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MOD-DR: Microgrid Optimal Dispatch with Demand Response

Ming Jina,b, Wei Fengb, Ping Liub, Chris Marnayb, Costas Spanosa

aElectrical Engineering and Computer Sciences Department, University of California, Berkeley, Berkeley, CA 94720, USA
bEnergy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

Abstract

In the face of unprecedented challenges of upcoming fossil fuel shortage and reliability and security of
the grid, there is an upward tendency to adopt distributed, renewable, energy resources, as in microgrids
(MGs), and engage flexible electric loads in power system operations to potentially drive a paradigm shift
in the energy production and consumption patterns. Prior works on MG dispatch have been leveraging
decentralized technologies like combined heat and power (CHP) and heat pumps to promote efficiency and
economic gains; however, the flexibility of demands has yet to be fully exploited in cooperation with the grid
to offer added benefits and ancillary services. The object of the study is to develop the microgrid optimal
dispatch with demand response (MOD-DR), which fills in the gap by coordinating both the demand and
supply sides in a renewable-penetrated, storage-augmented, DR-enabled MG to achieve economically viable
and system-wide resilient solutions. The key contribution is the formulation of a multi-objective optimization
with prevailing constraints and utility tradeoff based on the model of a large-scale MG with flexible loads,
which leads to the derivation of strategies that incorporate uncertainty in scheduling. Evaluation using real
datasets is conducted to analyze the uncertainty effects and demand response potentials, demonstrating in
a campus prototype a 17.5% of peak load reduction and 8.8% cost savings for MOD-DR compared to the
non-trivial baseline, which is on par with the Oracle with perfect predictions.

Keywords: microgrid dispatch, demand-side management, uncertainty, unit commitment

1. Introduction

The convergence and mutual strengthening of distributed generation (DG) and storage, demand response,
and the massive integration of sensing, communication, and control technology initiates profound changes in
the energy production and consumption patterns, and opens up ample opportunities for addressing the issues
of upcoming fossil fuel shortage, environmental preservation, and grid reliability and security [1, 2, 3, 4].5

The synergistic potential, nevertheless, is yet to be fulfilled by taking up challenges like the utilization of
highly volatile renewables [2], the operation of DG in accompany with storage [5], and the transformation
of domestic customers from static consumers into active participants [6].

The envisioned solutions are multifaceted, but from the practitioners’ point of view, they can be ori-
ented towards the supply or demand sides. The division of the grid into productive sub-systems, so-called10

microgrids (MGs), which integrate DGs and storage for local demand, has been proposed to increase man-
ageability and reduce transportation losses [7, 8, 9]. A MG can be either connected to other MGs and/or the
main grid for energy exchange, or run in island mode as circumstances or economics dictate [3, 9, 10, 11, 8].
The efficiency and environmental benefits also arise from the adoption of combined heat and power (CHP)
by reusing the generator’s waste heat to simultaneously provide electrical and thermal energy [9, 12, 13]. On15

the other hand, active demand response (DR), defined as “changes in electric usage implemented directly
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or indirectly by end-use customers / prosumers from their current consumption / injection patterns in re-
sponse to certain signals” [6], has been put forward and implemented to lower peak energy usage and utility
bills, and, at the same time, bring higher capacity factor and security of distribution grids [14, 15]. The
paradigm shift can be further driven by the offer of incentive-based DR contracts [6, 16], and the institution20

of time-differentiated pricing, e.g., time-of-use (TOU) and real-time pricing (RTP), which reflect fluctuating
wholesale prices to the end users and encourage responsive load shifting and curtailment [3].

While the flexibility and value brought by DR to energy systems have been widely recognized, they have
not been fully captured in the operation of MG. Despite the challenges of a comprehensive treatment of DR
together with the uncertainty inherent in renewables and wholesale market prices, the potential social and25

economic impacts are substantial and worthwhile [6, 2, 1].
It is, therefore, the object of the study to develop microgrid optimal dispatch with demand response

(MOD-DR), which fills in the gap by simultaneously exploiting both the demand and supply sides in a
renewable-penetrated, storage-augmented, DR-enabled MG to achieve economically viable and system-wide
resilient operational solutions.30

The rest of the paper is organized as follows. Previous works are surveyed in Section 2, with an emphasis
on modeling, and dispatch and DR under uncertainty. Section 3.2 discusses the modeling of MG with
flexible demands, including the problem formulation, the MG coordinator and DR mechanis, typical DG
technologies and load profiles of buildings connected to a pipeline network. Section 4 deals with planning
under uncertainty, which includes the forecasting methodology, and the day-ahead and adaptive dispatch35

strategies. The dataset, technology specifications, and implementation are discussed in Section 5, followed
by cost analysis and a case study for the day-ahead and adaptive strategies in a practical-oriented setting.
Conclusion is drawn in Section 6.

2. Related Work

Previous works have been undertaken on modeling high-level system design for MG to study its profitabil-40

ity and optimal technology selection and sizings [17, 15, 12, 5, 18, 13, 9]. The average long-run operational
and real options valuation have been typically considered in [19, 18, 13] to examine the economy of MG
with a diverse combination of CHP, boilers, chillers, electric battery, thermal storage, solar panels, and wind
turbines. Though these works lent insights into the modeling of MG, the simplicity of the treatment of the
uncertain variables, such as electricity price and renewables, becomes a disadvantage for daily operational45

planning.
The dispatch of MG is, in essence, a unit commitment (UC) problem, which refers to optimizing genera-

tion resources over a short time horizon to satisfy load demand at minimum operational cost while satisfying
prevailing constraints [20, 17]. Diverse approaches have been pursued based on linear programming (LP)
[21], mixed integer linear programming (MILP) [22, 10, 23], dynamic programming [24, 12, 13], simulated50

annealing [3], artificial neural networks [25], particle swarm optimization [18], hybrid methods [26] and evo-
lutionary algorithms [27, 5], as well as game theoretic agent-based formulations [7]. Mohamed and Koivo
[28] presented a generalized multi-objective optimization for maintenance cost and emission reduction of an
MG based on game theory. Chaouachi et al. [21] proposed an MG energy management approach using LP
with predicted renewable energy resources and load demand. Kriett and Salani [23] targeted a residential55

MG with energy storage for operating cost minimization using MILP, which achieved an annual operating
cost saving between 3.1% and 7.6%. Dynamic programming (DP) has been employed by Kitapbayev et al.
[12] and Dı́az and Moreno [13] to explore different modes of operation to maximize the total payoff, yet DP
relies on the discretization of states and is susceptible to computational and memory limitations. Ommen et
al. [29] conducted an empirical comparison of LP, MILP, and non-linear programming (NLP), and concluded60

that MILP is most appropriate from the viewpoint of accuracy and runtime, with the added capability of
dealing with the part-load region as in CHP. In light of their findings, and the growing interests in MILP
driven by the enhancement of the performance of MILP solvers such as CPLEX and Gurobi [30, 20], we
leverage the accuracy and scalability of MILP in our formulation, with the added benefit of enabling the
incorporation of DR that has been missing in previous MG operation studies.65
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Nomenclature

αE,curt
min,b minimum supply electricity for curtailable

load of building b, αE,curt
min,b ∈ [0, 1]

αDR
min minimum load reduction in DR, αDR

min ∈ [0, 1]

xt forecast features at time t

ξt set of uncertain variables at time t

·chg, ·dis charge, discharge

·curt, ·shift curtailable, shiftable loads

·dm, ·sp demand, supply

·b building index b ∈ [1, B]

·k CHP type index k ∈ [1,K]

·t time index t ∈ [0, T ]

ηA energy conversion efficiency of technology A

ηHT
decay heat storage standing decay factor, ηHT

decay ∈
(0, 1]

λutil utility-to-dollar conversion ratio

τHT,chg
min minimum rate of charging for heat storage

θHn ,vHn utility parameters for heating

B number of buildings in the microgrid

DDR
t binary DR state at time t, DDR

t {0, 1}
E electric power / energy

ft(·) forecast function at time t

H heating power / energy

K number of CHP types

Q cooling power / energy

rDR
t fixed DR incentive at time t

T time horizon

Xt binary state variable at time t, Xt ∈ {0, 1}
yt ground truth variable at time t

ANN artificial neural network

CHP combined heat and power

CLS[c] constrained least squares forecast combina-
tion

COP coefficient-of-performance

GP Gaussian process forecaster

HER heat-to-electricity ratio

KNN K-nearest neighbors

MG microgrid

MG-C microgrid coordinator

MILP mixed integer linear programming

MLP multilayer perceptron

NG natural gas

OLS[c] ordinary least squares forecast combination

rat rated capacity / power

RMSE root mean squared error

Robust[c] robust forecast combination

S-ARIMA seasonal autoregressive integrated moving
average forecaster

SOC state of charge

SVR support vector regression
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The uncertainty that arises from penetration of renewables and volatility of pool prices also exerts
an impact on MG dispatch. Also, due to the intermittent renewable generation and the limit of power
transmission and distribution systems, renewables are often curtailed in many places of the world [31]; thus,
it makes DR more useful to help renewables locally consumed. The effects of forecasting errors on the
economic value of dispatch have been analyzed for the prediction of electricity price [22, 32], loads [33, 34],70

and weather [10], and it’s been concurred that the optimality of dispatch and the accuracy of forecasts are
concomitant. Uncertain variables can be systematically considered in dispatch planning through prediction
[1, 35, 36, 37, 33] or stochastic programming (SP) [38, 5, 18]. Park et al. [36] studied a UC algorithm
anticipating a given load-uncertainty. Delarue and D’haeseleer [33] developed an adaptive MILP UC strategy
to determine the value of forecasting. Compared to the present study, they have more simplistic assumptions75

on the load and generators. Baziar and Kavousi [18] employed the 2m point estimate method, which conducts
2m runs of the deterministic framework for each of the m uncertain variables in terms of the first three
moments of the relevant probability density function, and the optimal solutions are aggregated to find the
expected value of the objective function. Morales et al. [38] and Niknan et al. [5] account for stochasticity
by generating a large number of scenarios, i.e., realizations of the random variables throughout the horizon,80

and aggregate the solutions to obtain the dispatch plan. The main concerns about SP include the reliability
of the distribution approximation to the true underlying process, and the scalability and computational
issues that arise from the augmented problems. In terms of methodology, we find similarity with the work
by Molderink et al. [1], who proposed the three-step control methodology of prediction, planning, and real-
time control, though their approach is iterative dynamic programming with agent-based load scheduling,85

and their test case is conducted in a single house as compared to district level planning in the present study.
As for DR that pursues changes in consumption patterns through incentive payments or price of electricity

[39], there are several solution groupings, which focus on direct load control [40, 41, 15], price elasticity
[42, 43], utility maximization [44], and integrated operational models [45]. De Jonghe et al. [42] developed
an elasticity-based operational and investment model to determine the optimal generation mix; however,90

their model is based on LP and has not included technologies like CHP, storages, or renewables. Patteeuw et
al. [45] proposed an integrated modeling of active demand response with electric heating systems coupled to
thermal energy storage systems, where both the demand side and the supply side are represented by physical
models. Kim and Giannakis [44] considered DR problem entailing a set of devices/subscribers, whose
operating conditions are modeled using mixed-integer constraints. MILP is employed to obtain optimized95

device operational periods and power consumption levels in response to dynamic pricing information to
balance user utility and energy cost.

Our key proposal, MOD-DR , in comparison, is aimed at giving guidance on optimal MG dispatch on a
district level with DR-enabled loads. It leverages the versatility and efficiency of distributed generation and
storage, and the flexibility of DR-enabled demand, to provide a cost-effective, satisfaction-maintained, and100

grid-cooperative solution in an uncertain environment.

3. The Model of MG with Flexible Demands

3.1. Problem Formulation

The key problem to tackle is: “How to coordinate load and generation under demand response on a
district energy level to ensure economic viability of the microgrid and system-wide resilience?”, where two105

prominent factors are involved:

• Elasticity of loads for individual buildings under the MG management

• Uncertainty and fluctuation of energy demands, electricity tariffs, and weather conditions

The elasticity aspect, crucial yet underexploited in previous works, can unlock the potential of substantial
peak demand reductions through either load shaving or shifting, which can benefit the MG by lowering the110

energy bill, and the grid in the form of ancillary services. It entails a trade-off among the operation costs,
the utility, i.e., the satisfaction derived from energy consumption for each building, and the DR incentives
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offered by the grid. Section 3.2 introduces the modeling of both the supply and demand sides of the MG as
is shown in Fig. 1. The uncertainty part, inherent for all dispatch planners, is dealt with by the forecasting
module of MG-Coordinator (MG-C); several methods are presented in Section 4.1.115

Figure 1: System overview. The MG owns a generation facility, and can exchange energy with the grid to meet the building
demands. Additionally, the uncertain variables and DR incentives are incorporated during planning.

The basic optimal dispatch problem can be formulated by:

min
{xt}Tt=1

T∑
t=1

fOpe
t (xt,ξt)+fMtn

t (xt,zt,ξt)−RDR
t −λutilut(xt)

s.t. xt ∈ Xt(zt, ξt), zt ∈ Zt(zt−1,xt),∀t = 1, ..., T (P0)

where xt is the dispatch proposal at time t, which includes variables within four categories: generation, e.g.,
power from CHP and PV; storage, e.g., charging/discharging with the cooling storage; grid import/export ;
and supply for buildings. The state variable, zt, captures the state-of-charge (SOC) of storages as governed
by the previous state and action: zt = φ(zt−1,xt). The uncertain quantities, e.g., solar irradiation Irrt and

electricity price cgrid
t , are summarized in ξt.120

Objective function. fOpe
t (xt, ξt) is the expenditure on electricity, heat, and gas to operate the generation

facility, net of any electricity or heat sold back. The maintenance cost fMtn
t (xt, zt, ξt) refers to the expense

for facilities with on-site personnel; it is proportional to the amount of power that has been generated.
Natural gas fueled device is usually more costly to maintain than its electric counterpart; the marginal price
also reduces as capacity expands.125

On top of the former commonly adopted terms [12, 29, 10], the DR incentive, RDR
t , and building utility,

ut(xt), are involved to reveal the effect of demand response. MG-C, as a result, is able to offer guidance for
load shaping based on individual building profiles, as enforced by finantial contracts or service agreement,
where λutil ≥ 0 acts as the trade-off parameter for building satisfaction.
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Building utility. As the MG-C assesses the potential dispatch strategies, individual buildings are able to130

manifest the consumption predilectment by the specification of:

• Demand profiles, consisting of critical, curtailable, and shiftable loads

• Utility functions to express the rigidity with respect to load shaving and shifting

While the former indicates the amount of loads that are DR-enabled / disabled, the latter depicts a contin-
uum of satisfaction mappings, generally employed in game-theoretic scheduling [46] and agent-based controls
[44, 14]. In particular, ut(xt) comprises of utility functions for curtailable and shiftable loads, which are
piece-wise linear, non-decreasing, and concave,

ut(xt) =
∑
b≤B

uE,shift
b ({Esp,shift

t′,b }t′≤t) + uE,curt
b (Esp,curt

t,b )

+ uH
b (Hsp

t,b) + uQ
b (Qsp

t,b) (1)

where Esp,shift
t,b and Esp,curt

t,b represent the shiftable and curtailable loads supplied at time t for building b,

and Hsp
t,b and Qsp

t,b denote the heating and cooling supply.135

The shiftable load utility uE,shift
b ({Esp,shift

t′,b }t′≤t) promotes early completion of shiftable tasks and penalizes

deferred loads. Define p̄E,shift
t,b =

∑
t′≤t E

sp,shift
t,b∑

t′≤T E
dm,shift
t,b

as the percentage of total shiftable demands satisfied at time

t; then uE,shift
b ({Esp,shift

t′,b }t′≤t) is piece-wise linear with decreasing slopes.1 Intuitively, the no-complaint
scenario unfolds when all the jobs up to the current time are completed, while the diminishing marginal
return brings flexibility to load shifting.140

The curtailable utility, uE,curt
b (Esp,curt

t,b ), uH
b (Hsp

t,b), and uQ
b (Qsp

t,b), share the template that disincentivizes

unfufilled demands at any time. For heating, as an example, the proportion of heat satisfied is p̄H
t,b =

Hsp
t,b−α

H
min,bH

dm
t,b

(1−αH
min,b)Hdm

t,b

∈ [0, 1], where αHmin,b ∈ (0, 1] is the minimum requirement.2 Parameter λutil, therefore, is

regarded as the utility-to-dollar conversion ratio, in the light of multi-objective formulation that tailors the
treatment of (P0) with varying DR commitment.145

Power constraints and system resilience. Above all, it is crucial to maintain the balance between load and
generation at all times [47, 5, 10]. For electricity (and heat), we enable to purchase / sell electricity (and
heat) from / to the grid (industry heat network) (see Appendix A for thermal balances),(

Egrid,pur
t − Egrid,sal

t

)
+
∑
k≤K

ECHP
t,k + EPV

t +
(
EBat,from
t − EBat,sto

t

)
=

∑
tech∈SE,dm

Etech
t +

∑
b≤B

(
Esp,shift
t,b + Esp,critic

t,b + Esp,curt
t,b

)
(4)

1The value of uE,shift
b ({Esp,shift

t′,b }t′≤t), which has slopes vE,shift
n on segments [θE,shift

n−1 , θE,shift
n ], with vE,shift

1 ≥ · · · ≥
vE,shift

NE,shift ≥ 0, and 0 = θE,shift
0 < · · · < θE,shift

NE,shift = 1, is given by the linear program (LP):

uE,shift
b ({Esp,shift

t′,b }t′≤t) = max
{ψn}N

E,shift
n=1

NE,shift∑
n=1

vE,shift
n ψn (2)

where 0 ≤ ψn ≤ θE,shift
n − θE,shift

n−1 for n = 1, ..., NE,shift, and
∑NE,shift

n=1 ψn = p̄E,shift
t,b .

2The function value of uHb (Hsp
t,b) with marginal utility vHn on segments [θHn−1, θ

H
n ] with vH1 ≥ · · · ≥ vH

NH ≥ 0, and 0 = θH0 <

· · · < θH
NH = 1 is given by the LP:

uHb (Hsp
t,b) = max

{ψn}N
H

n=1

NH∑
n=1

vHnψn (3)

where 0 ≤ ψn ≤ θHn − θHn−1 for n = 1, ..., NH, and
∑NH

n=1 ψn = p̄Ht,b.

6



Figure 2: Illustration of the flow of payment, energy, and information among buildings, MG coordinator, and the grid under
DR.

where SE,dm is the set of technologies that consume electricity, including electric chiller and boiler, and heat
pump.

The dispatch variables are confined to the feasible set Xt(zt, ξt) delineated by the power balances, the
generation and storage technologies, e.g., CHP partial loads, PV outputs, and charge/ discharge rate limit
for storage, DR and load stiuplations (Section 3.2). The states zt are constrained to Zt(zt−1,xt) defined by150

the dynamic charging behaviors and the capacity limits. System resilience can be prescribed in either the
cap on the total import power from the grid [44, 47, 5, 10], or the spinning reserve limits on the storages
[47, 5].

The MG can exchange energy with the grid and dispatch generators to meet the demands of buildings,
as operated through the MG coordinator (Fig. 2).155

3.2. The MG Coordinator and DR

The MG coordinator (MG-C) is a software-defined entity that serves the MG by managing the energy
balance between demand and supply, and the risks of exposure to spot market volatility. For the particular
MG under study, like the university campuses [48], where the main object is energy provision rather than
retailing, the MG-C is concerned about the operating costs of its generation facility and the expenditure on160

gas and electricity in the wholesale market, as illustrated in Fig. 2.
Apart from billing the MG on the actual electricity consumption, the network operator can provide DR

signals based on the market mechanism [49, 16], DDR
t ∈ {0, 1}, up to 24-hour ahead notice for participants

to consider reducing peak demands. For MG-C, the decision of engagement, XDR
t ∈ {0, 1}, depends on

the forecasted high electricity price events, on top of the incentive contracts agreed upon with the grid.
To be more specific, the MG-C will be rewarded with a fixed amount, rDR

t ≥ 0, for partaking in DR (and
potentially offering ancillary services), i.e., DDR

t = XDR
t = 1:

RDR
t = rDR

t DDR
t XDR

t , (5)

7



with the minimum requirement of αDR
min–percentage building loads shedding 3

XDR
t

∑
b≤B

(
Esp,curt
t,b + Esp,shift

t,b

)
≤
∑
b≤B

(
1− αDR

min

) (
Edm,curt
t,b + Edm,shift

t,b

)
(6)

which is estimated in accordance with the utility’s baseline methodology [14, 16].
The involvement of individual buildings in DR is voluntary, with the extent of commitment delineated

by the diverse load profiles and the utility functions (1). As part of the electricity agreement, they can be
encouraged to take part in through incentive reimbursement. Generation is dispatched based on demand,165

which is set depending on the predicted pool price facilitated by the MG-C, as elucidated in Fig. 2 for the
information flow.

3.3. Building Loads

The community of buildings MG serves, including residential and commercial buildings, hospitals, and
public service stations, exhibit various load profiles for heating, cooling, and electricity, as depicted in Fig.170

5. Three salient types of loads are considered to facilitate planning.

Critical load. For electricity usage in data centers and ICUs of hospitals, as an example, it is of utmost
importance that the loads are satisfied, i.e.,

Esp,critic
t,b = Edm,critic

t,b (7)

where b ∈ {1, ..., B} represents building b among the cluster, and ·sp, ·dm are used to denote supply and
demand. Throughout the paper we use t to denote the time step at hourly resolution.

Curtailable load. Demands of this type, such as ventilation and lighting, have limited extent to be deferred to
a later time, but can be traded off with users’ satisfaction in the case of demand response (DR) commitment,
i.e., XDR

t = 1: (
1−XDR

t

) (
1− αE,curt

min,b

)
Edm,curt
t,b + αE,curt

min,b E
dm,curt
t,b

≤ Esp,curt
t,b ≤ Edm,curt

t,b (8)

where αE,curt
min,b ∈ (0, 1) identifies the minimum requirement for curtailable electricity for each building. Heat-

ing and cooling loads, Hdm
t,b , Q

dm
t,b , are considered within this category mainly because 1) users typically175

respond to DR signal by reducing the heating / cooling consumption at the current moment, without nec-
essarily recovering it in the future, 2) even though thermal energy has been treated as thermal storages in
a sub-hour time frame [40, 45], it is rare to see shifting among several hours; as the time step in the study
is an hour, the DR behavior is predominantly curtailment.

3We use the big-M method to convert the constraint to the equivalent linear form:∑
b≤B

(
Esp,curt
t,b + Esp,shift

t,b

)
≤Mt

(
1−XDR

t

)
+
(

1− αDR
min

)(
Edm,curt
t,b + Edm,shift

t,b

)
where Mt can be set with a large value, e.g., B · Emax +

∑
b≤B E

dm,curt
t,b .
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Shiftable load. Loads of this type, like electric vehicle battery charging, can be shifted in time, as long as
the specified amount of total energy is expanded, which is characterized by the following relations on each
day:

(1−XDR
t )Edm,shift

t ≤ Esp,shift
t ≤ Emax (9)∑

t≤T

Esp,shift
t ≤

∑
t≤T

Edm,shift
t ,∀T ∈ 1, ..., 24 (10)

∑
t≤24

Esp,shift
t =

∑
t≤24

Edm,shift
t (11)

where (9) indicates that without DR commitment, i.e., XDR
t = 0, the hourly posted shiftable load must be180

fully satisfied, yet with DR the supply can span a wider range from 0 to Emax. As stipulated in (10), we
cannot satisfy shiftable loads before they occur; or rather, we can only meet demands up to the current
point. By the end of the day, all shiftable loads that have been postponed should be satisfied, as in (11).
We do not further differentiate between interruptible and non-interruptible loads as in [44], inasmuch as our
decision is made at an aggregated building scale, rather than on an individual device level.185

While neglected in previous MG models [12, 29], thermal losses through pipelines are pertinent to evaluate
the environmental impact and dispatch optimality [50]. We consider a pre-installed pipeline system for heat
and cooling energy transfer, with the assumption that no thermal exchange exists among buildings, as
illustrated in Fig. 3 for some probable topologies. Two forms of thermal losses are examined, namely,
length follow and load follow modes (see Appendix B).190

Figure 3: Illustrations of two possible topologies of pipeline network for thermal energy transportation.

3.4. Generator and Storage Technology

The next sections provide an overview of the technology components and requirements, with the imple-
mentation detailed in the Appendix.

9



Combined Heating and Power (CHP). The coupling of power and heat production effectuated by CHP
makes it an option for MG to reduce fuel imports, lower carbon dioxide emissions and tackle fuel poverty;195

for instance, more than 99.7% of electricity in Danish energy system originates from CHP and renewables
[29]. The MG model allows the consideration of several CHPs of different capacities (see Appendix C).

Electric, natural gas, and absorption chillers / boilers. Heat from a liquid are removed in a chiller via
a vapor-compression or absorption refrigeration cycle, where the input energy can be electricity (electric
chiller), natural gas (NG chillers), or heat from steam or hot water (absorption chiller). The coefficient-of-200

performance (COP) is typically used to depict the conversion efficiency as the ratio between output cooling
to input power. As for the boilers, that thermal energy is generated from sources of natural gas combustion
(NG boiler) or electric resistance heating (electric boiler).

Heat pump (HP). In MG, heat pump, which transports thermal energy from the source to the destination,
can decouple the production constraints of the coproduced products, while maintaining high energy efficiency205

[51]. The HP is often more efficient than its alternatives, especially in heating mode (different types of HP,
such as air sourced HP, ground source HP, water sourced HP, differ in the COPs, which also depend on
climate conditions), notwithstanding that the installed cost is significantly higher [29].

Solar thermal and photovoltaics (PV). The upward tendency for using renewables to reduce carbon foot-
prints brings about widespread adoptions of solar thermals and PVs [5]. For PV, the electric power is210

proportional to the solar irradiation, which is often the cause of volatility. Strategies introduced in Section
4 are aimed at coping with the uncertainty.

Storage Technology. Storage is conducive to smooth variable generation and system-wide reliability. The
taxonomy proposed by [52] classifies the types into sensible, latent, and thermochemical, among which the
first category is most used which does not involve phase change. We build a generic storage prototype215

for heating, cooling, and electricity with dynamic charging / discharging behaviors and standing loss, as
illustrated below for the heat storage (see Appendix D). Maintaining a minimum amount of stored energy,
typically 5% of the total capacity, i.e., state-of-charge (SOC), is commonly referred to as the spinning reserve
requirement [47, 5].

In summary, the modeling of various technologies enables the user to tailor the treatment of individual220

cases by selecting the available generators or storages. Additionally, building loads are modeled with a
varying degree of flexibility to be responsive to DR. The following section discusses the coordination of the
supply and demand sides to inform optimal dispatch of MG.

4. Dispatch under Uncertainty

4.1. Forecasting Methodology225

The prime aim of forecasting is uncertainty reduction. For MOD-DR , accurate prediction of electricity
price and solar irradiation can reduce the risks of spot market / renewable volatility and the operating costs
by taking arbitrage opportunities.

Methods for solar forecast can be grouped into time series models and numerical weather prediction
(NWP) [53]. Weron [54] recently conducted a comprehensive review of spot price prediction approaches,230

which fit into six categories: multi-agent in a game-theoretic framework, fundamental methods that incorpo-
rate physical and economic factors, reduced-form that characterizes statistical properties over time, as well as
statistical approaches and computational intelligence. While reduced-form models, like the mean-reverting
Orstein-Uhlenbeck process, excel at derivatives valuation and risk analytics and have been employed in
previous works [12, 13, 13], its simplicity and analytical tractability are no longer an advantage for predic-235

tion; in contrast, methods in the latter two classes, like autoregressive (AR)-type models, support vector
regression (SVR), and artificial neural network (ANN), can handle complexity and non-linearity, and thus
will be considered. Additionally, forecast combinations, such as ordinary least squares (OLS[c]), constrained
least squares (CLS[c]), and variance-based scheme, pointed as future directions in [54], are evaluated. The
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methods are also applicable to solar irradiation. For load predictions, the methods can be grouped into240

either data-driven, which resorts to regression on indicators like occupancy and weather, or model-based,
which considers the operation of building components like lighting and HVAC systems, occupancy and their
behaviors [55, 56]. Nevertheless, in this study, we assume the loads to be given, though in practice they can
be predicted using the methods outlined below.

Baselines. The baseload price model (BPM) predicts the next day with the median of electricity prices in245

the past month, due to its robustness to outliers. The 24 hourly prices of the current day can also be used,
as in the Näıve model, a standard reference estimator.

Statistical approaches. The seasonal autoregressive integrated moving average (S-ARIMA) is a stochastic
process coupling the AR and MA components, after differencing at appropriate time steps to remove any
trends. Formally, it is given by ARIMA(p, d, q)× (P,D,Q)S :

Ψ(B)ΨS(BS)︸ ︷︷ ︸
AR

∆d(B)∆D(BS)︸ ︷︷ ︸
(non-) seasonal difference

yt = Φ(B)ΦS(BS)︸ ︷︷ ︸
(non-) seasonal MA

wt

where yt is the electricity price at time t, wt is the white noise process, B and ∆ are the backward shift and
difference operators, i.e., ∆(B)yt = (1−B)yt = yt− yt−1, Ψ,ΨS ,Φ,ΦS are polynomials of order p, P, q,Q in
the model specification. The seasonal lag S = 24 to capture daily patterns, and the orders of MA and AR are250

informed by the autocorrelation and partial autocorrelation graphs. Ordinary least squares (OLS) represents
linear regression-type models [54], despite its autoregressive nature, as is also the case for computational
intelligence methods, due to the exclusive reliance on history prices, though exogenous variables like weather
and power supply and demands can be integrated once available.

Computational intelligence (CI). A succinct summary of a broad category of CI methods is based on the
empirical risk minimizer (ERM) framework [57]:

min
f∈F

1

n

n∑
i=1

l(f(xi), yi) (12)

which finds a function f ∈ F of features xi to minimize the loss evaluated on the training set {(xi, yi)}ni=1. It255

can be regarded that variants within the ERM differ by the chioces of function class F and loss l(·, ·). Support
vector regression (SVR) “lifts” the original features into higher dimensions, and optimizes l(·, ·) as the hinge
loss [57]. Ridge, Lasso, and Elastic Net have been widely applied in prediction tasks and compressed sensing

[57], which assume a linear form of predictor, f(x) = w>x; in addition to the L2 norm ‖z‖2 =
√∑

j z
2
j

for the loss function as in OLS, combinations of L1, i.e., ‖z‖1 =
∑
j |zj |, and L2 are imposed on ω for260

regularization to induce sparsity and avoid overfitting. Nonparametric models like K-nearest neighbors
(KNN) and Gaussian Process (GP) predict by either K nearest points or smoothing among available data
based on affinity. Multilayer perceptron (MLP) is a popular choice of ANN for power, tariff, and solar
predictions [54, 53], which consists of a hidden layer with nonlinear activation functions. It can capture
fairly complex scenarios given sufficient data to learn. We refer the readers to [57] for a comprehensive265

introduction to CI methods, and the accompanying material of this paper for implementations.

Forecast combinations. The advatange of combining, according to Hibon and Evgeniou [58], is not “that
the best possible combinations perform better than the best possible individual forecasts” (i.e., ex-post),
but that it is less risky in practice to combine forecasts than to select an individual forecasting method (i.e.,
ex-ante). Given M forecasts from a committee of predictors, {ŷmt}Mm=1, the simple scheme averages them
with equal weights 1

M . The OLS combination is based on

yOLS
t = cOLS +

M∑
m=1

wmŷmt (13)
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where the constant cOLS and weights {wm}Mm=1 are learned from past performances of the candidates.
Other schemes, such as the robust regression, which is less sensitive to outliers, the constrained least squares
(CLS[c]), which restricts the weights sum up to 1, and the variance-based combination, which weights the
forecasts according to their accuracy measured by the mean squared error (MSE) [58], are also examined in270

the study.
Above all, in an online adaptive mode, the methods can be reestimated at every time step using a rolling

or expanding window, or with more sophisticated adaptive approaches, c.f., [59, 60].

4.2. Dispatch Strategies

The dispatch plan, as has hitherto outlined, is developed by solving the mixed-integer program (P0) using275

the forecasts of uncertain variables, subject to power and resilience constraints. Two dispatch strategies,
illustrated in Fig. 4, have been implemented in MOD-DR , which are evaluated in Section 5.

Figure 4: Illustration of the (A) day-ahead, and (B) adaptive dispatch strategies. For the day-ahead scheme, the plan is devised
on Day 0, and implemented on Day 1 with proper repairment. The adaptive method dynamically plans for the following hours,
and updates the proposal as more observations are available.

Day-ahead dispatch. Like the electricity market bidding, upon receiving predictions of spot prices and solar
irradiation, as well as buildings’ projected demands and DR signals from the grid on Day 0, MG-C performs
(P0) to prepares a day-ahead dispatch plan and sends it to the generation facility and buildings for review.280

Iteration of revisions is conceivable until the concurrence among the delegates. The original proposal is
amended for actual execution on Day 1. The repair strategy exploits the cheapest sources / destinations of
energy immediately available, e.g., storage (if any) or grid, to maintain the power balance. The extent of
repair, clearly, is contingent on the intermittency of renewables and forecast errors.

12



Adaptive dispatch. The access to real-time information enables the adaptive strategy, which resorts to the
receding-horizon, future-discounted variant of (P0):

min
{xt}T̂t=1

T̂∑
t=1

γt−1gt(xt, zt, ξt) (P1)

s.t. xt ∈ Xt(zt, ξt), zt ∈ Zt(zt−1,xt),∀t = 1, ..., T̂

where gt(xt, zt, ξt) = fOpe
t (xt, ξt)+fMtn

t (xt, zt, ξt)−RDR
t −λutilut(xt) is the original objective term, further285

discounted by γ ∈ [0, 1], and T̂ ≤ T denotes the receding horizon. To be specific, at the start of Hour 1 of
Day 1, (P1) is carried out with T̂ = 23, using the current observation ξ1 and the forecasts of {ξt}24

t=2 for
the rest of the day, then, assuming no abrupt changes during Hour 1, the plan is executed. The procedure
is reiterated for the subsequent hours, while receding the planning horizon T̂ and only operating the part of
the strategy for the current point, as clarified in Fig. 4, till the end of the working day. As uncertainty over290

renewables is resolved by observation for the current hour, the need for repair is obviated. The mechanism
of γ resembles that of the dynamic programming [61]: for (P0), γ = 1, and the planner becomes increasingly
nearsighted as γ shrinks. 4

While the adaptive strategy maintains more frequent communication with the generation facility and
DR loads compared with the day-ahead scheme, it delivers the benefits of improved accuracy of forecasts,295

cost effectiveness of dispatch, and responsiveness to the grid. Depending on additional constraints like
the computational capability in solving large-scale MIP and inter-temporal parameters of generators, e.g.,
minimum run time and notification time, both are viable for practical deployment [20, 33, 37, 29, 62].

5. Experimental Evaluation

5.1. Experimental Setup300

5.1.1. Dataset

Building loads. In practice, buildings with compatible and sympathetic load profiles serve to level the
aggregated energy demand, thus improving both the operating efficiency and the overall MG economics.
The loads data are retrieved from the Open Energy Information (OpenEI), for a research facility (Bld:1) 5,
a large hotel (Bld:2), and a commercial building (Bld:3) 6, though more buildings can be readily incorporated.305

For the electricity loads, as is shown in Fig. 5, the load types are inferred primarily from descriptions, e.g.,
demands for the data center are critical, for ventilation and lighting are curtailable, and for plug-loads are
shiftable. During the period of study, i.e., January and February, the thermal loads are predominantly
for heating (Fig. 5). Throughout the paper, it is assumed that the loads to be given, though in practice
a forecasting module can be employed based on Section 4.1 (especially the forecast combination method310

which is often used for load prediction [54]).

Electricity and gas prices. The electricity spot price is accessed from National Grid Online Database 7

for the period of Jan. 1 to Jul. 24, 2016 in New York, adapted to be close to the California wholesale
market, whose daily fluctuation is exhibited in Fig. 6. The natural gas price, obtained from the U.S. Energy
Information Administration 8, is assumed to be at a constant level of 0.02$/kWh throughout the month.315

The difference between the electricity and gas price, a.k.a., the “spark spread”, has an underlying daily
cycle driven by variations in the average electricity price, which can be potentially exploited through the
incorporation of heat storage.

4At the limit of γ = 0, we keep to the convention that 00 = 1, in which case the planner only cares about the cost for the
current hour, disregarding any future risks or arbitrage events.

5NREL RSF Measured Data 2011, accessed: 10/2016
6OpenEI Load Profiles, accessed: 10/2016
7National Grid Online Database, accessed: 10/2016
8U.S. Energy Information Administration, accessed: 10/2016
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Figure 5: Left panel: Electricity load profiles (top), which display the critical loads (red), curtailable loads (green), and shiftable
loads (blue), for three buildings (different shadings; total electricity demands for each building (bottom). Right panel: Heat
demands for the buildings under study, plotted with stacked (top) and seperate lines (bottom).
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Figure 6: Electricity and natural gas tariffs for industrial cus-
tomers on several days, where the spark spread is mainly driven
by the daily fluctuation of electricity prices.
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Figure 7: Solar irradiation measured by the GHI index
(kWh/m2) on several days of the study period, which clearly
exhibits diurnal patterns.

Solar irradiation. The TMY3 dataset is derived from the National Solar Radiation Data Base (NSRDB)
archives for 1020 locations from 1961 – 1990 and 1991 – 2005 [63]. We query the data for California, Oakland320

in the year 2005, and use the Global horizontal irradiance (GHI) index 9 to determine the PV outputs [53],
as is plotted in Fig. 7 for several days.

9GHI, measured in 1 kWh/m2, is the total amount of direct and diffuse solar radiation received on a horizontal surface
during the 60-minute period.
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Table 1: Specification of parameters for distributed generators and storages used in the experiments, which also includes
thermal efficiencies of pipelines in load follow mode, where the indices are circled in Fig. 3 (A).

Technology parameter: value

PV solar efficiency ηPV: 0.15 unit out ratio ePV
rat : 0.15

Solar thermal solar efficiency ηSolThem: 0.69 unit out ratio eSolThem
rat : 0.1

CHP ECHP
rat,k (MW): 1.5, 2, 3, 4 partial loads LCHP

k : 0.1

HERk: 1.2, 1.45, 1.5, 1.5 ηCHP
k : 0.4, 0.45, 0.45, 0.5

Electric battery charging efficiency ηBat
chg : 0.9 discharging eff. ηBat

dis : 0.9

standing loss ηBat
decay: 0.001 max charge rate τBat

chg : 0.25

max discharge rate τBat
dis : 0.25 min SOC SOCBat

min: 0.1

Heat tank charging efficiency ηHT
chg: 0.9 discharging eff. ηHT

dis : 0.9

standing loss ηHT
decay: 0.01 max charge rate τHT

chg : 0.25

max discharge rate τHT
dis : 0.25 min SOC SOCHT

min: 0

Cool tank charging efficiency ηCT
chg: 0.9 discharging eff. ηCT

dis : 0.9

standing loss ηCT
decay: 0.01 max charge rate τCT

chg : 0.25

max discharge rate τCT
dis : 0.25 min SOC SOCCT

min: 0

Electric boiler coefficient-of-performance COPELEBoil: 5.0

NG boiler thermal efficiency ηNGBoil: 0.82

Electric chiller coefficient-of-performance COPELEChill: 5.47

NG chiller thermal efficiency ηELEChill: 0.65

Absorption chiller coefficient-of-performance COPABSChill: 1.0

Pipelines heating efficiency {ηld,heat
j }5j=1: .99, .98, .988, .977, .977

cooling efficiency {ηld,heat
j }5j=1: .985, .986, .987, .984, .979

5.1.2. Implementation

The implementation of MOD-DR is based on our previous work [19] on MG long-term capital investment,
which completed the modeling of generator and storage technologies. The platform is realized in Python,325

an object-oriented programming language with cross-platform compatibility and extensibility to hardware
actuators and databases like MySQL and Cassandra for real-time controllability. The core MIP programs
(P0) and (P1) for dispatch are built and solved by Gurobi [30]. The experiments are performed on a
MacBook with a 2.8 GHz Intel Core i7 CPU and 16 GB memory.

5.2. Cost Analysis330

The object of this section is to analyze the effects of uncertainty on dispatch and the DR potential for load
shaping. Throughout the discussions, the concept of additional operational costs is applied to refer to the
added costs compared to the minimum among the set of candidates, which often corresponds to the oracle
with perfect predictions and optimal combination of DG and storages. the specifications of technologies,
listed in Table 1 (c.f., [9]), are employed in both the current section and the subsequent case study. For the335

following four studies, the day-ahead dispatch strategy P0 is adopted for analysis. The adaptive strategy is
employed in Section 5.3 for comparison.

5.2.1. The Effect of Uncertainty on Dispatch Optimality

The pool price exposure and renewable volatility give rise to the increased variability in real-time resource
commitment and dispatch. The object of the controlled experiment is to assess the forecasting approach of340

MOD-DR , as well as the practical implication of storage in the presence of uncertainty.

Study 1: The effect of electricity price uncertainty
To begin with, we study the multiple predictors in Section 4.1, which are trained and tested on two

subsequent months of data. The results for day-ahead prediction (Fig. 8 and Table 2) are reported in root345

mean squared error (RMSE), given by
√

1
24

∑24
t=1(ft(xt)− yt)2, which compares the estimation ft(xt) with

the true price yt throughout the day [54]. For CI and forecast combinations, separate estimators for each
hour of the day have been learned, using xt as the prices for the previous two days. As can be seen, forecast
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Table 2: Electricity spot price day-ahead forecasts during 1 month (one standard deviation is enclosed in parathesis). Models
incorporated in forecast combinations include KNN, Ridge regression, SVR, MLP, and Näıve models.

Exp. Forecasters

Näıve Daily SARIMA Ridge KNN
RMSE 7.9 (2.3) 1.4 (.9) .8 (.3) 1.0 (.5) .7 (.5)

(¢/kWh) MLP SVR OLS [c] CLS [c] Robust [c]
1.5 (.7) 2.0 (.6) .7 (.5) .6 (.4) .6 (.5)

Table 3: Additional operational cost of MG1 in Study 1 by comparing against the Oracle with perfect prediction (monthly cost
$36.8K), where one standard deviation is shown in the parenthesis.

Exp. Forecasters

Näıve Daily SARIMA Ridge KNN
Additional cost .5 (.5) 1.4 (1.0) .7 (.4) .7 (.6) .5 (.6)

(k$/month) MLP SVR OLS [c] CLS [c] Robust [c]
1.3 (.6) 1.4 (.7) .5 (.5) .4 (.4) .5 (.6)

combinations, i.e., OLS [c], CLS [c], and Robust [c] are significantly better than the baseline methods, and
also consistently outperforming the individual models.350
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Figure 8: Boxplots of the spot price forecast RMSE (¢/kWh) for multiple methods. The box shows the quartiles, the whiskers
extend to show the rest of the distribution, while the black dots indicate outliers.

The integration of each forecaster with MOD-DR is examined under the prototype, MG1, which consists
of a NG boiler (1MW), an electric boiler (1MW), an assembly of CHPs (0.5, 1, 1.5, 2 MW capacities), a
heat tank (2MWh) and a electric battery (4MWh), whose parameters are listed in Table 1. The operational
surchage is derived for each candidate by collating with the oracle, which is able to dispatch based on the
true spot price (Fig. 10 and Table 3). The daily dispatch plan is shown in Fig. 9, which demonstrates355

that even though there is a mismatch between prediction and true spot prices, CLS [c] can capture the two
peaks, and thus schedule the electric storages to exploit the time-differentiated prices.

Further, the effect of forecasting error on operational cost is demonstrated in Fig. 11. The positive
correlation is consolidated by the Pearson coefficient of .82. The p-value of the test is less than 1e-5, which
indicates that the probability of observing a phenomenon as extreme as the current case under the non-360

correlation condition is exceedingly small, in other words, the null-hypothesis of non-correlation is rejected
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Figure 9: Electricity and heat balances for day-ahead dispatch based on CLS forecasts (left) and true (right) electricity price
for S1 under Study 1. The effect of forecast errors can be seen, for instance, at hour 9, when CHP is turned on in the face of
predicted higher spot price.

Table 4: Forecast errors for solar GHI in one month period, where both the average and standard deviation are shown.
Combination schemes include Ridge, SVR, KNN, MLP, and Lasso.

Exp. Forecasters

Näıve Daily Lasso Ridge KNN
RMSE .31 (.09) .19 (.08) .10 (.04) .09 (.04) .09 (.03)

(kWh/m2) MLP SVR OLS [c] CLS [c] Robust [c]
.09 (.03) .09 (.03) .09 (.02) .09 (.03) .09 (.03)

with statistical significance. 10

Our conclusion is that the fluctuation of electricity spot price exposes MG to operational suboptimality
and financial risk, inasmuch as the variable can be predicted with accuracy. This result is in alignment with
the findings from [22, 32]; however, their studies incorporated the situation with only electricity loads, no365

distributed generation capacity, and the forecasting errors were simulated from a noise model. Our result,
in comparison, applies to MG with both electricity and thermal loads, and the electricity price is forecasted
based on historical data with current predictors.

Study 2: The effect of renewable uncertainty370

It can be observed in Fig. 7 that solar irradiation exhibits strong diurnal patterns. As in Study 1,
day-ahead predictors are assessed (Table 4), among which forecast combinations consistently outperform
other candidates. Additionally, prediction reliability, as is reflected in the lowered standard deviation, is
enhanced by encompassing all possible traces.

The evaluation of forecasting methods is conducted for system MG2, which additionally equip MG1375

with PV (0.05 km2 installation area) and solar thermal (0.01 km2). We assume the access to the next-day
electricity price and do not engage in load shaping to limit the coupling effect. Clearly, a repair strategy,

10The Pearson coefficient between two variables y1(t) and y2(t) is given by:∑T
t=1

(
y1(t)− ȳ1

)(
y2(t)− ȳ2

)√∑T
t=1

(
y1(t)− ȳ1

)2(
y2(t)− ȳ2

)2 (14)

where ȳ1 and ȳ2 are the sample mean of y1 and y2, respectively.
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Figure 10: Boxplots of the additional operational cost of MG1 when different electricity price forecasters are integrated.
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Figure 11: Scatter plots of the electricity forecast error against the operational surcharge for the list of predictors under study.

as detailed in Section 4.2, is in place to maintain power balance. The integration of renewables during the
planning stage with proper forecasts can drive down the cost by $8K per month under the current solar
profile (Table 5), which can also be verified from the daily dispatch plans in Fig. 12 that make full use of380

solar energy to meet the MG loads.
Forecasting accuracy, furthermore, directly contribute to the efficiency of production planning (Fig. 13),

as verified by the Pearson test with a correlation coefficient of 0.17 and p-value 5e-3 indicating statistical
significance level. If to ensure that the solution can survive a certain degree of variability is of concern,
a common strategy adopted in unit commitment [20] is to systematically underestimate the solar power,385

which can be readily accomplished in forecast combinations by considering the no-PV situation.
In summary, the intermittent renewables can be effectively harnessed by forecasting to improve the econ-

omy. Morais et al. [10] demonstrates the dispatch with forecasted solar profile of an MG in Budapest
Tech, which includes, among others, PV panels (peak power 150W) and an electric battery (max charg-
ing/discharging power 200W/50W). While they only examined the effect of forecasting error on operations,390

such as the battery charging of excess power due to under-prediction, our results (Fig. 13, Table 5) report
statistical evidence of the economic impacts.

Study 3: The integration of energy storage
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Table 5: Additional operational cost of MG2 in Study 2 by comparing against the Oracle with perfect prediction (monthly cost
$25.2K), where one standard deviation is shown in the parenthesis.

Exp. Forecasters

No PV Näıve Lasso Ridge KNN
Additional cost 12.5 (8.0) 2.5 (2.8) 3.3 (3.3) 3.1 (3.1) 3.0 (2.6)

(k$/month) MLP SVR OLS [c] CLS [c] Robust [c]
3.0 (3.0) 3.0 (3.0) 2.5 (2.2) 3.0 (2.8) 2.4 (2.3)
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Figure 12: Electricity and heat balances for day-ahead dispatch based on CLS forecasts (left) and true (right) solar energy, when
the electricity price is assumed to be known a priori. The effect of forecast errors can be inspected at hour 11 (over-forecasting)
and 12 (under-forecasting). In the former case, more electricity needs to be purchased from the grid, while in the latter case
the renewable is under-utilized.

With the growing penetration of renewable energy resources and a shift to a much more dynamic electric395

infrastructure, the benefits that storage can deliver, as suggested in [64], ranges from electric supply and
ancillary services, to transmission support and renewables capacity firming. It is evident thus far (Fig. 9
and 12) that the ability of storage to make cost reductions depends in large part on:

• Time-of-use (TOU) management : storage is charged during off-peak hours and discharged during
times when on-peak TOU energy prices apply.400

• Renewables time-shift: storage operates in conjunction with renewable generation to enable the use of
low-value energy generated during off-peak times to offset other purchases when it is more valuable.

Importantly, the object is to study the amount of benefits that storage can reap in the face of uncertainty.
The system MG2 from the previous test is supplied with different sizes of electric battery and / or heat
tank, which are dispatched for a month when both the electricity price and the solar irradiation are forecasted405

during day-ahead planning. According to the result, the lowest operational cost is achieved when both the
heat and electricity storages are present (Case A) with capacity 4.5MWh, for perfect forecasts, i.e., oracle.
It is then compared with other situations when only the heat tank (Case B) or the electric battery (Case
C) is present for the Näıve and CLS forecasters to evaluate the costs (Fig. 14 and Table 6).

As it can be seen, increasing the capacity of storage can bring greater savings in all cases (A, B, C),410

though with marginal diminishing returns. Interestingly, while the storage for electricity (case C) seems
more favorable than heat (case B) under perfect prediction, likely attributed to the potential of TOU
management for the former is higher, the effect is not as pronounced when both the electricity price and
solar are forecasted, especially for the Näıve method, which tends to perform poorly (Table 2 and 4). Indeed,
with better predictions like CLS, further reductions can be achieved.415
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Figure 13: Scatter plots of the additional operational costs (compared with the Oracle) vs. the forecast errors for different
methods.
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Figure 14: Additional operational cost for day-ahead dispatch based on oracle, CLS[c] and Näıve forecasters of solar and
electricity prices. Each point represents 30-day average, where the colors indicate dispatch strategies and shapes correspond to
different cases (A, B, C).

Prior works [45, 15, 19] tackled the capacity sizing of storage based on long-term valuation, where
uncertainty in variables are not considered. Out results indicate that the fulfillment of the potentials is
contingent on uncertainty inherent in practical dispatch. Dı́az and Moreno [13] investigated the valuation
of CHP and thermal storage under uncertain energy prices, and reported the link between the economic
sizings of CHP and thermal storage. Our study, in addition, presented the influence of forecasting model420

and accuracy on storage-augmented system operation.

5.2.2. The Effect of DR for Load Shaping

The value and necessity of DR as a flexibility means has been widely recognized among stakeholders and
policy makers, whose objectives can be divided into two categories, i.e., energy adjustments (e.g., strategic
conservation and strategic load growth) and power adjustments (e.g., peak clipping, valley filling, load shift-425

ing and flexible load shape) [41, 43, 42, 65, 6]. The latter, in particular, requires the active participation of
consumers, who are rather passive nowadays [6]. The object is, therefore, to investigate the engagement of
DR facilitated by MOD-DR based on real-time pricing.

Study 4: DR-enabled MG Dispatch430

The consumption preferences of individual buildings can be revealed to MG-C through both the utility
function and the load mix, as depicted in Fig. 5. From the control perspective, the shiftable load needs some

20



Table 6: Operational charge for several schemes as the storage capacity varies, when both heat and electricity storages (case
A), or only one (B for heat and C for electricity) is present. The cost is compared with the Oracle with 4.5MWh heat and
electricity storages, i.e., case A, whose daily cost is averaged at $791.3. For instance, the average daily cost for CLS[c] when
both electricity and heat storages have capacities of 2MWh is $791.3+$84 = $875.3. Both the 30-day average and standard
deviation (in parenthesis) are shown.

Capacity (MWh)
0 1 2 3 4

Näıve 146 (18.4) 126 (16.0) 117 (14.8) 112 (14.1) 107 (13.5)
A CLS[c] 115 (14.5) 88 (11.2) 84 (10.6) 73 (9.3) 68 (8.6)

Oracle 83 (10.5) 51 (6.4) 30 (3.8) 15 (1.8) 4 (0.5)

Näıve 146 (18.4) 135 (17.0) 129 (16.2) 125 (15.8) 120 (15.2)
B CLS[c] 109 (13.7) 101 (12.8) 96 (12.1) 95 (12.0) 90 (11.4)

Oracle 83 (10.5) 70 (8.9) 63 (8.0) 58 (7.4) 54 (6.8)

Näıve 146 (18.5) 137 (17.4) 134 (16.9) 132 (16.7) 129 (16.4)
C CLS[c] 115 (14.5) 97 (12.3) 97 (12.2) 85 (10.7) 74 (9.3)

Oracle 83 (10.5) 64 (8.0) 49 (6.2) 37 (4.6) 28 (3.5)

planning and thus benefits from static signals notified well in advance, while the curtailable load can respond
to dynamic signals more swiftly. The utility parameters, for simplicity, are shared among all three buildings
for heating, cooling, and electricity loads, with θ0, θ1, θ2 = 0, 0.5, 1, and v1, v2 = 1, 0.2. Both systems under435

study, MG4.1 and MG4.2, are electricity-only, i.e., no thermal loads, equipped with four types of CHP (0.5,
1, 1.5, 2 MW), and MG4.2, in addition, has an electric battery (2MWh). As in [41], perfect prediction is
assumed, which is the best case scenario for DR, and hence ideal for impact studies.

During the one month of the experiment, DR is called when the wholesale price is above the strike price,
i.e., the price at which the customer has agreed to provide demand response [16], which is chosen as the third440

quartile of history data. On a particular day, upon gathering of information from buildings, generators, and
the grid, MG-C performs MOD-DR to come up with a dispatch proposal to be implemented on the next day.
A viable solution is exemplified in Fig. 15, which represents 70.6% peak load reduction from the original
5.8MWh peak hour demand.
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Figure 15: Electricity load shaping after implementing DR, where negative / positive values indicate reduction / addition from
the original demands. When there is no DR event, all the curtailable loads are satisfied, and it is possible to consume more
than the original profile to compensate for the shifted loads in previous hours.

Compared with dispatching without the engagement with DR, MOD-DR explores the feasibility of seek-445

ing trade-offs between building satisfaction and operational savings. Indeed, the flexibility is realized by
consciously tuning the parameter λutil, as is shown in Fig. 16, which unveils a smooth spectrum of optimal
resolutions gauged by the loss of satisfaction, measured by the percentage of utility loss compared to the
case without load shaping, and the additional operational cost. It is up to the MG-C committee to decide
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upon the level of DR commitment, by potentially taking advantage of the fact that substantial cost saving450

can be achieved without sacrificing customer contentment. Additionally, system MG4.2 with the electric
battery stands on the Pareto frontier, though the business case also relies on the capital investment [9].
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Figure 16: Loss of satisfaction and additional cost tradeoff for a typical day, shown for systems w/ and w/o storage or DR
under perfect predictions. The utility parameters, whose values are color coded (the redder the larger), ranges from 1 to 400,
equally spaced in log scales. Baseline for maximum satisfaction is MG4.2 without DR; baseline for minmum cost is MG4.2
with DR and λutil = 0.

Taking into account of demand elasticity, consumption patterns, as well as grid signals and generation
profiles, MOD-DR is able to maintain customer’s satisfaction and coincidentally produce the desired changes
in the district loads through an optimal utility-cost trade-off. Compared to the study by Kim and Giannakis455

[44], we consider the demand on the buildings level rather than device level, and include thermal loads in
addition to electricity loads satisfied by CHP and other DGs. Further, the proposed utility cost trade-off
curve (Fig. 16) is useful to choose between DR strategies.

5.3. Campus Microgrid Study

The object is to undertake an assessment of MOD-DR for the capability of demand response utility460

tradeoff and operational cost savings, with greater renewable penetration and price uncertainty in a practical-
oriented setting.

The prototype system, followed from the University of California, San Diego (UCSD) microgrid for the
sizings of generators and renewables [66], as well as the British Columbia Institute of Technology (BCIT)
campus for the DR-enabled load control [67], comprises of CHP plants (1.5, 2, 3, 4 MW) that work in465

conjunction with an absorption chiller (10MW), a NG boiler (5MW) and chiller (10MW), an electric boiler
(10MW) and chiller (10MW), storages for electricity (4MWh), heat (4MWh), and cooling (4MWh), in
addition to a PV site (.05km2), for the provision of electric and thermal energy. While the solar profile
is maintained, other data from the previous section are adapted to comply with the requirements, e.g.,
electricity and cooling loads are scaled up by a factor of 5 and 10 (Fig. 18). The evaluation spans the month470

of April, when both heating and cooling demands are present.
Uncertainty in both electricity price and solar irradiation are assumed. The dispatch strategies under

analysis include day-ahead Oracle, i.e., perfect predictions, with and without load shaping DR, day-ahead
P0 and adaptive schemes P1 based on CLS forecasts. The baseline model performs optimized load following,
which resorts to the cheapest sources of energy available to meet the immediate loads (i.e., equivalent to475

a system without CHP, absorption chiller, and storages, in contrast to [37] for a rule-based operation that
is price-insensitive). As the focus is on the use of existing infrastructure, fixed costs are considered sunk
[66, 29].
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Figure 17: Loss of satisfaction and additional operational cost trade-off. The loss of satisfaction, which results from load
shaping, is compared with the DR-disabled schemes (oracle w/o DR, load following). The additional operational cost is the
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interpolated by the dashed line for smoothness.

Table 7: Peak load reduction and daily operational cost for each dispatch strategy in a 30-day evaluation period, where the
standard deviation is shown along with the average. Peak hour is defined whenever the price signal rises above the third
quartile of history pool prices, triggering DR signals. In the case study, as there is sufficient supply of heat and cooling from
CHPs, which are turned on during peak hours for economy, there is less need for thermal deductions compared with electricity.

Method Peak Reduction (%) Cost
Shiftable Curtailable Heat Cool (k$)

Load Follow 0 (0) 0 (0) 0 (0) 0 (0) 5.7 (0.5)

Oracle w/o DR 0 (0) 0 (0) 0 (0) 0 (0) 5.4 (0.2)

CLS[c] Day 83.4 (20.2) 25.5 (11.2) 0.0 (0.0) 2.9 (5.5) 5.3 (1.5)

CLS[c] Adapt 77.6 (31.9) 39.7 (8.3) 0.0 (0.0) 6.8 (3.0) 5.2 (1.5)

Oracle w/ DR 88.7 (14.2) 29.4 (12.4) 0.0 (0.0) 4.0 (5.6) 5.1 (1.5)

The flexibility of DR can be utilized to optimize the operations, as depicted in Fig. 17, where each
point represents a 30-day average corresponding to a particular value of utility tradeoff parameter λutil.480

The DR-enabled candidates, compared with the more rigid Oracle without DR and baseline, can achieve
substantial savings by balancing the utility tradeoff. Even though the decision is based on forecasts, the
adaptive scheme based on CLS outperforms its day-ahead counterpart, and is on a par with the DR-enabled
oracle. It is attributed to the full utilization of PV (by dispatching in accord with the current observation
of solar availability, the uncertainty for every hour is sequentially eliminated) and the dynamic adjustment485

of price predictions.
Importantly, peak load shredding and expenditure cutback can be made with a pragmatic compromise of

building utilities (Table 7 and Fig. 18). The adaptive strategy achieved overall 17.5% peak load reduction,
which is calculated based on the actual curtailable, shiftable, and critical loads for the building clusters, and
8.8% cost savings compared to the baseline and is on par with the Oracle. Close inspection of Fig. 18 reveals490

that the dispatch plan by adaptive CLS resembles that of the Oracle, which is remarkable, particularly in
light of the fluctuation of prices and the need to dynamically manage the shiftable and curtailable loads.

6. Conclusion

The MOD-DR proposed in the study engages consumers, distributed generators, and the grid in a multi-
objective tradeoff to derive mutual benefits, and facilitates future works on the economic analysis of real-time495
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Figure 18: Power balances and load shapings for DR-enabled adaptive CLS and oracle dispatch. The predicted price for the
adaptive CLS is one-hour ahead estimation, except for the first hour when the price is observed. The loads shown are after DR
shaping. While the charging and discharging of electric battery is primarily to exploit the price fluctuation, thermal storages
are also used to absorb the excess energy from CHP employed due to the spark spread. As the uncertainty in solar is eliminated
sequentially, PV firming is not necessary.

pricing mechanism, DR contracts, and MG valuations.
By inspection of the utility-cost tradeoff curves (Figs. 16 and 17), as the loss of satisfaction increases,

there is initially a substantial drop in the operational cost, which then diminishes as we enter into the deep
DR region. The transition can be often exploited by initiating the right amount of DR on a district level to
achieve considerable savings while maintaining relatively low level of dissatisfaction.500

While previous works on storage capacity sizing often assume deterministic renewables and electricity
price for simplicity, the study indicates that the uncertainty plays a critical role to determine the operational
savings. The diminishing return effect as the capacity scales up is particularly marked under real time pricing
schemes, where the price exhibits fluctuations.
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From the results of the optimal dispatch plans (Figs. 9 and 18), CHPs are operated more often as the505

spark spread increases. On the other hand, electric battery is charged during midnight when the electricity
price is low, and discharged later in the day to satisfy demands, as long as the price prediction captures
the peak and valley hours. Renewables can be also harvested with accurate forecasting to complement grid
imports, which is conducive to lowering the both bill and carbon dioxide emissions.

More specifically, main contributions and results are as follow:510

• Modeling of a large-scale MG with intermittent renewables and flexible building demands under DR
scheme with rea-time pricing

• Formulation of multi-objective optimization with prevailing constraints and utility tradeoff, which
leads to the derivation of day-ahead and adaptive dispatch strategies

• Corroboration of potential cost savings with accurate forecasters when dealing with the uncertainty515

in electricity price and renewables

• Analysis of the benefits of electrical and thermal storages on the operational economy of MG, indicating
diminishing returns under uncertain conditions

• Demonstration of the DR potentials and utility-cost trade-off, showing the 17.5% peak load reduction
and 8.8% cost savings with MOD-DR for a campus prototype.520

One interesting aspect to explore is the dispatch at sub-hourly resolution, where not only the shiftability
of thermal loads is relevant, it is also possible to provide high frequency ancillary services to the grid. As
the DR at the sub-hourly scale is often called on short notice, the adaptive strategy is of particular interests,
which can adjust the dispatch with more agility.

Above all, the study shows the capability of the MG to serve as a flexible energy provider on a district525

level, while gaining economic efficiency and offering ancillary services to the grid. As it can be envisioned,
the ongoing research of sensing, communication, and control infrastructure and deployment of MOD-DR are
enablers towards an energy efficient and system-wide resilient smart power system.
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Appendix A. Thermal Balances

The heat balance is given by:(
H ind,pur
t −H ind,sal

t

)
+
∑
k≤K

HCHP
t,k +

∑
tech∈SH,sp

Htech
t +

(
EHT,from
t − EHT,sto

t

)
= HABSchill

t +H loss
t +

∑
b≤B

Hsp
t,b (A.1)

where SH,sp is comprised of electric and natural gas boilers, heat pump, and solar thermal. For cooling, the
power balance is manifested as:∑

tech∈SQ,sp

Qtech
t +

(
ECT,from
t − ECT,sto

t

)
= Qloss

t +
∑
b≤B

Qsp
t,b (A.2)

where SQ,sp include electric, natural gas, and absorption chillers. We adopt a modular approach to selecting
the available technologies to tailor the treatment of each case.

Appendix B. Thermal Pipeline Network

We consider a pre-installed pipeline system for heat and cooling energy transfer, with the assumption
that no thermal exchange exists among buildings, as illustrated in Fig. 3 for some prospective topologies.
With the pipe segment treated as edge in the graph, the network topology can be represented using the
adjacency matrix A ∈ {0, 1}B,J , which assigns 1 to the entry [A]b,j if pipe segment j is employed to transport
thermal energy to building b; for example, the adjacency matrix for topology A in Fig. 3 is given by:1 0 0 0 1

0 1 0 1 1
0 0 1 1 1


We examine two cases of heat loss, as simlar for cooling.675

Length follow. Let L ∈ RB+ denote the length profile, and ηlen,heat
j be the per mile loss of heat for pipe j;

then, the total heat transferred from the energy station, Hsrc
t , and the corresponding loss, H loss

t , are given
by:

Hsrc
t =

∑
b≤B

Hsp
t,b +H loss

t (B.1)

H loss
t =

∑
j≤J

Ljη
len,heat
j (B.2)

which indicates that the total loss is the sum of individual pipe’s loss proportional to the length, regardless
of the actual loads on the pipe.

Load follow. With the premise that the actual loss is contingent on the loads on the pipe, we can derive:

Hsrc
t =

∑
b≤B

Hsp
t,b

/ ∏
j≤J

(ηld,heat
j )[A]b,j

 (B.3)

H loss
t = Hsrc

t −
∑
b≤B

Hsp
t,b (B.4)

where the heat transfer coefficient ηld,heat
j ∈ (0, 1) should, in practice, account for the length of the pipe and

outside temperature effect [50].
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Appendix C. Modeling of Generator Technology680

Combined Heating and Power (CHP). The MG model allows the consideration of several CHPs of diverse
capacities, with each plant indexed by k ∈ {1, ...,K} in the following. Thermal energy from burning natural
gas in micro-turbines is converted to electricity,

ECHP
t,k = NGCHP

t,k · ηCHP
k (C.1)

where the efficiency ηCHP
k is assumed constant for simplicity [13], in light of the fact that it generally degrades

at lower loads [68]. The remaining power, according to the heat-to-electricity ratio (HER), is recovered in
part in heat recovery steam generators,

HCHP
t,k = ECHP

t,k ·HERk (C.2)

The partial load constraint is imposed in addition to the maximum capacity to comply with desirable
operating conditions [68, 13, 29]:

ECHP
rat,kL

CHP
k XCHP

t,k ≤ ECHP
t,k ≤ ECHP

rat,kX
CHP
t,k (C.3)

where LCHP
k ∈ (0, 1) specifies the minimum partial load.

Electric, natural gas, and absorption chillers / boilers. For electric chiller, the process is governed by:

QELEChill
t = COPELEChill · EELEChill

t (C.4)

subject to the rated capacity constraints:

0 ≤ QELEChill
t ≤ QELEChill

rat XELEChill
t (C.5)

The models for NG chiller and absorption chiller follow (C.4) and (C.5), with the replacement of electricity
input EELEChill

t in (C.4) to natural gas, NGNGChill
t , and heat, HABSChill

t , suggesting the capability of lowering
on-peak electricity demands and potentially operating costs when the latter resources are more economical.
Whereas the absorption chiller typically has lower coefficient-of-performance (COP) than its counterparts,685

it is feasible to deliver value by working in conjunction with CHP to reuse the waste heat in MG.

Electric and natural gas boilers. The technology is modeled similarly as chillers, that thermal energy is
generated from sources of natural gas combustion (NG boiler) or electric resistance heating (electric boiler).
The production of electric boiler is determined by

HELEBoil
t = EELEBoil

t · ηELEBoil, (C.6)

under the capacity constraints:

0 ≤ HELEBoil
t ≤ HELEBoil

rat XELEBoil
t (C.7)

The efficiency parameter ηELEBoil, which is usually high for electric boilers, is chosen as a constant to induce
linearity, though the value can decrease nonlinearly at low loads [13]. The template is very much alike for
natural gas boiler, except for the input source being natural gas, NGNGBoil

t , instead of electricity, EELEBoil
t ,

which typically gives rise to higher fuel economy but also maintenance expenses.690
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Heat pump (HP). The HP can be engaged in either heating or cooling mode, but not both, i.e.,

0 ≤ XHP,heat
t +XHP,cool

t ≤ 1 (C.8)

In the respective mode, the operation is described by:

HHP
t = EHP

t · ηHP · COPHP
heat, (C.9)

QHP
t = EHP

t · ηHP · COPHP
cool, (C.10)

where ηHP represents the electricity energy conversion efficiency. Additionally, the rated capacity and partial
loads requirements are enforced:

HHP
rat L

min
HP X

HP,heat
t ≤HHP

t ≤ HHP
rat X

HP,heat
t , (C.11)

QHP
ratL

min
HP X

HP,cool
t ≤QHP

t ≤ QHP
ratX

HP,cool
t (C.12)

with Lmin
HP ∈ (0, 1). The effect of temperature difference between the source and destination, or “lift”, on

COP also needs to be assessed in practice.

Solar thermal and photovoltaics (PV). Both technologies share the same model of operation, with the only
difference in the output as either heat, HSolThem

t , or electricity, EPV
t .

For PV, the electric power is proportional to the solar irradiation and limited by the production capacity:

0 ≤EPV
t ≤ APV · Irrt · ηPV (C.13)

0 ≤EPV
t ≤ APV · ePV

rat (C.14)

where ηPV ∈ (0, 1) is the efficiency factor, ePV
rat ∈ (0, 1) is the unit out ratio that determines the rated695

capacity of PV, and Irrt is the solar irradiation and also the cause of volatility, that the PV or solar thermal
cannot be dispatched at will.

Appendix D. Modeling of Storage Technology

The heat inventory at time t, HHT
t , is given by:

HHT
t = (1− ηHT

decay)HHT
t−1 +HHT,in

t −HHT,out
t (D.1)

with HHT,in
t = HHT,sto

t ηHT
chg

HHT,from
t = HHT,out

t ηHT
dis

where ηHT
decay ∈ (0, 1) is the standing decay factor, and we make a distinction between HHT,sto, HHT,out

and HHT,in, HHT,from as the charging / discharging energy before and after thermal losses. We also set the

limits on minimum and maximum allowed rates of change [47, 5] as described by τHT,chg
min , τHT,chg

max , τHT,dis
min ,

τHT,dis
max ∈ (0, 1),

HHT
rat τ

HT,chg
min XHT,chg

t ≤HHT,in
t ≤ HHT

rat τ
HT,chg
max XHT,chg

t (D.2)

HHT
rat τ

HT,dis
min XHT,dis

t ≤HHT,out
t ≤ HHT

rat τ
HT,dis
max XHT,dis

t (D.3)

We further disallow simultaneous charging and discharging,

0 ≤ XHT,chg
t +XHT,dis

t ≤ 1 (D.4)

and SOCHT
minH

HT
rat ≤ HHT

t ≤ HHT
rat (D.5)

where the lower bound specified by SOCHT
min ∈ (0, 1) is commonly referred to as the spinning reserve require-

ment, with a typical SOCHT
min of 5% [47, 5].700
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