in a maximally connected link,
a sink node fails when at least one of the types fails to perform its task. On the other hand,
for a type to fail, all the nodes of that type must fail. For such a configuration, we obtain
hi = ci for all i, which leads to the following approximate computation and bound:

r̃max =
m∑
i=1

cip
ci
i ≥

m∑
i=1

pcii ≥ rmax, (5.10)

where pi is the failure probability of the nodes of type i. The approximate algebra is then
conservative for a maximally redundant link. The approximate algebra provides a contri-
bution that is also “pessimistic” for any maximally interconnected type in F . To find the
minimum bound on r̃/r, we are interested, instead, in the most “optimistic” scenario, which
occurs when no type in F is maximally interconnected, hence redundant.

Let F be one of such links, in which no type is maximally redundant. We further observe
that for the minimum to be achieved, hi = h must also hold for all i, i.e. all the types in
F should have the same (minimum) redundancy. In fact, if we had hi > h for some i in F ,
r̃ would increase with respect to the case in which hi = h, since type i contributes with a
coefficient ci = hi > h in our approximate algebra, while pi is raised to the same exponent
h. Conversely, r would decrease with respect to the case hi = h, because of the additional
redundancy introduced by a higher number of nodes hi in the link. Therefore, the ratio
r̃/r achieves its minimum when the functional link has the same number of components
ci = hi = h for all types. Moreover, the paths in F should be independent, i.e. they should
not share any node other than the sink, since any additional interconnection of a node of

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 116

any type with additional nodes of adjacent types would result in the same r̃, but smaller r
values, which would again lead to an increase in r̃/r. We then conclude that the ratio r̃/r
achieves its minimum on a functional link with h independent, parallel paths from a source
to the sink.

Let Fmin be such a link. For Fmin, by using (5.7), we obtain

r̃ =
m∑
i=1

hphi , (5.11)

while the exact calculation produces

r = P

(
h⋂
j=1

(
m⋃
i=1

Pij

))
=

(
1−

m∏
i=1

(1− pi)

)h

, (5.12)

that is, the sink fails when each of the h independent paths fail; moreover, a path fails if any
node in the path fails. We can now rewrite (5.12) as follows:

r = (1− (1− p̄)m)h , (5.13)

to emphasize the dependence of r on an “average” path failure probability p̄, defined such
that 1− p̄ is the geometric mean of the probabilities 1− pi, each associated with a node in
the path, i.e.,

p̄ = 1−

(
m∏
i=1

(1− pi)

) 1
m

. (5.14)

We observe that p̄ → (
∑m

i=1 pi)/m, i.e. p̄ converges to the arithmetic mean of the pi, and
r → mhp̄h as pi tend to zero, for all i, which corresponds to the results obtained by neglecting
the higher-order powers (i.e., higher than h) of the node probabilities in (5.12). The exact
failure probability r of Fmin is constant if p̄ is constant. In particular, r would stay the same
if pi = p̄ for all i. On the other hand, we can prove that there exists p∗ such that, for all
pi ≤ p∗, i ∈ {1, . . . ,m}, the following holds:

r̃ =
m∑
i=1

hphi ≥ mhp̄h, (5.15)

i.e., r̃ is always larger than or equal to the value achieved when pi = p̄ for all i, and reaches
exactly its minimum when pi = p̄ for all i. Then, if (5.15) holds, we can also conclude that
the minimum of r̃/r is achieved when pi = p̄ for all i.

To show (5.15), it is enough to prove that(
1

m

m∑
i=1

phi

) 1
h

≥ p̄, (5.16)

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 117

for all pi ≤ p∗, i ∈ {1, . . . ,m}. Moreover, by the monotonicity of the generalized mean
function, we only need to show that (5.16) holds for h = 2. To do so, it can be shown that
the function

f(p1, . . . , pm) =

√√√√ 1

m

m∑
i=1

p2
i − p̄

is always larger than or equal to zero for all pi ≤ p∗ = 1 − (1/
√
m)(m/(m+1))3 and achieves

its minimum when pi = p̄ for all i. We observe that the selected bound p∗ on the pi is not
tight, and can be improved for larger values of h and m. Moreover, while p∗ converges to 1
as m→∞, we always have p∗(m) ≥ p∗(2) = 1/2. Therefore, (5.15) is guaranteed to hold for
all pi ≤ 0.5 independently of h and m. Since pi ≤ 0.5 is certainly true for component failure
probabilities, we are allowed to conclude that the minimum of r̃/r is indeed achieved when
pi = p̄ for all i.

We are now ready to compute such a minimum r̃/r as

r̃

r
=

mhp̄h

(1− (1− p̄)m)h
. (5.17)

Then, by recalling that an − bn = (a− b)(an−1 + an−2b+ · · ·+ bn−1) for a, b ∈ R, n ∈ N, we
can write

(1− (1− p̄)m)h = p̄h
(
1 + (1− p̄) + (1− p̄)2 + · · ·+ (1− p̄)m−1

)h ≤ p̄hmh, (5.18)

which finally leads to the following bound, independent of p̄,

r̃

r
≥ mhp̄h

p̄hmh
=

h

mh−1
, (5.19)

as we wanted to prove.

In the proof of Theorem 5.4.1, we have neglected the case in which hi = 1 for at least one
type i ∈ {1, . . . ,m} in F . It is easy to show that our algebra is conservative in such a case,
i.e. r̃ ≥ r. In fact, let i∗ a type without redundancy, i.e. hi∗ = 1; then, the only available
component vi∗ for type i∗ is maximally connected, and can be considered in series with the
two subgraphs Fi∗−1 and Fi∗+1 of the functional link F , including, respectively, all the paths
from a source node to vi∗ , and from vi∗ to the sink. Let ri∗−1 and ri∗+1 denote, respectively,
the failure probabilities associated with the subgraphs Fi∗−1 and Fi∗+1. We obtain:

r̃ = pi∗ + ri∗−1 + ri∗+1 ≥ pi∗ + (1− pi∗)[ri∗−1 + (1− ri∗−1)ri∗+1] = r. (5.20)

As apparent from (5.20), for non-redundant types, our algebra is (slightly) conservative, its
conservatism only stemming from the fact that higher-order terms (powers larger than one

3f(p1, . . . , pm) achieves its maximum in points (p1, . . . , pm) in which pi = 1− (1/
√
m)(m/(m+1)) for one

index i ∈ {1, . . . ,m} and pj = 0 for all j ∈ {1, . . . ,m} such that j 6= i.

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 118

in pi∗) are disregarded. Our computation is, therefore, very accurate for small values of the
failure probabilities.

Finally, while our focus so far has been on functional links associated with a single
sink node, we observe that our results can be smoothly extended to scenarios involving a
combination of functional links, possibly including multiple sink nodes, by carrying out the
same computations for each link.

5.5 Integer Linear Programming With Approximate

Reliability

The approximate reliability algebra in Section 5.4 allows efficiently encoding a reliability
requirement into a set of linear arithmetic constraints on Boolean variables, while guaran-
teeing that the order of magnitude of the reliability calculations is correct, and there exists
an explicit theoretical bound on the estimation error. Intuitively, the approximate reliabil-
ity algebra relies on the fact that components with the highest failure probability tend to
dominate the overall failure probability. In this section, we introduce the ILP-AR algorithm,
which replaces exact reliability computations with the approximate algebra. While the ex-
pression in (5.7) is nonlinear, the additional number of constraints and auxiliary variables
needed to linearize it is polynomial in the size of the template T . In the following, we discuss
the main results on correctness and complexity of ILP-AR.

The overall ILP-AR approach is illustrated in Algorithm 1. ILP-AR receives as inputs
the library of components L, together with their attributes, the template T , and the set of
requirements, including interconnection and reliability requirements. For the sake of com-
pactness, in Algorithm 1, we use a vector notation for the library attributes and the required
reliability values: c is the components’ cost vector, w is the components’ parameter vector
(e.g., including generator power ratings and load power consumptions), p is the vector of
components’ failure probabilities, and r∗ is a vector of required reliability (failure probabil-
ity) values at critical nodes in the system. As mentioned in Section 4.2, in a design scenario,
requirements can be inserted using patterns that can automatically generate interconnections
and reliability constraints of the form discussed in Section 5.3.

To implement GenILP-AR, we use the approximate algebra to capture all the reliability
requirements, which are then added to the other constraints as in Section 5.3. The resulting
optimization problem is an ILP. While (5.7) is a nonlinear expression, a linear encoding of
the same constraint can be obtained as follows∑

l,k∈{1,...,kmax},j∈{1,...,m}

l · xijkl · pkj ≤ r∗i , (5.21)

where r∗i is the required failure probability, xijkl is an auxiliary binary variable equal to 1 if
j ∈ Ii (type j is used to implement Fi), hij = k (the degree of redundancy of type j is k),
and cij = l (the number of nodes of type j in Fi is l), and 0 otherwise. kmax is the maximum
possible value for hij (and cij) in the given template, i.e. kmax = max1≤j≤m |Πj|.

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 119

Algorithm 1 ILP With Approximate Reliability (ILP-AR)

Input: Architecture template T , vectors of component variables w, costs c and failure
probabilities p (from library L), reliability requirements r∗

Output: Adjacency matrix e∗ of the final architecture G∗

(Cost, Cons) ← GenILP-AR(T , w, c, p, r∗)
e∗ ← SolveILP(Cost, Cons)
if e∗ = [] then return Infeasible
return e∗

Additional constraints are needed to express the auxiliary variables xijkl in terms of
our decision variables. To show examples for some of these constraints, we assume that
the reference template T only includes reduced paths. As mentioned earlier, this is not a
restrictive assumption, since multiple instances of adjacent nodes of the same type can be
added by refining T in a second step of the selection process. Next, we recall a lemma that
allows reasoning about the existence of paths between any two nodes, which are possibly
non adjacent, in a generic graph.

Lemma 5.5.1 (Walk Indicator Matrix). Let e be the adjacency matrix of a graph T ; let
a � b the logical product of two logical matrices a and b in Bm×m, defined as (a � b)ij =∨m
k=1 aik ∧ bkj; let ek = e� . . .� e︸ ︷︷ ︸

k times

be the k-th logical power of e. Then, the entry in row i

and column j, ηnij, of the walk indicator matrix ηn =
∨n
k=1 ek is 1 if and only if there exists

a directed walk of length less than or equal to n from vertex vi to vertex vj.

Lemma 5.5.1 descends directly from the properties of the powers of the adjacency matrix
of a graph, which can be extended to Boolean operators. By this lemma, to link the indicator
variables xijkl to the decision variables, we need to add a set of constraints for each type j
in {1, . . . ,m}. We first require that no more than one of the xijkl variables is asserted as
follows

kmax∑
l=0

kmax∑
k=0

xijkl ≤ 1. (5.22)

We then define cj as

cj =
∑
w∈Πj

(
ηmw,vm+1

∧

(∨
s∈Π1

ηms,w

))
, (5.23)

which computes the number of elements of type j used in Fi, and bj as

bj =
∧
y∈Πj

∧
w∈Πj−1

∧
z∈Πj+1

((δw ∧ δy → ew,y) ∧ (δy ∧ δz → ey,z)) , (5.24)

where we define Π0 = ∅ and Πm+1 = {vm+1}, vm+1 being the sink node. bj is a Boolean
variable asserted if and only if type j is maximally connected. Constraint (5.23) counts the

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 120

number of components of type j which are connected by at least one path to vm+1 and to
any source in Π1. Constraint (5.24) uses the indicator variables δ introduced Section 5.3. δw
is asserted if and only if node w is used in the link; its expression can be computed using
the path indicator matrices of Lemma 5.5.1. Finally, we assume that a set of integer linear
constraints are used to set the value for the variable cmin, defined as cmin = min{cj|cj >
1, j = 1, . . . ,m}. We can then impose the following implications ∀l ∈ N : 0 ≤ l ≤ kmax,
∀k ∈ N : 0 ≤ k ≤ kmax,

(cj = l) ∧ (bj = 1)→ xijll = 1 (5.25)

(cj = l) ∧ (bj = 0) ∧ (cmin = k)→ xijkl = 1.

Constraints (5.25) guarantee that the indicator variable xijkl is set to 1 based on the definition
of degree of redundancy associated to type j given in Section 5.4. All the implications
and other logical operators in the above constraints can be converted into linear constraint
using standard techniques [203]. Overall, the number of constraints (and auxiliary variables)
generated by the computations in (5.21)-(5.25) is O(|V |3m), where m = |Π| − 1, i.e. the
number of types except for the sinks. This amounts to a polynomial complexity in the
number of nodes and partitions in T , which contrasts with the exponential complexity of
exact computations. Finally, the following result holds for the ILP-AR approach.

Theorem 5.5.2 (Correctness of ILP-AR). For a given template T , ILP-AR (Algorithm 1)
is sound and complete within the error bounds provided by the approximate algebra.

Proof. From the statement and the proof of Theorem 5.4.1, our approximate reliability
measure can be either conservative or optimistic, based on the interconnection structure of
the architecture, e.g. on whether a type of components is maximally interconnected or not,
which is also dependent on the other optimization constraints. In general, let l ≤ 1 and u ≥ 1
be, respectively, the lower and upper bounds on the ratio r̃/r between the approximate and
the exact reliability measures. ILP-AR solves a “perturbed” optimization problem, in which
reliability requirements of the form r ≤ r∗ are replaced by perturbed requirements such as
r ≤ εr∗, with ε ∈ [1/u, 1/l]. Therefore, ILP-AR can only be sound and complete on the
perturbed problem. When ILP-AR provides an optimal topology, the actual reliability can
be worst-case larger by 1/l with respect to the required one, where l is the lower bound (5.8).
On the other hand, if ILP-AR returns Infeasible for a reliability requirement r∗, assuming
that the interconnection constraints are feasible, we can only conclude that r ≤ r∗/u is
infeasible. However, since ILP-AR attempts to determine, for each type of components,
the degree of redundancy needed to meet the reliability requirement to the correct order of
magnitude, in practical cases u is very close to one.

5.6 Integer Linear Programming Modulo Reliability

The ILP Modulo Reliability (ILP-MR) algorithm avoids the expensive generation of sym-
bolic reliability constraints by adapting the ILP Modulo Theory approach [92] to reliability

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 121

Algorithm 2 ILP Modulo Reliability (ILP-MR)

Input: Architecture template T , vectors of component variables w, costs c and failure
probabilities p (from the library L), reliability requirement r∗

Output: Adjacency matrix e∗ of the final architecture G∗

r ← 2r∗

(Cost, Cons) ← GenILP(T , w, c)
while r > r∗ do . failure probability

e∗ ← SolveILP(Cost, Cons)
if e∗ = [] then return Infeasible

r ← RelAnalysis(e∗, p)
if r > r∗ then

Cons← LearnCons(Cons, r, r∗, e∗)

if Cons = [] then return Infeasible
return e∗

computations, as summarized in Algorithm 2. ILP-MR receives as inputs the library of
components L, together with their attributes, the template T , and the set of requirements,
including interconnection and reliability requirements. As done in Algorithm 1, we also use
a vector notation for the library attributes in Algorithm 2: c is the components’ cost vector,
w is the components’ parameter vector (e.g., including generator power ratings and load
power consumptions), and p is the vector of failure probabilities. Again, interconnections
and reliability requirements can be inserted using patterns that automatically generate con-
straints as the ones shown in Section 5.3. To simplify, we assume that r is the worst case
failure probability over a set of nodes of interest, for which the same reliability requirement
r∗ must be satisfied.

A smaller ILP problem, without reliability constraints, is solved in a loop with an exact
reliability analysis routine. SolveILP generates minimum cost architectures for the given
set of interconnection constraints. The RelAnalysis routine computes the probability
of composite failure events at critical nodes, starting from the failure probabilities of the
components, a problem known as K-terminal reliability problem in the literature [130]. To
do so, we implement a modified depth-first search algorithm to traverse the graph G from
the sink node i (root) to the source nodes (leaves), by applying a path enumeration method,
and by turning event relations as in (5.6) into probability expressions. However, any other
exact reliability analysis method for directed graphs can also be used [130]. Although the
K-terminal reliability problem is NP-hard, the key idea is to solve it only when needed, i.e. a
small number of times, and possibly on smaller graph instances.

At each iteration of ILP-MR, if the optimal architecture satisfies the reliability con-
straints, it is returned as the final solution. Otherwise, LearnCons estimates the number
of redundant paths needed to achieve the desired reliability and suggests a set of strategies
to implement the required paths by augmenting the original optimization problem with a set
of interconnection constraints. This constraint learning function is, therefore, instrumental

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 122

Algorithm 3 LearnCons

Input: Current constraints Cons, reliability r, reliability requirement r∗, adjacency matrix
e∗

Output: Final constraints Cons

k ← EstPath(r, r∗, e∗)
NewCons← []
S ← GetSinks(e∗)
(T1, . . . , Tn)← GetTypes(e∗)
for all v ∈ S do

if k ≥ 1 then
for all i ∈ (Tn−1, Tn−2, . . . , T1) do

NewCons ← AddPath(v, i, k, NewCons, e∗)

else
i← FindMinRedType(v, e∗)
NewCons ← AddPath(v, i, 1, NewCons, e∗)

if NewCons = [] then return Infeasible

Cons← Cons ∪NewCons
return Cons

to efficiently converge towards a reliable architecture, while minimizing the number of calls
to RelAnalysis. We provide details about this function in the following section.

5.6.1 Learning Constraints to Improve Reliability

When no reliability constraints are enforced in the ILP, the solver attempts to use the
minimum number of components and interconnections to perform a specific function at
minimum cost. Typically, such a “minimal” architecture has also minimal redundancy,
hence minimal reliability. Based on this intuition, we develop strategies that increase the
reliability of the solution, albeit at a higher cost, by enforcing a larger number of redundant
components and interconnections. The overall routine is summarized in Algorithm 3.

Based on the current reliability level r, LearnCons estimates the number of additional
redundant paths k required to satisfy the desired reliability r∗ (function EstPath). As an
example, under the assumption that all the paths in a functional link F are independent,
then k can be computed as k = blog(r∗/r)/ log ρc , where ρ is the failure probability of a
single path in F , and bxc denotes the integer part of x. Since, in reality, the paths in F
are not independent, this is a conservative estimation which avoids over-design. Then, if at
least one additional path is required, for all the sinks and component types implementing F
and used in the current architecture, AddPath generates new constraints to enforce that at
least k additional components of each type have a path to the sink. These constraints do not
necessarily translate into instantiating more nodes, as far as additional paths to the sink can

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 123

be obtained by just increasing the number of edges. If k additional paths cannot be obtained
with the current template, AddPath attempts to enforce the maximum available number
of paths. Conversely, if the estimated number of paths is zero, LearnCons attempts to
still improve the overall reliability by enforcing one additional path between the sink and a
component whose type has minimum redundancy in the current architecture, i.e. for which
the total number of paths to the sink is minimum (as obtained from FindMinRedType). If
no additional paths can be added between a sink and a component of any type, LearnCons
terminates with Infeasible.

To enforce additional paths, AddPath uses the walk indicator matrix of T , defined by
Lemma 5.5.1. For example, we can require at least k additional connections of components
of type Ti, belonging to the set Πi of the partition Π of T , to a sink v via at least one path
of length n− i+ 1 by enforcing∑

w∈Πi

ηn−i+1w,v ≥ k +
∑
w∈Πi

η∗n−i+1w,v
, (5.26)

where ηn−i+1 and η∗n−i+1 are the walk indicator matrices, respectively, for T (decision vari-
ables) and the current architecture G∗. The constraint (5.26) can be converted into an
equivalent set of linear constraints in the elements of e (edge variables) by using standard
linearization techniques. The following result summarizes the properties of the ILP-MR
approach.

Theorem 5.6.1 (Correctness of ILP-MR). For a given template T , if SolveILP is sound
and complete on its problem instances, and RelAnalysis is exact, then ILP-MR (Algo-
rithm 2) is sound and complete.

Proof. Without loss of generality, we can focus on just one functional link F with a reliability
requirement r∗. At each iteration k of the ILP-MR algorithm, based on Algorithms 2 and 3, a
new architecture Gk is proposed by SolveILP, which is characterized by a failure probability
rk and a cost ck. For example, G1 is the minimum-cost, minimally redundant architecture
that is compatible with the original interconnection constraints. Since LearnCons enforces
a minimum bound on the number of paths between the sink node and the set of nodes of
one or more types, by encouraging the addition of new interconnections or components, as
in (5.26), we conclude that ck is a nondecreasing sequence, while rk is a decreasing one.

We observe that, since the number of components in T is finite, the ILP-MR routine
will terminate. Moreover, because RelAnalysis implements an exact reliability analysis
method, if a final architecture is found, i.e. rk ≤ r∗ for some k, then it will satisfy all the
requirements. ILP-MR is then sound.

On the other hand, ILP-MR can terminate with Infeasible when either LearnCons or
SolveILP terminates with Infeasible. In the former case, because all the available paths
will be eventually activated to increase the reliability, we infer that ILP-MR has exhausted
all the paths, thus achieving the maximum redundancy allowed by the template. In the
latter case, we infer that SolveILP fails to implement one (or more) of the paths that are

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 124

Table 5.1: Components and attributes used in the aircraft electric power system example.

Generators g (kW) Loads l (kW) Components c
LG1 70 LL1 30 Generator g/10
LG2 50 LL2 10 Bus 2000
RG1 80 RL1 10 Rectifier 2000
RG2 30 RL2 20 Contactor 1000
APU 100

essential to increase reliability at iteration k, since the associate constraint is incompatible
with any of the previous interconnection constraints. In both cases, we can conclude that,
for the given template, there is no architecture which is able to satisfy all the constraints
and ILP-MR is complete.

5.7 Aircraft Power System Architecture Design

We apply our algorithms to the selection of optimal architectures for power generation and
distribution in a passenger aircraft. A sample architecture, in the form of a single-line di-
agram, was introduced in Figure 1.3, together with the overall system description, and a
qualitative discussion of the main design requirements in Section 1.2.3. We aim to generate
an electrical power system (EPS) architecture that satisfies a set of connectivity, power flow,
and reliability requirements while minimizing the total cost. We then model the EPS archi-
tecture as a directed graph, where each node represents a component (with the exception
of contactors, which are associated with edges) and each edge represents an interconnec-
tion. An edge is directed from node vi to node vj if vi receives power by (or through) vj
when traversing the graph from a critical load to a generator. We assume a template T
consisting of the following component types: generators (LG/RG), AC buses (LB/RB), rec-
tifiers (LR/RR), DC buses (LD/RD), loads (LL/RL), two on each side (right or left), and
one APU. The platform library attributes include generator power ratings g, load power
requirements l, component costs c, and failure probabilities p, as summarized in Table 5.1.
We use a vector notation to denote the component attributes as done in Algorithm 1 and
Algorithm 2. Moreover, in the examples of this chapter, we assume that only generators,
buses, and rectifiers fail with a probability4 of 2× 10−4.

4Experimental data on the failure rates of the physical components in an aircraft electric power system
(e.g. contactors, generators, buses) have been collected over the years and made available in the literature.
To relate failure rates with probabilities, we assume that the time at which a component can fail is a
random variable with an exponential distribution, whose parameter λ is the failure rate [133]. Therefore,
the probability that a failure is observed in a time interval T , e.g. given by the duration of a mission, can
be computed as Pfail = 1− e−λT .

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 125

Table 5.2: Connectivity sub-matrices used in the aircraft electric power system example.

Variables Interconnection Dimension
Mgb Generator - AC Buses ngen × nacb
Mbb AC Buses - AC Buses nacb × nacb
Mbr AC Buses - Rectifiers nacb × nrec
Mrd Rectifiers - DC Buses nrec × ndcb
Mdd DC Buses - DC Buses ndcb × ndcb
Mdl DC Buses - Loads ndcb × nload

5.7.1 Implementation and Application Contracts

In this section and in the rest of the thesis, we denote as CT the application contract5 for
an aircraft electric power system, formalizing the load reliability requirements and power
requirements (in nominal conditions), to emphasize that it relates to the system topol-
ogy. On the other hand, the architecture contract CT formalizes the composition rules and
interconnection requirements for an aggregation of contracts in L, according to the inter-
connection structure E and the template T , to be compatible. As discussed in Section 5.3
and Section 5.5, both the assumptions and the guarantees of CT and CT can be concretely
expressed using mixed integer-linear constraints in the decision variables and the parameters
(attributes) associated with the graph elements (both nodes and edges). In what follows,
we provide examples of assertions which instantiate, for the case of an aircraft EPS, the
constraints presented in a generic form in Section 5.3 and Section 5.5. These assertions can
be used to express either assumptions or guarantees in both the application and architecture
contracts CT and CT .

To simplify our notation, we partition the adjacency matrix e of T into smaller blocks to
represent interconnections between subsets of components, as summarized in Table 5.2. For
instance, the interconnections between ngen generators and nacb AC buses can be represented
by a ngen × nacb connectivity sub-matrix denoted as Mgb. The cost function is the sum of
the costs of all components (associated with the nodes) and contactors (associated with the
edges) used in the electric power system architecture, as in (5.1). Connectivity properties
can be expressed by using constraints as the ones in (5.2) and (5.3). For instance, we can
prescribe that any rectifier must be directly connected to only one AC bus, and that all DC
buses that are connected to a load or another DC bus must be connected to at least one
rectifier to receive power from an AC bus. Using our notation, the former constraints can
be written as follows

nacb∑
i=1

M br
i,j = 1 ∀ j ∈ N : 1 ≤ j ≤ nrec,

while the latter can be encoded by writing that the following constraints hold ∀ j ∈ N : 1 ≤
5Generically called CA in Section 5.3.

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 126

j ≤ ndcb,
nrec∨
i=1

M rd
i,j ≥

nload∨
i=1

Mdl
j,i,

nrec∨
i=1

M rd
i,j ≥

ndcb∨
i=1

Mdd
j,i .

Similarly, we can enforce that all TRUs that are connected to a DC bus must be connected
to at least one AC bus, i.e. ∀ j ∈ N : 1 ≤ j ≤ nrec,

nacb∨
i=1

M br
i,j ≥

ndcb∨
i=1

M rd
j,i ,

and all AC buses that are connected to a TRU or another AC bus must be connected to one
generator, i.e. ∀ j ∈ N : 1 ≤ j ≤ nacb,

ngen∨
i=1

M gb
i,j ≥

nrec∨
i=1

M br
j,i,

ngen∨
i=1

M gb
i,j ≥

nacb∨
i=1

M bb
j,i,

while we can use a constraint as the one in (5.2) to express that a rectifier cannot be directly
connected to more than one DC bus and to more than one AC bus, i.e.,

ndcb∑
i=1

M rd
j,i ≤ 1,

nacb∑
i=1

M br
i,j ≤ 1, ∀ j ∈ N : 1 ≤ j ≤ nrec.

In Chapter 7 we will provide a few examples of patterns, i.e. high-level primitives that help
formalize the power system topology requirements in terms of constraints as the ones above.

Power-flow constraints are used to enforce that the total power provided by the gener-
ators in each operating condition is greater than or equal to the total power required by
the connected loads, by using expressions as in (5.4). For instance, in normal operating
conditions, the power generated on each side should be greater than or equal to the total
power required by the loads on that side. On the other hand, when only the APU is active,
then it should be capable of powering at least the non-sheddable loads on both sides of the
system.

Finally, a reliability constraint prescribes that the probability that a load gets unpowered
because of failures should be less than a desired threshold. A functional link will then consist
of the set of paths from any generator to the load. Moreover, since our template supports
only reduced paths, we use an edge between two nodes of the same type as a shorthand
notation to indicate two redundant components: if vi and vj, with vi ∼ vj, are connected by
an edge, then any direct predecessor of vi is also a direct predecessor of vj and vice versa.

5.7.2 Optimization Results

We have developed ArchEx, a prototype framework for system architecture exploration
and synthesis, implementing both the ILP-MR and ILP-AR algorithms. ArchEx leverages

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 127

(a) Architecture 1 (b) Architecture 2 (c) Architecture 3

Figure 5.2: Electric power system architectures and reliability as obtained at each iteration
of an Integer Linear Programming Modulo Reliability (ILP-MR) run with r∗ = 2 × 10−10:
(a) r = 6× 10−4; (b) r = 2.8× 10−10; (c) r = 0.79× 10−10.

(a) Architecture 1 (b) Architecture 2 (c) Architecture 3

Figure 5.3: Electric power system architectures synthesized using Integer Linear Program-
ming with Approximate Reliability (ILP-AR) for different reliability requirements: (a)
r∗ = 2× 10−3, r̃ = 6.0× 10−4, r = 6× 10−4; (b) r∗ = 2× 10−6, r̃ = 2.4× 10−7, r = 3.5× 10−7;
(c) r∗ = 2× 10−10, r̃ = 7.2× 10−11, r = 2.8× 10−10.

Yalmip [129] and Cplex [5] to, respectively, formulate and solve ILP problems. All the
numerical experiments were performed on an Intel Core i7, 2.3-GHz processor with 8-GB
memory. Figure 5.2 shows the architectures obtained at each iteration of the ILP-MR al-
gorithm for a load failure probability requirement r∗ = 2 × 10−10. By solving for just the
connectivity and power flow constraints, we obtain the simplest possible architecture (Fig-

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 128

ure 5.2a), which only provides a single path from a load to a generator (or APU), thus
showing the highest failure probability. Based on the parameters in Table 5.1, we obtain
ρ = 8 × 10−4, which leads to k = 2, as discussed in Section 5.6.1. Therefore, at the second
iteration, two additional paths are enforced between each load and a generator, as shown in
Figure 5.2 (b). Since the requirement is not yet satisfied, a third iteration is used to fine
tune the reliability, by adding one more path between each load and an AC bus. The total
computation time to generate the architectures in Figure 5.2 was about 38 s.

Three architectures, obtained using the ILP-AR algorithm for different load failure prob-
ability requirements, are, instead, shown in Figure 5.3. The lower the required failure prob-
ability, the higher the number of redundant paths and components instantiated from the
original template, and the higher the associated cost. For each architecture, the approx-
imate algebra provides an estimation r̃ of the failure probability which is extremely close
to the actual value r obtained by exact computations. While the failure probability of the
architecture in Figure 5.3 (c) exceeds the requirement, the error is well within the bound
predicted by Theorem 5.4.1. The execution time of each optimization run in Figure 5.3 was
also approximately 38 s; however, about 70% of the computation time was used to generate
the optimization constraints, which can also be performed off-line for a given template.

To test the scalability of both the approaches, we designed EPS architectures with an
increasing number of components. In Table 5.3, we report on the execution time of the
ILP-MR approach using Algorithm 3 (at the top) in comparison with the one obtained by
a lazier approach, which only enforce the addition of one additional path at each iteration
between the load and a component with a minimal degree of redundancy. The dramatic
reduction in time spent for reliability analysis (e.g., more than one day versus 3 min for a
50-node architecture) shows the advantage of using the analysis results to infer the number of
required redundant paths, as proposed in Algorithm 3. When this inference is feasible, ILP-
MR outperforms ILP-AR (see solver times in Table 5.4) for architectures with more than
40 nodes. On the other hand, as evident from Table 5.4, once the optimization problem
is generated for a given template, ILP-AR is more competitive for smaller architectures.
Yet, problems with several thousands of constraints, and including a realistic number of
generators (normally less than 10), can still be formulated and solved in a few hours. We
also observe that, because of the sparsity of the EPS adjacency matrix, in this case study,
it was possible to reduce the number of generated constraints, which is always smaller than
the asymptotic estimation in Section 5.5.

Overall, we infer that ILP-AR turns out to be preferable when we aim to a coarser
estimation of the capability (and limitations) of an architecture template and a platform
library in terms of reliability. On the other hand, ILP-MR makes it easier to incorporate
domain-specific knowledge, since a designer can customize the techniques adopted to improve
reliability at each iteration. Moreover, ILP-MR becomes the preferred choice, especially for
larger problem instances, when we can estimate the number of redundant paths needed to
satisfy the requirement as early as possible, or when we are willing to pay for a longer
execution time to incrementally fine tune the reliability of the design.

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 129

Table 5.3: Number of iterations, reliability analysis and solver time for different electric
power system architecture sizes (r∗ = 10−11, n = 5) using integer linear programming
modulo reliability (ILP-MR) with LearnCons (top) and with a “lazier” strategy, enforcing
only one additional path at each iteration (bottom).

|V | (# Generators) #Iterations Analysis time (s) Solver time (s)

20 (4) 3 34 4.3
30 (6) 3 78 9
40 (8) 3 106 14
50 (10) 3 181 18

20 (4) 4 72 13
30 (6) 7 852 28
40 (8) 10 9118 58
50 (10) 14 39563 114

Table 5.4: Number of constraints, problem generation (setup) and solver times for different
electric power system architecture sizes (r∗ = 10−11, n = 5) using integer linear programming
with approximate reliability (ILP-AR).

|V | (# Generators) # Constraints Setup time (s) Solver time (s)

20 (4) 5290 27 11
30 (6) 24514 402 77
40 (8) 74258 3341 494
50 (10) 176794 18902 5059

5.8 Conclusions

We provided a formal, graph-theoretical notion of cyber-physical system architecture, and
showed how structural and topological contracts, which are relevant to architecture design,
can be expressed as predicates over the nodes and edges of the architecture graph, and
encoded as integer-linear constraints over a set of Boolean variables denoting the presence
or absence of interconnections. We then formulated the architecture selection problem in
terms of finding a mapping of an application contract (capturing system requirements) into
an implementation contract (specifying the properties of the components and their intercon-
nection) to minimize an overall cost (e.g. component number, weight). We finally cast this
mapping problem as an integer-linear program (ILP).

Since generating exact reliability constraints by enumeration of failures on all possible
graph configurations can take exponential time, we proposed an approximate measure that
can be efficiently computed and provides reliability estimations to the correct order of mag-
nitude, and with an explicit bound on the approximation error. Based on this measure, we
introduced and characterized two efficient ILP-based algorithms for the optimal selection of
system architectures subject to safety and reliability requirements. The Integer-Linear Pro-

CHAPTER 5. OPTIMIZED SELECTION OF CPS ARCHITECTURES 130

gramming with Approximate Reliability (ILP-AR) algorithm generates larger, monolithic
problem instances using efficient but approximate constraints computations; the Integer-
Linear Programming Modulo Reliability (ILP-MR) algorithm breaks the complex optimiza-
tion task into a sequence of smaller optimization tasks interleaved with exact reliability
checks. By relying on efficient mechanisms to prune out large portions of the discrete space
that are inconsistent with the reliability requirements, ILP-MR can outperform ILP-AR on
large problem instances. We implemented both the algorithms in the ArchEx framework,
and demonstrated their effectiveness on the design of aircraft power system architectures.
The resulting architecture can be provided as part of the “specification” for the control
design step in our methodology, as further detailed in Chapter 6.

131

Chapter 6

Contract-Based Control Design and
Verification

This chapter introduces two paradigms for systematic, contract-based design of control strate-
gies, which combine optimization-based mapping with pre-existing control design and synthe-
sis techniques. The Reactive Synthesis-Based Optimized Control Mapping (RS-OCM) method
enables the generation of hierarchical and distributed controller architectures by combining
reactive synthesis from linear temporal logic contracts with optimization techniques based
on contract refinement checking. The Programming-Based Optimized Control Mapping (P-
OCM) method uses, instead, a formalization of the design requirements and the plant model
in terms of arithmetic constraints over real numbers, and formulates the control problem as
an optimization problem that is solved within a receding horizon approach to determine a
correct control policy that can also optimize some performance metrics. The demonstration
of an efficient algorithm for contract refinement checking concludes the chapter, showing how
a contract library can be used to substantially accelerate verification and mapping tasks.

6.1 Reactive Synthesis-Based Optimized Control

Mapping (RS-OCM): Overview

As mentioned in Section 2.2, reactive systems are systems that maintain an ongoing interac-
tion with their environment by appropriately reacting to it. The controllers that regulate the
behavior of such systems, which are considered in this thesis, are called reactive controllers.
Given an architecture, e.g. resulting from the design methodology discussed in Chapter 5,
we express the controller requirements as a contract CC : the assumptions AC encode the
allowable behaviors of the environment (including the physical plant) and the guarantees
GC encode the desired behaviors of the controller, which coincide with the desired behaviors
of the closed-loop system.

In the Reactive Synthesis-Based Optimized Control Mapping (RS-OCM) paradigm, which
is also pictured in Figure 4.2, we assume that CC can be expressed as the conjunction be-

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 132

tween a contract CC,syn, for which the reactive synthesis problem is tractable, and a synthesis
method can be efficiently applied, and a contract CC,ver, which is instead checked by a veri-
fication routine, which we call an oracle, in an optimization loop. While the paradigm can
be, in principle, instantiated using different formalisms, in this thesis, we assume that CC,syn
is expressed using linear temporal logic (LTL), i.e. CC,syn = CLTL, while CC,ver is expressed in
signal temporal logic (STL), i.e. CC,ver = CSTL. The oracle is a contract monitoring routine
operating on simulation traces. The STL formulas in CSTL can either be obtained by hetero-
geneous refinement of a subset of LTL formulas in CLTL or generated anew to capture design
aspects related to the plant and the hardware implementation of the control algorithm,
which cannot be expressed using the Boolean, untimed, or DE abstractions offered by LTL.
CLTL ∧ CSTL is then a vertical contract for the controller, since CLTL and CSTL refer to two
different controller representations, possibly involving different viewpoints (e.g. functional
and timing).

Example 25 (LTL/STL Vertical Contract). We consider a simple power network topology
consisting of a bus B connected with generators G1 and G2 via contactors C1 and C2, respec-
tively. Moreover, we assume the following requirement for the controller: “if G1 fails and G2

is healthy, then the controller shall first open C1 and then close C2, while guaranteeing that
B does not lose power for more than tmax”. We can encode this requirement as a conjunction
of LTL and STL contracts as follows:

• Let gi and ci (i = 1, 2) be Boolean variables encoding the status of generators
(healthy/unhealthy) and contactors (open/closed). Then, the LTL contract can be
used to capture the desired sequence of actions prescribed by the requirement, i.e.
CLTL = ({g1, g2, c1, c2}, T,� {¬g1 ∧ g2 → ¬c1 ∧ (#c2)}).

• Furthermore, we can refine the “absence of power losses on a bus for more than tmax”
with the statement: “the bus voltage VB deviates from the desired value Vd by more than
a margin ε for more than tmax”, and use the following STL formula to state that the
above faulty behavior should never happen: φ = ¬(3[0,∞) �[0,tmax](|VB(t) − Vd| ≥ ε)).
This translates into the contract CSTL = ({VB}, T, φ).

A brief introduction to the RS-OCM paradigm was already provided in Section 4.4.3.
In this section, we detail the controller design steps used to guarantee the consistency of
CC,syn ∧ CC,ver and refine it towards an implementation: reactive synthesis and optimized
mapping. Then, in Section 6.2, we describe an instance of the RS-OCM paradigm as applied
to the design of an aircraft electric power system controller. To implement the RS-OCM
methodology, we use a combination of tools from the computer science and formal methods
domains, as also introduced in Section 2.7. Finally, numerical results from the application
of the RS-OCM method to a concrete case study will be reported in Chapter 7.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 133

6.1.1 Reactive Synthesis

In the RS-OCM paradigm, CLTL is first used together with DE models of the plant compo-
nents (also described by LTL formulas) to synthesize a reactive control protocol in the form
of one (or more) state machines using reactive synthesis techniques from LTL specifications,
as described in Section 2.7.1. The resulting high-level controller will satisfy CLTL by con-
struction. While the problem has a doubly exponential complexity for general LTL [163],
the generalized reactivity (1) (GR(1)) fragment of LTL [160] generates problems that can be
solved in polynomial time, i.e., polynomial in |dom(E)× dom(D)|, the number of valuations
of the variables in E and D, where E is the set of environment (input) variables and D is
the set of controlled (output) variables of a DE controller.

Given the LTL specification ϕ = (ϕe → ϕs), where ϕe characterizes the assumptions on
the environment and ϕs characterizes the controller (system) guarantees, GR(1) specifica-
tions restrict ϕe and ϕs to take the following form, for α ∈ {e, s},

ϕα := ϕαinit ∧
∧
i∈Iα1

2ϕα1,i ∧
∧
i∈Iα2

23ϕα2,i,

where ϕαinit is a propositional formula characterizing the initial conditions; ϕα1,i are transi-
tion relations characterizing safe, allowable moves and propositional formulas characterizing
invariants; ϕα2,i are propositional formulas characterizing states that should be attained in-
finitely often; Iα1 and Iα2 are index sets enumerating formulas ϕα1,i and ϕα2,i, respectively. In
this chapter, we focus on synthesis of control protocols from contracts that can be expressed
in GR(1), and build on recent works on formal synthesis of aircraft vehicle management
systems [207], distributed control synthesis [157], and reactive synthesis for electric power
systems [211]. In our framework, optimized mapping, e.g. performed via simulation, may be
an expensive or incomplete procedure for certain kinds of requirements; reactive synthesis is
then key to make it affordable, by guaranteeing that several functional, safety and reliability
requirements are already satisfied by construction.

6.1.2 Distributed Synthesis

To provide an inherent level of redundancy for system reliability, distributed control architec-
tures are increasingly being adopted in several safety-critical cyber-physical systems (CPS),
thus motivating the extension of reactive synthesis techniques to the design of distributed
controllers. Contracts can offer a natural framework to reason about distributed control
architectures in a compositional way. In distributed synthesis, different control subsystems
can be composed if their contracts are compatible. Hence, the goal of distributed synthesis
is to simultaneously refine a system contract into compatible horizontal contracts for the
components (i.e., subsystems), and to find the control logics that realize those contracts.

In a top-down approach, given a global specification and a system composed of subsys-
tems, distributed synthesis proceeds by first finding local specifications for each subsystem,

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 134

and then synthesizing local controllers for these subsystems separately. If the local specifi-
cations satisfy certain conditions, it can be shown that the local controllers realizing these
local specifications can be implemented together and the overall system is guaranteed to
satisfy the global specification. Conversely, in a bottom-up approach, we assume that the
local specifications are given in terms of a library of contracts that are realizable. Our goal is
then to find an aggregation of contracts from the library that refines the global specification
contract. A distributed (global) controller can also be built, in this phase, by composition
from a library of pre-synthesized (local) controllers, using optimized mapping techniques.
In this context, an optimization problem can be cast as in (4.1), where contract refinement
checking is repeatedly performed in an optimization loop. Therefore, devising algorithms
that can efficiently check contract refinement is key. We discuss one of such algorithms in
Section 6.4.

For example, we illustrate below a special case of distributed architecture, i.e. a serial
interconnection of controllers, which will be used in Chapter 7 to synthesize controllers for the
AC and DC subsystems of an electrical power system separately. Noticeably, the following
theorem is based on a previous result [157]. Yet, the new proof provided below shows that
contracts offer straightforward mechanisms for rigorous and effective compositional reasoning
in distributed control architectures.

Theorem 6.1.1. Given

• a system characterized by a set S = D ∪ E of variables, where D and E are disjoint
sets of controllable and environment variables,

• its two subsystems with variables S1 = D1 ∪ E1 and S2 = D2 ∪ E2, where for each
i ∈ {1, 2}, Di and Ei are disjoint sets of controllable and environment variables for the
ith subsystem, D1 and D2 are disjoint, and D = D1 ∪D2,

• a set ι of pairs of variables representing the interconnection structure, that is, for a
serial interconnection, ι = {(o1, i2)|o1 ∈ O1 ⊆ (D1 ∪ E1), i2 ∈ I2 ⊆ E2}, where for all
(o, i) ∈ ι, i is set equal to o (and, possibly, renamed as o),

• a global specification ϕ : ϕe → ϕs, and two local specifications ϕ1 : ϕe1 → ϕs1 and
ϕ2 : ϕe2 → ϕs2, where ϕe, ϕe1, ϕe2, ϕs, ϕs1, and ϕs2 are LTL formulas containing
variables only from their respective sets of environment variables E, E1, E2 and system
variables S, S1, S2;

if the following conditions hold:

1. any behavior that satisfies ϕe also satisfies (ϕe1 ∧ ϕe2),

2. any behavior that satisfies (ϕs1 ∧ ϕs2) also satisfies ϕs,

3. there exist two controllers that make the local specifications (ϕe1 → ϕs1) and (ϕe2 →
ϕs2) true under the interconnection structure ι;

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 135

then, implementing the two controller together leads to a controller that satisfies the global
specification ϕe → ϕs.

Proof. The conditions on D, D1, D2 ensure that the two controllers are composable, i.e. they
do not try to control the same output (controllable) variables. We first derive LTL contracts
from the global and local specifications, by defining the following sets of behaviors in terms
of assumptions and guarantees:

A = {σ : σ |= ϕe}; G = {σ : σ |= (ϕe → ϕs)};
Ai = {σ : σ |= ϕei}; Gi = {σ : σ |= (ϕei → ϕsi)};
A′ = {σ : σ |= (ϕe1 ∧ ϕe2)}; G′ = {σ : σ |= ((ϕe1 ∧ ϕe2)→ (ϕs1 ∧ ϕs2))},

where all the behaviors are to be interpreted, after variable renaming, extension, and equal-
ization, over the global alphabet1.

Let C = (A,G) be the global contract, C1 = (A1, G1) and C2 = (A2, G2) the local
contracts, and C ′ = (A′, G′), all in saturated form. We immediately observe that A′ =
A1 ∩ A2 while G′ ⊇ (G1 ∩ G2). Clearly, for any implementation Mi, Mi |= Ci if and only
if its set of behaviors [[Mi]] ⊆ Gi, i.e. [[Mi]] |= ϕi, after alphabet equalization. Moreover,
because any implementations M1 and M2 of C1 and C2 are composable, contract composition
using equations (2.2) and (2.3) is well defined and the composition M1 ×ι M2 (under the

interconnection ι) is an implementation of C1
ι
 C2 := C1 ⊗ Cι2 (under the interconnection

ι). By condition 3 in the statement of the theorem, we know that such an implementation
M1 ×ιM2 exists. Therefore, C1 ⊗ Cι2 is compatible (and consistent).

To show the result, it is then enough to prove that C1⊗Cι2 � C, i.e., C1⊗Cι2 = (A12, G12)
refines C. By the definition of refinement, this amounts to showing that G12 ⊆ G and
A12 ⊇ A. This is straightforward, since

G12 = (G1 ∩G2) ⊆ G′ ⊆ G (6.1)

by conditions 1 and 2 in the theorem statement, and

A12 = (A1 ∩ A2 ∪ ¬G12) ⊇ (A1 ∩ A2) = A′ ⊇ A, (6.2)

by condition 1. Then, we conclude C1 ⊗ Cι2 � C ′ � C, and M1 ×ι M2 satisfies the global
specification2.

There are two sources of conservatism in distributed synthesis. The first one is due to
the fact that local controllers have only local information. Therefore, even if there exists a

1We choose here to express contracts using a set-based notation. However, we can equivalently express
them as pairs of formulas, as we do in Section 2.4.1.4.

2In this proof, we do not need to check contract compatibility by universal quantification over D,
i.e. whether ∀D : A12 6= ∅, since we are assured that C1 and C2 are compatible under ι by condition 3
in the theorem statement.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 136

centralized controller that realizes a global specification, there may not exist local controllers
that do so. This is an inherent problem and can only be addressed by modifying the control
architecture (e.g., by changing the mapping of controlled variables to controllers, by intro-
ducing new sensors, or by modifying the information flow between local controllers). The
second source of conservatism is computational. Even when local controllers that realize the
global specification exist, it might be difficult to find them (e.g., see Pnueli and Rosner [163]
for some undecidability results). We note that the conditions provided in Theorem 6.1.1 are
only sufficient conditions. The choices of ϕej and ϕsj for j ∈ {1, 2} plays a role in the level
of conservatism. In principle, ϕej and ϕsj should be chosen such that A′ is as “small” as
possible, and G′ is as “large” as possible in the sense of set inclusion. Hence, when condi-
tions 1 and 2 are satisfied but condition 3 is not satisfied, one can gradually refine the local
specifications to make them realizable [157].

6.1.3 Optimized Mapping

Several real-time performance requirements (e.g. timing constraints), mostly relating to the
dynamic behaviors of the physical plant and the hardware implementation of the control
algorithm, cannot be effectively imposed via synthesis at the DE level. For this purpose,
we refine a subset of LTL requirements into STL constructs on physical (e.g. electrical,
mechanical) quantities and leverage off-line or on-line monitoring of simulation traces while
optimizing the system.

The functional model of the centralized or distributed controller, synthesized using the
techniques in Section 6.1.1 and Section 6.1.2, is then embedded into a high-fidelity model of
the system, e.g. a hybrid model, possibly including an acausal representation of the plant.
The joint execution of the controller with the plant in this mapping step is instrumental
to: (i) check the consistency of the vertical contract CLTL ∧ CSTL, (ii) discharge the timing
assumptions made during the synthesis step, and (iii) ultimately verify the satisfaction of
both the functional and timing viewpoints. The resulting optimal controller and plant con-
figurations after mapping are returned as the final design. In the following, we discuss an
instance of problem (4.1) in the case of STL contracts.

In this context, a Boolean verdict on whether a property is satisfied may not be sufficient
for design space exploration and system optimization. In fact, we are also interested in
capturing the robustness of satisfaction of a formula ϕ by a signal q, i.e., the amount of
margin by which a property is satisfied. To do so, we refer to the quantitative semantics of
STL. The quantitative semantics of STL are defined using a real-valued function ρ of a trace
q, a formula ϕ, and time t satisfying the following property:

ρ(ϕ, q, t) ≥ 0 iff (q, t) |= ϕ. (6.3)

The underlying idea is that, whenever the absolute value of ρ(ϕ, q, t) is large, a change in
q is less likely to affect the Boolean satisfaction (or violation) of ϕ by q, i.e. the margin by
which a design satisfies ϕ is larger.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 137

Without loss of generality, an STL predicate µ can be identified to an inequality of the
form g(q) ≥ 0 (the use of strict or non strict inequalities is a matter of choice and other
inequalities can be trivially transformed into this form). From this form, a straightforward
quantitative semantics for predicate µ is defined as

ρ(µ, q, t) = g(q(t)). (6.4)

Then ρ can be inductively defined for every STL formula using the following rules:

ρ(¬ϕ, q, t) = −ρ(ϕ, q, t) (6.5)

ρ(ϕ1 ∧ ϕ2, q, t) = min(ρ(ϕ1, q, t), ρ(ϕ2, q, t)) (6.6)

ρ(ϕ1UIϕ2, q, t) = sup
t′∈t+I

[
min

(
ρ(ϕ2, q, t

′), inf
t′′∈[t,t′)

ρ(ϕ1, q, t
′′)
)]
. (6.7)

Additionally, by combining equation (6.7), and �Iϕ , ¬3I¬ϕ, we get

ρ(�Iϕ, q, t) = inf
t′∈t+I

ρ(ϕ, q, t′). (6.8)

Finally, for 3, we get a similar expression using sup instead of inf. It can be shown that
ρ, as defined above, satisfies equation (6.3) and thus defines a quantitative semantics for
STL [76].

By leveraging such quantitative semantics, a design space exploration problem on a hybrid
system model, defined as in Section 2.4.1.2, can be formulated as follows. Let CSTL =
(ϕe, ϕe → ϕs) be an STL contract encoding a set of system requirements, with ϕe and ϕs
Parametric STL (PSTL) formulas. Let C be an array of costs, and κ ∈ K a vector of
platform configuration parameters, i.e., a vector of variables in the hybrid system model
that are selected as a result of the design process. Our goal is to find a set of parameter
vectors κ∗ that are Pareto optimal with respect to the objectives in C, while guaranteeing
that the system satisfies ϕs for all possible system traces s ∈ S satisfying the environment
assumptions ϕe. Examples of design parameters could be the controller clock or a tunable
delay in a component.

To formalize the above multi-objective optimization problem, we partition ϕs as

ϕs(τ ,π) = ϕsc(τ ,π) ∧
m∧
i=1

ϕsr,i(τ ,π), (6.9)

where a set of time parameters τ ∈ T and scale parameters π ∈ P can be used to capture
degrees of freedom that are available in the system specifications, and whose final value can
also be determined as a result of the optimization process. The formula ϕsc in (6.9) encodes
the requirements that will be considered as “hard” optimization constraints for Boolean satis-
faction, while ϕsr,i are formulas that will also be considered for robust satisfaction, i.e., given
a system trace s′ and a parameter set (τ ′,π′), the robust satisfaction ρi(ϕsr,i(τ

′,π′), s′, 0)
will also be computed. Similarly, the array of costs C can be partitioned as follows

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 138

C(κ, τ ,π) =

(
Cc(κ, τ ,π), Ci(ρi(ϕs,ri(τ ,π), s(κ), 0))

∣∣∣
1≤i≤m

)
, (6.10)

where Cc(κ, τ ,π) is a vector of costs that depend only on the parameters of the model
and the formulas; it can be used to capture, for instance, some performance figures (e.g.,
bandwidth, energy) as a function of the system design parameters, or the duration of a
requirement violation. Each component Ci(ρi(ϕsr,i, s, 0)) in (6.10) is instead a scalar function
of the quantitative satisfaction of each formula ϕsr,i; it can be used to capture and maximize
the margin by which ϕsr,i is satisfied.

By putting it all together, the design exploration problem can be expressed as a multi-
objective robust optimization problem

min
κ∈K,τ∈T ,π∈P

C(κ, τ ,π) (6.11)

s.t.

F(s,κ) = 0

s |= ϕs(τ ,π) ∀s s.t. s |= ϕe(τ ,π)

where we aim to minimize a set of costs over all possible system and formula parameter
valuations, for all the system behaviors satisfying the behavioral model and the contract
CSTL. For a given parameter valuation κ′, s′ = (u′,y′,x′) is the trace of input, output
and internal signals that are obtained by simulating F(.). A multi-objective optimization
algorithm with simulation in the loop can then be used to find the Pareto optimal solutions
κ∗. While this may be expensive in general, it becomes affordable in many practical cases,
as further illustrated in Section 6.2 and Chapter 7.

6.2 Reactive Synthesis-Based Optimized Control

Mapping: Power System Design Example

We apply the RS-OCM methodology to the design of the Bus Power Control Unit (BPCU)
of an aircraft electric power system (EPS). The formulation in this section will be used for
the numerical experiments in Chapter 7.

Power requirements of different loads might differ in an aircraft based on the mode of
operation. Similarly, the availability of the generators and the health conditions of several
components might vary during the flight. The goal of the controller is to reconfigure the
electric power system and reroute power by appropriately reacting to such changes in sys-
tem conditions to ensure that safety-critical loads are always powered according to their
safety and reliability requirements. We first describe how the control logic for the BPCU
can be automatically synthesized from LTL contracts. Then, we discuss the use of STL and
simulation-based design space exploration to check or enforce real-time constraints (e.g. tim-
ing) for controller implementation.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 139

6.2.1 Synthesis of Reactive Protocols for Electric Power
Distribution

The control protocol synthesis problem for electric power system can be stated as follows:
given an electric power system topology (generated as discussed in Chapter 5) and a formal
specification describing assumptions on the plant components and the external environment
and guarantees on the system, build a controller that reconfigures the system (via turning
on and off the contactors) by sensing and reacting to the faults and the changes in system
status so as to ensure that the specification is met. Next, we discuss how to formalize the
requirements to recast the above problem as a reactive synthesis problem.

6.2.1.1 Variables

Environment variables include the health statuses of components that are uncontrolled.
In our formulation, we consider only generators, APUs, and rectifier units as environment
variables. They can each take values of healthy (1) and unhealthy (0), and may change at
any point in time3. Controlled variables are contactors, and can each take values of open (0)
or closed (1). A closed contactor allows power to pass through, while an open one does not.
Dependent variables are buses that can be either powered (1) or unpowered (0). Bus values
will depend on the status of their neighboring contactors, buses, as well as the health status
of connecting generators, APUs, or rectifier units.

Timing considerations play a key part in the specifications for an electric power system.
LTL, however, only addresses the notion of temporal ordering of events. To reconcile this
discrepancy, we handle timing annotations by introducing clock variables. Verification of
actual timing constraints related to the controller implementation is then performed at a
lower abstraction level, as detailed in Section 6.1.3. The following lists the temporal logic
formulas used to concretely express the contract for controller synthesis for the primary
distribution in an electric power system.

6.2.1.2 Environment Assumptions

Let I be an index set enumerating the set of environment variables described in Section
6.2.1.1. For each environment variable ei, i ∈ I, let pi be its probability of failure in a given
time interval T (e.g., the duration of a flight), as also used in Section 5.7 (footnote). Let rS be
the overall reliability level the system has to achieve, that is, the probability of the overall
system failure should be less than or equal to rS. Assuming independence of component
failures, the overall reliability level determines the allowable environment assumptions by
providing a bound on the number of simultaneous component failures allowed. More formally,
denote a single configuration of the environment (i.e., an environment state) by e. For a
given subset I ′ ⊆ I of the environment variables, we define eI′ = (e1, . . . , e|I|), where ei = 0

3Generators can be taken offline by the pilot or may stop functioning due to a fault. We do not differ-
entiate between these cases and simply call a generator unhealthy when it is unavailable or malfunctioning.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 140

(unhealthy) if i ∈ I ′; and ei = 1 (healthy) otherwise. Let h : [0, 1] → 22I be the function
that maps the system reliability level to the possible environment configurations. We can
then enumerate all allowable environment configurations based on the required reliability
level as

ES = {eI′ |I ′ ∈ h(rS)} . (6.12)

With this definitions, an environment assumption can be written in LTL as �(e ∈ ES).
As the function h can be difficult to compute, alternatively, one can reason about the

probability rC of an environment configuration and map it back to the system reliability level
rS. To this effect, we enumerate all environment configurations that occur with probability
more than a given level rC . Then, if the control synthesis problem is realizable with the
assumption �(e ∈ EC), this implies that the system level reliability is

rS =
∑
e/∈EC

∏
j:ej=0

pj
∏
j:ej=1

(1− pj).

The second environment assumption is also related to failure analysis. We assume that
when a component fails during the flight (the interval T), it will not come back online. This
can be expressed in LTL as

�
∧
i∈I

((ei = 0)→ #(ei = 0)) . (6.13)

6.2.1.3 Controller Guarantees

We provide below the list of LTL guarantees that are part of the controller contract CC . The
first set of formulas encode the DE behavioral model of the power buses in the system. The
other formulas capture, instead, the system requirements. Any controller implementation
should satisfy the conjunction of both of them.

Power Status of Buses: An AC bus can only be powered if there exists a live path
(i.e., all contactors closed along a path) that connects the bus to a healthy AC generator
or a healthy APU. Similarly, a DC bus can only be powered if there exists a live path that
connects it to a healthy rectifier unit, which itself is connected to a powered AC bus. Let
p̃i,B denote the set of all components (i.e., contactors and buses) along a path between bus
B and environment variable ei for i ∈ I, excluding B and ei. Furthermore, let G ⊆ I and
R ⊆ I represent the sets of generators and rectifier units. AC bus B is powered if there
exists a live path between B and ei for i ∈ G, written as4

�

∨
i∈G

(ei = 1) ∧
∧

X∈p̃i,B

(x = 1)

→ (b = 1)

 . (6.14)

4Per abuse of notation, we denote components by uppercase letters (e.g., C, B) and component statuses
by lowercase letters (e.g., c, b).

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 141

If there exists no live path between B and a generator ei for i ∈ G, then B will be unpowered

�

¬∨
i∈G

(ei = 1) ∧
∧

X∈p̃i,B

(x = 1)

→ (b = 0)

 . (6.15)

A similar set of specifications for DC buses holds in which environment variables ei span
i ∈ R.

Balanced Power Flow in Nominal Conditions: Under nominal conditions (i.e., when
all generators and rectifier units are healthy), the power drawn from each generator by
the buses connected to it should be less than the capacity of that generator. Let P̃B be
a constant that corresponds to the maximum power required by the loads connected to
the bus B and P̃ei be a constant corresponding to the power generator i can nominally
provide. Using the live path constructs, we define the power variables li,B ∈ {0, P̃B} such
that

∧
X∈p̃i,B(x = 1) → (li,B = P̃B), and ¬

∧
X∈p̃i,B(x = 1) → (li,B = 0). Then, the power

flow requirement can be written as

�

{∧
i∈I

(ei = 1)→
∧
i∈G

(P̃ei ≥
∑
B∈B

li,B)

}
, (6.16)

where B represents the set of buses.

No Paralleling of AC Sources: To avoid paralleling, we explicitly enumerate and disal-
low all bad configurations. In Fig. 1.3, paralleling can occur if there exists a live path that
connects two AC generators or APUs. Let p̃i,j represent the set of components along a path
between generators ei, ej, for i, j ∈ G and i 6= j. We disallow configurations in which all
contactors C ∈ p̃i,j create a live path. These specifications are written as

�
∧
i,j∈G

¬ ∧
C∈p̃i,j

(c = 1)

 . (6.17)

Safety-Criticality of Buses: A safety-critical bus can be unpowered for no longer than
Ts time steps. This is implemented through the use of an additional clock variable xB for
each bus B, where each “tick” of the clock represents δ time. If the bus is unpowered, then
at the next time step clock xB increases by δ. If B is unpowered, then at the next time step
clock xB resets to zero. Then, we limit the number of steps B can remain unpowered in

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 142

order to ensure that xB never becomes larger than Ts. Thus, for all safety-critical buses5,

� {(b = 0)→ (#xB = xB + δ)} , (6.18a)

� {(b = 1)→ (#xB = 0)} , (6.18b)

�(xB ≤ Ts). (6.18c)

Unhealthy Sources: A bus connected to an unhealthy source (generator or rectifier unit)
will create a short-circuit failure, leading to excessive electrical currents, overheating, and
possible fires. While generators have internal protections to avoid such failures, we require
that appropriate contactors open when a generator or APU becomes unhealthy to isolate
the unhealthy source and prevent its use. Let N (ei) represent the set of contactors directly
connected, or neighboring, environment variable ei for i ∈ I. We write the specifications to
disconnect all unhealthy sources as

�
∧
i∈I

(ei = 0)→
∧

C∈N (ei)

(c = 0)

 . (6.19)

Both the assumptions and guarantees mentioned above form the controller contract CC .
Moreover, since they are within the GR(1) fragment of LTL, digital synthesis tools, such
as the one implemented in JTLV [165], can be used to automatically synthesize the control
protocol. For the examples discussed in this thesis, we used the Temporal Logic Planning
(TuLiP) Toolbox [209], a collection of Python-based code for automatic synthesis of em-
bedded control software, which provides an interface to JTLV. In Chapter 7 we show how the
formulas above can be generated from a set of higher-level patterns, as a part of a domain
specific language for power system distribution.

6.2.1.4 Capturing Actuation Delays

In the discussion above, we assumed ideal contactors that can be instantaneously controlled.
It is possible to capture delays in contactor opening and closing times, as well as the commu-
nication delays between the controller and the contactors. To this effect, one can introduce
a controlled variable C̃ to represent the controller intent for contactor C and treat the con-
tactor as an environment variable. The uncertain delay between the controller intent and
contactor state can be handled by the use of an additional clock variable xC for each contac-
tor C, where each “tick” of the clock represents δ time. If the contactor intent is open and
the contactor state is closed, the contactor opens within [Tomin , Tomax] units of time unless a
close command is issued before it opens. If the contactor intent is closed and the contactor

5As apparent from the formulas above, we extend LTL with first order atoms including linear arithmetic
constraints on integers. Moreover, in (6.18), we use a “functional” notation for the # operator, where #xB
is the value of the variable xB at the next reaction index. This is a notation broadly used in model checkers,
such as NuSMV.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 143

state is open, the contactor closes within [Tcmin , Tcmax] units of time unless an open command
is issued before it closes. Once the contactor intent is set, if the contactor state does not
match the intent, at the next step clock xC will increase by δ. If contactor state and intent
match, then at the next step clock xC resets to zero:

�{(#c = c̃)→ (#xC = 0)}.

When the control command is the same as the contactor state, the contactor state remains
the same, i.e.,

�{(c̃ = c)→ (#c = c)}.

Finally, the assumptions capturing the contactor closing behavior in relation to the controller
input intent are given by

� {(c̃ = 1 ∧ c = 0 ∧ (xC < Tcmin))→ (#c = 0 ∧#xC = xC + δ)} ,
� {(c̃ = 1 ∧ c = 0 ∧ (xC ≥ Tcmin))→ (#c = 1 ∨#xC = xC + δ)} ,
�(xC ≤ Tcmax).

The contactor opening behavior can be formally captured in a similar manner. The for-
mulas mentioned in this section enter to the control synthesis problem as new environment
assumptions when delays are taken into account. It should also be noted that unhealthy
sources can only be disconnected with a delay in this case, therefore formula (6.19) should
be adjusted accordingly.

6.2.2 Simulation-Based Design Space Exploration

The design steps in Chapter 5 (Section 5.7) and Section 6.2.1 allow synthesizing electric
power system architectures and control protocols that jointly satisfy the top-level system
specifications, represented by contracts CT , for the EPS topology, and CC,LTL. To assess
the satisfaction of real-time performance constraints, we monitor STL formulas from the
controller contracts CC,STL on voltage and current waveforms over time, as discussed in
Section 6.1.3.

As an example, we investigate here the maximum reaction time allowed to the controller.
For this purpose, we assume a synchronous implementation of the controller, running at
a fixed period Tr

6. In our hybrid model, the BPCU is connected in closed loop with the
power system plant, while failure events can be injected by setting the input signal u(t).
Moreover, we assume that all contactors respond with a fixed delay Td to the open/close
commands from the BPCU. We then consider the requirement that a DC essential bus must
never be unpowered for more than tmax under any possible failure scenario. In a continuous

6The synchronous operation of the controller is a design choice specific to the case study in this thesis;
it is not meant to serve as a general design guideline.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 144

setting, such a requirement is translated by stating that the DC bus voltage VDC should
never deviate from the desired value Vd by more than a margin ε for more than tmax. The
predicate specifying that the current value of the voltage stays in the desired range is:
|VDC(t)− Vd| < ε. Then, the STL formula expressing this to be false for at least tmax is:

χ = �[0,tmax]¬(|VDC(t)− Vd| < ε). (6.20)

Since we need to enforce that VDC is never out of range only after the initial start-up transient
time τi, we require

φ(τi) = ¬(3[τi,∞) χ) (6.21)

to be true.
To compute the maximum amount of time elapsed while the DC bus voltage is out of

range, i.e. for how long at most the voltage requirement on the DC bus is violated, we
turn (6.20) into a PSTL formula, by introducing the timing parameter τe, after which an
out-of-range voltage event is detected, as follows:

ψ(τe) = �[0,τe]¬(|VDC(t)− Vd| < ε). (6.22)

The initial start-up transient time τi is estimated from simulation as a function of Tr and
Td. Then, the maximum violation period τ ∗e (Tr, Td) can be computed as the

sup{τe ≥ 0 | φ (τi(Tr, Td), τe) = F}, (6.23)

where
φ(τi, τe) = ¬(3[τi,∞) ψ(τe)). (6.24)

The formula in (6.24) allows exploring the Tr-versus-Td design space and finding the
maximum allowed controller reaction time T ∗r for a fixed T ∗d , in such a way that the essential
DC bus is never out of range for more than tmax. To do so, we cast an optimization problem
following the formulation in (4.1)

min
Tr>0

1/Tr (6.25)

s.t.

F(u, VDC , Tr) = 0

VDC |= φ (τi(Tr, T
∗
d), τe) ∀τe ≥ tmax ∀u s.t. u |= ϕ′e

where C = 1/Tr is the cost function, κ = Tr is the design parameter, ϕs(τ) =∧
τe≥tmax φ (τi(Tr, T

∗
d), τe) is the conjunction of PSTL formulas that must be satisfied, each

parametrized by τ = Tr, and ϕ′e refines the environment assumption formula ϕe in
Section 6.2.1. In this case, the system behavior s is the trace s = (u, VDC), where VDC is the
output signal to be observed during simulation, and u spans the set of all admissible failure
injection traces that are consistent with the environment assumptions in Section 6.2.1.2.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 145

The formulation in (6.25) includes an infinite set of formulas that must be satisfied for all
admissible failure traces and values of τe ≥ tmax. However, such formulation can be further
simplified, by observing that (6.25) is equivalent to

max
Tr>0

Tr (6.26)

s.t.

F(u, VDC , Tr) = 0

τ ∗e (Tr, T
∗
d) ≤ tmax ∀u s.t. u |= ϕ′e

where τ ∗e is defined in (6.23). Moreover, as we will show in Chapter 7, it is enough to compute
VDC(t) and τ ∗e under the worst case failure scenario, rather than for all possible failure traces,
whenever the worst case assumptions on u(t) can be determined a priori. Problem (6.26)
can then be solved by first solving the optimization problem in (6.23) to compute τ ∗e as a
function of Tr and T ∗d in the worst case input scenario, and then by computing the value
T ∗r of the controller reaction time that makes τ ∗e equal to tmax. For the example discussed
in Chapter 7, we used the Breach toolbox [77] to facilitate post-processing of simulation
traces and verify the satisfaction of the STL formulas.

6.3 Programming-Based Optimized Control Mapping

(P-OCM): Overview

The Programming-Based Optimized Control Mapping (P-OCM) method allows designing
model predictive control algorithms [84] within a rigorous contract-based approach.

We leverage a discrete-time abstraction of the continuous behaviors of the system, and
express contracts using either first-order difference equations involving the components’ vari-
ables and parameters (e.g. for time-varying properties), or arithmetic constraints on real
variables that must hold at each time step or at steady state (e.g. for time-invariant prop-
erties). The algebra of contracts can then be implemented by simply combining constraints
via conjunction or disjunction to express, respectively, intersections or unions of behaviors.

Similarly to requirements (properties), component models can also be expressed at the
same discrete-time abstraction level, i.e. by using difference equations to construct behavioral
models, and arithmetic constraints on real numbers (e.g. polynomial constraints) for perfor-
mance and cost models. An optimal control problem can then be formulated as an optimized
mapping problem, an instance of (4.1), by “unrolling” the system dynamics over a time hori-
zon H. Our goal is to find the value of the control law (a discrete-time continuous-valued
trajectory or trace) subject to the aggregate component contracts, describing the system
dynamics, and a top-level system contract, formalizing the top-level requirements, while
minimizing an objective function. Such a formulation, e.g. generating a mixed integer-linear
(or integer-quadratic) program to be solved in a receding horizon fashion, is returned as the
final design. A pictorial representation of the control design flow is shown in Figure 6.1.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 146

Top-Level Requirements

(Contracts)

Component
and Contract

Library

Discrete-Time
Continuous Dynamics

Programming-Based

Optimized Control

Mapping (P-OCM)

Control Algorithm

System Architecture

(e.g., labeled graph)

CHR

CP⨂CC

Figure 6.1: Programming-based optimized control mapping flow.

C

P
dt

xt ut

Figure 6.2: Generic feedback control scheme.

Formally, we refer to Figure 6.2, showing a generic feedback control scheme. In our
contract-based framework, both the plant P and the controller C are specified as an ag-
gregation of contracts from the library L. To simplify, we denote the composition of the
plant and controller contracts, under feedback interconnection and renaming, as CP ⊗ CC .
The top-level requirements are specified by a system-level application contract CRH . The
refinement (mapping) between CRH and CP ⊗ CC is then modeled as the vertical contract
CRH ∧ (CP ⊗CC) given by the conjunction of the architecture and application contracts. We
are interested in an optimal control law subject to the constraint that CRH ∧ (CP ⊗ CC) is
consistent, i.e. there exists an implementation satisfying both the guarantees of CRH and
CP ⊗ CC in the context of their assumptions, as further detailed below.

We assume that the aggregate system dynamics are described by the following difference

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 147

equation at each non-negative time step t:

xt+1 = p(xt, ut, dt) ∀ t ∈ N, ∀ x0 ∈ X0, ∀ d(t) ∈ D, (6.27)

where xt is the system state, ut the control input, and dt an external uncontrolled input
(disturbance), all at time t. X0 is the set of all admissible initial conditions, while D is the
set of all the admissible environment behaviors (traces). We denote as S = X ∪ U ∪ D
the set of system variables. A system behavior or trajectory σ = s0s1s2 . . . is a sequence of
valuations s = (x, u, d) over S for all t ∈ N. We also use s(t) to denote a system behavior
(trace) to distinguish it from from the valuation st at time t. The difference equation in (6.27)
encodes the guarantees of the aggregate system contract CP⊗CC , while the legal sets of input
condition and environment trajectories encode the assumptions.

In general, a dynamical model for the system guarantees, as the one in (6.27), can be ob-
tained by composition of the components’ dynamics according to the system interconnection
structure, e.g. by conjoining the components’ dynamics, after extending their local variable
alphabets to a global, common set of symbols. Such a conjunction may also include “local,”
component-level constraints, both in the form of difference equations or stateless (memory-
less) constraints. In fact, the behavior of a component in P or C is guaranteed, according
to its behavioral model, only under a set of constraints expressing its assumptions. Some of
these constraints, e.g. including bounds on the magnitude of some of the system variables,
must be discharged by the guarantees of other components, and explicitly accounted for in
the optimization problem. To simplify, we model this kind of assertions in terms of stateless
constraints of the form

λt(st) ≤ 0 ∀ t ∈ N, (6.28)

where λt(.), at each t, is a real-valued function of the system variables s.
We then assume that CHR has the same assumptions of CP ⊗ CC in terms of admissible

external inputs and initial conditions. Moreover, CHR may have additional guarantees cap-
turing the system-level requirements. To be concrete, we assume these guarantees can be
expressed in term of stateless constraints as follows:

GHR := γt(st) ≤ 0 ∀ t ∈ N, (6.29)

where γt(.), at each t, is also a real-valued function of the system variables s. However,
expressions depending on the history of s rather than just st are also possible.

Finally, let J(ut, xt) be a real function providing the system cost in terms of system state
and control at time t. Then, the optimal control problem aiming at minimizing the cost over
time horizon H while satisfying the system dynamics and contracts can be formulated as

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 148

follows:

min
ut

H−1∑
k=0

J(ut+k, xt+k) (6.30a)

subject to: xt+k+1 = p(xt+k, ut+k, dt+k), ∀ k ∈ {0, ..., H − 1} (6.30b)

γit+k(xt+k, ut+k, dt+k) ≤ 0, ∀ k ∈ {0, ..., H − 1}, ∀ i ∈ {1, ..., |Γ|} (6.30c)

λjt+k(xt+k, ut+k, dt+k) ≤ 0, ∀ k ∈ {0, ..., H − 1} ∀j ∈ {1, ..., |Λ|} (6.30d)

xt ∈ Xt (6.30e)

dt+k ∈ Dt+k, ∀ k ∈ {0, ..., H − 1} (6.30f)

where ut = (ut, ut+1, . . . , ut+H−1) is the control trajectory, Γ is the set of global (application)
constraints as in (6.29), and Λ is the set of local (architecture) constraints as in (6.28). The
resulting optimal control algorithm executes the optimization problem (6.30) in a receding
horizon fashion to find the final u∗t .

A concrete example of this approach, including both formulation and numerical results,
will be provided in Chapter 7, where we propose Holms, a hierarchical optimal load man-
agement scheme for aircraft power systems based on an efficient mixed integer-linear pro-
gramming formulation.

6.4 Library-Based Contract Refinement Checking for

Efficient Verification and Mapping

Given a global specification contract and a system described by a composition of “local”
contracts, system verification reduces to checking that the composite contract refines the
specification contract, i.e. that any implementation of the composite contract implements
the specification contract and is able to operate in any environment admitted by it. When
contracts are captured using high-level declarative languages, such as temporal logic, refine-
ment checking reduces to a temporal logic satisfiability checking problem, which can be very
expensive to solve for large composite contracts. When performing optimized mapping, as
mentioned in Section 6.1.2, such a verification tasks may be repeated several times, which
further exacerbates the problem.

In this and the next sections, we propose a scalable refinement checking approach that
relies on the library of contracts and a set of “local” refinement assertions that enrich the
library. We propose an algorithm that, given such a library, breaks down the refinement
checking problem into multiple successive refinement checks, each of smaller scale.

We first provide some more background material and the mathematical formulation for
the contract refinement checking problem in Section 6.4.1 and Section 6.4.2, respectively.
Then, in Section 6.5 we illustrate our algorithm and its benefits on the aircraft electric power
system case study, with up to two orders of magnitude improvement in terms of execution
time with respect to conventional approaches.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 149

6.4.1 More Background on Contract Refinement Checking

Refinement checking is arguably a key task for the successful deployment of a contract-based
methodology. In all contract frameworks, given a global specification contract and a system,
also described by a composition of contracts, system verification reduces to checking that
a composite contract refines the specification contract. Even if refinement checking can
be carried out compositionally, it can still be very expensive to solve for large composite
contracts. For instance, when contracts can be captured using LTL, refinement checking
reduces to an LTL satisfiability checking problem, which is PSPACE-complete [189]. Even
if contracts are not captured in LTL but instead are expressed directly in an automata-based
formalism such as interface automata, for which refinement checking is polynomial [70], the
method still suffers from scalability issues due to state explosion. Indeed, the size of the
system automaton is often prohibitive, as the system is formed by composing several sub-
systems.

To address this scalability issue within our methodology, we take inspiration by the
strong growth of library-based design approaches in VLSI where, according to a recent market
survey, more than 50% of components at the macro-level come from pre-designed Intellectual
Property blocks (IP) that are fully characterized, pre-verified, and fully documented. The
cost of building a library of IPs is non trivial but is highly compensated by the saving in
design time and cost. International Business Strategies (IBS) estimates that design costs for
a chip implemented in the latest technology will exceed 200 million US$ if IP libraries are
not used to the fullest extent. Indeed, the market for IP blocks is now above 2 billion US$.
Motivated by this trend in semiconductor companies, system companies share a growing
interest in design re-use both for hardware and software. To make it possible to utilize pre-
designed blocks with confidence, providing strong collateral documentation and models is
necessary. Along these lines, we show how refinement checking can be made more efficient
when a system is described by contracts out of a pre-characterized library that carries as
collateral a characterization in terms of a set of refinement assertions.

While we instantiate and demonstrate it by using LTL A/G contracts, our algorithm
is not bound to any specific contract framework. As in traditional assume-guarantee proof
strategies, we decompose the main verification task into smaller sub-tasks, where an aggre-
gation of components is replaced by a more abstract representation [89]. However, in most
cases, finding the appropriate abstraction is an issue, since no general guidelines are available
to the verification engineer. A few approaches have been proposed, which use learning algo-
rithms to automatically build such abstractions [64, 91]. In our approach, the abstraction
process is instead guided by the contract library, which systematically encodes the available
information on both the structural decomposition of the system architecture and the relevant
system domain knowledge. Based on the library, we provide a mechanism to automatically
build abstractions on the fly, as we solve the problem by successive refinements. In this
respect, while clearly inspired by the platform-based design paradigm [176], where a design
at each abstraction layer is built out of components from a pre-characterized library with
composition rules, we further extend the concept of library to also include refinement rules.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 150

As in previous work [58], we exploit the relation between decomposition of component
contracts and system architecture and provide a concrete framework to verify a system ar-
chitecture relying on temporal logic formulas. However, in addition to automatically generate
proof obligations, the contribution of our work is twofold: (i) we propose an algorithm to im-
prove the performance of refinement checking, the core verification task underlying any proof
obligation in contract-based design (CBD); (ii) we illustrate the benefits of a library-based
approach for contract-based verification on a case study of industrial relevance.

6.4.2 Problem formulation

We start by recalling the definition of the refinement relation widely used in our verification
algorithm. We say that contract C1 = (V, ϕe1, ϕs1) refines contract C2 = (V, ϕe2, ϕs2), both
in saturated form, written C1 � C2, if formulas ϕe2 → ϕe1 and ϕs1 → ϕs2 are both valid,
or equivalently, if ¬(ϕe2 → ϕe1) and ¬(ϕs1 → ϕs2) are both unsatisfiable. Moreover, in our
framework, we aim to specify systems that are built as aggregation and interconnection of
components. To do so, we also define a set of operations that manipulate contract variables.
A first operation on contract variables is instantiation. Given a set of contracts C, defined
on a universe of variables VC, an instance of a contract C = (V, ϕe, ϕs) ∈ C is a contract
C ′ = (V ′, ϕ′e, ϕ

′
s) obtained by C by renaming its variables so that all the variable names

v′1, ..., v
′
n in ϕ′e ∨ ϕ′s are unique in VC, i.e. they are not used by any other contract in C. We

will indicate the instantiation of a contract C as inst(C). Given three contracts C, C1 and
C2, where C1 = inst(C) and C2 = inst(C), C, C1 and C2 will not share any variable.

We then define a renaming operator. Given a contract C = (V, ϕe, ϕs), where ϕe, ϕs are
defined on variables V = {v1, ..., vn}, then a renaming for C is a set M of pairs of the form
(vi, uj), where uj is a new variable or an existing variable vk. The renaming operator renM(C)
returns a new contract C ′ = (V ′, ϕ′e, ϕ

′
s) where variables V ′ in ϕe, ϕs are renamed according

to M . We will say that two contracts C1 and C2 are isomorphic if there exists a renaming M
such that renM(C1) = C2. With the exception of their variable names, isomorphic contracts
represent the same contract.

Finally, given a contract C, we define the operations input(C) and output(C), which
return, respectively, the list of input and output variables of C.

6.4.2.1 The Refinement Check Problem (RCP)

Given a set of contracts C, a composition of contracts specifying a system Cs =
renM(inst(C1) ⊗ inst(C2) ⊗ · · · ⊗ inst(Cn)), where C1, . . . , Cn ∈ C and M is a renaming,
and a property expressed as a contract Cp, to ensure that any implementation of Cs satisfies
Cp and can operate in all environments admitted by Cp, we need to verify that Cs � Cp. We
denote this verification task as the refinement check problem (RCP).

For LTL A/G contracts, RCP can be solved using LTL satisfiability solving techniques,
which suffers from the well-known state-explosion problem. In subsequent sections, we will
refer to RCP indicating a routine that solves the refinement problem using such techniques.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 151

Aa b Ba
b
c Da b

M2: B.a0 = D.a1 B.c0 = A.a1

A.b1 = D.b1

M1: A.a0 = C.a0 A.b0 = D.a0

D.b0 = C.b0

Ca b

Figure 6.3: Example contract library with refinement assertions.

To perform such task more efficiently, we recur to a different problem formulation, which
relies on a library of contracts as an additional input.

6.4.2.2 Library of Contracts and Library Verification Problem (LVP)

To describe our algorithm, in this chapter, we provide a formalization of a library of contracts
L as a pair (C,R) where:

• C = {C1, ..., Cn} is a finite set of contracts.

• R is a finite set of refinement relations between contracts in C. Every refinement
relation has the form Ri = (CRi, CAi,Mi), where CRi = renMi

(inst(Ci1)⊗· · ·⊗inst(Cik))
and CRi � CAi for k > 1, Ci1 , ..., Cik , CAi ∈ C, and Mi is a renaming for contract
inst(Ci1) ⊗ · · · ⊗ inst(Cik). If k = 1, we require CRi ≺ CAi, that is, CRi strictly refines
CAi, meaning that the two contracts cannot have equivalent formulas. This constraint is
introduced to avoid, in the library, the presence of circular dependencies, and therefore
ensure termination of the algorithms presented below. We will call the contract Ci1 the
root of Ri.

Refinement relations are assertions made by library designers based on their knowledge of the
system architecture at hand. We say that the library L is valid if all its refinement relations
are true. The library verification problem (LVP) is the problem of checking whether a given
library is valid.

Figure 6.3 shows an example of a contract library and its refinement relations. In this case,
Lex = (Cex,Rex) where Cex = {A,B, C,D}, and Rex = {R1,R2} withR1 = (renM1(inst(A)⊗
inst(D)), C,M1) and R2 = (renM2(inst(A)⊗ inst(B)),D,M2).

6.4.2.3 The Refinement Check Problem with Library (RCPL)

When a library of contracts defined as in Section 6.4.2.2 is available as an additional input, a
refinement check problem with library (RCPL) can be formulated as follows. Given a prop-

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 152

erty contract Cp, a contract library L = (C,R) and a system contract Cs = renM(inst(C1)⊗
inst(C2)⊗· · ·⊗ inst(Cn)), for a renaming M , and such that C1, C2, . . . , Cn ∈ C, check whether
Cs � Cp.

6.5 Scalable Contract Refinement Checking

Algorithm

6.5.1 Library Verification

Given a library defined as in Section 6.4.2.2, the library verification process ensures that
all its refinement assertions are correct. If any of such refinement relations is not verified,
the returned value of the algorithm will be false. A description of the library verification
process is given in Algorithm 1.

Algorithm 1: Library Verification Problem.

Input: A library of contracts, L = (C,R).
Output: true, if all refinement relations in the library are true, false otherwise.

1. For each tuple (CRi, CAi,Mi) ∈ R, CRi = renMi
(inst(Ci1) ⊗ · · · ⊗ inst(Cik)), k ≥ 1,

Ci1 , ..., Cik , CAi ∈ C, and Mi a renaming

a) if k > 1 and CRi 6� CAi then return an error.

b) if k = 1 and CRi 6≺ CAi then return an error.

2. If no errors are found, then return true.

Each refinement check in Algorithm 1 is performed by solving an RCP instance as de-
scribed in Section 6.4.2.1, which is reasonable in terms of computation time, since aggrega-
tions of library contracts are expected to have a small size. Moreover, the overall efficiency
of the library verification routine is deemed to be less critical since it is performed only once,
outside of the main verification flow.

6.5.2 Refinement Check with Library

Our refinement checking procedure is described in Algorithms 2, 3 and 4. We start with a
valid library L = (C,R), defined as in Section 6.4.2.2, a property contract Cp (where possibly
Cp /∈ C), and a system contract Cs, obtained as the composition of a set of contracts S =
{C1, . . . , Cn}, C1, . . . , Cn ∈ C, after instantiation and renaming, as defined in Section 6.4.2.
The system contract Cs represents the specification of a complex system, while the property
contract Cp captures a requirement that must be satisfied by the system. We further assume
that, given a variable v such that v ∈ output(Ci), Ci ∈ S, then v /∈ output(Cj), Cj ∈ S

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 153

Abstract Contract

Solve Refinement Check
Problem (RCP)

Propagate No-Abstraction

Library Match

Refinement
Check

Problem
with Library

(RCPL)

𝐶𝑎𝑏𝑠𝑡𝑟 ≼ 𝐶𝑝

TRUE

𝐶𝑎𝑏𝑠𝑡𝑟

Figure 6.4: Representation of the refinement checking algorithm with library.

and j 6= i, meaning that each variable is controlled only by one contract in S or by a legal
environment of Cs.

We solve the RCPL using the algorithm represented in Figure 6.4 and consisting of
two nested loops. In the inner loop, the procedure AbstractContract tries to create
a maximal abstraction for Cs given the refinement assertions in L and an indication about
which contracts can be abstracted. As a result, some of the contracts in S will be replaced by
an equal or smaller number of more abstract contracts, resulting in a composition that we will
denote as Cabstr. Since, in general, a more abstract contract is expressed by smaller formulas,
Cabstr will be simpler and more compact than Cs. The indication on which contracts can be
abstracted is provided via the outer loop by the routine PropagateNoAbstraction.

In the outer loop, refinement between Cabstr and Cp is checked by the RCP routine. If
Cabstr � Cp holds, then Cs � Cp will also hold since, by construction, we have Cs � Cabstr
and the RCPL routine terminates. If the property is not verified at the current level of
abstraction, subsequent iterations will use a less and less abstracted representation of Cs. In
the worst case, no abstraction is performed and RCPL reduces to an instance of RCP with
the most concrete, “flat,” contract representation. The outer loop of the RCPL procedure is
illustrated in Algorithm 2. To control the level of abstraction, each contract (including Cp)
has an associated Boolean flag that corresponds to a no-abstraction constraint. If the flag is
true, the contract will not be substituted by a more abstract one, even if this is available in
the library. As shown in line 6 in Algorithm 2, the main loop terminates when Cabstr � Cp
or when the function AbstractContract cannot return a more abstract contract.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 154

Algorithm 2: RCPL Routine

Input: A contract Cp, a library of contracts L = (C,R), a contract Cs obtained by
composition of C1, . . . , Cn ∈ C.
Output: true, if Cs � Cp, false otherwise.

1. Let S = [C1, . . . , Cn, Cp].
2. Build hashtable A such that A[Cp] = true and ∀i, A[Ci] = false.

3. S ′ := AbstractContract(A,L, Cs)
4. Cabstr := ⊗{Ci | Ci ∈ S ′}
5. If Cabstr � Cp return true.

6. Create a copy Cs′ = Cs.
7. While Cabstr � Cp and Cabstr 6= Cs′

a) Cs′ := Cabstr,
b) A := PropagateNoAbstraction(A, S),

c) S ′:=AbstractContract(A,L, Cs)
d) Cabstr := ⊗{Ci | Ci ∈ S ′}

8. If Cabstr � Cp return true, otherwise false

Algorithm 3: AbstractContract

Input: A library of contracts L = (C,R), a composite contract Cs (obtained by compo-
sition of C1, . . . , Cn ∈ C), a hashtable A as in Algorithm 2.
Output: A list of contracts S = [Ca1 , . . . , Cam], such that Cs � Ca1 ⊗ · · · ⊗ Cam .

1. Create S := [C1, . . . , Cn].

2. Create Cabstr := null.

3. Create a copy Cs′ := Cs.

4. While Cabstr 6= Cs′

a) assign Cs′ = Cabstr,
b) create copy S ′ := S;

c) for each contract Ck ∈ S ∩ S ′ that satisfies abstraction-acceptance-condition then

i. S ′ := (S ′ − [Ck, Ck1 , . . . , Ckm]) · [renN(CAi)];
ii. Cabstr := ⊗{Ci | Ci ∈ S ′}.

d) S := S ′;

5. return S

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 155

The procedure AbstractContract in Algorithm 3 implements the inner loop of
RCPL. It accepts as inputs a library L = (C,R), a contract Cs composed of contracts in
C, and a list of flags A built as described in Algorithm 2. The algorithm tries to abstract Cs
by using the information in L until no progress is made. Line 4 describes how the abstraction
is performed in terms of the operations defined in Section 6.4.2. At each iteration, a copy of
the current list of contracts S is maintained in S ′ and the abstraction-acceptance-condition
is checked on each contract Ck ∈ S ∩ S ′. If it evaluates to true, a subset of contracts is
matched to an aggregation of contracts CRi in L and then replaced by its abstraction CAi.
The abstraction-acceptance-condition requires the following sub-conditions to hold:

• Ck is not flagged by a no-abstraction constraint, that is A[Ck] = false;

• ∃Ri = (CRi, CAi,Mi) ∈ R such that Ck and the root of Ri are isomorphic;

• ∃Ck1 . . . Ckm ∈ S ∩ S ′, such that A[Ck1] = · · · = A[Ckm] = false, and a renaming N
such that renN(CRi) = Ck ⊗ Ck1 ⊗ · · · ⊗ Ckm , i.e. there exists a subset of contract that
can be abstracted and such that, when composed with Ck, generate a contract that is
isomorphic with CRi;

• (output(renN(CRi)) \ output(renN(CAi)))∩ input(Cr) = ∅, Cr ∈ S ′ \ {Ck, Ck1 , . . . , Ckm},
i.e. no substitution is made if there is some other contract in Cs, which is not in
{Ck, Ck1 , . . . , Ckm}, and such that at least one of its input variables is missing in the
abstract contract.

The replacement of the contracts in the original list as well as the selection of candidate
abstractions from the library are currently performed in a random order. More sophisticated
heuristics will be considered in future implementations.

Termination of AbstractContract is guaranteed since contract Cabstr will not change
after a certain number of iterations. In fact, the number of matchings of contracts in R

performed in line 4.c) is finite. Therefore, since the library is finite, we just need to prove
the absence of circular dependencies between contract relations in R. To show this, we
observe that for each matching relation Ri = (CRi, CAi,Mi), with CRi = renMi

(inst(Ci1) ⊗
· · · ⊗ inst(Cik)), there are two possible cases. If k > 1, after replacing CRi with CAi, the
number of contracts in S decreases. Obviously, this operation can only be performed a finite
number of times. On the other hand, if k = 1, since we requires CRi ≺ CAi, we will always
have CAi ⊀ CRi. Therefore, it is impossible to find in the library a relationR′i = (CAi, CRi,Mi),
which would represent a circular dependency between Ri and R′i.

The runtime of AbstractContract is mostly determined by the time it takes to find a
matching between a set of library contracts and a subset of the contracts composing Cs. Such
a matching problem can be reduced to a graph isomorphism problem, which can be efficiently
solved [196, 21]. In our case, graphs can be built to represent contract compositions, while
incorporating information on the names of the variables of the component contracts and
their isomorphism.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 156

Ba
b

c

Da cA1a b

A2a b

Ba
b

c

Ca b

A2a b

(a) (b)

Figure 6.5: Representation of a composite contract obtained from the library in Figure 6.3
(a) and its abstraction (b).

Algorithm 4: PropagateNoAbstraction

Input: A list of contracts S = [C1, . . . , Cn], a hashtable A as in Algorithm 2.
Output: A new hashtable A.

1. Create list M := ∅
2. For each contract Ck ∈ S such that A[Ck] = true

a) for each contract Ch ∈ S such that (input(Ck) ∪ output(Ck)) ∩ output(Ch) 6= ∅
i. add Ch to M ,

3. For each contract Ci ∈M , assign A[Ci] = true

4. return A.

The heuristic used in the propagation of the no-abstraction constraint is finally detailed
in Algorithm 4. We propose an incremental propagation of the constraint according to the
syntactical dependence between contracts. The algorithm receives as a parameter the list
of contracts that compose Cs, extended with the addition of the property contract Cp (the
first to receive the no-abstraction mark). Each time PropagateNoAbstraction is called,
the no-abstraction mark will be propagated to all contracts that share at least one of their
output variables with a marked contract. This approach is similar to the concept of “cone
of influence” used, for instance, in Counterexample-Guided Abstraction Refinement [62].

We provide an example of execution of our algorithm in Figure 6.5. The contract in
Figure 6.5 (a) is obtained by composition of contracts from the library in Figure 6.3. The
arrows denote a renaming operation. We assume that the property contract Cp involves
only variables B.a and D.c. We then call the RCPL algorithm using Cp, Cs in Figure 6.5
(a), and Lex from Section 6.4.2.2. At the first execution of AbstractContract, all
contracts can be potentially abstracted. However, there are only two possible matchings
between portions of the architecture in Figure 6.3 and the refinement relations in Rex. In

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 157

Figure 6.6: Aircraft electric power system plant architecture used to demonstrate the refine-
ment checking algorithm with library.

particular, the composite contract B ⊗A2 can be abstracted as D1, an instance of D, while
A1 ⊗D can be abstracted as C. However, B ⊗A2 does not satisfy the last condition for the
abstraction-acceptance-condition to hold in line 4.c) of Algorithm 3. In fact, replacing B⊗A2

with D1 would cause the loss of a variable (B.b) that should be shared with A, hence an
incorrect abstraction. Conversely, the substitution of A1⊗D with C is legal and the resulting
contract composition, Cabstr, is shown in Figure 6.5 (b). If Cabstr � Cp, the algorithm would
terminate by executing an instance of the RCP on a more compact representation of the
system contract. Otherwise, if Cabstr � Cp, PropagateNoAbstraction would mark D
with a no-abstraction annotation. At this point, no contract aggregation can be further
abstracted, and the algorithm terminates by solving an instance of the RCP on the original
composition.

6.5.3 Application Example

The proposed algorithm was implemented in Python and applied on the verification of
a controller for an aircraft electric power system (EPS). To solve the LTL satisfiability
problems, we used NuSMV [59]. All tests were performed on a 2.3-GHz Intel Core i7
machine with 8 GB of RAM.

Figure 6.6 shows the architecture of the EPS plant considered in this example. The
set of components includes primary generators (GL, GR), auxiliary generators (AL, AR) on
both the left and right side of the diagram, contactors (c1, ..., c12), buses (B1, ..., B5), high-
voltage rectifier units (HVRUi) and loads. The EPS controller must appropriately open or
close the contactors (electromechanical switches) to ensure that loads are always adequately

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 158

(a) (b)

(d)
(e)

(c)

Input vars(2):
failures
Output vars(4):
contactor
status
communication

Input vars(4):
failures
Output vars(8):
contactors
status
communication

Input vars(2):
failures
Output vars(5):
contactors
status
communication

Input vars(2):
failures
Output vars(4):
contactors
status
communication

Input vars(3):
failures
Output vars(5):
contactors
status
communication

Figure 6.7: Subsets of components of the electrical power system plant and number of vari-
ables associated with the related contracts, including communication variables and variables
related to the health status of plant components (e.g. buses, contactors).

powered by accommodating the highest possible number of failures in the components. In
our example, we assume that failures can only affect generators and rectifiers.

Each contract in our library specifies a “local” controller for a portion of the EPS plant,
i.e. a subset of its components. In addition to sensing (input) and actuation (output) vari-
ables, contracts can include a set of communication variables to propagate information on
error conditions and component health status. Figure 6.7 shows some of the EPS subsystems
supported by our library. A contract for the subsystem in Figure 6.7 (a) specifies that the
contactor should be opened and the failure variable asserted if the generator fails; otherwise
the contactor must be closed. For the subsystem in Figure 6.7 (c), the same requirement as
for Figure 6.7 (a) will hold, with the addition that both generators should never be connected
at the same time to avoid paralleling AC sources. For the subsystem in Figure 6.7 (e), we
require that the contactor on one side should be closed upon reception of a failure signal
from a component connected to the opposite side. The contract for the subset in Figure 6.7
(b) specifies that the load should be isolated in case of failures in one of the interconnected
portions of the plant, or in the HVRU. Finally, the subsystem in Figure 6.7 (d) is associated
to a contract similar to the one in Figure 6.7 (e), while handling one additional bus and only
two interconnection branches. For each portion of the plant, the library can provide multiple
contracts to specify different sets of behaviors. Moreover, we provide contracts that specify
abstractions of controllers for specific portions of the plant. For example, a contract may
represent the behavior of the controller associated to an idealized generator, which abstracts
both the sub-systems in Figure 6.7 (a) and 6.7 (c). A pictorial representation of this refine-
ment relation between local contracts is shown in Figure 6.8. Overall, the library includes
17 contracts and 9 refinement assertions. The verification of the refinement assertion using

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 159

≻ ≻

Figure 6.8: Example of refinement relations between local contracts.

NuSMV required 1.55 s.
A controller for the EPS has been assembled out of 5 different contracts from the library,

associated to the subsystems shown in Figure 6.7. The composite contract has a total of
46 variables. On the other hand, the most compact abstraction of the design based on the
available library had only 12 variables. On this design, we checked the following properties
expressed as LTL A/G contracts:

• Cp1, ..., Cp4: If generatorG ∈ {GL, AL, AR, GR} fails, the closest contactor c ∈ {c1, ..., c4}
must be opened;

• Cp5: If generators GL and GR are healthy, contactors c5 and c6 must be opened;

• Cp6: Contactors c2 and c3 cannot be both closed at the same time;

• Cp7, ..., Cp10: If at least one generator is healthy, bus B ∈ {B1, ..., B4} cannot stay
unpowered for more than three clock cycles;

• Cp11: If all generators are healthy, bus B5 must not be powered;

• Cp12, Cp13: If at least one generator is healthy, c11 and c12 cannot stay opened for more
than three clock cycles.

This set of property contracts has been verified using both the RCPL and the RCP algo-
rithms. The total execution time was 123.1 s for RCPL, and 638.82 s for RCP. Figure 6.9
shows the execution times required by each verification task. For more than half of the
properties (Cp1, Cp2, Cp3, Cp4, Cp5, Cp6, Cp11), RCPL allows to obtain a performance improve-
ment of two orders of magnitude, by using an abstraction of the controller with only 12
variables. For Cp7 and Cp8 RCPL shows a performance improvement of one order of magni-
tude, while for the other properties, the execution times are comparable to the one obtained
with plain RCP. Cp10 produced the worst execution time, using an abstraction with 37 vari-
ables. Figure 6.10 shows the difference in terms of formula sizes, computed as the ratio

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 160

0.1	

1	

10	

100	

1000	

Cp1	 Cp2	 Cp3	 Cp4	 Cp5	 Cp6	 Cp7	 Cp8	 Cp9	 Cp10	 Cp11	 Cp12	 Cp13	

Se
co
nd

s	

EPS	 property	 verifica3on	 execu3on	 3me	

RCP	

RCPL	

Figure 6.9: Execution time of refinement checking algorithm with library (RCPL) and re-
finement checking algorithm (RCP) for the verification of a set of 13 property contracts in
an aircraft electric power system.

Figure 6.10: Maximum size reduction of the linear temporal logic (LTL) formulas in the
abstract system contract with respect to the concrete system contract for the benchmarks
in Figure 6.9.

between the non-abstract EPS contract size and the one of its maximal abstraction obtained
at the first iteration of the AbstractContract algorithm. Formulas in abstract contracts
are indeed smaller than the original ones, which provides an explanation of the performance
improvement obtained using RCPL.

To test the scalability of the algorithm, the same properties have been checked on an
extended plant architecture, including one more generator, 7 contactors, 2 rectifier units, 2
AC loads, 2 DC loads and one bus. The contract specifying a controller for the new plant
includes 66 variables. Verification of the whole property set was performed in 1724.43 s
with RCPL and 8371.01 s with RCP. Also in this example, an execution time two orders of
magnitude smaller for RCPL has been observed. In the best case, the generated abstract
contract included only 16 variables.

CHAPTER 6. CONTRACT-BASED CONTROL DESIGN AND VERIFICATION 161

6.6 Conclusions

We developed two methodologies for systematic design of control protocols within a contract-
based design framework: reactive synthesis-based optimal control mapping and programming-
based optimal control mapping. We showed how different vertical refinement strategies and
tools (i.e., reactive synthesis, simulation-based optimized mapping, and receding horizon
optimization-based control) can be effectively combined to design cyber-physical system con-
trollers in a rigorous and scalable way. Specifically, in the context of compositional design
of distributed controllers, we addressed the problem of performing scalable contract refine-
ment checking, and presented an algorithm that leverages our pre-characterized library of
contracts, enriched with refinement assertions, to break the main verification task into a set
of smaller tasks. The application of the proposed algorithm to verify controllers for aircraft
electrical power systems, showed up to two orders of magnitude improvement with respect
to a standard implementation. Altogether, the architecture and control design paradigms
introduced in this chapter and in Chapter 5 will be put into action on examples of industrial
relevance in Chapter 7.

162

Chapter 7

Application to Aircraft System
Design Examples

In this chapter we see our methodology, supporting algorithms, and tools applied to design
examples of industrial relevance. We show how design exploration of architectures and control
protocols for aircraft electrical power distribution can be carried out in a principled, modular
way by using the Integer Linear Programming Modulo Reliability (ILP-MR) and Reactive
Synthesis-Based Optimized Control Mapping (RS-OCM) methods, respectively introduced in
Chapter 5 and Chapter 6. We then present a novel application of the Programming-Based
Optimized Control Mapping (P-OCM) method, also introduced in Chapter 6, to the problem of
power system load management with optimal resource usage, showing how load management
in aircraft can indeed be made “smarter” than in current design practices. We finally provide
an overview on the application of the proposed methodology to the design of an aircraft
environmental control system and draw some conclusions.

7.1 Aircraft Electric Power System Design: Primary

Distribution

We start by illustrating the application of the methodology introduced in this thesis to the
design of supervisory control systems for aircraft power distribution. Specifically, we focus
on the proof-of-concept design of the primary power distribution of an electric power system
(EPS), involving the configuration of the contactors to deliver power to high-voltage AC and
DC buses and loads.

A sample structure of an aircraft electric power system in the form of a single-line dia-
gram was introduced in Figure 1.3. We briefly recall here the main components and basic
system operation. Generators (e.g., two on the left and two on the right side of the aircraft,
denoted as GEN in Figure 1.3) deliver power to the loads (e.g. avionics, lighting, heating
and motors, not represented in Figure 1.3) via high-voltage and low-voltage AC (HVAC,
LVAC) and DC buses (HVDC, LVDC). Auxiliary Power Unit (APU) generators or batteries

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 163

(Batt) are instead used when one of the primary generators fails. Essential buses (ESS in
Figure 1.3) supply loads that cannot be unpowered for more than a predefined period tmax,
while non-essential buses supply loads that may be shed in the case of a fault. Contactors
are electromechanical switches that are opened or closed to determine the power flow from
sources to loads, and are shown as double bars in the figure. AC transformers (ACT) convert
high-voltage to low-voltage AC power. Rectifier Units (RUs) convert and route AC power to
DC buses. Transformer Rectifier Units (TRUs) act both as transformers and rectifiers. The
goal of the supervisory controller (not represented in Figure 1.3) is to react to changes in
system conditions or failures and reroute power by appropriately actuating the contactors,
to ensure that essential buses are adequately powered.

A pictorial overview of the proposed design flow as instantiated for the EPS was already
introduced in Figure 1.6. In Chapter 5 (Section 5.7) and Chapter 6 (Section 6.2) we distilled
the two main steps of the flow, i.e., architecture design and control design, and presented
their application to power system design examples. In the following, we combine the results
of Chapter 5 and Chapter 6 to show an example of application of the overall design flow in
Figure 1.6, mapping the top-level system requirements into a lower level representation of
both the plant architecture and the control algorithm, which can further be refined during
the subsequent design stages. Both the architecture and control mapping phases are shown
in the context of platform-based design in Figure 7.1. However, before digging into the case
study, we first recall some related work on aircraft EPS design methodologies.

7.1.1 Related Work

A number of results have opened the way for a more structured approach to the design
of aircraft electric power systems, by advocating the adoption of model-based development
and simulation for the analysis of aircraft performance and power optimization [114, 27].
Previous work presented a platform for modeling and architectural exploration of aircraft
subsystems by simulations [27]. Similarly, Krus and Nyman [114] leverage simulation using
a flight dynamics model of the aircraft coupled to a model of the actuation system. In
the context of the More Open Electrical Technologies (MOET) project [107], a set of model
libraries were developed using the Modelica language [2] to support “more-electric” aircraft
simulation, design and validation. Simulation is used for electric power system performance
verification (e.g., stability and power quality) at the network level, by leveraging models with
different levels of complexity to analyze different system properties, and validated with real
equipment measurements. However, design space exploration, optimization and analysis of
faulty behaviors in these models can still become computationally unaffordable unless proper
levels of abstraction are devised, based on the goals at each design step.

A library-based approach to instantiate, analyze and verify a system design was also
adopted within the META research program [116, 198], with the aim to compress the product
development and deployment timeline of defense systems. A simulation framework based
on Modelica was developed to enable exploration of architectural design decisions, while
a language based on SysML [3] was proposed to enable semantically robust integration of

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 164

Specification

Architecture

Reliability

Constraints

Safety

and Performance

Constraints

Behavioral

Models

Reliability Safety

Performance

Loads ContactorsGenearator

Topology Synthesis Control Synthesis

Reliability

Reliability

Models

Discrete Event (LTL)

Continuous Time

and Hybrid (STL)

...

Figure 7.1: Representation of the main mapping phases in the electric power system design
flow, e.g. architecture and control mapping.

models, analytical methods and results provided by other domain specific languages and
tools [141]. Such integration language incorporates assume-guarantee contracts to formalize
system requirements and enable the generation of monitors. In this dissertation, we further
extend the use of assume-guarantee contracts as a design aid in combination with platform-
based design to yield system synthesis and optimization in addition to system simulation
and verification.

An optimization-oriented power system design methodology following the platform-based
paradigm was also proposed, where initial specifications are refined and mapped to the final
implementation in four steps [158]. At each step, a binary optimization problem is formu-
lated to derive a class of candidate implementations for the next exploration step. The
methodology deals with how to select the power generators and synthesize the electric power
system topology. In this chapter, we extend the above flow [158] to enable synthesis of
electric power system topology and control, subject to heterogeneous sets of system require-
ments that are not always approximated by binary or mixed integer-linear constraints. In
particular, we build a rich, multi-view library L of component and contract models that
can be used by different, domain-specific analysis, synthesis and verification frameworks, as
described in Section 4.3. We first synthesize an electric power system topology from system
requirements formalized as arithmetic constraints on Boolean variables. For the given topol-

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 165

ogy, we translate the requirements into temporal logic formulas, by which we synthesize and
verify control protocols.

7.1.2 Top-Level Requirement Formalization

As a first step, top-level requirements are captured in terms of a system contract CS using an
electric power system domain-specific language (DSL), which enables automatic translation
of the specifications from a set of pre-defined primitives to one (or more) of the back-end
formalisms mentioned in Section 4.2. The proposed DSL can smoothly interface with pre-
existing tools, such as visual programs for single-line diagrams, typically used by system
engineers.

A first set of DSL constructs (or patterns) are designed to support the expression of
structural and steady-state requirements, and their translation into mixed integer-linear
constraints, as the ones used in the problem formulation of Section 5.3 and in the encoding of
the approximate reliability algebra in Section 5.5. The resulting problem formulation can be
given as an input to ArchEx to generate a graph T ∗ = (V,E) which represents the selected,
optimal EPS architecture. Alternatively, T ∗ can be generated from a visual representation
of the topology, directly drawn by the user. The set of nodes V in T ∗ represents the set of
components, consisting of generators, buses, and rectifier units; the set of edges E represents
the set of contactors as well as solid wire links between components. The adjacency matrix
e of T ∗ is a square matrix whose diagonal entries are zeros, and whose non-diagonal entries
are ones or zeros depending on whether a connection (with or without contactors) exists
between vertices.

Based on T ∗, and a set of component properties, directly referenced from the EPS library
L, the linear temporal logic (LTL) specifications described in Sections 6.2.1.2 and 6.2.1.3 can
then be automatically generated out of a second set of pre-defined DSL patterns, supporting
the specification of system dynamics. Representative examples of system assumptions (A)
and guarantees (G) are provided below along with examples of DSL patterns that can capture
these assertions and facilitate their translation into mixed integer-linear constraints or LTL
formulas.

A1. Reliability Level. A typical power system specification would require that the failure
probability for an essential bus (i.e., the probability of being unpowered for longer than tmax
by any of the available generators) be smaller than a certain target rS, e.g. corresponding
to 10−9 per flight hour. We denote the probability rS as the reliability level of the system.
To allow formalizing this requirement, a set of environment assumptions characterize the
number and kind of component failures allowed, assuming that component failure events are
all independent. For instance, in the context of control design, it is possible to automatically
generate the assumptions in Section 6.2.1.2 using an “environment” primitive, for which
the first input is the system reliability level, followed by all subsets of components that
are uncontrolled and can fail. As an example, when only generators and rectifier units are

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 166

assumed to fail, this can be written as env(rS,Ge,Re), where Ge ⊆ G and Re ⊆ R, G and R
being the sets of all generators and rectifier units, respectively.

A2. Irreversible failures. As a second set of environment assumptions, we require that
when any component fails during the flight, it will not come back online. These assumptions
can also be generated by an environment primitive as the one above. In the context of
control design, such a primitive generates the LTL formulas in (6.13).

G1: Reliability Level. As a first set of system-level guarantees, we need to ensure that the
probability for an essential bus to be unpowered by any of the available generators rT (i.e. the
probability that there is no possible interconnection between the bus and any generator) is
smaller than the required reliability level rS, as defined above. We denote the probability
rT as the topology reliability level, since it relates to a system connectivity property, which
is under the “responsibility” of the topology. Therefore, as the top-level contract CS is
partitioned to determine lower-level topology and control contracts, the topology reliability
level rT will be part of the topology contract CT .

Topology reliability requirements can be encoded in different ways. As a first approach,
it is possible to hard-code the desired number of paths for a certain reliability. For instance,
the pattern minimumConnections(Gm,Bm,m) can be used to enforce that at least m paths
are established between each component in Bm ⊆ B and a component in Gm ⊆ G, where G
is the set of generators and B is the set of buses in a template. Such a pattern will generate
constraints as the one in (5.26). Similarly, the pattern maxAdmitFailures(Rf ,Bf , f) can be
used to enforce that each bus in Bf ⊆ B is connected to at least f + 1 rectifiers in Rf ⊆ R,
and can then tolerate the loss of f of them. An alternative and possibly more flexible way
to specify the topology reliability would be, instead, to simply provide a set of values for the
failure probabilities of critical loads or essential buses in the system, as done in Chapter 5.
This approach will also be used in the case study in this chapter.

G2: Unhealthy Sources. We require that the set of contactors directly connected to
an unhealthy source be open to isolate it from the rest of the system. A “disconnect”
primitive can take as input the union of subsets of G and R. This primitive is written as
disconnect(Gd,Rd), where Gd ⊆ G andRd ⊆ R and generates formulas as the ones in (6.19).

G3: Operation in Nominal Conditions. Under nominal conditions (i.e., when all gen-
erators and rectifier units are healthy), primary generators and rectifiers on each side of the
electric power system topology must provide power to the buses on the same side; all other
paths (and auxiliary power units) stay inactive. At the architecture level, such a require-
ment can be imposed via a pattern that formulates power balance equations as the ones
in Section 5.3. At the control level, we instead use a pattern that generates the formulas
in (6.16).

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 167

G4: No Paralleling of AC Sources. To avoid generator damage, AC sources should
never be paralleled, i.e. no AC bus can be powered by multiple generators at the same time.
A “non-paralleling” primitive for LTL formula generation accepts as inputs any subset of G,
and can be written as noparallel(Gp), where Gp ⊆ G, to generate formulas as in (6.17).

G5: System Reaction Time. A DC essential bus can stay unpowered for no longer than
tmax in case of failure. Let the set of all buses be B. An “essential bus” primitive can
input any subset of B such that the bus elements can be unpowered for no longer than the
maximum allowable time. This primitive is written as essbus(Be), where Be ⊆ B. At the
controller level, such a pattern may be used to generate a set of formulas as in (6.18), after
defining a discretization step τ , corresponding to one time unit, and setting Ts = btmax/τc.
Additionally, an STL formula can also be generated as in (6.24), which can be monitored in
a simulation environment using hybrid models.

The system requirements above, captured via patterns, are used to derive a top-level (appli-
cation) contract CT for the system architecture, in terms of arithmetic constraints on Boolean
variables and failure probabilities (mixed integer-linear inequalities), and an application con-
tract CC for the control algorithm, expressed as a conjunction of LTL and STL contracts,
as shown in Figure 1.6 (b). CT captures the requirements for EPS architecture design de-
tailed in Section 5.7, while CC captures the requirements for EPS control design detailed in
Section 6.2. Architecture and control protocol need to be consistently designed to satisfy CS,
which can be guaranteed by showing that CT ⊗CC (under their interconnection structure) is
compatible and CT ⊗CC � CS. We discuss the co-design problem for architecture and control
algorithm in terms of vertical contract compatibility in Section 7.2.

7.2 Co-design of Primary Distribution System

Topology and Control

As discussed in Section 3.4.2, to enforce the correctness of the refinement between different
levels of abstraction of the design platform, including different viewpoints, contract consis-
tency and compatibility should hold in both the horizontal and vertical directions. While
the composite contract CT ⊗ CC can be effectively used to model the horizontal interaction
between the controller and its plant, to guarantee the overall system reliability and real-time
performance, we also need to prove compatibility and consistency of the vertical contracts
between architecture and control for the timing and reliability viewpoints. Specifically, the
control protocol makes several assumptions that must be discharged by the architecture,
e.g. in terms of the topology reliability level, due to the available component redundancy,
and the worst-case latency, due to delays in both the physical plant and the execution plat-
form.

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 168

While the proofs of compatibility and correctness of CT ⊗ CC are performed manually
in this section, reasoning with contracts is still instrumental to co-design of architecture
and control. In particular, Propositions 7.2.1 and 7.2.2 below show that, if system-level
requirements are “partitioned” according to CT and CC , then the system can be designed in a
compositional way, i.e., the architecture and control design steps summarized in Section 7.2.2
and Section 7.2.3 can be independently refined while guaranteeing that the assembled system
satisfies CS.

More specifically, given a system reliability requirement rS, Proposition 7.2.2 states that,
if the power system topology is synthesized to implement the contract CT with a reliability
level rT ≤ rS, then there exists a time T ∗ (a function of the synthesized topology and the
contactor actuation delays) such that a centralized controller implementing the contract CC
for the given topology, with a reliability level rS and tmax ≥ T ∗ can also be synthesized, and
the resulting controlled system is guaranteed to satisfy the top-level requirements.

7.2.1 Independent Refinement of Topology and Control

Let CS be the overall system contract, specifying a reliability requirement rS. Let CT be the
application contract for the power system architecture, as defined in Section 5.7.1, and CC
the application contract for the control strategy, as defined in Section 6.2. We show that
if system-level requirements captured by CS are partitioned according to CT and CC , then
the system can be designed in a compositional way, i.e., the methodologies illustrated in
in Section 5.7 and Section 6.2 can be independently deployed, while guaranteeing that the
assembled system is correct and satisfies CS.

In particular, Propositions 7.2.1 and 7.2.2 below discuss conditions for the controlled
system to satisfy the system-level contract CS if the selected topology and control protocol
satisfy their contracts CT and CC . First, in Proposition 7.2.1, we assume that actuation delays
are ignored in control synthesis. We then remove this assumption in Proposition 7.2.2.

Proposition 7.2.1. Assume contactor delays are ignored in control synthesis, i.e., using the
notation in Section 6.2.1, Tomin = Tomax = Tcmin = Tcmax = 0 (and therefore no contactor in-
tent variable is introduced in CC). If the topology implements its contract CT with a reliability
level rT , then a centralized control implementing its contract CC for this topology is always
realizable when a reliability level rS ≥ rT is used while generating the environment assump-
tions as in (6.12). Moreover, the controlled system will satisfy the system-level requirements
with a reliability level rS.

Proof. As shown in Figure 7.1 and Figure 1.6, both the topology synthesis and control
synthesis steps are based on a consistent set of models and share the same labelled topology
template T . In fact, the topology generated from CT will conform to T , and the same
synthesized topology is used to generate the LTL formulas for the controller contract CC .
We prove the realizability of the controller by discussing the system-level requirements listed
in Sections 6.2.1.2 and 6.2.1.3, for the controller, and Section 5.7 for the topology, as follows:

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 169

(a) Reliability Requirements. In both the topology and control design steps, we assume
that when a component fails it will not come back online. Therefore, reliability requirements
are treated as “static” requirements that hold in a failure scenario. If the topology guarantees
a reliability level rT , then there are enough components and paths from generators to critical
loads such that any combination of component faults causing a system failure has a joint
probability p < rT . Let ET be set of all the environment configurations that correspond
to these combinations of component faults, defined as in Section 6.2.1.2, and let ET be
its complement. Then any combination of faults associated with a configuration in ET
does not cause any loss in system functionality because of the available redundancy. Since
rS ≥ rT is used in CC , ES ⊆ ET will also hold, hence accommodating any combination of
faults associated with an environment configuration in ES will also be feasible. Therefore, a
centralized controller assuming a reliability level rS in CC will always realize this specification,
thus guaranteeing an overall reliability level r = rS for the controlled system.

(b) Balanced Power Flow in Nominal Conditions. Power requirements are treated as
static requirements in nominal condition. Power flow constraints in the topology optimization
problem enforce that loads on each side of the topology graph are selectively connected to
one or more generators on the same side, in such a way that the total power capability of
the generators is equal or larger than the required power from the respective loads. It is,
therefore, enough to use the available paths in the synthesized topology for a centralized
controller to realize this specification.

(c) Unhealthy Sources. Connectivity constraints in the topology optimization problem
enforce that any edge (interconnection) originating from a source node (generator or recti-
fier unit) is associated with a contactor. Therefore, it is always possible for a centralized
controller to open such contactors to isolate unhealthy sources and realize this specifica-
tion. Since contactors can be instantaneously operated, full isolation of unhealthy sources is
guaranteed within one time step (δ time).

(d) No Paralleling of AC Sources. As discussed above, all AC sources can be isolated
by opening the related contactors. Moreover, connectivity constraints prescribe that AC
buses be also connected via contactors. This makes it possible for a centralized controller to
always realize this specification by isolating buses connected to different AC sources as well
as isolating unhealthy sources while inserting healthy ones.

(e) Safety-Criticality of Buses. Since all contactors are assumed as ideal and instanta-
neously controllable, it is always possible for a centralized controller to configure the topology
and realize this specification whenever Ts ≥ δ, δ being the discretization step assumed while
synthesizing the controller (as in the formulas in Section 6.2.1).

We then conclude that the conjunction of the LTL formulas used in CC to formalize
requirements (b)-(e) under the assumptions in (a) can always be realized by a centralized
controller if rT ≤ rS holds.

Based on Proposition 7.2.1, for the controlled system to satisfy a contract CS with a
reliability level rS, it is enough to select a topology that implements its contract CT with a
reliability level rT ≤ rS, and then synthesize a centralized controller for the selected topol-

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 170

ogy by using a reliability level rS to generate the environment assumptions. When contactor
delays are not ignored in control synthesis, a similar proposition holds if an additional con-
dition is assumed on the maximum bus unpowered time Ts allowed in (6.18), as discussed
below.

Proposition 7.2.2. Assume delays in the contactors are taken into account in control syn-
thesis (i.e., Tomin > 0 and Tcmin > 0). If the topology implements its contract CT with a
reliability level rT , then there exists a large enough time T ∗ such that a centralized control
implementing its contract CC for this topology is realizable when a reliability level rS ≥ rT in
equation (6.12) and a bus unpowered time Ts ≥ T ∗ in equation (6.18) are used while gener-
ating CC. Moreover, the controlled system will satisfy the system-level requirements with a
reliability level rS.

Proof. As in Proposition 7.2.1, both the topology and control synthesis steps are based
on a consistent set of models and share the same template T . Moreover, we can prove the
realizability of the controller by discussing the requirements in Section 6.2.1.3 and Section 5.7
one at a time. In particular, the static specifications in (a) and (b) will be always realizable
by the same arguments used in Proposition 7.2.1. To show that the dynamic requirements
in (c), (d) and (e) will also be realizable when actuation delays are taken into account, we
proceed as follows:

(c)-(d) Unhealthy Source Isolation and AC Sources Paralleling. By the same arguments
used in Proposition 7.2.1 (c), all sources (including AC sources) can be isolated by opening
the related contactors. Moreover, the topology connectivity constraints prescribe that AC
buses should also be connected via contactors. Even if contactors can only be opened or
closed with a delay, it is still possible for a centralized controller to realize this specification
by disconnecting two AC buses at least Tomax time before connecting them to different AC
sources or by isolating unhealthy sources at least Tomax time before connecting the healthy
ones.

(e) Safety-Criticality of Buses. To guarantee that safety-critical buses are unpowered for
no longer than Ts, the controller needs to reconfigure the topology by opening and closing
sets of contactors to deactivate existing components and paths and activate new ones. Be-
cause of the actuation delay, topology reconfigurations cannot occur instantaneously; some
sets of contactors will need to be actuated in sequence to guarantee isolation of unhealthy
sources and prevent paralleling of AC sources, as required in (c) and (d). Since there is a
finite number of topology configurations, there will also be a finite number of possible recon-
figurations R. Consider the step i from an initial configuration Ai to a final configuration Zi.
Let nio and nic be the minimum number of contactor sets that must be, respectively, opened
and closed in sequence in order to provide power to a critical bus during reconfiguration i.
Then, the minimum (worst-case) time during which at least one critical bus stays unpowered
will be

Ti = nio

⌈
Tomax
δ

⌉
δ + nic

⌈
Tcmax
δ

⌉
δ.

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 171

Table 7.1: Components and attributes used for the electric power system case study.

Generators g (kW) Loads l (kW) Components c
LG1 70 LL1 30 Generator g/100
LG2 30 LL2 40 Bus 200
RG1 50 RL1 20 Rectifier 200
RG2 40 RL2 30 Contactor 100
APU 100 g/100

Let T ∗ = maxi∈R Ti; then, T ∗ is the minimum bus unpowered time that can always be
guaranteed across all possible topology reconfigurations. Therefore, a centralized controller
can always be realizable when Ts ≥ T ∗ is chosen in CC .

As in Proposition 7.2.1, by combining the arguments above with the ones used in (a)
and (b), we can conclude that the conjunction of the LTL formulas used in CC to formalize
requirements (b)-(e) under the assumptions in (a) can always be realized by a centralized
controller if rT ≤ rS and Ts ≥ T ∗ hold.

7.2.2 Architecture Design

At the structural (steady-state) level of abstraction, the plant architecture is modelled as a
directed graph, where each node represents a component (with the exception of contactors,
which are associated with edges) and each edge represents an interconnection, oriented based
on the direction of the power flow, as discussed in Section 5.7. The platform library L
includes, as attributes, generator power ratings, component costs and failure probabilities,
in addition to the component contracts encoding interconnection rules. The supervisory
controller is abstracted as one or more finite state machines, which actuate the contactors
in the plant to configure the network and route the power from the generators to the loads
based on the failure status of the components. The controller is characterized by a reaction
time Tr.

Based on the platform library described above, the contract CT , capturing the safety,
connectivity, power flow, and reliability requirements for the system architecture can be ex-
pressed (both assumptions and guarantees) in terms of linear inequalities on a set of Boolean
variables, each denoting the presence or absence of an interconnection in the topology graph,
as detailed in Section 5.3 and Section 5.7. The trade-off between redundancy and cost can
then be explored using ArchEx, and the synthesized topology is offered as a specification
for the control refinement step. The architecture design step is shown in Figure 1.6 (c).

Table 7.1 reports the load power requirements, the generator power ratings, and the
component costs in our example. We assume that generators and rectifiers fail with a
probability of 10−5 and 2 × 10−4, respectively, while the failure probabilities of the other
components in this example are negligible. Figure 7.2 shows the topologies generated by
one run of the “lazier” version of the ILP-MR method, as described in Section 5.7.2, for a

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 172

(a) Topology 1 (b) Topology 2

(c) Topology 3 (d) Topology 4

Figure 7.2: Candidate topologies for an electric power system consisting of rows of (from top
to bottom) generators, AC buses, rectifier units, DC buses, and DC loads.

reliability requirement r∗ = 10−9. Instead of using LearnCons and EstPath to gather an
immediate estimation of the the number of necessary paths to achieve the desired reliability,
in this example, ILP-MR tries to increase the reliability by enforcing only one additional
path at a time, by first adding connections among existing components, and eventually, if
necessary, more components.

By solving the ILP including only connectivity and power flow constraints, we obtain the
topology in Figure 7.2 (a), the simplest possible architecture, which only provides a single
path from a load to a generator (or APU) on each side. Such a topology presents the highest
failure probability. In Figure 7.2 b) and c) additional paths from generators to loads are
added via horizontal connections between the DC buses and AC buses of the left and right

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 173

Table 7.2: Load and system failure probabilities for the topologies in Figure 7.2.

Topology Load Failure System Failure
Probability (rT) Probability

1 2× 10−4 4× 10−4

2 4× 10−8 4× 10−8

3 4× 10−8 4× 10−8

4 2.6× 10−15 2.6× 10−15

hand sides of the system. Additional components (e.g. buses and rectifiers) are finally used
in Figure 7.2 d) to satisfy the requirement. In Table 7.2, we report the achieved reliability
level rT (failure probability) at one load as well as the overall achieved reliability level when
all loads are considered, as computed for the topologies in Figure 7.2. The total computation
time to generate the topologies was 19.7 s on an Intel Core i7 2.8-GHz Processor with 6-
GB memory. In a typical run with LearnCons, as shown in Section 5.7.2, the number of
necessary paths to achieve r∗ is estimated after the first ILP instance, and convergence to
the final topology occurs in no more than three iterations.

7.2.3 Control Design

To validate the RS-OCM approach, for each of the four topologies in Figure 7.2, a set of
environment assumptions and controller guarantees can be generated to synthesize central-
ized and distributed control protocols for an overall reliability level rS = rT , as discussed in
Section 7.2. As an example, we present the variables and formal specifications, written in
LTL, for the topology depicted in Figure 7.2 c).

7.2.3.1 Reactive Synthesis: Centralized Controller

Environment Variables: Generators LG1, LG2, APU1 and rectifier units LR2 and RR2
are uncontrolled variables that can switch between healthy (1) and unhealthy (0).

Controlled Variables: Contactors Ci,j
1 (depicted only as wires in Figure 7.2) are variables

that are set to open (0) or closed (1).

Dependent Variables: Buses are either powered (1) or unpowered (0) depending on the
status of environment and controlled variables.

Environment Assumption: We allow environment configurations which are mapped
back from the function h in Section 6.2.1.2 to an overall system reliability level rS. Topology

1i and j denote the name of the components contactor Ci,j connects.

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 174

3 from Figure 7.2 c) has a total of 32 environment configurations. For a reliability level
rS = 4× 10−8, h(rS) maps to a set of 21 allowable configurations. The specification can be
written as a conjunction of all configurations. More compactly, the environment assumption
disallows configurations in which either both rectifiers fail or all generators fail. Thus, we
can equivalently write the environment assumption for Topology 3 as:

�¬((LG1 = 0) ∧ (APU1 = 0) ∧ (RG1 = 0)) ∧ �¬((LR2 = 0) ∧ (RR2 = 0)).

No Paralleling of AC Sources: No combination of contactors can be closed so that a
path exists between generators:

�¬((CLG1,LB2 = 1) ∧ (CAPU1,LB2 = 1)) ∧ �¬((CAPU1,RB2 = 1) ∧ (CRG1,RB2 = 1)).

Power Status of Buses: A bus can only be powered if there exists a path (in which a
contactor is closed) between a bus and a generator. In Figure 7.2 c), bus LB2 is powered if
either generator LG1 or APU1 is powered, and the contactor between generator and bus is
closed:

�((LG1 = 1) ∧ (CLG1,LB2 = 1)→ (LB2 = 1)),

�((APU1 = 1) ∧ (CAPU1,LB2 = 1)→ (LB2 = 1)).

If neither of these two cases is true, then LB2 will be unpowered. These specifications are
written as

�(¬(((LG1 = 1) ∧ (CLG1,LB2 = 1) ∨ ((APU1 = 1) ∧ (CAPU1,LB2 = 1)))→ (LB2 = 0)).

Similar specifications may be written for buses RB2, LD2, and RD1.

Safety-Criticality of Buses: We consider all buses to be safety-critical; at the abstraction
level of LTL, this is equivalent to require that at no time can any bus be unpowered

�((LB2 = 1) ∧ (RB2 = 1) ∧ (LD2 = 1) ∧ (RD1 = 1)).

The resulting controller has 32 states with a computation time of 1.6 s on a 2.2-GHz Intel
Core Processor with 4-GB memory.

7.2.3.2 Reactive Synthesis: Distributed Controller

For the topology in Figure 7.2 c), the distributed control synthesis problem can be solved by
splitting the topology into two subsystems S1 and S2. The sets ES1 , SS1 , and ES2 , SS2 contain
all environment and system variables for subsystems S1 and S2, respectively. ES1 is composed
of generators LG1, APU1 and RG1. SS1 contains AC buses LB2, RB2, and contactors
CLG1,LB2, CAPU1,LB2, CRG1,RB2, CLB2,RB2. ES2 is composed of rectifiers LR2, RR2 and AC

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 175

Figure 7.3: Hybrid model of the electrical power system used for simulation-based design
space exploration.

buses LB2, RB2, while SS2 contains DC buses LD2, RD1 and contactors CLR2,LD2, CRR2,RD1,
CLD2,RD1. We assume the link between AC buses and rectifier units is a solid wire.

The environment assumption ϕeS1 for subsystem S1 enforces that at least one generator
will always remain healthy. Environment assumption ϕeS2 enforces that at least one rectifier
unit will always remain healthy. In addition, it also assumes that both AC buses will always
be powered. This is an additional guarantee S1 must provide to S2 for the distributed
synthesis problem to become realizable. All other specifications remain the same as the
centralized control problem.

The synthesized controllers for S1 and S2 contains 4 and 8 states, respectively. Each
controller has a computation time of approximately 0.5 s on a 2.2-GHz Intel Core Processor
with 4-GB memory.

7.2.3.3 Simulation-Based Design Space Exploration

Continuous-time models of the plant are implemented in Simulink, by exploiting the Sim-
PowerSystems extension, as shown in Figure 7.3. As an example, the continuous-time model
of a generator consists of a mechanical engine (turbine), a three-phase synchronous machine,
in addition to the generator control unit, driving the field voltage of the generator. In ad-

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 176

Figure 7.4: Real-time requirement violation at the DC bus LD2 in the topology of Figure 7.2
(c), due to a two-generator fault followed by a rectifier fault.

dition to timing properties, our power network model allows measuring current and voltage
levels at the different circuit loads. It can be discretized to speed up simulations and can
seamlessly interface also with Matlab functions or StateFlow models implementing the
controller.

In what follows, we focus on the centralized controller for Topology 3 in Figure 7.2 c),
and provide results for the design exploration problem in Section 6.2.2. In particular, we are
interested in finding the maximum controller reaction time T ∗r as a function of Td, so that
the essential DC bus LD2 is never out of range for more than tmax = 70 ms. Based on the
environment assumptions discussed above, the worst case failure scenario for the left DC bus
LD2 occurs when cascaded failures in two generators (e.g. LG1 and APU1) and one rectifier
(LR2) correlate so as to maximize the time the bus voltage is out of the specified range. The
controller reacts to a generator fault by routing power from another generator and connects
the two DC buses LD2 and RD1 when one of the rectifiers fails. Therefore, the worst case
failure scenario occurs when the rectifier fault happens at the end, and any fault after the
first one happens right before LD2 fully recovers from the previous fault, while trying to
reach the desired voltage level.

Figure 7.4 shows the simulated voltage VLD2 of bus LD2 as a function of time, in the
worst case scenario, for Tr = 20 ms and Td = 20 ms, both defined as in Section 6.2.2. The
waveforms at the top and bottom of the figure are the voltage signals at the LB2 (AC) and
LD2 (DC) buses, respectively. The signal in the middle represents the health status of LR2.
Both the AC and DC voltages decay to zero because of the generators’ faults. When a fault
is also injected into LR2, an additional drop in the DC voltage is observed. The red signal
at the bottom of the figure is interpreted as a Boolean signal, which is high (one) when χ in

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 177

Figure 7.5: Maximum duration of the violation of the DC bus voltage requirement for the
DC bus LD2 in the topology of Figure 7.2 (c).

equation (6.20) holds (i.e. the requirement is violated) and low (zero) otherwise. To evaluate
the formula (6.20), we used Vd = 28 V, ε = 2 V and tmax = 70 ms. The requirement on the
DC bus is violated for 24.4 ms. Therefore, (Tr = 20 ms, Td = 20 ms) is an unsafe parameter
set.

The Tr versus Td design space is explored in Figure 7.5 and 7.6 by following the optimiza-
tion procedure in Section 6.2.2. We sampled the parameter space in approximately 4 hours
to obtain a 15×15 point grid. The first plot represents the maximum amount of elapsed time
τ ∗e , while the DC bus voltage is out of range, i.e. for how long the requirement on the DC
bus is violated, as computed in equation (6.23). Such a violation period is then compared
with the “hard” threshold tmax = 70 ms in Figure 7.6, thus providing the designer with the
“safe” region (marked in blue in Figure 7.6) for the controller reaction time as a function
of the contactor delay. As an example, for a specific value of Td = 20 ms the maximum
controller reaction time T ∗r allowed for safe operation is 6.5 ms.

7.2.3.4 Discussion

The computational complexity of monolithic synthesis from LTL contracts makes solving
industrial-scale problems difficult for current tools. We therefore explored the use of dis-
tributed control protocols, which take less computational time to synthesize due to fewer
components within each subsystems and, thus, smaller state spaces. A major challenge in
reactive synthesis from LTL specifications is posed by timing requirements (e.g., essential
bus safety and contactor open/closing times), typically addressed by nested “next” con-

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 178

Figure 7.6: Controller (BPCU) reaction times and contactor delays in the blue region satisfy
the DC bus requirement on bus LD2 for the topology of Figure 7.2 (c).

structs, or with the use of of additional counter variables, as detailed in Section 6.2.1.3 and
Section 6.2.1.4. In our application, each contactor requires two additional counter variables
to model open and closing delays, while one counter variable is needed per each essential
bus, to capture the requirement on the maximum time tmax allowed for a bus to stay unpow-
ered. This discretization of time further adds to the difficulties arising from the state space
explosion. Usually, assuming a bounded time horizon T for the overall system operation, the
discretization step τ is selected as the greatest common divider (GCD) of all the lengths of
the time intervals used in the specification, while the counter variable range N is determined
by the ratio between the horizon and the discretization step, i.e. N = dT/τe, dxe denoting
the smallest integer not less than x.

To concretely illustrate the scalability issues induced by timing requirements, we exper-
iment on a simplified EPS architecture including only two generators, two AC buses, two
rectifiers, and two DC buses, all connected through contactors as shown in Figure 7.7. We
assume that the architecture includes only one essential bus, i.e. the left hand side DC bus,
and use TuLiP to synthesize controllers that can accommodate a failure in the left hand side
generator, by rerouting power from the right generator to the left DC bus in a time interval
which is less than or equal to tmax. Figure 7.8 (a) and (b) show the synthesis time of a con-
troller using the methodology in Section 7.1.2 as a function of the counter variables’ range
when only three and four counters are added, respectively, to handle timing requirements.
In both cases, one counter is used to formalize the safety requirement on the critical bus b6,

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 179

Figure 7.7: Simplified electric power system architecture used to test the scalability of re-
active synthesis from linear temporal logic specifications for requirements including time
intervals.

(a) (b)

Figure 7.8: Synthesis time versus counter range for a linear temporal logic specification
including three counter variables (a) and four counter variables (b).

while the the others are used to model (open or closing) delays of two or three contactors,
respectively, in the critical path between the generators and the essential bus. We assume
that all the other contactors are “ideal,” i.e. can be closed or opened within τ . We observe
that the synthesis time grows exponentially with the number of counters, which is expected
since the number of states of the system also grows exponentially. However, the synthesis
problem becomes also expensive, even for such a simple architecture, when N increases.

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 180

In the case of four counter variables with range N = 6, controller synthesis takes 3.3 h,
while the extrapolation of the result in Figure 7.8 (b) for a system with 16 counter variables
(e.g. related to 8 contactors) and N = 6 would lead to a synthesis time of approximately
5 days. Noticeably, in all our experiments, checking realizability required, instead, much
less time, always below 1 second, since it can be performed by adopting binary decision
diagram (BDD) representations to reason about sets of states without enumerating all of
them. Realizability checking can then be efficiently used to perform contract compatibility
or consistency checking.

There is a number of directions to overcome the scalability issues above. A possible
approach is to use reactive synthesis with a coarser discretization of the time intervals in
the requirements and the plant behaviors when generating the LTL formulas, to reduce the
number of counter variables. The timing behavior of the resulting state machine can then
be fine tuned later on, by leveraging simulation and contract monitoring on a high-fidelity,
hybrid model, to determine the required controller reaction time. This is the approach
pursued in Section 7.2.3.3.

A second approach is to favor distributed control synthesis schemes and devise mecha-
nisms to automate the decomposition of a global contract into a set of local contracts. An
initial step in this direction could rely on counter-strategy guided refinements of the original
specification to partially automate such a decomposition, using techniques similar to the ones
recently proposed in the literature for generating environment assumptions [126]. Alterna-
tively, by following a bottom-up approach, it is also possible to design distributed controllers
via optimized mapping of the global contract into an aggregation of local contracts, using a
contract refinement checking routine in the optimization loop, as discussed in Section 6.4.

Finally, when both the requirements and the system dynamics can be efficiently encoded
into an optimization problem over a finite time horizon, we can use the Programming-Based
Optimized Control Mapping method illustrated in Section 6.3 to find a control strategy,
which shows better scaling properties when applied to the load management problem dis-
cussed in Section 7.3 and Section 7.4.

7.3 Aircraft Electric Power System Design: Load

Management

The automated procedure for correct-by-construction design of EPS control protocols based
on reactive synthesis from LTL contracts, as deployed in Section 7.2, proves to be successful
in guaranteeing a set of safety, reliability, and real-time performance requirements. However,
while the correctness of the final solution is guaranteed, the optimization step may occur
quite late in the design flow, when several design decisions have already been taken, thus
leaving a lot on the table in terms of performance optimality. For instance, the RS-OCM
scheme succeeds in optimizing some of the timing properties of the controller; however, the
optimality of the algorithm with respect to a number of performance metrics, such as the

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 181

number of used generators and shed loads, is not addressed. Such a limitation adds to
the potential shortcomings discussed above, due to the underlying computation complexity
of reactive synthesis from LTL specification, and the need to operate a possibly coarse
discretization and quantization of the continuous dynamics during the initial phase of the
design, which may be unacceptable for certain applications.

While several optimization techniques have been reported for the power electronics,
switches, and converters in power systems, the problem of optimizing the overall power
distribution system has received scant attention in the literature. Chandrasekaran et al. [54]
propose to determine the optimum voltage and power levels at various points of the network
to minimize the total weight, installation costs and fuel consumption. However, the main
focus of this approach as well as the one previously mentioned in Section 7.1.1 [158] is on
the selection of the generators and the design of the topology, i.e. the interconnection among
different EPS components, rather than optimal design of the switching logic for the EPS
contactors and load management.

In this section, we address the problem of designing an optimal control strategy for the
EPS contactors in the presence of system faults. We offer an alternative formulation of
the EPS control problem as a Mixed-Integer Linear Program (MILP) that can be efficiently
solved to yield load shedding, source allocation, contactor switching and battery charging
policies that are correct and optimize performance metrics, such as the number of used
generators and shed loads. Since safety is of paramount importance for the application,
the control scheme has to quickly react in the event of unexpected changes in loads or
component failures. To do so, we propose a two-level hierarchical scheme where a high-level
load management system receives as inputs the required-power prediction for each bus over
a time horizon of interest, the health status (operational or faulty) of power sources and
contactors, the whole set of system requirements, and solves the optimal control problem
within a receding horizon approach. The output is a piece of “advice” for the low-level load
management system, which handles system faults by directly actuating the EPS contactors
and decides to implement such advice only if it is safe. Our goal is twofold:

• From an application standpoint, we aim to extend the capabilities of the BPCU de-
signed in Section 7.2 by augmenting it with an optimal load management system based
on the same formalization of the connectivity, safety and performance requirements
used in Section 5.7, Section 6.2, Section 7.1.2, and Section 7.2;

• From a methodology standpoint, we illustrate the application of the Programming-
Based Optimal Control Mapping (P-OCM) method to an example of industrial rel-
evance. A potential advantage of the P-OCM scheme stems from its capability of
accurately incorporating the underlying continuous dynamics of a system (e.g., in our
case, the battery state of charge) since the earlier design stage. Moreover, P-OCM has
the potential of generating more scalable formulations (e.g., in terms of MILP) that
can be efficiently handled by commercial solvers.

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 182

Figure 7.9: Single line diagram of the electric power system used in the formulation of the
optimal load management problem. Ci, ∀i ∈ {1, . . . , 11} represent contactors.

After a brief description of the requirements for a load management system in an aircraft
EPS in Section 7.3.1, Section 7.3.2 illustrates our hierarchical optimal load management
approach, while Section 7.4 includes the formalization of the control problem on a sample
power system topology, and simulation results showing its effectiveness.

7.3.1 Load Management Requirements

We have discussed the EPS system requirements, generally expressed in terms of safety,
reliability and real-time performance properties, in Section 7.1.2. In this section, we refer to
the simplified single line diagram in Figure 7.9, which we will use to describe the optimal load
management problem formulation. Power system loads include sub-systems such as lighting,
heating, motors, and actuators. A subset of loads are critical and cannot be shed, while
others can be taken off-line in case of emergency. Current, voltage and contactor sensors are
used to monitor the status of the system and to identify possible faults. The role of the EPS
distribution system is to guarantee that loads are powered with the required power levels.
Therefore, in addition to sensors, we recall that the EPS control system consists of Generator
Control Units (GCUs) and Bus Power Control Units (BPCUs). Each GCU regulates the
output voltage of a generator to meet the desired power level for a range of expected loads.
Conversely, the BPCU ensures robust operation of the system for a number of failures in
its components, by opening or closing the contactors to adequately reroute power to critical
loads.

Based on this topology, we list two additional requirements that are relevant to the
derivation of the optimal load management problem:

R1) Load Shedding. Sheddable loads are allowed to be shed if power supplies are insufficient,
while non-sheddable loads must remain powered at all times. Typically, an electric

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 183

Table 7.3: Load Priority Table example.

Non-sheddable loads (W) Sheddable loads (W) Shed priority

Bus 1 Bus 2 Bus 1 Bus 2
5000 4000 1000 1000 1 (shed first)
1000 1000 5000 2000 2
1000 1000 2000 2000 3
2000 2000 2000 5000 4
1000 11000 1000 1000 5
1000 1500 5000 4000 6
45000 2000 1000 1000 7
5000 39000 2000 3000 8
8000 10000 2000 2000 9
500 500 2000 2000 10 (shed last)

Table 7.4: Bus Priority Table example.

AC Bus 1 AC Bus 2 Priority

GEN 1 GEN 2 1 (most preferred)
GEN 2 GEN 1 2
APU APU 3 (least preferred)

Load Management System (LMS) is responsible for protection and shedding of loads,
by respecting a load priority list as the one shown in Table 7.3 for the SLD in Fig. 7.9.
A higher shedding priority suggests a load that should be shed first.

R2) Bus priorities. Each bus may also have a priority list that specifies which generator
should be used to provide power. If the first generator in the priority list is unavailable,
then a bus should be powered from the second generator, and so on. An example of a
bus priority table for the SLD in Fig. 7.9 is shown in Table 7.4.

Designing an efficient EPS controller is certainly a challenge, the main drawback of current
implementations being the lack of optimality in load shedding and power source allocation.
In the next section, we illustrate the new proposed architecture that addresses these issues.

7.3.2 Optimal Load Management System Architecture

We propose a hierarchical architecture that controls power source utilization, load shedding,
contactor status and battery charge via two layers of controllers. Figure 7.10 shows a block
diagram of the system (top), consisting of a Low-Level LMS (LL-LMS) and a High-Level
LMS (HL-LMS), and a timing diagram for its operation (bottom). The HL-LMS operates at
a slower clock rate, with period T , and provides control optimality over a time horizon. The

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 184

Figure 7.10: Block diagram of the proposed hierarchical load management architecture (top)
and timing diagram for its operation (bottom).

LL-LMS operates at a faster clock rate with period tf < T , and guarantees system safety
by quickly reacting in the event of unexpected changes in loads or component failures.

The HL-LMS solves an optimal control problem at each step, using a receding horizon
approach. The inputs to the HL-LMS are the required-power prediction for each bus over
a time horizon of interest (H, in Figure 7.10), the health status (operational or faulty)
of power sources and contactors, and the whole set of system requirements (i.e. the ones
in Section 7.1.2, together with R1 and R2). While each optimal control problem is solved
for the larger time horizon H, only the initial samples of the solution (up to time T) are
implemented and sent to the LL-LMS as advice.

The maximum computation time of the optimal control problem is assumed to be τ ≤ T .
In fact, as discussed in Section 7.4.7, τ is usually much smaller than T in our application.
However, to ensure more frequent updates to the HL-LMS, T can be chosen as max(τ, tf).
Before the end of each slow clock cycle, by a time interval as long as τ , the optimal control
problem is updated with the actual sensor readout on the status of sources, contactors and
loads. A new solution is then computed and sent as advice.

The LL-LMS implements the BPCUs and, along with the GCUs, monitors the generator
and contactor status more frequently (with a period tf) to guarantee that each critical bus
is powered at the desired voltage level (e.g. T = 10tf in Figure 7.10). At each time step, the
LL-LMS actuates the advice from the HL-LMS only if this is feasible, given the actual status
of contactors, power sources and loads. If this is not feasible, e.g. when an unforeseen fault
in any component or an unpredicted change in power requirements are detected, the LL-

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 185

LMS reroutes power based on its predefined, worst-case control policy. Then, the LL-LMS
keeps implementing its control policy until the next HL-LMS cycle, when the information on
the failure is communicated to the HL-LMS, which updates the optimization problem with
additional constraints that account for the failure. The new constraints will remain in place
until the failure is resolved. The above scheme is always at least as effective as the LL-LMS
controller in guaranteeing system safety, while implementing at the same time more efficient
source allocation, load shedding, and battery utilization strategies in the absence of faults.

We assume that a BPCU is already available to implement the LL-LMS, by simply
handling system faults without any concern on control optimality. Such a BPCU can be
designed, for instance, using the RS-OCM approach in Section 7.2. The main focus of the
next section is then the design of an optimal load management strategy for the HL-LMS and
of its interface with the LL-LMS. Following our methodology, the predictive information
about the required power for each bus, the load characteristics, the generation profiles and
the component connectivity from the single-line drawing (SLD) provide an abstraction of
the EPS architecture, including the controller, i.e. the architecture contract CP ⊗ CC . On
the other hand, the safety and performance requirements listed above originate a set of
constraints capturing the system function, i.e. the application contract CHR. The resulting
control policy leads to optimal load shedding and generator utilization, while satisfying
system requirements as well as constraints on the battery state of charge captured by CHR. As
described in Section 6.3, the optimization problem includes as constraints the conditions that
must be enforced for the vertical contract CHR ∧ (CP ⊗CC) to be consistent. In Section 7.4.7
we model the interaction between HL-LMS and LL-LMS for a set of simulation scenarios. A
formal characterization of the interface between HL-LMS and LL-LMS in terms of vertical
contract will be object of future work.

7.4 Optimal Load Management System Design

In this section, we describe the formulation of the optimal load management problem used
to implement the HL-LMS, and provide simulation results to show its effectiveness. To
detail the problem formulation, we use the SLD shown in Figure 7.9 as a running example.
In Figure 7.9, AC buses are connected to transformer-rectifier units (TRU) to convert AC
power to DC power. Each DC bus has sheddable and non-sheddable loads, as well as a
battery set. The underlying assumption is that TRU cause no power loss, i.e. the generated
power available at each AC bus is equal to the power delivered to the corresponding DC bus.
Therefore, in the simplified network topology of Figure 7.9, each DC bus can be lumped
together with the corresponding AC bus. A more complicate topology, such as the one in
Figure 1.3, would entail minor modifications in our formulation. To determine the load and
source allocation policy, we leverage power balance equations based on a simplified steady-
state power flow analysis. Extensions of our approach to support optimal AC power flow
analysis, including reactive power allocation, are out of the scope of this chapter, and will be
considered as future work. The average power required by the loads in normal conditions,

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 186

Table 7.5: Nomenclature used for the optimal load management system formulation in this
section (part 1).

Parameter Definition

Lsji Sheddable power sunk by load i of bus j
Lnsji Non-sheddable power sunk by load i of bus j
nj Number of sheddable loads of bus j
Nj Number of all loads of bus j
N b Number of buses
N s Number of power sources
Pmax
j Maximum capacity of source j

SoC Maximum bound on battery state of charge
SoC Minimum bound on battery state of charge
Ts Sampling time for HL-LMS optimization problem
T Period of the slow clock
H Prediction horizon of the optimal control problem
τ Maximum computation time of the optimal control problem
tf Period of the fast clock
K Parameter for battery charge dynamics
Nas Number of allowed contactor switching events

as well as the load shedding priority, is given in Table 7.3, while the reference bus priority
table considered in this section is in Table 7.4. A list of all variables used in this section is
also available in Tables 7.5 and 7.6.

In the following, we detail the mathematical constraints expressing both the assumptions
and guarantees of the vertical contract CHR ∧ (CP ⊗ CC). We categorize the constraints
according to the main design concerns they reflect. As discussed in Section 7.1.2, such an
encoding can also be facilitated by patterns related with these design concerns.

7.4.1 Load Modeling and Requirements

Non-sheddable and sheddable loads are denoted by Lns and Ls, respectively. We model
the required power at time t as the summation of contributions from different power sinks
(loads), some of which are sheddable. Hence, for bus j

Preqj(t) =

nj∑
i=1

cji(t)L
s
ji(t) +

Nj∑
i=nj+1

cji(t)L
ns
ji (t) (7.1)

where, for j = 1, 2, ..., N b, Preqj(t) is the total required power by all the electrical loads Nj

connected to bus j. Lsji(t) and Lnsji (t) are the power sunk by load i connected to bus j at
time t in the sheddable and non-sheddable case, respectively; nj is the number of sheddable

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 187

Table 7.6: Nomenclature used for the optimal load management system formulation in this
section (part 2).

Variable Definition

γij Weight to penalize shedding of load j of bus i
λij Weight to capture source priority for source i to bus j
µ Weight to penalize usage of an additional source
tchrg Time allowed for battery to reach SoC
cij Determines whether load i of bus j should be shed or not
Preqi Total required power of bus i
Psupi Total power supplied to bus i
βi Power flow into/out of battery set i
Pitoj Power delivered by source i to bus j
δij Determines connectivity of source i to bus j
αi Determines usage of source i
SoCi State of charge of battery set i
NoSij Number of status transitions of contactor connecting source i to bus j

loads. Each coefficient cji(t) for bus j and load i at time t is a binary decision variable
specifying whether power Lji(t) must be supplied or it can temporarily be interrupted for
sheddable loads, i.e.

cji(t) =

{
1 ∀ i ∈ Insj , j = 1, 2, ..., N b

{0,1} ∀ i ∈ Isj , j = 1, 2, ..., N b (7.2)

where Insj and Isj denote, respectively, the index set of non-sheddable and sheddable loads of
bus j, and N b is the total number of buses. Finally, we capture shedding priorities via the
following constraints:

cj1(t) ≤ cj2(t) ≤ ... ≤ cjNj(t) ∀ t ≥ 0 j = 1, 2, ..., N b (7.3)

so that loads get ranked based on their priority, e.g. for bus 1, since load 1 has the highest
shedding priority, L11 must always be interrupted prior to L12 when the total supplied power
is not sufficient. While (7.1) is a set of connectivity constraints in the guarantees of CP ⊗CC ,
constraints in (7.3) capture the load shedding priorities in CHR.

7.4.2 Source Allocation and Switching Policy

For each DC bus i, a power balance equation can be written as follows:

Preqi(t) = Psupi(t)− βi(t) i = 1, ..., N b ∀ t ≥ 0 (7.4)

where the amount of required power Preqi from the loads, defined as in (7.1), is constrained
to be equal to the amount of power supplied to bus i, Psupi(t), decreased by the power used

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 188

for charging battery set i, denoted as βi(t). Therefore, when βi(t) > 0, the battery set i is in
a charging state, while βi(t) < 0 implies that the battery set i is used to provide the power
deficit. When no battery is present (as in AC buses), βi(t) = 0 is enforced at all times.

The power supplied to bus i originates from one of the power sources, i.e. one of the
engines or the APU. Assuming that there are N b buses and N s power sources, we enforce
this constraint with the following equation:

Ns∑
k=1

δki(t)Pktoi(t) = Psupi(t) i = 1, ..., N b ∀ t ≥ 0 (7.5)

where Pktoi is the amount of power delivered by source k to bus i. Binary variables δki
determine which source should power which bus, so that δki(t) = 1 enforces that bus i is
powered by source k at time t. Also, since no AC sources can be connected in parallel (per
one of the requirements in Section 7.1.2), we need to enforce that each bus is powered by
only one AC generator at every time. Hence,

Ns∑
k=1

δki(t) = 1 i = 1, ..., N b ∀ t ≥ 0 (7.6)

Furthermore, we need to guarantee that the power available at each generator equals the
power flow from the generator to the supported buses. This constraint can be enforced for
power source j by the following equation

Nb∑
k=1

δjk(t)Pjtok(t) = αj(t)P
max
j (t) j = 1, ..., N s (7.7)

where Pmax
j is the maximum capacity of power source j at time t (a known value), and

αj(t) is a binary variable denoting the usage of power source j at time t, i.e. αj(t) = 1
iff at time t source j is connected and used to power a bus. Clearly, since the number
of active sources should be less than or equal to the number of buses,

∑Ns

j=1 αj(t) ≤ N b

must hold for all t ≥ 0. However, due to the presence of constraints (7.6) and the selected
cost function term (7.13), discussed below, this constraint becomes redundant and can be
removed. Constraints in (7.4), (7.5), (7.7) are part of the CP ⊗ CC architecture contract
guarantees, while constraints in (7.6) encode the non-paralleling requirement as a part of
CRH .

7.4.3 Battery Dynamics and Requirements

For each battery set i, the normalized State of Charge (SoC) dynamics is captured using a
simple model2, as follows:

SoCi(t+ 1) = SoCi(t) + Ts ·K · βi(t). (7.8)
2The ampere-hour (Ah) capacity of a battery depends on its temperature, rate of discharge, and age [191].

However, in this chapter we do not consider this level of detail for the battery model.

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 189

where Ts is the sampling time, K > 0 is a parameter constant for all battery sets, and
SoC ∈ [0, 1]. SoC = 1 indicates a fully charged battery while SoC = 0 corresponds to a
depleted battery. We would like to keep SoC within a safe interval, hence we enforce

SoC ≤ SoCi(t) ≤ SoC (7.9)

where SoC and SoC, are the lower and upper limits on the SoC of batteries. If needed,
constraint (7.9) can be enforced ∀t ≥ tchrg, where tchrg > 0 is considered to allow time
for battery charging up to the SoC bound (as done in the simulations of Section 7.4.7).
Constraints in (7.8) form the battery behavioral model as a part of the guarantees of CP⊗CC ,
while constraints as in (7.9) originate from the requirements on the battery state of charge,
and are part of CRH .

7.4.4 Contactor Wear

It is also important to keep contactor switching activity as low as possible, to avoid contactor
wear. For this purpose, the total number of status transitions (from open to close and vice
versa) for a contactor that connects power source i to bus j over a time horizon of H time
steps can be computed as:

NoSij(t
∗) =

t∗+H·Ts∑
t=t∗

|δij(t)− δij(t+ 1)| (7.10)

where |.| is the absolute value function. We then require

NoSij ≤ Nas ∀ i = 1, ..., N b, ∀ j = 1, ..., N s (7.11)

where Nas is a safety threshold for NoSij. The above constraints will also be part of the
guarantees of CRH .

7.4.5 Cost Function

In our formulation, we aim to minimize the total number (and duration) of load shedding
(see requirement R1), as well as used generators. To achieve the first goal, we minimize the
following function

Nb∑
j=1

t∗+H·Ts∑
t=t∗

ΓTj [1− Cj(t)] (7.12)

where, Cj(t) = [cj1(t) cj2(t) ... cjnj(t)]
T is the vector of load coefficients for each bus j

and Γj = [γj1 γj2 ... γjnj]
T is a vector of weights used to penalize the act of load shedding

for bus j. The components of Γj can be set to have the same value, or be used to capture
the importance of each load. For instance, if sheddable load i is more important than j for
AC bus k, we choose γki � γkj. While the latter option provides more flexibility, it is not

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 190

essential to our formulation. In fact, the satisfaction of the priority tables for load shedding
is already enforced by (7.3).

To achieve our second objective, i.e. minimize the number of generators utilized at all
times, we augment the cost function with the following integral term

µ
Ns∑
j=1

t∗+H·Ts∑
t=t∗

αj(t) (7.13)

where µ is a constant weight parameter, which allows exploring the trade-offs involved in
the multi-objective optimization problem.

Finally, we need to guarantee that the EPS obeys the bus priority table in Table 7.4 as
far as possible (as per R2). To this aim, we enforce that the following integral expression be
also minimized

Nb∑
j=1

t∗+H·Ts∑
t=t∗

ΛT
j ∆j(t) (7.14)

where ∆j(t) = [δ1j(t) δ2j(t) ... δNsj(t)]
T is the source allocation variable vector for bus j

and Λj = [λ1j λ2j ... λNsj(t)]
T is a weighting vector that captures the source allocation

priorities and penalizes the act of introducing new, unnecessary power sources in the first
place. For instance, in the case of three power sources for bus 1, as in Figure 7.9, we can set
λ11 = 0 (highest priority or no penalty), λ21 6= 0 (second priority in the list) as a penalty
for using the GEN 2 to power bus 1, and λ31 > λ21 (last priority) as a penalty for using
the APU. In general, we have λjj = 0 and λij 6= 0, ∀ i 6= j. We capture the bus priority
requirements using a penalty function instead of a hard constraint, since the HL-LMS policy
is deemed as a recommendation in our formulation. When the total required power is within
the ratings of more than one generator, the optimizer will not violate the priority table as it
minimizes the overall cost. Conversely, when a power source is not able to meet the power
requirement at a bus, a decision needs to be taken on whether a load should be shed or a
new supply should be introduced in the network. Our formulation is flexible enough to allow
exploration of the trade-offs involved in such a choice by modifying the weighting vectors.

7.4.6 Putting it All Together

Using (7.1)-(7.14), the optimal load management problem can be formulated as shown below,
where S = {Cj(t),∆j(t), αj(t), βi(t), Psupi(t), Pjtoi(t)} is the set of optimization variables, and
constraints containing t should be evaluated at t = {t∗, t∗ + Ts, ..., t

∗ + H · Ts}. We observe
that the predictive information about the required power for each load, Lsik(t) and Lnsik (t),
and the generation profiles Pmax

j (t) are known values, providing the assumptions for both
CP ⊗ CC and CRH .

The result is a mixed integer nonlinear program because of constraints (7.15b) and (7.15c).
However, we observe that every product δji(t)Pjtoi(t) in (7.15b)-(7.15c) includes a binary
variable δji(t) and a real variable Pjtoi(t) for which 0 ≤ Pjtoi(t) ≤ Uj(t) holds, where

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 191

min
S

t∗+H·Ts∑
t=t∗

Nb∑
j=1

[ΓTj (1− Cj(t)) + ΛT
j ∆j(t)] + µ

Ns∑
j=1

αj(t)

subject to:

ni∑
k=1

cik(t)L
s
ik(t) +

Ni∑
k=ni+1

cik(t)L
ns
ik (t) = Psupi(t)− βi(t)

∀i = 1, ..., N b (7.15a)

Ns∑
k=1

δki(t)Pktoi(t) = Psupi(t) ∀i = 1, ..., N b (7.15b)

Nb∑
k=1

δjk(t)Pjtok(t) = αj(t)P
max
j (t) ∀j = 1, ..., N s (7.15c)

Ns∑
k=1

δki(t) = 1 ∀i = 1, ..., N b (7.15d)

SoCi(t+ 1) = SoCi(t) + βi(t) ∀i = 1, ..., N b (7.15e)

SoC ≤ SoCi(t) ≤ SoC ∀t ≥ tchrg,∀i = 1, ..., N b (7.15f)

t∗+H·Ts∑
t=t∗

|δij(t)− δij(t+ 1)| ≤ Nas ∀i = 1, ..., N b

∀j = 1, ..., N s (7.15g)

δij(t) = {0, 1} ∀j = 1, ..., N b ∀i = 1, ..., N s (7.15h)

cj1(t) ≤ cj2(t) ≤ ... ≤ cjNj(t) ∀j = 1, ..., N b (7.15i)

cji(t) = 1 ∀j = 1, ..., N b ∀ i ∈ Insj (7.15j)

cji(t) = {0, 1} ∀j = 1, ..., N b ∀i ∈ Isj (7.15k)

αi(t) = {0, 1} ∀i = 1, ..., N s (7.15l)

Optimization problem for HL-LMS

Uj(t) = Pmax
j , the maximum power capacity of source j, is known. Therefore, by exploiting

these facts, we can reformulate the above problem as follows. We first introduce a set of
new variables πji(t) = δji(t)Pjtoi(t) to replace each product term in (7.15b)-(7.15c). Then,
for each new variable πji(t), we add the following constraints ∀ t ≥ 0:

0 ≤ πji(t) ≤ Pjtoi(t) (7.16a)

Pjtoi(t)− Uj(t)(1− δji(t)) ≤ πji(t) ≤ Uj(t)δji(t) (7.16b)

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 192

Therefore, after these transformations, (7.15b) and (7.15c) can be replaced by the following
constraints, enforced ∀ t ≥ 0

Ns∑
k=1

πki(t) = Psupi(t) ∀i = 1, ..., N b (7.17a)

Nb∑
k=1

πjk(t) = αj(t)P
max
j (t) ∀j = 1, ..., N s (7.17b)

0 ≤ πji(t) ≤ Pjtoi(t) (7.17c)

Pjtoi(t)− Uj(t)[1− δji(t)] ≤ πji(t) ≤ Uj(t)δji(t) (7.17d)

which turn the original problem into a MILP.
The above formulation can also support faulty scenarios with minor modifications. In

fact, whenever a path between source j to bus i is not available, an extra constraint δji = 0
can be added to the problem, to account for either generator or contactor faults. This
formulation provides the optimal solution while addressing the faulty event at the same
time.

7.4.7 Experimental Results

To perform design space exploration, we implemented Holms [1], a framework for hier-
archical optimal load management in aircraft power distribution systems. The MILP in
Section 7.4 was formulated using Yalmip [129] and solved with Cplex [5] for a time hori-
zon of 100 s and a sampling time Ts=1 s. The maximum number of allowed switching
events over the time horizon was set to Nas=2. By using tf =0.5 s for the LL-LMS period,
T = 10Ts =10 s for the update rate of the receding horizon optimization, and H =30 for
the prediction horizon, we obtained 960 binary and 660 real decision variables. On a 4-core
2.67-GHz Intel processor with 3.86 GB of memory, the average and maximum solver times
were 0.20 s and 0.29 s, respectively. Based on our experiments, we selected τ =1 s, which is
consistent with the timing diagram in Figure 7.10. However, as we will show in Table 7.7,
larger values for T and H can also be accommodated in our framework, as long as accurate
predictions for the required power are available. Choosing H = 20 s leads to 640 binary
and 440 real variables, reducing the average and maximum solver times down to 0.177 s and
0.282 s. Finally, H ≤ 10 s was observed to drastically deteriorate the quality of the results,
as HL-LMS did not have sufficient information on predicted power requirements to take an
adequate decision ahead of time.

We assume that AC Bus 1 and 2 in Figure 7.9 have the power requirements shown in
Figure 7.11. These profiles are selected to mimic a typical scenario for the whole aircraft
mission, even if they are scaled to a smaller time span to speed up simulation. The maximum
power capacity is assumed to be 100 kW for GEN 1 and GEN 2, and 104 kW for the APU.
To demonstrate the advantage of a hierarchical, optimization-based approach, we present

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 193

Figure 7.11: Power required by the AC Buses 1 and 2.

simulation results in the occurrence of a failure when only the LL-LMS is active and when
both the LL-LMS and HL-LMS operate together.

7.4.7.1 Occurrence of Failure (LL-LMS Only)

Figure 7.12 shows the source allocation policy when only LL-LMS is active. A fault is
introduced at t = 45 s for GEN 2, which keeps it in failure mode for the rest of the flight.
Once LL-LMS detects the fault, it switches the power source for Bus 2 from GEN 2 to the
APU. In fact, GEN 1, which has a higher priority in Table 7.4, is not enough to cover by itself
the power demands of all the non-sheddable loads. To minimize load shedding, a peak of
112 kW in the required power could only be handled by leveraging the extra power supplied
by the batteries, in addition to inserting the APU. However, LL-LMS makes no attempts at
optimizing the number of used power sources at each time and can connect batteries only
in the case of emergency. As a result, the number of shed loads, shown in Figure 7.13, is
eventually higher than HL-LMS would propose.

7.4.7.2 Occurrence of a Failure (HL-LMS+LL-LMS)

To implement the HL-LMS, we set SoC and SoC to 0.25 and 0.75, and use the same values of
γ for all the loads connected to each bus, since the satisfaction of their shedding priorities is
already enforced via (7.15i) in the general problem formulation. Moreover, as a design choice,
we set γ1 = γ2 = 500 and µ=10. As discussed in Section 7.4, we also select λ1 = [0 1 2]
and, by symmetry, λ2 = [1 0 2].

Figure 7.14, Figure 7.15 and Figure 7.16 show source allocation, battery charge level and
load shedding when GEN 2 fails at time t = 45 s. The HL-LMS is not able to predict such

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 194

Figure 7.12: Power allocation in the case of failure under the operation of the low-level load
management system (LL-LMS) only (Ts = 1 s, no battery utilization).

Figure 7.13: Load shedding in the case failure and under the operation of the low-level load
management system (LL-LMS) only (Ts = 1 s, no battery utilization). Sheddable loads are
labeled as L1, . . . , L10.

a fault while computing the optimal control input for the interval [40, 50] s. However, at
time t = 45 s, the LL-LMS detects that GEN 2 has failed, discards the control input from
the HL-LMS and uses its predefined control strategy to connect Bus 2 to the APU up to
time t = 50 s. Only when the HL-LMS collects the actual health status of generators and
contactors for the interval [50, 60] s, it gets notified that GEN 2 has failed and is able to
accommodate such a fault by incorporating the extra constraints (δi2 = 0, i = 1, ..., N b) to
the MILP formulation. As a result, GEN 2 is no longer used during the mission.

Up to time t = 44 s, whenever DC Bus 1 requires more power than GEN 1 can provide,

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 195

Figure 7.14: Power allocation in the case of failure under the operation of the hierarchical
control scheme, including high-level and low-level management systems.

batteries are used as a backup supply. This is no longer the case after GEN 2 fails. Since no
battery charge control is implemented at the LL-LMS level, the only possible solution is to
shed the loads from Bus 1 to decrease its power requirements. Such loads are then powered
back as soon as the advice from the HL-LMS is implemented again.

7.4.7.3 Discussion

Simulation results confirm the effectiveness of our algorithm, capable of providing an optimal
policy that satisfies both EPS safety and performance requirements. To explore the impact
of γ and µ parameters on the result, we performed a set of tests for different values of these
parameters. As expected, the smaller the values of γ1 and γ2, the higher is the number of
shed loads and the smaller is the number of used generators over time. On the other hand,
smaller values for µ tend to encourage the use of more generators than the ones strictly
needed because of power requirements.

To compare the performance of the hierarchical control architecture with the one of a
conventional controller (LL-LMS only) in terms of load shedding, we define a normalized
shedding index, which quantifies the percentage of shed loads over the duration of a mission,
and is based on the cost term in (7.12):

Ished =

∑2
j=1

∑100
t=0 ΓTj [1− Cj(t)]∑2

j=1

∑100
t=0 ΓTj 1

· 100%, (7.18)

where 1 ∈ RNj is a vector of ones. In our simulations, Ished decreases from 9.2% for LL-LMS
to 1.7% for the hierarchical controller, which means a 5-fold improvement in the latter case.

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 196

Figure 7.15: Battery charge level in the case of failure under the operation of the hierarchical
control scheme (Ts = 1 s, SoC = 0.25, SoC = 0.75, tchrg = 30 s).

Table 7.7: Number of optimization variables and solver time for a 2-bus 3-generator electric
power system, when the time horizon increases.

Prediction horizon (H) 10 20 50 100

Number of opt. var. 430 860 2150 4300
Solver time (s) 0.3 0.19 1.25 25

Similarly, a source utilization index can be defined based on (7.14):

Isource =
2∑
j=1

100∑
t=0

ΛT
j ∆j(t), (7.19)

which quantifies the cost associated to the usage of power sources over the duration of a
mission. In our simulation, Isource decreases from 110 (LL-LMS only) to 76 (LL-LMS +
HL-LMS), which is a 31%-reduction in the hierarchical control case.

To test the scalability of the proposed framework, we performed optimizations with dif-
ferent time horizons. No substantial improvement in the quality of the solution was observed
for H > 30 in our experiments, in spite of the larger computation time. However, as evident
from Table 7.7, even problems with thousands of variables can be solved in a few seconds
using the proposed formulation. Finally, we also implemented controllers for EPS topologies
with a larger number of generators and loads, in which the number of buses and contactors

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 197

Figure 7.16: Load shedding in the case of failure and under the operation of the hierarchical
control scheme. Sheddable loads are labeled as L1, . . . , L10.

Table 7.8: Number of optimization variables and solver time for H=30 (B and G stand for
the number of Buses and Generators, respectively).

Number of nodes Number of opt. var. Solver time (s)

B=4, G=3 binary: 960, real: 660 ave: 0.20, max: 0.29
B=10, G=5 binary: 2300, real:1650 ave: 2.10, max: 2.22
B=20, G=10 binary: 6100, real: 6300 ave: 6.87, max: 7.0

is also increased proportionally. The results in Table 7.8 show that, for a realistic number
of generators (normally less than 10), computation times stay largely compatible with the
timing assumptions needed for the correct operation of the proposed hierarchical scheme.

7.5 Aircraft Air Management System Design

Overview

Figure 7.17 shows the simplified architecture of a Pressurization and Air Conditioning Kit
(PACK) of an aircraft air management system (AMS). Engine bleed air enters the PACK
through Valve 1, and gets partitioned into two flows, one passing through the bypass Valve
2, and the other passing through the heat exchanger (HX). Then, the flows recombine in a
Mixer and enter the aircraft cabin. In a PACK, the cabin pressure is typically controlled
by a set of electrical compressors (not shown in Figure 7.17), while the cabin temperature
is regulated via the heat exchanger and, possibly, expansion cooling across one (or more)
turbines [147]. In our simplified diagram, Valve 1 is responsible for the flow-rate Wi into

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 198

Fork

Figure 7.17: Simplified architecture of a Pressurization and Air Conditioning Kit (PACK)
of an aircraft air management system.

the system, whereas Valve 2 directly influences the cabin temperature by controlling the
fraction of inflow that is cooled in the heat exchanger by the cold ambient mass flow Wa.
The AMS needs to be designed to supply sufficient pressure, and fresh oxygen, to the cabin
at a comfortable temperature and humidity, while being resilient to faults, such as freezing
or warping of critical components.

In this section, we show how the methodology of this dissertation, and its main steps,
can also be applied to this case study, by adequately adapting them to the problem at
hand. Differently than the EPS design in the previous sections, in this example, we assume
that the plant topology, hence its reliability, is fixed. On the other hand, the controller
has a hierarchical structure, where a high-level supervisor decides the AMS operating mode
(e.g. climbing, cruising) and provides the appropriate set points to the lower-level controllers,
implemented using model predictive control or proportional-integral-derivative (PID) archi-
tectures. Therefore, our goal is to determine the plant sizing parameters and the control
strategy for valves 1 and 2 and flow-rate Wa to satisfy a set of top-level requirements, under
the assumptions that the temperature and pressure of the bleed air are piecewise constant
(possibly changing over the duration of a flight) while the temperature of the cold air flowing
into the heat exchanger is affected by the altitude of the airplane and the time of the day.

Since the PID controllers are right at the interface with the plant, we need to incorporate
their effect as we determine the plant sizing, in order to enable independent implemen-
tation of plant architecture and control algorithm. Moreover, to accurately capture the
plant dynamics, we resort to a continuous, non-linear optimization scheme, where the sys-

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 199

System Verification
and Simulation-Based Optimization

Component
Design/
Control

Synthesis

Requirements
(Lower level, e.g. System Architecture and

Control Algorithm)

Architecture
Design

Cver/sim CC,syn

Requirements
(High-level capture and formalization)

CA,syn

System
Architecture
(e.g. graph)

Component
and Contract

Library

Discrete Event
Hybrid

Continuous
Time

and Hybrid

(a)

(b)

(c)

(d)

(e)

(f)

Domain-Specific

Primitives/
Patterns

Static/

Extra-functional
(e.g. Reliability,

Connectivity)

(e.g. Static,
Topological)

(e.g. Temporal
Logic)

(e.g. Temporal
Logic)

Figure 7.18: Representation of the proposed design flow as applied to an aircraft air man-
agement system.

tem steady-state and transient performance is evaluated from simulation traces using an
acausal, parametrized model of the plant in closed-loop with its controllers, implemented in
Modelica. The system requirements include, among others, bounds on the desired cabin
temperature (e.g. within 291 K and 298 K), the maximum time allowed before reaching the
steady state, the minimum heat exchanger outlet temperature to avoid freezing.

The overall design flow is represented in Figure 7.18. In the architecture design step, top-
level requirements are then translated into STL contracts and their satisfaction is checked on
the simulation traces, while searching the space for an optimal plant sizing that minimizes
the overall volume and component cost. Architecture design can then been seen as instance
of the “lazy” optimized mapping approach, where the role of the oracle is performed by the
simulation engine. In the control design step, for a given plant architecture, the same require-
ments can be used, together with a plant model based on ordinary differential equations, to
synthesize both the DE supervisory control and the lower-level MPC schemes, using, respec-
tively, reactive synthesis from temporal logic contracts and programming-based optimized
control mapping, both discussed in Chapter 6. The result will be a fully sized Modelica
model of the plant, and a hybrid model of the overall controller.

As an example, Figure 7.19 (a) shows design exploration results capturing the impact

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 200

(a) (b)

Figure 7.19: Air management system design space exploration example.

of the heat exchanger geometry, i.e. cross-sectional area and length, on the system correct-
ness at steady state. Figure 7.19 (b) shows instead the feasible design space in a co-design
scenario, when the steady state can be selected together with the plant sizing, thus making
it possible to explore trade-offs between plant sizing and control set points. In both the
figures, the safe regions, where no requirements are violated and the system behaves cor-
rectly, are highlighted in green. Each exploration run, including 250 simulations, required
approximately two minutes on an Intel Core i5 2.53-GHz processor with 4-GB memory.

7.6 Conclusions

We provided a detailed example of application of the methodology proposed in this thesis to
the design of aircraft power distribution systems, including the following steps: top-level re-
quirement formalization using a pattern-based contract specification language, independent
refinement of system architecture and control strategy via vertical contracts, optimized selec-
tion of reliable and cost-effective architectures, and optimized control mapping via reactive
synthesis from linear temporal logic contracts combined with simulation-based optimization
subject to the satisfaction of signal temporal logic contracts. We then addressed the problem
of optimal load management for aircraft electric power distribution, offering a hierarchical
scheme, Holms, to coordinate load shedding, source allocation and battery utilization, by
solving an efficient mixed integer-linear program within a receding horizon approach. In
addition to guaranteeing system safety, our hierarchical architecture shows substantial per-
formance improvements with respect to the state of the art in terms of percentage of shed
loads and number of utilized sources. Moreover, simulation results show that the optimal
control problem scales reasonably in the context of the selected application.

CHAPTER 7. APPLICATION TO AIRCRAFT SYSTEM DESIGN EXAMPLES 201

While certain formalisms following a “declarative” style, such as temporal logic and arith-
metic constraints on Boolean and real numbers, have shown to be promising for requirement
formalization and the deployment of correct-by-construction synthesis and mapping tech-
niques, the direct adoption of reactive synthesis for industrial-scale problems seems difficult,
at least with the current tools, because of its computational complexity. On the other hand,
the Programming-Based Optimized Control Mapping scheme shows promise of more accu-
rately incorporating the underlying continuous dynamics of a cyber-physical system since
the earlier design stages, albeit for a finite time horizon, and generating more scalable control
problem formulations that can be efficiently handled by commercial solvers.

Altogether, in this chapter, we demonstrated a combination of the strategies proposed in
this dissertation to overcome design complexity, including:

• Leveraging efficient, compositional approximations of complex system metrics (e.g. re-
liability) to perform system-level design exploration in the concept design phase, with
rigorous, quantitative bounds on the approximation errors;

• Developing efficient mapping algorithms that can traverse a large design space by
decomposing complex decision problems into a combination of smaller tasks, each
carried out by the most appropriate tool (e.g. the Integer-Linear Programming Modulo
Reliability algorithm);

• Addressing different design concerns (e.g. safety versus real-time performance) by de-
veloping different abstractions (e.g. discrete-event versus hybrid) formally related by
vertical contracts, as in the Reactive Synthesis-Based Optimized Control Mapping
method;

• Leveraging hierarchically organized, pre-characterized library of contracts to speed up
verification and mapping tasks using on-the-fly abstractions and refinements based on
library mappings, as in the library-based scalable refinement checking algorithm;

• Developing efficient optimization-based formulations of control design problems that
can be solved with a receding horizon approach and scale better than reactive synthesis
methods, as in the Programming-Based Optimized Control Mapping method used in
Holms.

Finally, we concluded the chapter by showing how systems exposing apparently different
behaviors, such as an aircraft air management system, can still be designed, with appropriate
adaptations, using a combination of the methods above.

202

Chapter 8

Conclusions and Future Work

In this chapter, we summarize the main contributions of this dissertation and suggest promis-
ing research directions for future work.

8.1 Conclusions

By “instrumenting” our planet with information technology based devices, cyber-physical
systems (CPS) have the potential to provide a variety of novel services with a societal-scale
impact, radically influencing how we deal with crucial problems, such as national security
and safety, energy management, environment control, efficient and reliable transportation,
and affordable health care. The complexity and heterogeneity of CPS is, however, increas-
ing the design and verification challenges. In several industries, the development of these
systems becomes increasingly more expensive and time-consuming. Serious vulnerabilities
due to unwanted interactions found late in the development process tend to affect the re-
alization of these systems, and are possibly insurmountable with the methodologies in use
today. While compositional approaches, stepwise refinements of requirements, and reuse of
pre-designed components are deemed as instrumental to reduce design cost and make sys-
tem integration affordable, the definition of a principled, compositional methodology that
can support the creation and exchange of model libraries, tool interoperability (allowing
models to be analyzed or optimized by multiple tools), and multi-view modeling (rigorously
combining models that represent different aspects of a design, e.g. a control-logic model with
an energy-consumption model) is an open problem.

The research in this dissertation seeks to advance the state of the art in compositional
design methodologies by spanning the whole spectrum from theoretical foundations, in nu-
merical and formal methods, to practical tools for system analysis and design. We introduced
a methodology that addresses the complexity and heterogeneity of cyber-physical systems by
leveraging the concepts of horizontal and vertical contracts to formalize the design process
in a hierarchical and compositional way, and interconnect different modeling, analysis and
synthesis tools, to ensure quality and correctness of the final result. We presented theoretical

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 203

results, methods, and algorithms showing that it is indeed possible to provide the formal
foundations for such a methodology, covering both horizontal and vertical compositions. To
illustrate the application of the methodology, we used concrete examples from controller
design in aircraft electric power and air management systems.

We adopted assume-guarantee (A/G) contracts as a rich and flexible contract model to
provide the formal foundations of our methodology, and carved out of the general theory a
concrete contract framework that can fully support multi-view and multi-layer design flows.
A first requirement of such a contract framework is to support compatibility and consis-
tency checking for systems with uncontrolled inputs and controlled outputs, a widely used
abstraction in the design of networked controlled systems. To address this requirement, in
Chapter 3, we drew inspiration from interface theories, another class of specification theories,
which shares the same overall objectives as contracts, but is based on different mathematical
underpinnings. Specifically, we established a link between the theory of A/G contracts and
the one of relational interfaces, shedding light on some of their key features for system specifi-
cation, early detection of incompatibilities, and use of abstraction-refinement. We proposed
a natural transformation from interfaces to linear temporal logic contracts, and analyzed
differences and correspondences between key operators and relations in the two theories
(i.e. composition, refinement and conjunction), by studying their preservation properties un-
der the proposed transformation. We showed that the transformation preserves refinement,
but does not generally preserve serial composition, interface compatibility, and conjunction.
Then, we proposed a new projection operator on contracts that captures the distinct nature
of inputs and outputs during hiding, thus enabling preservation of the semantics of interface
composition and compatibility.

A second requirement for an effective contract framework for cyber-physical system design
is to encompass richer refinement relations between different representations of the design,
including synthesis and optimized mapping between abstraction levels described by hetero-
geneous architectures and behavior formalisms. To address this requirement, we formalized
the concepts of heterogeneous refinement and vertical contracts to deal with hierarchies
of models characterized by both semantic and structural heterogeneity, i.e. using different
formalisms and architectural decompositions.

In Chapter 4, we detailed the structure of our methodology as a layered process including
three main steps, in which high-level specification contracts are mapped into lower-level ag-
gregations of contracts out of a pre-characterized library. At each step in our methodology,
top-level requirements are captured as contracts using a controlled specification language
based on pre-defined patterns. Patterns facilitate the translation of contracts into mathe-
matical formalisms. First, a set of steady-state, structural and reliability requirements are
mapped into a high-level system architecture (architecture design); then, a set of functional,
safety and reliability requirements are mapped into a lower-level, discrete, dynamical rep-
resentation of the system (control design). Finally, real-time performance requirements are
mapped into an aggregation of higher-fidelity hybrid components by a simulation-based op-
timization step, which is also used to verify all the assumptions made at the earlier design
stages. We presented a proof-of-concept framework, CHASE, which uses A/G contracts to

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 204

coordinate different mapping tools and enable rigorous analysis of complex behaviors in a
way that is practically usable by system engineers.

We the focused on the description of different mapping algorithms, and their demon-
stration on industrial case studies. Chapter 5 showed that scalable system-level design
exploration of CPS architectures subject to safety and reliability constraints is possible by
combining optimization methods with compositional approximations of complex system met-
rics (e.g. reliability), for which rigorous, quantitative error bounds can be proved. Moreover,
we demonstrated how concepts from formal methods can be effectively applied to traverse
large design spaces by decomposing complex decision problems into smaller tasks, each car-
ried out by the most appropriate analysis technique and tool. In particular, we introduced,
characterized, and demonstrated two efficient optimization-based algorithms for the opti-
mal selection of cyber-physical system architectures. We implemented both the algorithms
in the ArchEx framework, and demonstrated their effectiveness on the design of aircraft
power system architectures. Since generating exact reliability constraints by failure enumer-
ation is expensive, the Integer-Linear Programming with Approximate Reliability (ILP-AR)
algorithm generates larger, monolithic problem instances using efficient but approximate
constraints computations. Conversely, the Integer-Linear Programming Modulo Reliability
(ILP-MR) algorithm breaks the complex optimal architecture selection task into a sequence
of smaller optimization tasks interleaved with exact reliability checks. By relying on efficient
mechanisms to prune out large portions of the discrete space that are inconsistent with the
reliability requirements, ILP-MR outperformed ILP-AR on large problem instances.

In Chapter 6, we proposed two methodologies for systematic design of control proto-
cols using contracts: Reactive Synthesis-Based Optimized Control Mapping (RS-OCM) and
Programming-Based Optimized Control Mapping (P-OCM). In the absence of tools that can
fully support the design and verification of distributed control systems, RS-OCM addresses
different design concerns (e.g. safety versus real-time performance) by developing appropri-
ate abstractions (e.g. discrete-event versus hybrid) formally related by vertical contracts. A
subset of the design requirements can be encoded into a linear temporal logic contract for
which reactive synthesis is tractable and can generate a discrete-event representation of the
controller. This abstract controller model satisfies its contract by construction, and is then
refined into a higher-fidelity model using simulation-based optimization methods subject to
the satisfaction of signal temporal logic contracts. On the other hand, P-OCM relies on an
optimization-based formulation of the control design problem over a bounded time horizon,
and its online solution within a receding horizon approach, which tends to scale better than
reactive synthesis methods.

In the context of contract-based verification of distributed controllers, we addressed the
problem of performing contract refinement checking efficiently, and presented an algorithm
that leverages the contract library, enriched with refinement assertions, to break the main
verification task into a set of smaller tasks. The application of the proposed algorithm to
verify controllers for aircraft electrical power systems showed up to two orders of magnitude
improvement with respect to standard implementations, e.g. based on solving LTL satisfia-
bility problems with state-of-the-art tools. Since the library characterization process must be

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 205

performed only once, outside of the main design flow, the benefits of having a richer library
in terms of refinement assertions largely repay the overhead of building it. Moreover, the
proposed algorithm already offers a way of automatically proving new refinement relations
that can be effectively used to further populate the original library so as to enrich it for
future verification tasks.

In Chapter 7, the effectiveness of a contract-based design flow was demonstrated, for
the first time, on an industrial case study, i.e. system-level design of an aircraft electrical
power system, including several techniques discussed in this thesis: top-level requirement
formalization using patterns, compositional refinement of system architecture and control
algorithm, optimized selection of reliable and cost-effective power system topologies, and
reactive synthesis based optimized control mapping. In our case study, formalisms following
a “declarative” style, such as temporal logic and arithmetic constraints on Boolean and real
numbers, proved to be promising for requirement formalization and deployment of correct-
by-construction synthesis and mapping techniques. While the direct adoption of reactive
synthesis for industrial-scale problems tends to be impractical today, the RS-OCM and P-
OCM paradigms help alleviate the computational complexity issues, by relying, respectively,
on the separation of design concerns between different abstraction levels, and on efficient
optimization-based formulations.

We demonstrated the capabilities of optimization-based control design methods on the
problem of optimal load management in aircraft power systems. We developed a hierarchical
control architecture in which a high-level load management system (HL-LMS) coordinates
load shedding, source allocation and battery utilization, by solving an efficient mixed integer-
linear program within a receding horizon approach. The result of the optimal control problem
is offered as advice to a low-level load management system (LL-LMS) that can directly
actuate the EPS contactors, and decides to implement the advice from the HL-LMS only
when it is safe. In addition to guaranteeing system safety, our hierarchical architecture
showed substantial performance improvements with respect to a conventional one, based on
just an LL-LMS, in terms of percentage of shed loads and number of utilized sources.

An overview of the proposed design flow, as applied to an aircraft air management sys-
tems, marked the conclusion of Chapter 7, showing how the design of systems characterized
by behaviors and requirements apparently different in nature can still be addressed, with a
few adaptations, within the same framework.

8.2 Future Work

Inspired by the design examples in this thesis, we envision a scenario in which a design
management feature that we call a front-end orchestrator directly interacts with the designer,
helps coordinate the set of back-end specialized tools, and consistently processes their results.
For such an orchestrator to be developed, it is essential to develop tools to effectively guide
designers towards requirement formalization, and algorithms that can maximally leverage
the modularity offered by contracts, by directly working on their representations to perform

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 206

compatibility, consistency and refinement checks on system portions of manageable size and
complexity. Moreover, these algorithms should take advantage of any violation of the design
constraints, i.e. a “counterexample” for system correctness, to provide meaningful feedback
to the designer, and possibly set up learning strategies to refine or augment both the contract
assumptions and guarantees until a final implementation is reached. In the following, we
broadly categorize the future research directions entailed by the above scenario into three
major areas: theory, algorithms, and applications.

8.2.1 Theory

Our work has pioneered a new research direction aiming to investigate the relation between
different contract and interface theories, and their mathematical foundations, with the ul-
timate goal of developing a truly unifying compositional framework for system design. We
expect more efforts will appear in this direction. For example, future extensions of the results
presented in Chapter 3 include studying the properties of the proposed transformation with
respect to feedback composition, which is not always defined for relational interfaces, as well
as its generalization to the theory of interface automata. We are also interested in investi-
gating a reverse transformation that maps A/G contracts into relational interfaces, which
requires extending the latter with liveness properties. A recent effort has been reported in
this direction, extending the expressiveness of relational interfaces to also allow formulas in
higher-order logic and temporal logic [166].

8.2.1.1 Analog and Hybrid Contracts

As demonstrated in this thesis, a “natural” use of contracts in CPS design is to govern
the horizontal composition of the cyber and the physical components and to establish the
conditions for correctness of their composition. While we offered a number of strategies to
model and analyze such a composition, and support heterogeneous refinements including
hybrid behaviors, we observe that a comprehensive interface theory for continuous-time,
infinite-state-space dynamic systems is currently lacking.

A major set of challenges in this domain stems from the difficulty of devising the most
suitable abstractions for the verification of continuous-time continuous-valued systems, which
can be consistently related to simulation models as well as models for semantic analy-
sis (e.g. structural and performance models), possibly including reduced order models, or
coarser, discretized and quantized approximations of physical behaviors for efficient system-
level design space exploration. We have recently reported a first step in this direction in
the context of mapping algorithms for heterogeneous architectural spaces [80], by leveraging
extensions of the framework proposed in this thesis and our previous formulation for analog
and mixed-signal (AMS) integrated circuit design [152].

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 207

8.2.1.2 Stochastic Contracts

Several parameters impacting the behavior of CPS are subject to variability due to manufac-
turing tolerances, usage and faults. Moreover, the models that are normally used to design
multi-physics systems inevitably introduce inaccuracies [155]. As a consequence, robust sys-
tem design often implies costly Monte Carlo simulations or over-design to guarantee large
safety margins. Contract frameworks for stochastic system design are still in their infancy.
However, the importance of providing a better support for reasoning about the probabilistic
properties of systems and the deployment of robust design techniques cannot be overem-
phasized. In this context, advancing the state of the art in compositional approaches for
stochastic systems and stochastic contract frameworks, e.g. by building on the works by
Kwiatkowska et al. [119], Caillaud et al. [49], and Gössler et al. [87], is deemed as essential
to improve on the scalability of stochastic analysis and synthesis techniques [117, 118], and
make their adoption actually feasible in current design flows.

8.2.2 Algorithms

8.2.2.1 Requirement Analysis and Validation

In the context of requirement validation, a future research direction is to investigate efficient
algorithms to implement the key operations and relations of the contract algebra for speci-
fication formalisms that are richer than LTL, such as (fragments of) STL and HRELTL. A
framework for refinement checking of HRELTL contracts has been recently reported [61, 58].
On the other hand, efficient algorithms for contract compatibility or consistency checking, in-
cluding the implementation of the assumption-projection operator in Chapter 3, are missing.
In this respect, a major challenge is the computational complexity of quantified logics.

Cyber-physical system verification is expected to largely benefit from the development of
efficient and accurate decision procedures and Satisfiability Modulo Theory (SMT) solvers
that allow reasoning about Boolean combinations of linear and non-linear constraints over
the reals. To implement efficient solvers over the reals, a promising approach is to decompose
complex decision problems into smaller tasks, and leverage a “lazy” combination of formal
methods and optimization techniques to tackle them, as we proposed for CalCS [150], an
SMT solver using duality theory to reason about nonlinear convex constraints, and further
demonstrated in this thesis in the context of different mapping problems. More recently,
we have successfully applied the same paradigm to the problem of state reconstruction from
corrupted sensor measurements in CPS under attack [186, 187, 185].

Finally, the recent advances in machine learning and data mining technologies can also be
used to improve requirement validation in different ways. Results from system identification
and statistical learning theory can be used to generate (and validate) models of components
and subsystems for fast simulation and architecture exploration from design and measure-
ment data to enrich and validate the contract library. However, in addition to modeling
and simulation, data can be used to also improve other design tasks, such as synthesis or
formal verification. In fact, both formal verification and synthesis algorithms generate per

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 208

se a substantial amount of data, such as “certificates” and “counterexamples,” e.g. in terms
of traces or scenarios. Then, novel diagnostic tools can be developed by leveraging this in-
formation to provide useful feedback to the designer, e.g. by suggesting modifications to the
original specification when it is unrealizable, as recently proposed in the context of require-
ment mining [127, 126, 105, 128], and further generalized by the “sciduction” paradigm [181],
advocating the integration of traditional, deductive methods with inductive inference (learn-
ing from examples), using hypotheses about the system structure, to tackle major challenges
in formal verification. Specifically, requirement mining is an emerging field with several us-
age scenarios that can be an important complement to the methodology discussed in this
thesis. In addition to helping create abstracted views of systems and components, mined
requirements may be used to gain better understanding of legacy models or code, and may
also help enhance the process of bug-finding through simulations [105].

8.2.2.2 Synthesis and Optimized Mapping for Architecture and Control

The benefits of horizontal and vertical contracts and the optimized mapping techniques
demonstrated in this thesis can also be further explored to improve on the scalability of
our architecture synthesis and reactive synthesis approaches. Possible research directions
include:

• Optimized selection and sizing of CPS architectures. The ILP-AR and ILP-MR algo-
rithms proposed in this thesis for efficient exploration of system architectures can be
further generalized to encompass a larger set of requirements, and finally stand out as
two complementary paradigms to traverse complex, heterogeneous design spaces for the
implementation of the next generation of system-level design frameworks. As a future
work, we plan to further investigate the generalization of these approaches to support
a broader category of architectures (e.g. power grids, communication networks) and
design concerns, such as the impact of system dynamics and transients, which may
require the integration of discrete decision procedures and optimization frameworks
with algorithms and tools for formal and semi-formal verification of hybrid systems.
We have recently taken a step in this direction by proposing a “lazy” combination of
a discrete and a continuous optimization engine based on continuous-time simulation
for optimal sizing of CPS architectures [80].

• Optimization-based synthesis. More systematic ways can be devised to include cost
(or reward) functions in temporal logic planning, to allow for control protocols that
satisfy a set of constraints and minimize a cost function associated with the contin-
uous or discrete states, as in the Programming-Based Optimized Mapping approach
in Section 6.3. A few works have been recently published in this direction, which
use optimization to generate control trajectories satisfying an LTL specification [204],
or encode a reactive synthesis problem from STL specifications into an optimization
problem executed in a receding horizon approach [171, 172].

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 209

• Distributed protocols. We can develop more systematic methods for designing and val-
idating formal interface specifications between subsystems (horizontal contracts) that
allow verification and synthesis to be performed at the subsystem level, with guaranteed
system-level requirements. The problem of distributed control synthesis from tempo-
ral logic specifications by following a given controller architecture [163] and the one of
control synthesis by using a library of pre-existing components [131] are undecidable in
general. Then, an interesting direction will be to overcome both the limitations of the
generic “architecture-based” and “library-based” approaches by adequately combining
them. On the one hand, by using a reference component library as in Section 6.5,
we limit the size of the exploration space and exploit built-in refinement assertions to
speed up verification tasks. On the other hand, by using a reference control archi-
tecture, based on the plant architecture and the system-level requirements, we make
the synthesis task tractable, by suggesting viable aggregations of contracts (e.g. real-
izable specifications) out of the contract library to build the controller in a bottom-up
fashion. The efficient contract refinement checking algorithm proposed in this thesis
showed indeed the benefits of combining a library-based approach, as in platform-
based design, with contracts, to perform complex verification tasks in a hierarchical
and modular way. A full-fledged theoretical study of the complexity of the proposed
algorithm is challenging, since its runtime is highly dependent on the characteristics of
the library, in addition to the structure of the system and the property under consid-
eration. A characterization of the role of the library, e.g. starting with domain-related
benchmarks, will also be object of future work. Further extensions of this work also
include investigating algorithms for automatic mapping of library contracts to plant
architectures, the adoption of learning algorithms for library optimization, and the
definition of benchmarks and quality metrics to estimate the effectiveness of a library.
We expect that approaches as the one in this dissertation, relying on design libraries
to build proof systems that can incorporate design knowledge accumulated over the
time, in terms of data collected both in the design and in the testing phases, will gain
increasingly more momentum in the future, due to the recent advances of data storage
and data analysis technologies.

• Hierarchical control structures. Hierarchical control structures can be developed that
make use of demand-response architectures and formal interface specifications between
layers (vertical contracts) to achieve a system-level goal. The preliminary work in both
Section 6.3 and Section 6.5 will also provide a starting point for this effort. The hierar-
chical load management architecture for aircraft electrical power systems proposed in
this thesis, together with the supporting design framework Holms [1], is novel and im-
proves on the current state of the art. As future work, we intend to further characterize
the proposed control scheme by formalizing the interaction between the high-level and
low-level load management systems in terms of vertical contracts, to provide stronger
guarantees of correctness and enable compositional development of the high-level and
low-level controllers.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 210

8.2.3 Applications

We illustrated our methodology and tools on the design of aircraft electrical and air man-
agement systems. However, the number of applications and future directions are endless,
including, among others, mixed-signal integrated circuits, distributed and networked control
systems, “smart” buildings [135], robotics, sensor and actuator “swarms” [9].

To better illustrate our methodology, we considered an abstract representation of a CPS
in terms of composition between a controller and a plant. However, the concepts discussed
in this thesis are general enough to encompass several other, if not all, categories of CPS.
Specifically, because of the rigorous formalization of both the horizontal and vertical inter-
actions between components, contracts seem to offer a “natural” theoretical framework for
the design of provably correct distributed and hierarchical control systems in a scalable way,
as discussed above. In this respect, to support the design of adaptive architectures, in which
components (agents) can dynamically reconfigure themselves, e.g. by changing their loca-
tions or communication patterns, the challenge is to provide mechanisms that can efficiently
export at the architectural exploration level the most important constraints and metrics im-
posed by the lower-level system dynamics, and network fabrics. Accordingly, as an integral
part of the execution platform refinement process, which was not covered in this thesis, our
framework can be extended to incorporate several design space exploration methodologies
across the hardware, software and communication layers, which are being consolidated over
the years by the joint effort of both academia and industry.

Arguably, we can further extend our design paradigm to systems whose main objective
is to sense and monitor a physical “plant,” and process the collected data, rather than
controlling it. An example of such a system, still in the aircraft context, could be the built-
in test equipment (BITE) of an electric power system, which collects data from a set of
observation points (e.g., including sensors or software flags) to identify the state of the plant
and take decisions about potential recovery actions for maintenance purposes. In this case,
contracts would rather be used to capture the interaction of the physical world with the
sensing, identification, data analysis, or learning algorithms, and their deployment on the
embedded platform.

211

Bibliography

[1] “Holms: Optimal load management system for aircraft electric power distribution,”
https://github.com/forresti/optimal load management, accessed: 2015-07-27.

[2] Modelica Language. [Online]. Available: http://www.modelica.org

[3] OMG Systems Modeling Language. [Online]. Available: http://www.sysml.org/

[4] UPPAAL-Tiga, a synthesis tool for timed games. [Online]. Available: http:
//people.cs.aau.dk/∼adavid/tiga/

[5] (2012, Feb.) IBM ILOG CPLEX Optimizer. [Online]. Available: www.ibm.com/
software/integration/optimization/cplex-optimizer/

[6] M. Abadi and L. Cardelli, A Theory of Objects. Springer-Verlag, 1996.

[7] M. Agrawal and P. Thiagarajan, “The discrete time behavior of lazy linear hybrid
automata,” in Hybrid Systems: Computation and Control, ser. Lecture Notes in
Computer Science, M. Morari and L. Thiele, Eds. Springer Berlin Heidelberg, 2005,
vol. 3414, pp. 55–69. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-31954-
2 4

[8] D. E. N. Agut, D. A. van Beek, and J. E. Rooda, “Syntax and semantics of the com-
positional interchange format for hybrid systems,” J. Log. Algebr. Program., vol. 82,
no. 1, pp. 1–52, 2013.

[9] B. Aksanli, A. S. Akyurek, M. Behl, M. Clark, A. Donzé, P. Dutta, P. Lazik,
M. Maasoumy, R. Mangharam, T. X. Nghiem, V. Raman, A. Rowe, A. Sangiovanni-
Vincentelli, S. Seshia, T. S. Rosing, and J. Venkatesh, “Distributed control of a
swarm of buildings connected to a smart grid: Demo abstract,” in Proceedings of
the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, ser.
BuildSys ’14. New York, NY, USA: ACM, 2014, pp. 172–173. [Online]. Available:
http://doi.acm.org/10.1145/2674061.2675019

[10] L. D. Alfaro and T. A. Henzinger, “Interface theories for component-based design,” in
Proc. ACM IEEE Int. Conf. Embedded Software. Springer-Verlag, 2001, pp. 148–165.

https://github.com/forresti/optimal_load_management
http://www.modelica.org
http://www.sysml.org/
http://people.cs.aau.dk/~adavid/tiga/
http://people.cs.aau.dk/~adavid/tiga/
www.ibm.com/software/integration/optimization/cplex-optimizer/
www.ibm.com/software/integration/optimization/cplex-optimizer/
http://dx.doi.org/10.1007/978-3-540-31954-2_4
http://dx.doi.org/10.1007/978-3-540-31954-2_4
http://doi.acm.org/10.1145/2674061.2675019

BIBLIOGRAPHY 212

[11] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, “Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems,” in
Hybrid Systems, ser. LNCS, vol. 736. Springer, 1993, pp. 209–229.

[12] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete abstractions of hybrid
systems,” Proc. IEEE, vol. 88, no. 7, pp. 971–984, July 2000.

[13] R. Alur, T. Dang, and F. Ivančić, “Counterexample-guided predicate abstraction of
hybrid systems,” Theoretical Computer Science, vol. 354, no. 2, pp. 250–271, 2006.

[14] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput. Sci., vol.
126, no. 2, pp. 183–235, 1994. [Online]. Available: http://dx.doi.org/10.1016/0304-
3975(94)90010-8

[15] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular specification of hybrid
systems in Charon,” in Hybrid Systems: Computation and Control, ser. LNCS, vol.
1790. Springer, 2000, pp. 6–19.

[16] R. Alur and T. A. Henzinger, “A really temporal logic,” in Symposium on Foundations
of Computer Science, 1989, pp. 164–169.

[17] R. Alur and T. Henzinger, “Reactive modules,” Formal Methods in System Design,
vol. 15, no. 1, pp. 7–48, 1999. [Online]. Available: http://dx.doi.org/10.1023/A%
3A1008739929481

[18] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan, “S-TaLiRo: A
tool for temporal logic falsification for hybrid systems,” in Proc. Int. Conf. Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 2011, pp. 254–257.

[19] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identification of temporal
properties,” in Proc. Int. Conf. Runtime Verification, ser. Lecture Notes in Computer
Science, vol. 7186. Springer, 2012.

[20] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reachability analysis of
piecewise-linear dynamical systems,” in Hybrid Systems: Computation and Control,
ser. LNCS. Springer Berlin Heidelberg, 2000, vol. 1790, pp. 20–31. [Online].
Available: http://dx.doi.org/10.1007/3-540-46430-1 6

[21] L. Babai and E. M. Luks, “Canonical labeling of graphs,” in Proc. of ACM Symp. on
Theory of Computing, ser. STOC ’83, 1983, pp. 171–183.

[22] C. Baier and J.-P. Katoen, Principles of Model Checking. Massachussetts, USA: The
MIT Press, 2008.

[23] N. Bajaj, P. Nuzzo, M. Masin, and A. L. Sangiovanni-Vincentelli, “Optimized selection
of reliable and cost-effective cyber-physical system architectures,” in Proc. Design,
Automation and Test in Europe, Mar. 2015.

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1023/A%3A1008739929481
http://dx.doi.org/10.1023/A%3A1008739929481
http://dx.doi.org/10.1007/3-540-46430-1_6

BIBLIOGRAPHY 213

[24] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. L. Sangiovanni-Vincentelli, and
Y. Watanabe, “Metropolis: an integrated electronic system design environment,” Com-
puter, vol. 36, no. 4, 2003.

[25] F. Balarin, A. Davare, M. D’Angelo, D. Densmore, T. Meyerowitz, R. Passerone,
A. Pinto, A. Sangiovanni-Vincentelli, A. Simalatsar, Y. Watanabe, G. Yang, and
Q. Zhu, “Platform-based design and frameworks: Metropolis and metro ii,” in
Model-Based Design for Embedded Systems, G. Nicolescu and P. J. Mosterman, Eds.
Boca Raton, London, New York: CRC Press, Taylor and Francis Group, November
2009, ch. 10, p. 259.

[26] A. Balluchi, L. Benvenuti, T. Villa, H. Wong-Toi, and A. L. Sangiovanni-Vincentelli,
“Controller synthesis for hybrid systems with a lower bound on event separation,”
International Journal of Control, vol. 76, no. 12, pp. 1171–1200, Aug. 2003.

[27] J. Bals, G. Hofer, A. Pfeiffer, and C. Schallert, “Virtual iron bird – A multidisciplinary
modelling and simulation platform for new aircraft system architectures,” in German
Aerospace Conference, 2005.

[28] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability modulo theories,”
in Handbook of Satisfiability, A. Biere, H. van Maaren, and T. Walsh, Eds. IOS Press,
2009, vol. 4, ch. 8.

[29] S. S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay et al., “Moving from
specifications to contracts in component-based design,” in Int. Conf. on Fundamental
Approaches to Software Engineering. Springer, 2012, pp. 43–58.

[30] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime,
“UPPAAL-Tiga: Time for playing games!” in Proc. Int. Conf. Comput.-Aided Verifi-
cation. Springer, 2007, pp. 121–125.

[31] G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W. Yi, “Developing
UPPAAL over 15 years,” Softw., Pract. Exper., vol. 41, no. 2, pp. 133–142, 2011.
[Online]. Available: http://dx.doi.org/10.1002/spe.1006

[32] M. Benerecetti, M. Faella, and S. Minopoli, “Automatic synthesis of switching
controllers for linear hybrid systems: Safety control,” Theor. Comput. Sci., vol. 493,
pp. 116–138, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.tcs.2012.10.042

[33] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C. Sofronis,
“Multiple viewpoint contract-based specification and design,” in Formal Methods for
Components and Objects. Springer-Verlag, 2008, pp. 200–225.

[34] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier
et al., “Contracts for System Design,” INRIA, Rapport de recherche RR-8147, Nov.
2012.

http://dx.doi.org/10.1002/spe.1006
http://dx.doi.org/10.1016/j.tcs.2012.10.042

BIBLIOGRAPHY 214

[35] A. Benveniste, B. Caillaud, and R. Passerone, “Multi-Viewpoint State Machines for
Rich Component Models,” in Model-Based Design of Heterogeneous Embedded Systems.
CRC Press, 2009.

[36] L. Benvenuti, A. Ferrari, E. Mazzi, and A. Sangiovanni-Vincentelli, “Contract-based
design for computation and verification of a closed-loop hybrid system,” in Proc. Hybrid
Systems: Computation and Control, 2008, pp. 58–71.

[37] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti, and T. Villa, “Ariadne:
Dominance checking of nonlinear hybrid automata using reachability analysis,” in
Reachability Problems, ser. Lecture Notes in Computer Science, A. Finkel, J. Leroux,
and I. Potapov, Eds. Springer Berlin Heidelberg, 2012, vol. 7550, pp. 79–91. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33512-9 8

[38] ——, “Assume-guarantee verification of nonlinear hybrid systems with ARIADNE,”
Int. J. Robust Nonlinear Control, vol. 24, no. 4, pp. 699–724, 2014.

[39] B. Bérard and L. Sierra, “Comparing verification with HyTech, KRONOS and Uppaal
on the railroad crossing example,” CNRS & ENS de Chachan, France, Tech. Rep.
LSV-00-2, 2000.

[40] T. Bienmüller, W. Damm, and H. Wittke, “The Statemate verification environment,”
in Proc. Int. Conf. Comput.-Aided Verification, ser. Lecture Notes in Computer
Science, E. A. Emerson and A. P. Sistla, Eds. Springer Berlin Heidelberg, 2000, vol.
1855, pp. 561–567. [Online]. Available: http://dx.doi.org/10.1007/10722167 45

[41] T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist, M. Friedrich,
A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and A. Viel, “Functional mockup
interface 2.0: The standard for tool independent exchange of simulation models,” 2012.

[42] R. Bloem, K. Chatterjee, K. Greimel, T. Henzinger, G. Hofferek, B. Jobstmann,
B. Knighofer, and R. Knighofer, “Synthesizing robust systems,” Acta Informatica,
vol. 51, no. 3-4, pp. 193–220, 2014. [Online]. Available: http://dx.doi.org/10.1007/
s00236-013-0191-5

[43] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Knighofer, M. Roveri, V. Schuppan,
and R. Seeber, “RATSY – a new requirements analysis tool with synthesis,” in
Proc. Int. Conf. Comput.-Aided Verification, ser. Lecture Notes in Computer Science,
T. Touili, B. Cook, and P. Jackson, Eds. Springer Berlin Heidelberg, 2010, vol. 6174,
pp. 425–429. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-14295-6 37

[44] A. Bohy, V. Bruyére, E. Filiot, N. Jin, and J.-F. Raskin, “Acacia+: a
tool for LTL synthesis,” in Proc. Int. Conf. Comput.-Aided Verification, ser.
CAV’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 652–657. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-31424-7 45

http://dx.doi.org/10.1007/978-3-642-33512-9_8
http://dx.doi.org/10.1007/10722167_45
http://dx.doi.org/10.1007/s00236-013-0191-5
http://dx.doi.org/10.1007/s00236-013-0191-5
http://dx.doi.org/10.1007/978-3-642-14295-6_37
http://dx.doi.org/10.1007/978-3-642-31424-7_45

BIBLIOGRAPHY 215

[45] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide
(Addison-Wesley Object Technology Series), 2nd ed., Addison-Wesley Professional, San
Jose, USA, 2005.

[46] D. Bresolin, L. Di Guglielmo, L. Geretti, R. Muradore, P. Fiorini, and T. Villa, “Open
problems in verification and refinement of autonomous robotic systems,” in Euromicro
Conference on Digital System Design, Sept 2012, pp. 469–476.

[47] D. Bresolin, L. Di Guglielmo, L. Geretti, and T. Villa, “Correct-by-construction code
generation from hybrid automata specification,” in International Wireless Communi-
cations and Mobile Computing Conference, July 2011, pp. 1660–1665.

[48] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis, and
M. Wetter, “Determinate composition of FMUs for co-simulation,” in Proc. ACM
IEEE Int. Conf. Embedded Software. Piscataway, NJ, USA: IEEE Press, 2013, pp.
2:1–2:12. [Online]. Available: http://dl.acm.org/citation.cfm?id=2555754.2555756

[49] B. Caillaud, B. Delahaye, K. Larsen, A. Legay, M. Pedersen, and A. Wasowski, “Com-
positional design methodology with Constraint Markov Chains,” in International Con-
ference on the Quantitative Evaluation of Systems, Sept 2010, pp. 123–132.

[50] B. Caillaud, “Mica: A modal interface compositional analysis library,” http://www.
irisa.fr/s4/tools/mica, Oct. 2011.

[51] A. Casagrande and T. Dreossi, “pyHybrid analysis: A package for semantics analysis
of hybrid systems,” in Euromicro Conf. Digital System Design, Sep. 2013, pp. 815–818.

[52] A. Casagrande, C. Piazza, and A. Policriti, “Discrete semantics for hybrid automata,”
Discrete Event Dynamic Systems, vol. 19, no. 4, pp. 471–493, Dec. 2009. [Online].
Available: http://dx.doi.org/10.1007/s10626-009-0082-7

[53] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, ser. Springer-
Link Engineering. Springer, 2008.

[54] S. Chandrasekaran, S. Ragon, D. Lindner, Z. Gurdal, and D. Boroyevich, “Optimiza-
tion of an aircraft power distribution subsystem,” Journal of aircraft, vol. 40, no. 1,
pp. 16–26, 2003.

[55] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “The TLA+ proof system:
Building a heterogeneous verification platform,” in Proc. Int. Colloquium Conf.
Theoretical Aspects of Computing, ser. ICTAC’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 44–44. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1881833.1881837

http://dl.acm.org/citation.cfm?id=2555754.2555756
http://www.irisa.fr/s4/tools/mica
http://www.irisa.fr/s4/tools/mica
http://dx.doi.org/10.1007/s10626-009-0082-7
http://dl.acm.org/citation.cfm?id=1881833.1881837
http://dl.acm.org/citation.cfm?id=1881833.1881837

BIBLIOGRAPHY 216

[56] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer for non-linear
hybrid systems,” in Proc. Int. Conf. Comput.-Aided Verification, ser. Lecture Notes in
Computer Science, vol. 8044. Springer Berlin Heidelberg, 2013, pp. 258–263.

[57] A. Chutinan and B. Krogh, “Verification of infinite-state dynamic systems using ap-
proximate quotient transition systems,” IEEE Trans. Automatic Control, vol. 46, no. 9,
pp. 1401–1410, Sep 2001.

[58] A. Cimatti and S. Tonetta, “A property-based proof system for contract-based de-
sign,” in EUROMICRO Conference on Software Engineering and Advanced Applica-
tions, 2012, pp. 21–28.

[59] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella, “NuSMV 2: An open source tool for symbolic model check-
ing,” in Proc. Int. Conf. Comput.-Aided Verification, 2002.

[60] A. Cimatti, S. Mover, and S. Tonetta, “SMT-based scenario verification for hybrid
systems,” Formal Methods in System Design, vol. 42, no. 1, pp. 46–66, 2013. [Online].
Available: http://dx.doi.org/10.1007/s10703-012-0158-0

[61] A. Cimatti, M. Roveri, and S. Tonetta, “Requirements validation for hybrid systems,”
in Computer Aided Verification, ser. Lecture Notes in Computer Science, A. Bouajjani
and O. Maler, Eds. Springer Berlin Heidelberg, 2009, vol. 5643, pp. 188–203.

[62] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cambridge, MA: The
MIT Press, 2008.

[63] E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, J. Ouaknine, O. Stursberg, and
M. Theobald, “Abstraction and counterexample-guided refinement in model checking
of hybrid systems,” Int. J. Found. Comput. Sci., vol. 14, no. 4, pp. 583–604, 2003.
[Online]. Available: http://dx.doi.org/10.1142/S012905410300190X

[64] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu, “Learning assumptions for com-
positional verification,” in Tools and Algorithms for the Construction and Analysis of
Systems, 2003, pp. 331–346.

[65] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand, “Using contract-
based component specifications for virtual integration testing and architecture design,”
in Proc. Design, Automation and Test in Europe, Mar. 2011, pp. 1–6.

[66] W. Damm, G. Pinto, and S. Ratschan, “Guaranteed termination in the verification
of LTL properties of non-linear robust discrete time hybrid systems,” Int. J.
Foundations of Computer Science, vol. 18, no. 01, pp. 63–86, 2007. [Online]. Available:
http://www.worldscientific.com/doi/abs/10.1142/S0129054107004577

http://dx.doi.org/10.1007/s10703-012-0158-0
http://dx.doi.org/10.1142/S012905410300190X
http://www.worldscientific.com/doi/abs/10.1142/S0129054107004577

BIBLIOGRAPHY 217

[67] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and E. Böde, “Boost-
ing re-use of embedded automotive applications through rich components,” Proc. Foun-
dations of Interface Technologies, 2005.

[68] T. Dang, O. Maler, and R. Testylier, “Accurate hybridization of nonlinear
systems,” in Proc. Hybrid Systems: Computation and Control, ser. HSCC
’10. New York, NY, USA: ACM, 2010, pp. 11–20. [Online]. Available:
http://doi.acm.org/10.1145/1755952.1755956

[69] L. de Alfaro and T. Henzinger, “Interface theories for component-based design,” in
Proc. Int. Conf. Embedded Software. Springer, LNCS 2211, 2001.

[70] L. de Alfaro and T. A. Henzinger, “Interface automata,” in Proc. Symp. Foundations
of Software Engineering. ACM Press, 2001, pp. 109–120.

[71] M. De Wulf, L. Doyen, and J.-F. Raskin, “Almost ASAP semantics: From
timed models to timed implementations,” in Hybrid Systems: Computation and
Control, ser. Lecture Notes in Computer Science, R. Alur and G. Pappas, Eds.
Springer Berlin Heidelberg, 2004, vol. 2993, pp. 296–310. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24743-2 20

[72] P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling cyber-physical sys-
tems,” Proc. IEEE, vol. 100, no. 1, pp. 13–28, January 2012.

[73] P. Derler, E. A. Lee, S. Tripakis, and M. Törngren, “Cyber-physical system design
contracts,” in Proc. Int. Conf. Cyber-Physical Systems, 2013, pp. 109–118. [Online].
Available: http://doi.acm.org/10.1145/2502524.2502540

[74] S. Di Cairano, A. Bemporad, M. Kvasnica, and M. Morari, “An architecture for data
interchange of switched linear systems,” HYCON Network of Excellence, Deliverable
workpackage 3.D, 2006.

[75] L. Di Guglielmo, S. A. Seshia, and T. Villa, “Synthesis of implementable control strate-
gies for lazy linear hybrid automata,” in Federated Conference on Computer Science
and Information Systems, Sept 2013, pp. 1381–1388.

[76] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-valued signals,”
in Formal Modeling and Analysis of Timed Systems, 2010, pp. 92–106.

[77] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of hybrid sys-
tems,” in Proc. Int. Conf. Comput.-Aided Verification. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 167–170.

[78] L. Doyen, T. A. Henzinger, B. Jobstmann, and T. Petrov, “Interface theories with
component reuse,” in Proc. ACM IEEE Int. Conf. Embedded Software, 2008, pp. 79–
88.

http://doi.acm.org/10.1145/1755952.1755956
http://dx.doi.org/10.1007/978-3-540-24743-2_20
http://doi.acm.org/10.1145/2502524.2502540

BIBLIOGRAPHY 218

[79] E. A. Emerson, “Temporal and modal logic,” Handbook of theoretical computer science,
vol. 2, pp. 995–1072, 1990.

[80] J. Finn, P. Nuzzo, and A. Sangiovanni-Vincentelli, “A mixed discrete-continuous
optimization scheme for cyber-physical system architecture exploration,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design, Nov. 2015, to appear.

[81] G. Frehse, “PHAVer: algorithmic verification of hybrid systems past HyTech,” Int. J.
Software Tools for Technology Transfer, vol. 10, pp. 263–279, 2008.

[82] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-
rard, T. Dang, and O. Maler, “SpaceEx: Scalable verification of hybrid systems,” in
Proc. Int. Conf. Comput.-Aided Verification, ser. LNCS. Springer Berlin / Heidelberg,
2011, vol. 6806, pp. 379–395.

[83] T. French and M. Reynolds, “A sound and complete proof system for QPTL,” in
Advances in Modal Logic. King’s College Publications, 2003, vol. 4, pp. 127–148.

[84] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: Theory
and practice – A survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0005109889900022

[85] A. Ghosal, A. Sangiovanni-Vincentelli, C. M. Kirsch, T. A. Henzinger, and D. Iercan,
“A hierarchical coordination language for interacting real-time tasks,” in Proc. ACM
IEEE Int. Conf. Embedded Software. New York, NY, USA: ACM, 2006, pp. 132–141.
[Online]. Available: http://doi.acm.org/10.1145/1176887.1176907

[86] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic models for
incrementally stable switched systems,” IEEE Transactions on Automatic Control,
vol. 55, no. 1, pp. 116–126, Jan 2010.

[87] G. Gössler, D. N. Xu, and A. Girault, “Probabilistic contracts for component-based
design,” Formal Methods in System Design, vol. 41, no. 2, pp. 211–231, 2012. [Online].
Available: http://dx.doi.org/10.1007/s10703-012-0162-4

[88] S. Graf, R. Passerone, and S. Quinton, “Contract-based reasoning for component
systems with rich interactions,” in Embedded Systems Development, ser. Embedded
Systems, A. Sangiovanni-Vincentelli, H. Zeng, M. Di Natale, and P. Marwedel,
Eds. Springer New York, 2014, vol. 20, pp. 139–154. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4614-3879-3 8

[89] O. Grumberg and D. E. Long, “Model checking and modular verification,” ACM Trans-
actions on Programming Languages and Systems, vol. 16, 1991.

http://www.sciencedirect.com/science/article/pii/0005109889900022
http://doi.acm.org/10.1145/1176887.1176907
http://dx.doi.org/10.1007/s10703-012-0162-4
http://dx.doi.org/10.1007/978-1-4614-3879-3_8

BIBLIOGRAPHY 219

[90] L. Guo, Z. Qi, P. Nuzzo, R. Passerone, A. Sangiovanni-Vincentelli, and E. A. Lee,
“Metronomy: A function-architecture co-simulation framework for timing verification
of cyber-physical systems,” in Proc. Int. Conf. Hardware-Software Codesign and Sys-
tem Synthesis, Oct. 2014.

[91] A. Gupta, K. McMillan, and Z. Fu, “Automated assumption generation for composi-
tional verification,” Formal Methods in System Design, pp. 285–301, 2008.

[92] C. Hang, P. Manolios, and V. Papavasileiou, “Synthesizing cyber-physical architectural
models with real-time constraints,” in Proc. Int. Conf. Comput.-Aided Verification,
Dec. 2011.

[93] P. Helle, M. Masin, and L. Greenberg, “Approximate reliability algebra for architecture
optimization,” in Proc. Int. Conf. on Computer Safety, Reliability, and Security, 2012,
pp. 279–290.

[94] T. A. Henzinger, “The theory of hybrid automata,” in Proc. IEEE Symp. Logic in
Computer Science, Jul. 1996, pp. 278–292.

[95] T. A. Henzinger and D. Nickovic, “Independent implementability of viewpoints,” in
Monterey Workshop. Springer, 2012, pp. 380–395.

[96] T. Henzinger, P.-H. Ho, and H. Wong-Toi, “Algorithmic analysis of nonlinear hybrid
systems,” IEEE Trans. Automatic Control, vol. 43, no. 4, pp. 540–554, Apr. 1998.

[97] T. Henzinger, B. Horowitz, and C. Kirsch, “Giotto: a time-triggered language for
embedded programming,” Proc. IEEE, vol. 91, no. 1, pp. 84–99, Jan 2003.

[98] T. A. Henzinger, P. Ho, and H. Wong-Toi, “HYTECH: A model checker for hybrid
systems,” Int. J. Software Tools for Technology Transfer, vol. 1, no. 1-2, pp. 110–122,
1997.

[99] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable about
hybrid automata?” J. Comput. Syst. Sci., vol. 57, no. 1, pp. 94–124, 1998. [Online].
Available: http://dx.doi.org/10.1006/jcss.1998.1581

[100] A. Iannopollo, P. Nuzzo, S. Tripakis, and A. L. Sangiovanni-Vincentelli, “Library-based
scalable refinement checking for contract-based design,” in Proc. Design, Automation
and Test in Europe, Mar. 2014.

[101] S. Jha, B. A. Brady, and S. A. Seshia, “Symbolic reachability analysis of lazy linear
hybrid automata,” in Proc. 5th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS), ser. Lecture Notes in Computer Science,
vol. 4763, October 2007, pp. 241–256.

http://dx.doi.org/10.1006/jcss.1998.1581

BIBLIOGRAPHY 220

[102] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Synthesizing switching logic for
safety and dwell-time requirements,” in Proceedings of the International Conference
on Cyber-Physical Systems (ICCPS), April 2010, pp. 22–31.

[103] S. Jha, S. A. Seshia, and A. Tiwari, “Synthesis of optimal switching logic for hy-
brid systems,” in Proceedings of the International Conference on Embedded Software
(EMSOFT), October 2011, pp. 107–116.

[104] S. K. Jha, “Towards automated system synthesis using SCIDUCTION,” Ph.D.
dissertation, EECS Department, University of California, Berkeley, Nov 2011. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-118.html

[105] X. Jin, A. Donzé, J. Deshmukh, and S. A. Seshia, “Mining requirements from closed-
loop control models,” in Proceedings of the International Conference on Hybrid Sys-
tems: Computation and Control (HSCC), April 2013.

[106] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem, “Anzu: A tool
for property synthesis,” in Proc. Int. Conf. Comput.-Aided Verification, ser.
Lecture Notes in Computer Science, W. Damm and H. Hermanns, Eds.
Springer Berlin Heidelberg, 2007, vol. 4590, pp. 258–262. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-73368-3 29

[107] T. Jomier et al., “Final MOET technical report,” Tech. Rep., Dec. 2009. [Online].
Available: http://www.eurtd.com/moet/

[108] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A new component concept for fault trees,”
in Proc. Australian Workshop on Safety Critical Systems and Software, 2003.

[109] Y. Kesten and A. Pnueli, “A complete proof systems for QPTL,” in Proc. IEEE Symp.
on Logic in Computer Science, Jun 1995, pp. 2–12.

[110] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni Vincentelli, “Sys-
tem Level Design: Orthogonalization of Concerns and Platform-Based Design,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 12, pp. 1523–1543,
2000.

[111] M. Kloetzer and C. Belta, “A fully automated framework for control of linear systems
from temporal logic specifications,” IEEE Trans. Autom. Control, vol. 53, no. 1, pp.
287–297, Feb. 2008.

[112] R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-Time
Syst., vol. 2, no. 4, pp. 255–299, 1990.

[113] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-logic-based reactive mission
and motion planning,” IEEE Trans. Robot., vol. 25, no. 6, pp. 1370–1381, Dec 2009.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-118.html
http://dx.doi.org/10.1007/978-3-540-73368-3_29
http://www.eurtd.com/moet/

BIBLIOGRAPHY 221

[114] P. Krus and J. Nyman, “Complete aircraft system simulation for aircraft design –
Paradigms for modelling of complex systems,” in Int. Congress of Aeronautical Sci-
ences, 2000.

[115] O. Kupferman and M. Y. Vardi, “Vacuity detection in temporal model checking,” Int.
J. Software Tools for Technology Transfer, vol. 4, no. 2, pp. 224–233, 2003.

[116] T. Kurtoglu, P. Bunus, and J. de Kleer, “Simulation-based design of aircraft electrical
power systems,” in Int. Modelica Conf., Mar. 2011, pp. 92–106.

[117] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model checking,” in Formal
Methods for the Design of Computer, Communication and Software Systems: Perfor-
mance Evaluation (SFM’07), ser. LNCS (Tutorial Volume), M. Bernardo and J. Hill-
ston, Eds., vol. 4486. Springer, 2007, pp. 220–270.

[118] ——, “PRISM 4.0: Verification of probabilistic real-time systems,” in Proc. Int. Conf.
Comput.-Aided Verification, ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol.
6806. Springer, 2011, pp. 585–591.

[119] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu, “Assume-guarantee verification
for probabilistic systems,” in Proc. Int. Conf. Tools and Algorithms for the
Construction and Analysis of Systems, ser. Lecture Notes in Computer Science,
J. Esparza and R. Majumdar, Eds. Springer Berlin Heidelberg, 2010, vol. 6015, pp.
23–37. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-12002-2 3

[120] E. A. Lee, “Cyber physical systems: Design challenges,” in Proc. IEEE Int. Symposium
on Object Oriented Real-Time Distributed Computing, May 2008, pp. 363–369.

[121] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing models of com-
putation,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 17, no. 12,
pp. 1217–1229, Dec. 1998.

[122] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp. 33–42, May
2006. [Online]. Available: http://dx.doi.org/10.1109/MC.2006.180

[123] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems, A Cyber-Physical
Systems Approach. http://LeeSeshia.org, 2014, Edition 1.5.

[124] ——, Introduction to Embedded Systems, A Cyber-Physical Systems Approach, Sec-
ond ed. http://LeeSeshia.org, 2015.

[125] M.-K. Leung, T. Mandl, E. Lee, E. Latronico, C. Shelton, S. Tripakis, and
B. Lickly, “Scalable semantic annotation using lattice-based ontologies,” in Model
Driven Engineering Languages and Systems, ser. Lecture Notes in Computer Science,
A. Schürr and B. Selic, Eds. Springer Berlin Heidelberg, 2009, vol. 5795, pp.
393–407. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-04425-0 31

http://dx.doi.org/10.1007/978-3-642-12002-2_3
http://dx.doi.org/10.1109/MC.2006.180
http://LeeSeshia.org
http://LeeSeshia.org
http://dx.doi.org/10.1007/978-3-642-04425-0_31

BIBLIOGRAPHY 222

[126] W. Li, L. Dworkin, and S. A. Seshia, “Mining assumptions for synthesis,” in Int. Conf.
Formal Methods and Models for Co-Design, July 2011, pp. 43–50.

[127] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for verification and
diagnosis,” in Proc. IEEE/ACM Design Automation Conf. New York, NY, USA:
ACM, 2010, pp. 755–760.

[128] W. Li, D. Sadigh, S. S. Sastry, and S. A. Seshia, “Synthesis for human-in-the-loop
control systems,” in Proceedings of the 20th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), April 2014, pp.
470–484.

[129] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in Int.
Symp. Computer Aided Control Systems Design, 2004, pp. 284–289.

[130] C. Lucet and J.-F. Manouvrier, “Exact methods to compute network reliability,” in
Proc. Int. Conf. on Mathematical Methods in Reliability, 1997.

[131] Y. Lustig and M. Vardi, “Synthesis from component libraries,” in Foundations of
Software Science and Computational Structures, ser. Lecture Notes in Computer
Science, L. de Alfaro, Ed. Springer Berlin Heidelberg, 2009, vol. 5504, pp. 395–409.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-00596-1 28

[132] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O automata,” Information and
Computation, vol. 185, no. 1, pp. 105 – 157, 2003.

[133] M. R. Lyu et al., Handbook of software reliability engineering. IEEE Computer Society
Press CA, 1996, vol. 3.

[134] M. Maasoumy, P. Nuzzo, F. Iandola, M. Kamgarpour, A. Sangiovanni-Vincentelli, and
C. Tomlin, “Optimal load management system for aircraft electric power distribution,”
in Int. Conf. Decision and Control, Dec 2013, pp. 2939–2945.

[135] M. Maasoumy, P. Nuzzo, and A. Sangiovanni-Vincentelli, “Smart buildings in the
smart grid: Contract-based design of an integrated energy management system,” in
Cyber Physical Systems Approach to Smart Electric Power Grid, ser. Power Systems,
S. K. Khaitan, J. D. McCalley, and C. C. Liu, Eds. Springer Berlin Heidelberg, 2015,
pp. 103–132. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-45928-7 5

[136] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in
Formal Modeling and Analysis of Timed Systems, 2004, pp. 152–166.

[137] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete controllers for timed
systems (an extended abstract),” in STACS, 1995, pp. 229–242. [Online]. Available:
http://dx.doi.org/10.1007/3-540-59042-0 76

http://dx.doi.org/10.1007/978-3-642-00596-1_28
http://dx.doi.org/10.1007/978-3-662-45928-7_5
http://dx.doi.org/10.1007/3-540-59042-0_76

BIBLIOGRAPHY 223

[138] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci, “System level
formal verification via model checking driven simulation,” in Proc. Int. Conf. Comput.-
Aided Verification, ser. Lecture Notes in Computer Science, vol. 8044. Springer -
Verlag, 2013, pp. 296–312.

[139] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent systems: Spec-
ification. Springer, 1992, vol. 1.

[140] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Model based synthesis of control software
from system level formal specifications,” ACM Transactions on Software Engineering
and Methodology, vol. 23, no. 1, 2014, Article 6.

[141] M. Masin, A. Sangiovanni-Vincentelli, A. Ferrari, L. Mangeruca, H. Broodney,
L. Greenberg, M. Sambur, D. Dotan, S. Zolotnizky, and S. Zadorozhniy, “META
II: Lingua franca design and integration language,” Tech. Rep., Aug. 2011.
[Online]. Available: http://www.darpa.mil/uploadedFiles/Content/Our Work/TTO/
Programs/AVM/IBM META Final Report.pdf

[142] M. Mazo Jr., A. Davitian, and P. Tabuada, “PESSOA: A tool for embedded controller
synthesis,” in Computer Aided Verification, ser. LNCS, vol. 6174, 2010, pp. 566–569.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-14295-6 49

[143] B. Meyer, “Applying “design by contract”,” Computer, vol. 25, no. 10, pp. 40–51, Oct.
1992.

[144] R. G. Michalko, “Electrical starting, generation, conversion and distribution system
architecture for a more electric vehicle,” US Patent 7,439,634 B2, Oct. 2008.

[145] MoBIES team, “HSIF semantics,” University of Pennsylvania, Tech. Rep., 2002.

[146] MODELISAR Consortium and Modelica Association, Functional Mock-up Interface
for Co-Simulation. Version 1.0. Retrieved from https://www.fmi- standard.org, Oct.
2010.

[147] I. Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical and Avionics Sub-
systems Integration. Third Edition. Chichester, England: John Wiley and Sons, Ltd,
2008.

[148] P. Nuzzo, J. Finn, A. Iannopollo, and A. L. Sangiovanni-Vincentelli, “Contract-based
design of control protocols for safety-critical cyber-physical systems,” in Proc. Design,
Automation and Test in Europe, Mar. 2014, pp. 1–4.

[149] P. Nuzzo, A. Iannopollo, S. Tripakis, and A. L. Sangiovanni-Vincentelli, “Are interface
theories equivalent to contract theories?” in Int. Conf. Formal Methods and Models
for Co-Design, Oct. 2014.

http://www.darpa.mil/uploadedFiles/Content/Our_Work/TTO/Programs/AVM/IBM META Final Report.pdf
http://www.darpa.mil/uploadedFiles/Content/Our_Work/TTO/Programs/AVM/IBM META Final Report.pdf
http://dx.doi.org/10.1007/978-3-642-14295-6_49
https://www.fmi- standard.org

BIBLIOGRAPHY 224

[150] P. Nuzzo, A. Puggelli, S. Seshia, and A. Sangiovanni-Vincentelli, “CalCS: SMT solv-
ing for non-linear convex constraints,” in Proc. Formal Methods in Computer-Aided
Design, Oct. 2010, pp. 71–79.

[151] P. Nuzzo, A. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and T. Villa, “A
platform-based design methodology with contracts and related tools for the design
of cyber-physical systems,” Proc. IEEE, to appear, 2015.

[152] P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, and A. Puggelli, “Methodology for the
design of analog integrated interfaces using contracts,” IEEE Sensors J., vol. 12, no. 12,
pp. 3329–3345, Dec. 2012.

[153] P. Nuzzo, A. L. Sangiovanni-Vincentelli, and R. M. Murray, “Methodology and tools
for next generation cyber-physical systems: The iCyPhy approach,” in Proc. INCOSE
Int. Symp., Jul. 2015.

[154] P. Nuzzo, H. Xu, N. Ozay, J. Finn, A. Sangiovanni-Vincentelli, R. Murray, A. Donzé,
and S. Seshia, “A contract-based methodology for aircraft electric power system de-
sign,” IEEE Access, vol. 2, pp. 1–25, 2014.

[155] P. Nuzzo and A. Sangiovanni-Vincentelli, “Robustness in analog systems: Design tech-
niques, methodologies and tools,” in Proc. IEEE Symp. Industrial Embedded Systems,
Jun. 2011.

[156] ——, “Let’s get physical: Computer science meets systems,” in From Programs to
Systems. The Systems perspective in Computing, ser. Lecture Notes in Computer
Science, S. Bensalem, Y. Lakhneck, and A. Legay, Eds. Springer Berlin Heidelberg,
2014, vol. 8415, pp. 193–208. [Online]. Available: http://dx.doi.org/10.1007/978-3-
642-54848-2 13

[157] N. Ozay, U. Topcu, and R. M. Murray, “Distributed power allocation for vehicle man-
agement systems,” in Int. Conf. Decision and Control, 2011, pp. 4841–4848.

[158] A. Pinto, S. Becz, and H. M. Reeve, “Correct-by-construction design of aircraft electric
power systems,” in AIAA Aviation Technology, Integration, and Operations Conf.,
2010.

[159] A. Pinto, L. P. Carloni, R. Passerone, and A. L. Sangiovanni-Vincentelli, “Interchange
format for hybrid systems: Abstract semantics,” in International Workshop on Hybrid
Systems: Computation and Control. Springer, 2006, pp. 491–506.

[160] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,” in In Proc.
Verification, Model Checking, and Abstract Interpretation. Springer Berlin Heidelberg,
2006, pp. 364–380.

http://dx.doi.org/10.1007/978-3-642-54848-2_13
http://dx.doi.org/10.1007/978-3-642-54848-2_13

BIBLIOGRAPHY 225

[161] A. Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dy-
namics. Heidelberg: Springer, 2010.

[162] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in Proc. Symp.
Principles of Programming Languages. New York, NY, USA: ACM, 1989, pp. 179–
190.

[163] ——, “Distributed reactive systems are hard to synthesize,” in Proc. Annual Symp.
on Foundations of Computer Science, vol. 2, Oct. 1990, pp. 746–757.

[164] A. Pnueli, “The temporal logic of programs,” in Annual Symp. on Foundations of
Computer Science, Nov. 1977, pp. 46–57.

[165] A. Pnueli, Y. Sa’ar, and L. D. Zuck, “Jtlv: A framework for developing verification
algorithms,” in Computer Aided Verification, ser. Lecture Notes in Computer Science,
T. Touili, B. Cook, and P. Jackson, Eds. Springer Berlin Heidelberg, 2010, vol. 6174,
pp. 171–174.

[166] V. Preoteasa and S. Tripakis, “Refinement Calculus of Reactive Systems,” in Proc.
ACM IEEE Int. Conf. Embedded Software, Oct. 2014.

[167] S. Quinton, S. Graf, and R. Passerone, “Contract-based reasoning for component sys-
tems with complex interactions,” Verimag Research Report, Tech. Rep. TR-2010-12,
2010.

[168] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and R. Passerone,
“Modal interfaces: unifying interface automata and modal specifications,” in Proc.
ACM IEEE Int. Conf. Embedded Software. New York, NY, USA: ACM, 2009, pp.
87–96. [Online]. Available: http://doi.acm.org/10.1145/1629335.1629348

[169] A. Rajhans, A. Bhave, I. Ruchkin, B. H. Krogh, D. Garlan, A. Platzer, and B. Schmerl,
“Supporting heterogeneity in cyber-physical systems architectures,” IEEE Trans. Au-
tomatic Control, vol. 59, no. 12, pp. 3178–3193, Dec 2014.

[170] P. Ramadge and W. Wonham, “The control of discrete event systems,” Proc. IEEE,
vol. 77, no. 1, pp. 81–98, Jan 1989.

[171] V. Raman, A. Donze, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and
S. A. Seshia, “Model predictive control with signal temporal logic specifications,” in
Int. Conf. Decision and Control, Dec 2014.

[172] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reactive synthesis
from signal temporal logic specifications,” in Proc. Hybrid Systems: Computation and
Control, ser. HSCC ’15. New York, NY, USA: ACM, 2015, pp. 239–248. [Online].
Available: http://doi.acm.org/10.1145/2728606.2728628

http://doi.acm.org/10.1145/1629335.1629348
http://doi.acm.org/10.1145/2728606.2728628

BIBLIOGRAPHY 226

[173] S. Ratschan and Z. She, “Safety verification of hybrid systems by constraint prop-
agation based abstraction refinement,” ACM Transactions in Embedded Computing
Systems, vol. 6, no. 1, 2007.

[174] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia, “Automated
composition of motion primitives for multi-robot systems from safe LTL specifications,”
in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), Sep. 2014.

[175] K. Sampigethaya and R. Poovendran, “Aviation cyber-physical systems: Foundations
for future aircraft and air transport,” Proc. IEEE, vol. 101, no. 8, pp. 1834–1855, 2013.

[176] A. Sangiovanni-Vincentelli, “Quo vadis, SLD? Reasoning about the trends and chal-
lenges of system level design,” Proc. IEEE, vol. 95, no. 3, pp. 467–506, Mar. 2007.

[177] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr. Frankenstein:
Contract-Based Design for Cyber-Physical Systems,” European Journal of Control,
vol. 18-3, no. 3, pp. 217–238, 2012.

[178] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,” Computer,
vol. 39, no. 2, pp. 25–31, Feb. 2006.

[179] B. Selic, “The pragmatics of model-driven development,” IEEE Software, vol. 20, no. 5,
pp. 19–25, 2003.

[180] S. A. Seshia, “Adaptive eager boolean encoding for arithmetic reasoning in verifica-
tion,” Ph.D. dissertation, Carnegie Mellon University, May 2005.

[181] ——, “Sciduction: Combining induction, deduction, and structure for verification and
synthesis,” in Proceedings of the Design Automation Conference (DAC), June 2012,
pp. 356–365.

[182] S. A. Seshia and A. Rakhlin, “Game-theoretic timing analysis,” in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE
Press, November 2008, pp. 575–582.

[183] ——, “Quantitative analysis of systems using game-theoretic learning,” ACM Trans-
actions on Embedded Computing Systems (TECS), vol. 11, no. S2, pp. 55:1–55:27,
2012.

[184] A. A. Shah, D. Schaefer, and C. J. J. Paredis, “Enabling multi-view modeling with
SysML profiles and model transformations,” in Proc. Int. Conf. Product Lifecycle Man-
agement, 2009.

[185] Y. Shoukry, P. Nuzzo, A. Puggelli, A. L. Sangiovanni-Vincentelli, S. A. Seshia, M. Sri-
vastava, and P. Tabuada, “IMHOTEP-SMT: a Satisfiability Modulo Theory solver
for secure state estimation,” in Proc. Int. Workshop on Satisfiability Modulo Theories,
2015.

BIBLIOGRAPHY 227

[186] Y. Shoukry, P. Nuzzo, A. Puggelli, A. L. Sangiovanni-Vincentelli, S. A. Seshia, and
P. Tabuada, “Secure State Estimation Under Sensor Attacks: A Satisfiability Modulo
Theory Approach,” ArXiv e-prints, Dec. 2014, [online] http://adsabs.harvard.edu/abs/
2014arXiv1412.4324S.

[187] Y. Shoukry, A. Puggelli, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia, and
P. Tabuada, “Sound and complete state estimation for linear dynamical systems under
sensor attack using satisfiability modulo theory solving,” in Proc. IEEE American
Control Conference, 2015.

[188] B. I. Silva, K. Richeson, B. H. Krogh, and A. Chutinan, “Modeling and verification of
hybrid dynamical system using CheckMate,” in ADPM, 2000.

[189] A. P. Sistla and E. M. Clarke, “The complexity of propositional linear temporal logics,”
J. ACM, vol. 32, no. 3, pp. 733–749, 1985.

[190] A. P. Sistla, M. Y. Vardi, and P. Wolper, “The complementation problem for Büchi
automata with applications to temporal logic,” in Automata, Languages and Program-
ming, ser. Lecture Notes in Computer Science, W. Brauer, Ed. Springer Berlin Hei-
delberg, 1985, vol. 194, pp. 465–474.

[191] C. R. Spitzer, The avionics handbook. CRC Press LLC, 2001.

[192] J. Sztipanovits, “Composition of cyber-physical systems,” in Proc. IEEE Int. Conf.
and Workshops on Engineering of Computer-Based Systems, March 2007, pp. 3–6.

[193] J. Sztipanovits and G. Karsai, “Model-integrated computing,” IEEE Computer, pp.
110–112, 1997.

[194] A. Tiwari, “Abstractions for hybrid systems,” Formal Methods in System Design,
vol. 32, no. 1, pp. 57–83, 2008. [Online]. Available: http://dx.doi.org/10.1007/s10703-
007-0044-3

[195] C. Tomlin, J. Lygeros, and S. Sastry, “A game theoretic approach to controller design
for hybrid systems,” Proc. IEEE, vol. 88, no. 7, pp. 949–970, July 2000.

[196] J. Torn, “On the hardness of graph isomorphism,” SIAM Journal on Computing,
vol. 33, no. 5, pp. 1093–1108, 2004.

[197] S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee, “A theory of synchronous
relational interfaces,” Trans. on Programming Languages and Systems, vol. 33, no. 4,
2011.

[198] S. Uckun, “META II: Formal co-verification of correctness of large-
scale cyber-physical systems during design,” Tech. Rep., Sep. 2011. [On-
line]. Available: http://www.darpa.mil/uploadedFiles/Content/Our Work/TTO/
Programs/AVM/PARC META Final Report.pdf

http://adsabs.harvard.edu/abs/2014arXiv1412.4324S
http://adsabs.harvard.edu/abs/2014arXiv1412.4324S
http://dx.doi.org/10.1007/s10703-007-0044-3
http://dx.doi.org/10.1007/s10703-007-0044-3
http://www.darpa.mil/uploadedFiles/Content/Our_Work/TTO/Programs/AVM/PARC META Final Report.pdf
http://www.darpa.mil/uploadedFiles/Content/Our_Work/TTO/Programs/AVM/PARC META Final Report.pdf

BIBLIOGRAPHY 228

[199] D. A. van Beek, W. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski, J. M.
van de Mortel-Fronczak, and M. A. Reniers, “CIF 3: Model-based engineering of
supervisory controllers,” in Proc. Int. Conf. Tools and Algorithms for the Construction
and Analysis of Systems, E. Ábrahám and K. Havelund, Eds. Springer, 2014, pp.
575–580. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-54862-8 48

[200] F. Wang, “RED: Model-checker for timed automata with clock-restriction diagram,”
in Workshop on Real-Time Tools, Aug, 2001, pp. 2001–014.

[201] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra et al., “The worst-case execution-time proble-
moverview of methods and survey of tools,” ACM Transactions on Embedded Com-
puting Systems (TECS), vol. 7, no. 3, p. 36, 2008.

[202] J. C. Willems, “The behavioral approach to open and interconnected systems,” Control
Systems Magazine, pp. 46–99, 2007.

[203] W. L. Winston, Operations Research: Applications and Algorithms, 4th Edition. In-
dependence, KY: Cengage Learning, 2004.

[204] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based trajectory genera-
tion with linear temporal logic specifications,” in IEEE International Conference on
Robotics and Automation (ICRA), May 2014, pp. 5319–5325.

[205] P. Wolper, “Temporal logic can be more expressive,” in Foundations of Computer
Science, 1981, pp. 340–348.

[206] H. Wong-Toi, “The synthesis of controllers for linear hybrid automata,” in Int. Conf.
Decision and Control, vol. 5, Dec. 1997, pp. 4607–4612.

[207] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Formal synthesis of embedded
control software for vehicle management systems,” in AIAA Infotech@Aerospace, 2011.

[208] T. Wongpiromsarn, U. Topcu, and R. Murray, “Automatic synthesis of robust embed-
ded control software,” AAAI Spring Symposium on Embedded Reasoning: Intelligence
in Embedded Systems, 2010.

[209] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “TuLiP: a soft-
ware toolbox for receding horizon temporal logic planning,” in Proc. Int. Conf. Hybrid
Systems: Computation and Control. New York, NY, USA: ACM, 2011, pp. 313–314.

[210] M. D. Wulf, “From timed models to timed implementations,” Ph.D. dissertation, Uni-
versite Libre de Bruxelles, 2006-7.

[211] H. Xu, U. Topcu, and R. M. Murray, “A case study on reactive protocols for aircraft
electric power distribution,” in Int. Conf. Decision and Control, 2012.

http://dx.doi.org/10.1007/978-3-642-54862-8_48

BIBLIOGRAPHY 229

[212] S. Yovine, “KRONOS: a verification tool for real-time systems,” Int. J. Software
Tools for Technology Transfer, vol. 1, no. 1-2, pp. 123–133, 1997. [Online]. Available:
http://dx.doi.org/10.1007/s100090050009

http://dx.doi.org/10.1007/s100090050009

	Contents
	List of Figures
	List of Tables
	Introduction
	Cyber-Physical System Design Challenges
	Modeling Challenges
	Specification Challenges
	Integration Challenges

	Running Example: Aircraft Electric Power System Design
	Components
	System Description
	System Requirements

	CPS Design Methodology and Tools: The Challenge of Combining Heterogeneous Worlds
	Dissertation Overview
	Main Contributions
	Theory: Formalisms for Compositional System Design
	Design Methodology
	Algorithms
	Applications

	Organization

	Preliminaries
	Platform-Based Design
	Contracts: An Overview
	Assume-Guarantee Contracts
	Components and Contracts
	Composition
	Compatibility and Consistency
	Refinement and Conjunction
	Summary

	Formalisms for System Specification and Modeling
	Temporal Logic
	Hybrid Automata

	Languages and Tools for System Modeling and Simulation
	System Verification
	Exact Reachability Set Computation
	Reachable Set Approximations
	Discrete Abstractions
	Automated Theorem Proving
	Simulation

	Control Synthesis
	Reactive Synthesis
	Synthesis by Abstraction
	Hybrid Controller Synthesis

	Conclusions

	A/G Contracts for Cyber-Physical System Design
	Introduction
	Contracts and Interfaces for Requirement Engineering
	Contracts for Heterogeneous Refinement and Mapping
	Chapter Organization

	Mapping Relational Interfaces into A/G Contracts
	Background on Synchronous Relational Interfaces
	Contract Associated with an Interface
	Serial Composition and Compatibility
	Assumption Projection
	Implementing Assumption Projection in Temporal Logic
	Refinement
	Conjunction

	Compatibility and Consistency in A/G Contracts
	Heterogeneous Refinement and Vertical Contracts
	Heterogeneous Refinement
	Vertical Contracts

	Conclusions

	Platform-Based Methodology With Contracts
	The Structure of the Methodology
	Requirement Formalization and Validation
	Platform Model-Library Development
	Platform Components

	Mapping Specifications to Implementations
	Optimized Mapping and Design Space Exploration
	Architecture Design
	Control Design

	CHASE: An Experimental Platform for Contract-Based Requirement Engineering
	Conclusions

	Optimized Selection of CPS Architectures
	Introduction
	Related Work
	Problem Formulation
	Objective Function
	Interconnection Constraints
	Reliability Constraints

	Approximate Reliability Computation
	Integer Linear Programming With Approximate Reliability
	Integer Linear Programming Modulo Reliability
	Learning Constraints to Improve Reliability

	Aircraft Power System Architecture Design
	Implementation and Application Contracts
	Optimization Results

	Conclusions

	Contract-Based Control Design and Verification
	Reactive Synthesis-Based Optimized Control Mapping (RS-OCM): Overview
	Reactive Synthesis
	Distributed Synthesis
	Optimized Mapping

	Reactive Synthesis-Based Optimized Control Mapping: Power System Design Example
	Synthesis of Reactive Protocols for Electric Power Distribution
	Simulation-Based Design Space Exploration

	Programming-Based Optimized Control Mapping (P-OCM): Overview
	Library-Based Contract Refinement Checking for Efficient Verification and Mapping
	More Background on Contract Refinement Checking
	Problem formulation

	Scalable Contract Refinement Checking Algorithm
	Library Verification
	Refinement Check with Library
	Application Example

	Conclusions

	Application to Aircraft System Design Examples
	Aircraft Electric Power System Design: Primary Distribution
	Related Work
	Top-Level Requirement Formalization

	Co-design of Primary Distribution System Topology and Control
	Independent Refinement of Topology and Control
	Architecture Design
	Control Design

	Aircraft Electric Power System Design: Load Management
	Load Management Requirements
	Optimal Load Management System Architecture

	Optimal Load Management System Design
	Load Modeling and Requirements
	Source Allocation and Switching Policy
	Battery Dynamics and Requirements
	Contactor Wear
	Cost Function
	Putting it All Together
	Experimental Results

	Aircraft Air Management System Design Overview
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work
	Theory
	Algorithms
	Applications

	Bibliography

