
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
A Mathematical Algorithm for Estimating the Rotational Diffusion Coefficients from X-ray 
Photon Correlation Spectroscopy Data

Permalink
https://escholarship.org/uc/item/5hg0w59r

Author
Hu, Zixi

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5hg0w59r
https://escholarship.org
http://www.cdlib.org/


A Mathematical Algorithm for Estimating the Rotational Diffusion Coefficients from X-ray
Photon Correlation Spectroscopy Data

by

Zixi Hu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James A. Sethian, Chair
Professor Laurent El Ghaoui
Professor Per-Olof Persson

Spring 2021



A Mathematical Algorithm for Estimating the Rotational Diffusion Coefficients from X-ray
Photon Correlation Spectroscopy Data

Copyright 2021

by

Zixi Hu



1

Abstract

A Mathematical Algorithm for Estimating the Rotational Diffusion Coefficients from X-ray
Photon Correlation Spectroscopy Data

by

Zixi Hu

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor James A. Sethian, Chair

The Brownian motion of particles can be decomposed into translational and rotational
components, characterized by translational and rotational diffusion coefficients respectively.
Measuring these two coefficients plays an important role in determining the structure and
understanding the dynamic properties of materials, with benefit to research in such areas as
molecular biology, material sciences. One of the promising tools for investigation of Brownian
motion is the emerging X-ray Photon Correlation Spectroscopy (XPCS), which can capture
dynamics of samples comprising large groups of particles in a broad range of time scales and
length scales. Methods for estimating translational diffusion coefficients on the basis of the
temporal auto-correlation analysis of XPCS images are used widely. However, to the best
of our knowledge, there is no XPCS-based algorithm for assessing the rotational diffusion
coefficients from such temporal auto-correlation data. In this thesis, we take a different
route, and propose exploiting an angular-temporal cross-correlation function whose values
are approximated by an estimator based on the collected experimental images. We prove
the consistency of this estimator by deriving a tail bound. A numerical algorithm, MTECS,
for estimating the rotational diffusion coefficients from the cross-correlation is designed and
implemented. We demonstrate the capability of this algorithm by testing it on a range of
simulated data.
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Chapter 1

Introduction

Investigation of the Brownian motion of different types of particles attracts considerable
attention in research across such fields such as molecular biology and material sciences. For
particles suspended in fluids, this Brownian results from collisions from solvent particles whose
size are usually much smaller than the solutes, leading to random reposition and reorientation.
If the suspension is dilute enough so that the direct interaction and hydrodynamics interaction
disappear, then in the thermal equilibrium state, the random motion of particles can be
characterized by the translational diffusion coefficient Dt and the rotational diffusion coefficient
Dr in two-dimensional case. In the three-dimensional case, a 3× 3 rotational diffusion tensor
is required to fully describe the rotational diffusion. Knowledge of these parameters provides
information about both the static structure and dynamic properties of the particles, opening
the door for understanding functions and transport process of proteins [18], synthesis and
stability of materials [28], and biomolecular reactions [38], etc.

As an emerging X-ray diffraction techniques, X-ray photon correlation spectroscopy
(XPCS) is a promising tool for analyzing disordered systems, whose Brownian motion reveals
considerable information about the underlying system. Due to the short wavelength of X-ray,
XPCS is able to probe length scale down to nanometers. In XPCS experiments, a sample is
illuminated by X-ray beams and the intensity of the scattered field is recorded by detectors.
(See Fig. 1.1 for an illustration of the experiments). The inhomogeneity of the sample leads to
the irregular interference of the fields scattered by different particles, and consequently results
in brightness variation of different parts of the collected images. Typically, images collected
from disordered systems in XPCS experiments present a grainy texture, often referred to
as a “speckle” pattern. Valuable knowledge of the electron density distribution within the
sample can be recovered by analyzing the images. Furthermore, the temporal variation of
the speckle pattern yields information of the fluctuation of the electron density distribution
and thus can be used for studying the dynamic properties of the sample.

The most classical tool for analyzing the images is the auto-correlation g2, which is defined
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Figure 1.1: Illustration of the XPCS experiments.

based on the second-order degree of coherence [49]. The translational diffusion coefficient
Dt can be measured by fitting the auto-correlation g2 to parametric models, which will
be introduced later in Chapter 2. Other applications of g2 are described in [31], [44], [42].
However, to the best of our knowledge, there is no current algorithm to extract the rotational
diffusion coefficient Dr from XPCS experimental data, though the required raw data is
accessible.

One reason that the auto-correlation g2 does not capture rotational information is that it
does not utilize the angular fluctuation of the images. Such information is preserved when
the X-ray exposure time is below the rotational diffusion relaxation time of the particles
in samples, which can be achieved by conducting the XPCS experiments on beamlines
which have ultrafast pulses [30, 47], or by slowing down the motion of the particles. In
this thesis, we demonstrate the feasibility to estimate the rotational diffusion coefficient
Dr in a two-dimensional case by capitalizing on the angular fluctuation. We first propose
exploiting the more informative angular-temporal cross-correlation, which is able to extract
the information contained in the angular fluctuation. Mathematically, this cross-correlation
can be regarded as an probability expectation which in practice can be approximated by an
estimator whose consistency we prove in this thesis. In order to then extract the rotational
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diffusion coefficient Dr once the angular-temporal cross-correlation is estimated, we build a
numerical algorithm named ”Multi-tiered Estimation for Correlation Spectroscopy (MTECS)”,
following the multi-tiered iterative projection (M-TIP) philosophy [9, 10, 39]. Our algorithm
is built by constructing a set of operators which taken together form an iteration mapping
the cross-correlation to a form that agrees with the underlying mathematical model.

Our approach requires almost no prior assumption about the structure of the electron
density distribution. However, if such knowledge is a priori known, MTECS can take
advantage by including additional operators to enforce the corresponding constraints. By
incorporating with additional noise reduction, the MTECS algorithm is robust against noisy
data and is able to output filtered cross-correlation data for further analysis. Much of the
mathematical formulation and underlying algorithm lend themselves to a three-dimensional
version, which will be reported on elsewhere.

In Chapter 2, we introduce the background knowledge including the notations, descrip-
tion of the rotational Brownian motion and the mathematical formulation of the XPCS
experimental data. In Chapter 3, we present angular-temporal cross-correlation analysis of
the XPCS images and prove the consistency of the estimator of the cross-correlation data.
In Chapter 4 we construct our MTECS mathematical algorithm to extract the rotational
diffusion coefficient Dr from the estimated cross-correlation data. In Chapter 5, we illustrate
the capability of our algorithm by testing it on a series of simulated XPCS images. In Chapter
7, two extensions will be discussed.
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Chapter 2

Background

In this chapter, we formulate background relevant to Brownian motion and XPCS. In
this thesis, we will discuss about both the real space and Fourier space. First, we introduce
notations and definitions used through this paper.

2.1 Notations and Definitions

Let r and q denote the Cartesian coordinates in real space and Fourier space, which can
be expressed in terms of the polar coordinates as r = (r, θ) and q = (q, φ) where r = |r|,
q = q are the radial coordinates and θ, φ are the angular coordinates.

Assume a function f : Rd → C. Let L1(Rd) denote the Banach space of complex-valued
Lebesgue integrable functions on set Ω ⊂ Rd with norm

‖f‖L1(Ω) =

∫

Ω

|f(r)|dr, (2.1)

and L2(R) denote the Hilbert space of complex-value Lebesgue integrable functions on set
Ω ⊂ Rd with norm

‖f‖L2(Ω) =

∫

Ω

|f(r)|2dr. (2.2)

We use the following definition of the Fourier transform:

Definition 2.1. Define the Fourier transform of f ∈ L1(Rd) + L2(Rd) as

(Ff)(q) = f̂(q) =

∫

Rd
f(r)e−2πir·qdr, (2.3)
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and its inverse transform as

(F−1f)(r) =

∫

Rd
f̂(q)e2πir·qdq. (2.4)

The definition of the Fourier transform in L2(Rd) is extended from L1(R2) by using a
density argument.

Definition 2.2. The autocorrelation of a function f ∈ L2(Rd) is given by

(Af)(r) =

∫

Rd
f(r)f(r− r′)dr′. (2.5)

Definition 2.3. For function f ∈ L2([0, 2π]), its Fourier series is given by

f(φ) =
∞∑

m=−∞

fme
imφ, (2.6)

where the coefficients fm is given by

fm =
1

2π

∫ 2π

0

f(φ)e−imφdφ. (2.7)

Definition 2.4. The Wiener algebra A([0, 2π]) is the space of functions whose Fourier series
is absolutely convergent. For f ∈ A([0, 2π]), the norm is

‖f‖A =
∞∑

m=−∞

|fm|. (2.8)

One important property of the Wiener algebra is that it is closed under pointwise
multiplication:

‖f · g‖A ≤ ‖f‖A‖g‖A. (2.9)

By realizing that each function f : R2 → C can be turned into a set of functions
f(r, ·) : [0, 2π] → C, each formed by fixing the radial coordinate r, we can calculate the
Fourier series of f(r, ·) to make the following definition:

Definition 2.5. For f ∈ L2(R2), its circular harmonic series is given by

f(r, φ) =
∞∑

m=−∞

fm(r)eimφ, (2.10)

where the circular harmonic coefficients fm(r) are given by

fm(r) =
1

2π

∫ 2π

0

f(r, φ)e−imφdφ. (2.11)
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Let Jm denote the Bessel function of the first kind with integer order m, which can be
defined using integral as follows:

Definition 2.6. For an integer m, the Bessel function of the first kind with order m, denoted
as Jm, can be defined as

Jm(r) =
1

π

∫ π

0

cos(mθ − r sin θ)dθ. (2.12)

Then we can make the following definition:

Definition 2.7. The Hankel transform of order m ≥ −1
2

of a function f ∈ L2(R+) is given
by

(Hmf)(q) =

∫ ∞

0

f(r)Jm(qr)rdr. (2.13)

The circular harmonic coefficients of a function f ∈ L1(R2) ∩ L2(R2) and its Fourier
transform f̂ can be related via the Hankel transform,

f̂m(q) = 2π(−i)m
∫ ∞

0

fm(r)Jm(2πqr)rdr, (2.14)

fm(q) = 2πi2
∫ ∞

0

f̂m(q)Jm(2πqr)qdq. (2.15)

Definition 2.8. For f ∈ L2([0, R]) satisfying f(R) = 0, the Fourier-Bessel series of f is
given by

f(r) =
∞∑

n=1

fmn

√
2Jm(um,n

R
r)

RJm+1(um,n)
, (2.16)

where um,n is the n-th nontrivial root of the m-th order Bessel function Jm and the coefficients
are given by

fmn =

∫ R

0

f(r)

√
2Jm(um,n

R
r)

RJm+1(um,n)
rdr. (2.17)

The basis of Fourier-Bessel series is orthonormal in the sense that

∫ R

0

√
2Jm(um,n

R
r)

RJm+1(um,n)
·
√

2Jm(
um,n′

R
r)

RJm+1(um,n′)
rdr = δ(n− n′). (2.18)
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2.2 Mathematical Formulation of Brownian Motion

In this thesis, we consider a dilute two-dimensional system in which particles barely
interact with each other due to the large distances between them.

For the non-interacting particles, there are several mathematical formulations of their
translation Brownian motion, including the classical diffusion equation [11, 12], the Langevin
equation [27], the Wiener process [51, 52, 53]. We present the definition of the standard
multidimensional Wiener process, which is also introduced in [13, 34, 37].

Definition 2.9. A stochastic process W (·) ∈ R is a 1-dimensional Wiener process or
Brownian motion if it has the following properties:

(1) W (0) = 0 almost surely.

(2) W (t)−W (s) ∼ N (0, t− s) for all t ≥ s ≥ 0.

(3) W (t1),W (t2)−W (t1), · · · ,W (tn)−W (tn−1) are independent for all 0 < t1 < t2 · · · < tn.

(4) W (t) is continuous in t almost surely.

Definition 2.10. A stochastic process W (d)(·) = (W1(·), · · · ,Wd(·)) ∈ Rd is a d-dimensional
Wiener process or Brownian motion if it has the following properties:

(1) For k ∈ [1, d] ∩ Z, the component Wk(·) is a 1-dimensional Wiener process.

(2) The components are independent.

Here we consider the isotropic translation diffusion only. The non-isotropic translation
diffusion is not within the scope of this thesis. Let r(·) be the position of the center of mass
of a Brownian particle with translation diffusion coefficient Dr in two-dimensional space.
Then we have

r(t)− r(0) ∼
√

2DtW
(2)(t). (2.19)

To fully characterize the three-dimensional rotational diffusion, a 3× 3 diffusion tensor
is required. The description of the orientation depends on the choice of a set of particle
fixed axes. By choosing the particle fixed axes as the principal axes of inertia, the rotational
diffusion tensor can be diagonalized. We say the rotational diffusion is isotropic if diagonal
entries of such tensor are all the same. The equation of the isotropic rotational diffusion was
derived in [17] by means of the quaternions. The anisotropic rotational diffusion was treated
in [15] using the Cayley-Klein parameters.

In the two-dimensional system we consider, each particle rotates with respect to an axis
that passes through the center of mass of the particle and is perpendicular to the system.
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Let SO(2) be the two-dimensional rotation group, which can be parametrized by the angle
of the rotation. Stated by [8, 34], the orientation θ(t) ∈ SO(2) of a Brownian particle with
rotational diffusion coefficient Dr can be described as

θ(t)− θ(0) ∼
√

2DrW (t). (2.20)

Remark 2.2.1. Though θ(t) takes value over (−∞,∞) in the above equation the orientation,
and in [34], θ(t) is viewed as a random variable on [0, 2π), by reducing Eq. (2.20) modulo 2π,
one can establish the equivalence between them through the Poisson Summation Formula
(Theorem A.2). Naturally, their characteristic functions are the same.

Assuming decoupling of the translation diffusion and rotational diffusion, we summarize
the above formulations to give the description of the system studied in this thesis:

Condition 2.1. The system contains Np identical particles with position {rn(t)}Npn=1 and

orientation {θn(t)}Npn=1 satisfying:

(1) For each n ∈ [1, Np]∩Z, rn(t)− rn(0) ∼ √2DtW
(2)(t) and θn(t)− θn(0) ∼ √2DrW (t).

(2) rn(t), n ∈ [1, Np] ∩ Z and θn(t), n ∈ [1, Np] ∩ Z are all independent.

(3) For each n ∈ [1, Np] ∩ Z, θn(0) is uniformly distributed on [0, 2π), and rn(0), whose
characteristic function is χ, is uniformly distributed on an initial domain.

The last one is used for calculation of the ensemble average in Section 3.2. Section 3.3
addresses and overcomes the challenge that one cannot repeat the experiment to acquire
good approximation of such initial distributions.

2.3 Mathematical Formulation of X-ray Photon

Correlation Spectroscopy

Let ρ : R2 → R be the electron density of an individual particle whose center of mass is
at the origin and orientation is associated with angle 0. Throughout this thesis, we assume:

Condition 2.2. The electron density ρ satisfies that ρ, |rρ(r)| ∈ L1(R2) + L2(R2).

In practice, the above assumption holds naturally since the electron density ρ is always a
nicely-behaved function that can be treated to be smooth and compactly supported.
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The above condition ensures the existence of the Fourier transform of ρ,

ρ̂(q) =

∫
ρ(r)e−2πiq·rdr, (2.21)

which is usually called the form factor in X-ray context, and can be expressed in circular
harmonic expansion as

ρ̂(q, φ) =
∞∑

m=−∞

ρ̂m(q)eimφ, (2.22)

where ρ̂m are the circular harmonic coefficients of ρ̂. The intensity I is the squared modulus
of the form factor ρ̂,

I(q) = |ρ̂(q)|2, (2.23)

which can also be represented in circular harmonic expansion with coefficients {Im(q)}∞m=−∞.

I(q, φ) =
∞∑

m=−∞

Im(q)eimφ, (2.24)

The convergence of Eq. (2.22) and Eq. (2.24) are proved given Condition 2.2 (See Lemma
3.1).

Let R(θ) be the rotation matrix that rotates the angle θ to angle 0. Then the overall
electron density distribution of the sample is

ρ̄(r, t) =

Np∑

n=1

ρ
(
R
(
θn(t)

)
·
(
r − rn(t)

))
. (2.25)

The scattering vectors at which the images are recorded form a surface in the Fourier
space, termed as the Ewald sphere [14]. Assuming a flat Ewald sphere, these scattering
vector q can be reduced to its component orthogonal to the incident beam. In the absence
of multiple scattering, the scattered field in the far field can be modeled by the Fourier
transform of ρ̄(r, t),

E(q, t) =

∫

R2

ρ̄(r, t)e−2πiq·rdr (2.26)

=

Np∑

n=1

e−2πiq·rn(t)

∫

R2

ρ
(
R
(
θn(t)

)
r
)
e−2πiq·rdr (2.27)

=

Np∑

n=1

e−2πiq·rn(t)ρ̂
(
R
(
θn(t)

)
· q
)

(2.28)

=

Np∑

n=1

e−2πiq·rn(t)ρ̂
(
q, φ− θn(t)

)
. (2.29)
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Let J(·, t) denote the scattering images recorded by the detectors at time t. For any scattering
vector q, J(q, t) is the squared modulus of the scattered field E(q, t),

J(q, t) = |E(q, t)|2 =

∣∣∣∣∣

Np∑

n=1

e−2πiq·rn(t)ρ̂
(
q, φ− θn(t)

)
∣∣∣∣∣

2

. (2.30)

The temporal auto-correlation function g2 is defined as follows:

g2(q, φ, t) =
〈J(q, φ, τ)J(q, φ, τ + t)〉

〈J(q, φ, τ)〉2 , (2.31)

where the angle bracket 〈·〉 indicates the ensemble average that is equivalent to the time
average taken over τ for systems under thermal equilibrium. For isotropic systems, g2 does
not depend on φ [8]. In this case, the averages are also taken over φ, and the dependency of
g2 on φ can be dropped, thus becoming g2(q, t).

For spherical particles undergoing free diffusion [4, 45, 46],

g2(q, t) = 1 + e−8π2q2tDt . (2.32)

and hence estimation of Dt can be obtained according to this equation.

Remark 2.3.1. Due to the factor 2π in the formulation of Fourier transform (Definition 2.1),
there is a difference of factor 4π2 between Eq. (2.32) and the equation g2(q, t) = 1 + e−2q2tDt

introduced elsewhere.

For non-spherical particles, the particle structure plays an important role. Assuming
anistropic structure of particles and decoupling of translation diffusion and rotational diffusion,
we are able to show (see Section 3.2) that

g2(q, t) = 1 + e−8π2q2tDt

(∑∞
m=−∞ |ρ̂m(q)|2e−m2tDr

)2

(∑∞
m=−∞ |ρ̂m(q)|2

)2 . (2.33)

Other than Dt and Dr, the above equation involves also the unknowns, |ρ̂m(q)|2. However,
there may be insufficient information in Eq. (2.33) to extract all of these quantities, which
leads us to the analysis introduced in the next chapter.
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Chapter 3

Formulation, Analysis, and
Estimation of Angular-temporal
Cross-correlation

In current XPCS experiments, one can extract the angular fluctuation of the speckle
patterns. In this and the following chapters, we show that this provides key information for
estimating the rotational diffusion coefficients Dr as demonstrated in the following chapters.
The central idea stems from the realization that the angular fluctuation at different angles
are correlated because the pairs of photons that are scattered to different directions can
be correlated by the rotational dynamics. By capturing such pairs of photons, we can
probe the rotational motion of the particles. Furthermore, the de-correlation of the angular
fluctuation is caused by the relaxation of the rotational diffusion. Therefore, measurement of
the de-correlation of the angular fluctuation is crucial to retrieve the relaxation time of the
rotational diffusion, enabling us to estimate the rotational diffusion coefficients.

The temporal autocorrelation function g2 fails to take advantage of such information in
the angular fluctuation, since g2 does not depends on the angular coordinates for the isotropic
systems of our interests. Instead, we propose using the angular-temporal cross-correlation
function, whose formulation will be presented in Section 3.1.

Armed with an appropriate formulation of the angular-temporal cross-correlation function,
we can then explicitly calculate the angular-temporal cross-correlation (Section 3.2), illustrat-
ing that the cross-correlation can be related to the rotational diffusion and the structure of
the particles. The derivation of Eq. (2.33) is also provided in this section.

In practice, since the cross-correlation can be only approximated using a finite amount of
images, extra statistical bias is introduced. In Section 3.3, we present an estimator of the
desired cross-correlation and prove its consistency.
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3.1 Angular-temporal Cross-correlation

As said earlier, one disadvantage of the temporal auto-correlation g2 is that it correlates
points at only the same spatial positions (See Figure 3.1a). However, more information
can be uncovered by correlating points at different spatial positions. Thus we propose the
angular-temporal cross-correlation,

C(q, q′,∆φ, t) = 〈J(q, φ, τ)J(q′, φ+ ∆φ, τ + t)〉, (3.1)

where, as before, angle brackets indicate the ensemble average. See Figure 3.1b for an
illustration. Since the system of interest is isotropic and in equilibrium state, the ensemble
average equals the average performed over the angular coordinates φ and time τ . Then
Eq. (3.1) can be rewritten as

C(q, q′,∆φ, t) =
〈〈(

J(q, φ, τ)− 〈J(q, φ, τ)〉φ
)
·
(
J(q′, φ+ ∆φ)− 〈J(q′, φ, t+ τ)〉φ

)〉
φ

〉
τ

+
〈
〈J(q, φ, τ)〉φ · 〈J(q′, φ, τ + t)〉φ

〉
τ

(3.2)

where 〈·〉φ is the angular average and the 〈·〉τ is the temporal average. The first term on the
right-hand-side is the correlation of the angular fluctuation of the images.

The angular-temporal cross-correlation C can be reduced to the numerator of the temporal
autocorrelation g2 by setting q = q′ and ∆φ = 0, and hence the data obtained through C
is a proper subset of the data obtained through g2, which implies that most of the analysis
methods designed for g2 could be adapted to take C as input. Moreover, given the same
images, g2 generates only a data matrix, while the more informative C generates a 4-way
data tensor. To unleash more potential of the cross-correlation C, we designed the MTECS
algorithm (See Chapter 4).

In the context of other X-ray diffraction experiments, most of whom focus on revealing
information about static structures, researchers have been exploring application of reduced
forms of the cross-correlation Eq. (3.1) with consideration of only angular or spatial effect.
It is realized that the cross-correlation analysis is able to discover the symmetries of local
structures in disordered systems [54], and supporting theory was developed by [2] and validated
later by simulations [25]. Several algorithms for determination of macromolecular structure
utilizing the cross-correlation data gathered in Fluctuation X-ray scattering experiments [43,
29, 40, 10] were constructed on the foundation of the theory built in [20]. For anisotropic
systems, [26, 33] applied the techniques suggested by [7, 1, 32] to investigate the orientational
order.
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J(·,·,τ) J(·,·,τ+t)

qq
φ

q
φ

(a)

J(·,·,τ) J(·,·,τ+t)

q
φ

q′
φ+ ∆φ

(b)

Figure 3.1: (a) Illustration of the angular-temporal cross-correlation C correlating two points
at different spatial positions; (b) Illustration of the autocorrelation g2 correlating two points
at the same spatial positions.
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3.2 Calculation of Ensemble Average

By viewing the image J as a function of the positions {rn(t)}Npn=1 and orientations

{rn(t)}Npn=1, which are stochastic processes satisfying Condition 2.1, the angular-temporal
cross-correlation Eq. (3.1) can be expressed in terms of the expectation of those stochastic
processes,

C(q, q′,∆φ, t) =
1

2π

∫ 2π

0

E[J(q, φ, 0)J(q′, φ+ ∆φ, t)]dφ. (3.3)

In this section, we calculate the expectation explicitly to obtain the following theorem:

Theorem 3.1. Given Condition 2.1 and Condition 2.2, we have

E[J(q, φ, 0)J(q′, φ′, t)]

= Np

∞∑

m=−∞

e−im(φ′−φ)Im(q)Im(q′)e−m
2tDr (3.4)

+Np(Np − 1)I0(q)I0(q′)

+Np(Np − 1)
∣∣χ
(
2π(q − q′)

)∣∣2e−8π2q2tDt

(
∞∑

m=−∞

e−im(φ′−φ)ρ̂m(q)ρ̂m(q′)e−m
2tDr

)2

+Np(Np − 1)
∣∣χ
(
2π(q + q′)

)∣∣2e−8π2q2tDt

(
∞∑

m=−∞

e−im(φ′−φ)ρ̂m(q)ρ̂−m(q′)e−m
2tDr

)2

+Np(Np − 1)|χ(2πq)|2ρ̂0(q)
∞∑

m=−∞

e−im(φ−φ′)ρ̂m(q)Im(q′)e−tm
2Dr

+Np(Np − 1)|χ(2πq)|2ρ̂0(q)
∞∑

m=−∞

eim(φ−φ′)ρ̂m(q)Im(q′)e−tm
2Dr

+Np(Np − 1)|χ(2πq′)|2e−8π2q′2tDt ρ̂0(q′)
∞∑

m=−∞

eim(φ−φ′)Im(q)ρ̂m(q′)e−tm
2Dr

+Np(Np − 1)|χ(2πq′)|2e−8π2q′2tDt ρ̂0(q′)
∞∑

m=−∞

e−im(φ−φ′)Im(q)ρ̂m(q′)e−tm
2Dr

+Np(Np − 1)(Np − 2)|χ(2πq′)|2e−8π2q′2tDtI0(q)|ρ̂0(q′)|2

+Np(Np − 1)(Np − 2)χ
(
− 2π(q + q′)

)
χ(2πq)χ(2πq′)e−8π2q′2tDt

· ρ̂0(q)ρ̂0(q′)
∞∑

m=−∞

eim(φ−φ′)ρ̂m(q)ρ̂−m(q′)e−tm
2Dr

+Np(Np − 1)(Np − 2)χ
(
− 2π(q − q′)

)
χ(2πq)χ(2πq′)e−8π2q′2tDt
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· ρ̂0(q)ρ̂0(q′)
∞∑

m=−∞

eim(φ−φ′)ρ̂m(q)ρ̂m(q′)e−tm
2Dr

+Np(Np − 1)(Np − 2)χ
(
2π(q − q′)

)
χ(2πq)χ(−2πq′)e−8π2q′2tDt

· ρ̂0(q)ρ̂0(q′)
∞∑

m=−∞

e−im(φ−φ′)ρ̂m(q)ρ̂m(q′)e−tm
2Dr

+Np(Np − 1)(Np − 2)χ
(
2π(q + q′)

)
χ(2πq)χ(2πq′)e−8π2q′2tDt

· ρ̂0(q)ρ̂0(q′)
∞∑

m=−∞

e−im(φ−φ′)ρ̂m(q)ρ̂−m(q′)e−tm
2Dr

+Np(Np − 1)(Np − 2)|χ(2πq)|2|ρ̂0(q)|2I0(q′)

+Np(Np − 1)(Np − 2)(Np − 3)|χ(2πq)|2|χ(2πq′)|2e−8π2q′2tDt |ρ̂0(q)|2|ρ̂0(q′)|2,

where the expectation is over the joint distribution of {rn(0)}Npn=1, {rn(t)}Npn=1, {θn(0)}Npn=1 and

{θn(t)}Npn=1.

If the characteristic function χ is isotropic, then the right hand side of the above equation
depends on φ and φ′ only through φ′ − φ = ∆φ, i.e. the integrand of the right-hand-side of
Eq. (3.3) does not depend on φ. Thus C(q, q′,∆φ, t) (Eq. (3.3)) is equivalent to the right
hand side of Eq. (3.4).

Under the same assumption required by Theorem 3.1, we have

E[J(q, φ, t)] = NpI0(q) +Np(Np − 1)|χ(q)|2e−8π2q2tDt |ρ̂0(q)|2, (3.5)

whose derivation is presented in Appendix B.

If rn(0) is distributed uniformly on a large enough domain with smooth boundary, which
is always true in practice, the characteristic function χ(·) can be approximately viewed as
the indicator function at 0,

10(q) =

{
1 if q = 0,

0 if q 6= 0.
(3.6)

Additionally, suppose that the scattering vectors are non-zeros, i.e. q 6= 0 and q′ 6= 0. Then
only the first four terms remain in the expression of Eq. (3.4).

Taking q = q′, we can obtain Eq. (2.33),

g2(q, t) =
1

Np

∑∞
m=−∞ |Im(q)|2e−m2tDt

|I0(q)|2 +
Np − 1

Np
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+
Np − 1

Np

e−8π2q2tDt

(
∞∑

m=−∞

|ρ̂m(q)|2e−m2tDr

)2

|I0(q)|2 (3.7)

≈ 1 + e−8π2q2tDt

(
∞∑

m=−∞

|ρ̂m(q)|2e−m2tDr

)2

|I0(q)|2 , (3.8)

where the approximation holds when Np is large.

Besides, considering q 6= q′ and q 6= −q′, we have:

Theorem 3.2. Suppose Condition 2.1 and Condition 2.2 hold, and χ = 10. For q > 0, q′ > 0
and ∆φ 6= 0 or π, we have

C(q, q′,∆φ, t) = Np

∞∑

m=−∞
m6=0

e−im∆φIm(q)Im(q′)e−m
2tDr +N2

p I0(q)I0(q′). (3.9)

Remark 3.2.1. Fixing q, q′, t and viewing C(q, q′,∆φ, t) as a function of the angular coordi-
nate ∆φ, the second term on the right hand side is merely the angular average, and the first
term on the right hand side is in fact resulted from the angular average of the images. Intu-
itively, provided the assumption that the motions of different particles are independent with
each other (Condition 2.1 (2)), the inter-particle effects vanish [35]. The main contribution
to the first term arises from the effect of each individual particles. The rotational diffusion
results in the decaying terms e−m

2k∆tDr , and consequently the de-correlation of the angular
fluctuation of the images.

This shows why the cross-correlation C Eq. (3.9) is more powerful than the auto-correlation
g2 Eq. (2.33) in terms of estimating the rotational diffusion coefficients Dr. First, notice the
rates of the multi-component exponential decay in C are determined by Dr, while the rates
of the decay in g2 depend on both Dr and the translational diffusion coefficient Dt. We also
note that though both C and g2 involve unknowns Im in C and ρm in g2 that are related to
the static electron density of the particle, C is able to give substantially more data to handle
those unknowns. In Chapter 4, we develop an algorithm exploiting this cross-correlation C.

We can now prove Theorem 3.1. We first prove the following lemma:

Lemma 3.1. If Condtion 2.2 holds, then for any q > 0, ρ̂(q, ·) ∈ A([0, 2π]), where A([0, 2π])
is a Wiener algebra.

Proof of Lemma 3.1. We first define

f(q) = −2πi

∫

R2

ρ(r)(r2q cosφ− r1q sinφ)e−2πir·qdr, (3.10)
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where q = (q, φ) in polar coordinates and r = (r1, r2) in Euclidean coordinates. Since
|rρ(r)| ∈ L1(R2) + L2(R2), it is easy to verify that the integral in f(q) is well-defined and
f(q) is continuous. According to Fubini’s Theorem (Theorem A.8), for any q > 0, φ, φ′,

∫ φ′

φ

f(q, φ)dφ =

∫ φ′

φ

−2πi

∫

R2

ρ(r)(r2q cosφ− r1q sinφ)e−2πir·qdrdφ (3.11)

=

∫

R2

ρ(r)

∫ φ′

φ

−2πi(r2q cosφ− r1q sinφ)e−2πir·qdφdr (3.12)

=

∫

R2

ρ(r)e−2πir·q
∣∣∣∣
(q,φ′)

(q,φ)

dr (3.13)

= ρ̂(q, φ′)− ρ̂(q, φ). (3.14)

From the fundamental theorem of calculus, for each q > 0, ρ̂(q, ·) is differentiable. Thus, for
each k ∈ Z,

ρ̂m(q) = imfm(q). (3.15)

By Cauchy-Schwarz inequality and Parseval’s Theorem for Fourier series (Theorem A.5),

∞∑

m=−∞

= |ρ̂0(q)|+
∑

m 6=0

|ρ̂m(q)| (3.16)

= |ρ̂0(q)|+
∑

m 6=0

|imfm(q)| (3.17)

≤ ‖ρ(q, ·)‖L1([0,2π]) +

(∑

m6=0

1

m2

) 1
2
(∑

m6=0

|fm(q)|2
) 1

2

(3.18)

≤ ‖ρ(q, ·)‖L1([0,2π]) +

(∑

m6=0

1

m2

) 1
2 (
‖f(q, ·)‖L2([0,2π])

) 1
2 (3.19)

<∞. (3.20)

So ρ̂(q, ·) ∈ A([0, 2π]) for each q > 0.

Remark 3.2.2. Given the closedness of a Wiener algebra, it is trivial to show that if
ρ̂(q, ·) ∈ A([0, 2π]), then both ρ̂(q, ·) and I(q, ·) are in the same Wiener algebra, i.e. their
circular harmonic series are all absolutely convergent. Thus the order of the summation and
integration of their circular harmonic coefficients can be interchanged arbitrarily.

Proof of Theorem 3.1. Let φ′ = φ + ∆φ and q′ = (q′, φ′). According to Eq. (2.30), the
integrand reads
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E[J(q, φ, 0)J(q′, φ′, t)] =

Np∑

n1,n2,n3,n4=1

E
[
e−2πiq·(rn1 (0)−rn2 (0))e−2πiq′·(rn3 (t)−rn4 (t))

]

E
[
ρ̂
(
q, φ− θn1(0)

)
ρ̂
(
q, φ− θn2(0)

)
ρ̂
(
q′, φ′ − θn3(t)

)
ρ̂
(
q′, φ′ − θn4(t)

)]
. (3.21)

We denote the terms in the above quadruple summation as Sn1n2n3n4 , which we categorize
into 15 types based on the equivalence between n1, n2, n3, n4:

1) When n1 = n2 = n3 = n4, without loss of generality, we assume that they all equal to
1, then

S1111 = E
[
I
(
q, φ− θ1(0)

)
I
(
q′, φ′ − θ1(t))

]
(3.22)

=
∞∑

m,m′=−∞

Im(q)Im′(q′)e
imφe−im

′φ′E
[
e−imθ1(0)eim

′θ1(t)
]

(3.23)

=
∞∑

m,m′=−∞

Im(q)Im′(q′)e
imφe−im

′φ′E
[
ei(m

′−m)θ1(t)
]
E
[
eim

′(θ1(t)−θ1(0))
]

(3.24)

=
∞∑

m,m′=−∞

Im(q)Im′(q′)e
imφe−im

′φ′δmm′e
−m′2tDr (3.25)

=
∞∑

m=−∞

e−im(φ′−φ)Im(q)Im(q′)e−m
2tDr , (3.26)

where Im are circular harmonic coefficients of the intensity I.

δmm′ =

{
0 if m 6= m′,

1 if m = m′.
(3.27)

There are Np such terms in the summation.

2) When n1 = n2 6= n3 = n4, the term becomes

S1122 = E
[
I
(
q, φ− θ1(τ)

)]
E
[
I
(
q′, φ′ − θ1(t+ τ)

)]
. (3.28)

We have

E
[
I
(
q, φ− θ1(τ)

)]
=

∞∑

m=−∞

Im(q)eimφE
[
e−imθ1(t)

]
(3.29)

=
∞∑

m=−∞

Im(q)eimφE
[
e−imθ1(0)

]
E
[
e−im(θ1(t)−θ1(0))

]
(3.30)

=
∞∑

m=−∞

Im(q)eimφδ0me
−m2tDr (3.31)
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= I0(q). (3.32)

Hence
S1122 = I0(q)I0(q′). (3.33)

There are Np(Np − 1) such terms.

3) When n1 = n4 6= n2 = n3, the terms can be calculated as follows:

S1221 = E
[
e−2πi(q·r1(τ)−q′·r1(t+τ))

]
E
[
ρ̂
(
q, φ− θ1(τ)

)
ρ̂
(
q′, φ′ − θ1(t+ τ)

)]

E
[
e2πi(q·r1(τ)−q′·r1(t+τ))

]
E
[
ρ̂
(
q, φ− θ1(τ)

)
ρ̂
(
q′, φ′ − θ1(t+ τ)

)]
. (3.34)

Using the same techniques as the calculation of Eq. (3.22),

E
[
ρ̂
(
q, φ− θ1(τ)

)
ρ̂
(
q′, φ′ − θ1(t+ τ)

)]
=

∞∑

m=−∞

e−im(φ′−φ)ρ̂m(q)ρ̂m(q′)e−m
2tDr . (3.35)

Also, we have

E
[
e−2πi(q·r1(τ)−q′·r1(t+τ))

]
= E

[
e−2πiq′·(r1(τ)−r1(t+τ))

]
E
[
e−2πi(q−q′)·r1(τ)

]
(3.36)

= χ(2π|q − q′|)e−4π2q2tDt . (3.37)

According to the above three equations,

S1221 = |χ(2π|q − q′|)|2e−8π2q2tDt

(
∞∑

m=−∞

e−im(φ′−φ)ρ̂m(q)ρ̂m(q′)e−m
2tDr

)2

. (3.38)

Proceeding along the same lines, we can compute the rest of the terms.

3.3 Convergence of Cross-correlation

Since the angular-temporal cross-correlation Eq. (3.1) is essentially an expectation over
a complicated unknown joint distribution of the positions and orientations of the particles,
it can not be evaluated exactly in practice. Instead, one can collect a finite amount of
images, {J(·, k∆t)}K−1

k=0 , where K is the total amount of images collected and ∆t is the time
difference between two consecutive images, and the cross-correlation can be approximated by
the following estimator:

CK(q, q′,∆φ, k) =
1

2π(K − k)

∫ 2π

0

K−1−k∑

k′=0

J(q, φ, k′∆t)J(q′, φ+ ∆φ, (k + k′)∆t)dφ (3.39)
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which then results in introduction of statistical bias.

In this section, we prove that CK(q, q′,∆φ, k) is a consistent estimator of C(q, q′,∆φ, k∆t),
i.e. while ∆t is fixed,

CK(q, q′,∆φ, k)
P−→ C(q, q′,∆φ, k∆t) (3.40)

as K →∞.

Let C(q, q′, t) be the right hand side of Eq. (3.4) and

CK(q, q′, k) =
1

K − k
K−1−k∑

k′=0

J(q, φ, k′∆t)J(q′, φ′, (k + k′)∆t) (3.41)

where q = (q, φ) and q′ = (q′, φ′). Additionally, let Ft denote the collection of the positions
and orientations of the particles before t,

Ft = {rn(τ), θn(τ)|0 ≤ τ ≤ t, n = 1, 2, · · · , Np}. (3.42)

Then we prove the following theorem.

Theorem 3.3. Assume Condition 2.1 (1-2) holds and F0 is known. If ρ, |rρ(r)| ∈ L1(R2),
then for any q = (q, φ), q′ = (q′, φ′) and any ε > 0, ∃α, β > 0, such that

Pr
(
|CK(q, q′, k)− C(q, q′, t)| ≥ ε

∣∣F0

)
≤ αe−βKε

2

, (3.43)

holds for any K > k, where α and β are two constants that do not depend on F0.

Since α and β do not rely on the information of F0, by integrating the inequality
(3.43) with respect to F0 and the angular coordinate, the convergence of CK(q, q′,∆φ, k) to
C(q, q′,∆φ, k∆t) in probability can be established trivially.

Remark 3.3.1. Though Condition 2.1 (4) is used in the calculation of C(q, q′, t) in Section
3.2, here the initial positions and orientations are treated as constants instead of random
variables, since conduction of multiple experiments with randomized initial states is sometimes
not feasible. Additionally, we are usually not able to access the value of the images at the
full angular range due to detector issues. Under these circumstances, Theorem 3.3 authorizes
us to estimate C(q, q′, φ, k∆t) using part of the angular data from a single conduction of the
experiment.

Proof of Theorem 3.3. Here all the probability and expectation are conditional on F0. For
the sake of simplicity, we just drop the dependence of F0.

Fix q = (q, φ), q′ = (q′, φ′) and k. From Lemma 3.1, we know

ρ̂(q, ·), ρ̂(q′, ·), ρ̂(q, ·), ρ̂(q′, ·), I(q, ·), I(q′, ·) ∈ A([0, 2π]). (3.44)
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The absolute convergence of their circular harmonic series ensures the feasibility of all
expansions of summation, the interchange of summation and expectation, and the convergence
of infinite series in this proof.

Recalling Eq. (2.30),

CK(q, q′, k)

=

Np∑

n1,n2,n3,n4=1

1

K − k
K−1−k∑

k′=0

e2πi(−q·rn1 (k′∆t)+q·rn2 (k′∆t)−q′·rn3 ((k+k′)∆t)+q′·rn4 ((k+k′)∆t)

· ρ̂
(
q, φ−θn1(k

′∆t)
)
ρ̂
(
q, φ− θn2(k

′∆t)
)
ρ̂
(
q′, φ′−θn3((k+k′)∆t)

)
ρ̂
(
q′, φ′ − θn4((k + k′)∆t)

)
.

(3.45)

Assume the sum of the terms with n1 = n2 = n3 = n4 is S1,K and the sum of the rest terms
is S2,K . First we prove that

S1,K(q, q′, k)
P−→ Np

∞∑

m=−∞

Im(q)Im(q′)e−im(φ′−φ)e−tm
2Dr as K →∞. (3.46)

First, we have

S1,K(q, q′, k) =
N∑

n=1

1

K − k
K−1−k∑

k′=0

I(q, φ− θn(k′∆t))I(q′, φ′ − θn((k′ + k)∆t)). (3.47)

For each k′ = 0, 1, · · · , K − 1− k and each n = 1, · · · , Np,

E[I(q, φ− θn(k′∆t))I(q′, φ′ − θn((k′ + k)∆t))] (3.48)

=E

[
∞∑

m1,m2=−∞

Im1(q)Im2(q
′)eim1(φ−θn(k′∆t))e−im2(φ′−θn((k′+k)∆t))

]
(3.49)

=
∞∑

m1,m2=−∞

Im1(q)Im2(q
′)eim1φe−im2φ′E[ei(m2−m1)θn(k′∆t)]E[eim2(θn((k′+k)∆t)−θn(k′∆t))] (3.50)

=
∞∑

m1,m2=−∞

Im1(q)Im2(q
′)ei(m1φ−m2φ′)e−m

2
2k∆tDre−(m2−m1)2k′∆tDrei(m2−m1)θn(0). (3.51)

Adding this up,

E[S1,K(q, q′, k)] (3.52)

=

Np∑

n=1

∞∑

m1,m2=−∞

Im1(q)Im2(q
′)ei(m1φ−m2φ′)e−m

2
2k∆tDrei(m2−m1)θn(0) 1

K − k
K−1−k∑

k′=0

e−(m2−m1)2k′∆tDr

(3.53)
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=Np

∞∑

m=−∞

Im(q)Im(q′)e−im(φ′−φ)e−m
2k∆tDr

+
1

K − k

Np∑

n=1

∑

m1 6=m2

Im1(q)Im2(q
′)ei(m1φ−m2φ′)e−m

2
2k∆tDrei(m2−m1)θn(0) 1− e−(m2−m1)2(K−k)∆tDr

1− e−(m2−m1)2∆tDr
.

(3.54)

Let S̃1,K be the second term in the above equality,

|S̃1,K | ≤Np

∞∑

m1 6=m2

|Im1(q)||Im2(q
′)| 1

K − k
1− e−(m2−m1)2(K−k)∆tDr

1− e−(m2−m1)2∆tDr
(3.55)

≤ Np

(K − k)(1− e−∆tDr)
‖I(q, ·)‖A‖I(q′, ·)‖A. (3.56)

Therefore,

lim
K→∞

E[S1,K(q, q′, k)] = Np

∞∑

m=−∞

Im(q)Im(q′)e−im(φ′−φ)e−tm
2∆tDr . (3.57)

Then for each n = 1, · · · , N , let

S
(n)
1,K(q, q′, k) =

1

K − k
K−1−k∑

k′=0

I(q, φ− θn(k′∆t))I(q′, φ′ − θn((k′ + k)∆t)). (3.58)

We now illustrate that

S
(n)
1,K(q, q′, k)− E[S

(n)
1,K(q, q′, k)]

P−→ 0 as K →∞. (3.59)

For simplicity, we drop n temporarily in some of the subscripts and superscripts and let
θj = θn(j∆t) for j = 0, 1, · · · , K − 1. Suppose that

Hp = E[S
(n)
1,K(q, q′, k)|F(p−1)∆t]− E[S

(n)
1,K(q, q′, k)|Fp∆t], p = 1, · · · , K − 1. (3.60)

It is obvious that {Hp}K−1
p=1 is a martingale with respect to {Fp∆t}K−1

p=1 and

K−1∑

p=1

Hp = S
(n)
1,K(q, q′, k)− E[S

(n)
1,K(q, q′, k)]. (3.61)

Then, let

H
(m1,m2)
p,k′ = E

[
ei(m2−m1)(θk′−θ0)eim2(θk+k′−θk′ )

∣∣F(p−1)∆t

]

− E
[
ei(m2−m1)(θk′−θ0)eim2(θk+k′−θk′ )

∣∣Fp∆t
]
. (3.62)
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If k′ < p− k, |H(m1,m2)
p,k′ | = 0. Considering p− k ≤ k′ ≤ p− 1, we have

min{p−1,K−1−k}∑

k′=max{0,p−k}

∣∣H(m1,m2)
p,k′

∣∣ (3.63)

=

min{p−1,K−1−k}∑

k′=max{0,p−k}

∣∣ei(m2−m1)(θk′−θ0)+im2(θp−1−θk′ )
∣∣

·
∣∣∣E
[
eim2(θk′+k−θp−1)∆θj

∣∣F(p−1)∆t

]
− E

[
eim2(θk′+k−θp−1)

∣∣Fp∆t
]∣∣∣ (3.64)

=

min{p−1,K−1−k}∑

k′=max{0,p−k}

∣∣∣E
[
eim2(θk+k′−θp−1)

]
− eim2(θp−θp−1)E

[
eim2(θk+k′−θp)

]∣∣∣ (3.65)

≤
∣∣e−m2

2∆tDr − eim2(θp−θp−1)
∣∣
k−2∑

k′=0

e−m
2
2k
′∆tDr (3.66)

≤ 2

1− e−∆tDr
, (3.67)

and when considering k′ ≥ p,

K−1−k∑

k′=p

∣∣H(m1,m2)
p.k′

∣∣ (3.68)

=
K−1−k∑

k′=p

∣∣ei(m2−m1)(θp−1−θ0)
∣∣ ·
∣∣∣E
[
eim2(θk+k′−θk′ )j

]∣∣∣

·
∣∣∣E
[
ei(m2−m1)(θk′−θp−1)

∣∣F(p−1)∆t]− E
[
ei(m2−m1)(θk′−θp−1)

∣∣Fp∆t
]∣∣∣ (3.69)

=
K−1−k∑

k′=p

e−m
2
2k∆tDr

∣∣∣E
[
ei(m2−m1)(θk′−θp−1)

]
− ei(m2−m1)(θp−θp−1)E

[
ei(m2−m1)(θk′−θp)

]∣∣∣ (3.70)

≤
∣∣e−(m2−m1)2∆tDr − ei(m2−m1)∆θp

∣∣
K−2−k−p∑

k′=0

e−(m2−m1)2∆tDr (3.71)

≤ 2

1− e−∆tDr
. (3.72)

Hence,

K−1−k∑

k′=0

∣∣H(m1,m2)
p,k′

∣∣ =

p−k∑

k′=0

∣∣H(m1,m2)
p,k′

∣∣+

min{p−1,K−1−k}∑

k′=max{0,p−k}

∣∣H(m1,m2)
p,k′

∣∣+
K−1−k∑

k′=p

∣∣H(m1,m2)
p.k′

∣∣ (3.73)

≤ 4

1− e−∆tDr
. (3.74)
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Then for each p = 1, · · · , N − 1,

|Hp| ≤
1

K − k
∞∑

m1,m2=−∞

|Im1(q)| · |Im2(q
′)| ·

∣∣ei(m1φ−m2φ′+(m2−m1)θn(0))
∣∣ ·
∣∣∣∣
K−1−k∑

k′=0

H
(m1,m2)
p,k′

∣∣∣∣

(3.75)

≤ 4

(K − k)(1− e−∆tDr)
‖I(q, ·)‖A‖I(q, ·)‖A. (3.76)

Applying the Azuma-Hoeffding inequality (Theorem A.7), for all ε > 0, we have

P(|S(n)
1,K(q, q′, k)− E[S

(n)
1,K(q, q′, k)]| > ε) ≤ 2 exp

(−(K − k)2(1− e−∆tDr)2ε2

32K‖I(q, ·)‖2
A‖I(q, ·)‖2

A

)
. (3.77)

Since this limit holds for n = 1, · · · , Np and

S1,K(q, q′, k) =

Np∑

n=1

S
(n)
1,K(q, q′, k), (3.78)

we know that for ∀ε > 0, N > 0, ∃α > 0, β > 0 such that

P(|S1,K(q, q′, k)− E[S1,K(q, q′, k)]| > ε) ≤ αe−βNε
2

. (3.79)

A similar tail bound of S2,K(q, q′, k) can be obtain along similar procedure. The derivation
of this theorem is then straightforward.

In the above proof, the time difference ∆t is fixed while K is increasing, which implies the
total duration of the experiment K∆t is increasing as well. If we fix the duration K∆t = T ,
then increase the number of images collected K, i.e. collect the images more frequently, the
desired conclusion can not be obtained. Under this assumption that ∆t = T/K and k = t/∆t
where t is fixed, the right hand side of the inequality (3.54) contains a factor whose limit is
non-zero,

lim
K→∞

1

K − k
1− e−(m2−m1)2(K−k)TDr/K

1− e−(m2−m1)2TDr/K
=

1− e−(m2−m1)2(T−t)Dr

(m2 −m1)2(T − t)Dr

, (3.80)

for m1 6= m2, and thus it can be proved that the bias of CK is asymptotically proportional to
1
T

as T →∞,

E[CK(q, q′, k)]− C(q, q′, k∆t) = O
(

1

T

)
, (3.81)

which suggests that more frequent collection of images without extending the total duration
of experiments will not help obtain better estimates. In other words, collecting more images
over the same time period will not converge to a better estimate, due to the non-zero limit
above.
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On the other hand, as Dr becomes larger, both the bounds Eq. (3.56) and Eq. (3.77)
become tighter. In fact, the larger the Dr and Dt, the tighter the bounds of CK . Indeed,
faster motions of the particles can be viewed intuitively as longer duration of the experiments,
which as claimed by our previous discussion, results in more accurate estimates of the
angular-temporal cross-correlation.
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Chapter 4

Numerical Algorithm for Estimating
the Rotational Diffusion Coefficient

In practice, the domain is usually large enough and with smooth boundary, so that the
characteristic function χ can be viewed as the indicator function 10. Since the electron
density ρ is real, and following Friedel’s law (Theorem A.4), one can prove that the intensity
I is symmetric, i.e. I(q) = I(−q), and hence Im = 0 for any odd m. Then Eq. (3.9) becomes

C(q, q′,∆φ, t) = Np

∞∑

m=−∞
m 6=0

e−i2m∆φI2m(q)I2m(q′)e−4m2tDr +N2
p I0(q)I0(q′). (4.1)

In this chapter, we construct a mathematical algorithm, which we call ”Multi-tiered
Estimation for Correlation Spectroscopy (MTECS)”, for estimating the rotational diffusion
coefficient Dr from the angular-temporal cross-correlation Eq. (3.9), given in the first term
on the right-hand-side of the above equation. (The second term on the right-hand-side is
the angular average of the cross-correlation.) The first term, denoted as C̃(q, q′,∆φ, t), is
essentially the correlation of the angular fluctuation of the images, and can be estimated by

C̃(q, q′,∆φ, k∆t) = C(q, q′,∆φ, k∆t)− 〈J(q, φ, τ)〉 · 〈J(q′, φ, τ)〉 (4.2)

≈ 1

2π(Nsp − k)

∫ 2π

0

Nsp−1−k∑

k′=0

J(q, φ, k′∆t)J(q′, φ+ ∆φ, (k + k′)∆t)dφ (4.3)

−
(

1

2πNsp

Nsp−1∑

k=0

∫ 2π

0

J(q, φ, k∆t)dφ

)(
1

2πNsp

Nsp−1∑

k=0

∫ 2π

0

J(q′, φ, k∆t)dφ

)
. (4.4)

where the subtraction of the second term above can be replaced by subtracting the angular
average from each images beforehand. Here we assume:

Condition 4.1. ρ is not isotropic. The support of ρ is bounded.
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In the above condition, the former one implies that the reorientation of particles will result
in the variation of the images J . Such assumption is required by our algorithm, because an
isotropic ρ makes C̃ constantly zero so that the rotation of the particles can not be detected
from the cross-correlation. The latter holds naturally for any realistic electron density ρ. Let
L be an upper bound of the diameter of the support. This is the only prior knowledge that
is necessary to the MTECS algorithm.

Assuming that the above function is discretely approximated at q, q′ ∈ {qj}Nqj=1, ∆φ ∈
{∆φj}Nφj=1, and t ∈ {k∆t}K−1

k=0 , this gives rise to a 4-way data tensor C ∈ RNq×Nq×Nφ×K whose
entries are

Cii′jk = C̃(qi, qi′ ,∆φj, k∆t) = Np

∞∑

m=−∞
m6=0

e−i2m∆φI2m(qi)I2m(qi′)e
−4m2k∆tDr , (4.5)

where the constant Np is omitted hereafter since it is irrelevant to the construction and
execution of the algorithm and thus does not have to be determined.

Taking the data tensor C as input, the MTECS algorithm estimates the rotational diffusion
coefficient Dr by following the multi-tiered iterative projection (M-TIP) approach which
decomposes the complex optimization into subparts whose solutions can be either obtained
directly or approximated through computationally efficient iterative solvers. This avoids
solving a high-dimensional non-convex optimization directly, narrowing down the non-convex
part to relatively lower dimensional space. Each of the subparts enforces a constraint
originating from the underlying theoretical model describing the input data Eq. (4.5), and
together are combined into an iteration, which is applied repeatedly to find a form that is
close to the data while obeying the mathematical characterization.

The flowchart Figure 4.1 sketches the procedure of the MTECS algorithm. In Section
4.1-4.4, we introduce the subparts throughly. In Section 4.5, we give an overview of the
MTECS algorithm and provide other algorithmic details.

We will use the similar notations of tensors as in [21, 22]. The (i1, i2, · · · , in)−th entry of
an n-way tensor X ∈ CI1×I2×···×In is denoted as Xi1i2···in . The subarrays of X are identified by
fixing a subset of the indices while varying the others, which are labeled by MATLAB-style
notations, i.e. replacing the varying subscripts by colons. For example, X:i2···in is a vector
obtained by varying the first index, Xi1::i4···in indicates a matrix formed by varying the second
and the third indices, and Xi1:···: is an (n− 1)-way tensor. The Frobenious norm of the tensor
X is defined as

‖X‖F =

√√√√
I1∑

i1=1

I2∑

i2=1

· · ·
In∑

in=1

|Xi1···in|2. (4.6)

We say X is rank one if there exists vectors x(1) ∈ CI1 , x(2) ∈ CI2 , · · · , x(n) ∈ CIn such that X
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B(p)
ii′mk = I2m(qi)I2m(qi′)e

−4m2k∆tDr
Correlation

Noise Projector B̃(p+1)

Band-limiting
Projector

Multiplication
with Vm

(G(p)
m )nn′k = a(2m)na(2m)n′e−4m2k∆tDr G̃(p)

m

One-rank tensor
Decomposition

(A
(p)
m )n = a(2m)n Outer Product

R
(p)
km = e−4m2k∆tDr R̃(p)

Exponential
Fitting D

(p)
r

Cross-correlation data

Cii′jk =

M∑

m=−M
m6=0

e−i2m∆φjI2m(qi)I2m(qi′)e
−4m2k∆tDr

Figure 4.1: Flowchart of the MTECS algorithm. The blue arrows represent the subparts that
can be computed exactly, and the red arrows stand for the subparts whose solutions can only
be approximated iteratively. See the following subsections for more detailed description of
the subparts and equations.



CHAPTER 4. NUMERICAL ALGORITHM FOR ESTIMATING THE ROTATIONAL
DIFFUSION COEFFICIENT 29

can be represented as their outer product,

X = x(1) ⊗ x(2) ⊗ · · · ⊗ x(n),⇐⇒ Xi1i2···in = x
(1)
i1
x

(2)
i2
· · ·x(n)

in
. (4.7)

4.1 Correlation Noise Projector

Here we construct the correlation noise projector PC which finds the Fourier components of
the cross-correlation data by utilizing the fact that the cross-correlation can be approximated
by a finite amount of terms in Eq. (4.5). We first truncate the infinite summation in Eq. (4.5)
to the first finite terms

Cii′jk = Np

M∑

m=−M
m 6=0

e−i2m∆φI2m(qi)I2m(qi′)e
−4m2k∆tDr . (4.8)

which can be written in terms of matrix-vector multiplication as

Cii′:k = E · Bii′:k, (4.9)

where the entries of E ∈ CNφ×2M and B ∈ CNq×Nq×2M×K are

Bii′mk = I2m(q)I2m(q′)e−4m2k∆tDr , (4.10)

Ejm = e−i2m∆φj . (4.11)

A good heuristic choice of M is proportional to πLqmax, which is based on the number of
Shannon elements within the measured q range. Seeing that the matrix E can be calculated
explicitly, Eq. (4.9) is an overdetermined linear system.

Remark 4.1.1. Though Eq. (4.8) is the Fourier series of the function C̃(qi, qi′ , ·, k∆t) with
respect to the third argument, the coefficients Bii′:k cannot be computed through Eq. (2.7),
owing to the fact that we are not able to access the value of C̃(qi, qi′ , ·, k∆t) over the whole
angular range [0, 2π). This is caused by the necessary assumption, ∆φ 6= 0 and ∆φ 6= π,
which is required by Theorem 3.2: violating this assumption leads to the peaks at ∆φ = 0 and
∆φ = π (See the analysis in the Section 3.2 and Figure 5.3). In practice, detector malfunction
may also result in that the angular range [0, 2π) cannot be fully accessed.

To solve the linear system Eq. (4.9), we formulate the correlation noise projector through
a Tikhonov regularization with Morozov’s discrepancy [36]. Given the current guess of B, the
projector PC calculates

PCB = B + ∆B, (4.12)
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where for each k, ∆B:::k solves

min
∆B:::k∈CNq×Nq×2M

Nq∑

i,i′=1

‖∆Bii′:k‖2qiqi′ , (4.13)

s.t.
1

NφN2
q

Nq∑

i,i′=1

1

σ2
ii′k

‖Cii′:k − E · (Bii′:k + ∆Bii′:k)‖2 ≤ τk, (4.14)

where σii′k are scaling parameters and τk is a fitting parameter indicating the strength of
the constraint. The qiqi′ factor in the objective function results from the q factor in the
orthogonality of the basis function Eq. (4.29) (See Eq. (4.35)). In principle, the projector
PC seeks the minimal perturbation of the current guess of B to make the cross-correlation
corresponding to the updated B within the range weighted and specified by σii′k and τk from
the data. The effect of the projector PC is greatly influenced by the choice of τk. Small τk
imposes tighter constraints so that the updated cross-correlation is closer to data, leading to
potential absorption of noise, while large values of τk have the tendency to oversmooth the
solution. The selection of the σii′k and τk will be described later.

By rescaling and vectorizing the tensors, the above optimization problem can be rewritten
as

min
∆B∈C2N2

qM

‖∆B‖2, (4.15)

s.t. ‖C − E ·∆B‖2 ≤ τk, (4.16)

where C ∈ RN2
qNφ and E ∈ CN2

qNφ×2N2
qM . This optimization is equivalent to Tikhonov

regularization with Morozov’s discrepancy [36], which can be solved by finding

∆B(λ) = (E
∗
E + λI)−1C (4.17)

satisfying
‖C − E∆B(λ)‖2 = τk. (4.18)

In [19], it is shown that the left hand side of Eq. (4.18) is a monotonic function of λ, which
in our implementation Eq. (4.18) was solved by the Newton–Raphson method coupled with
the bisection method when the bound constraints are violated.

We select the parameter σii′k and τk following the approach outlined in [39]. The parameter
σii′k are chosen by how well the mathematical model describes the cross-correlation data C.
Specifically, we calculate the full singular value decomposition of E,

E = UCΛCV∗C ,
UC = [UC1,UC2],

(4.19)
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where UC1 consists of the first 2M columns of UC , and the remaining Nφ− 2M columns form
UC2. Then we select

σ2
ii′k =

‖U∗C2Cii′:k‖2

Nφ − 2M
, (4.20)

which in fact is an estimation of the inconsistency between the cross-correlation data Cii′:k
and Eq. (4.8). As for τk, a good heuristic is

τk =

(
1 +

2

Nφ − 2M − 2

)(
1− 2M(‖C‖2 − 1)

Nφ(‖C‖2 − 1) + 2M

)
. (4.21)

where the first term is based on Chi-square distribution statistics and the second one is based
on the estimated magnitude of errors.

According to Eq. (4.10) and the fact that I is real, we know theoretically

Bii′mk = Bii′(−m)k. (4.22)

Such conjugacy could be enforced after the correlation noise projector PC by

Bii′mk :=
1

2
(Bii′mk + Bii′(−m)k), (4.23)

and input only the part of B associating with m > 0 to the following subparts, so as to
accelerate the computation.

4.2 Band-limiting Projector

In this section, we develop the band-limiting projector which acts on the tensor B given by
the correlation noise projector PC to remove high frequency noise through a basis expansion
of the circular harmonic coefficients Im.

The density-density autocorrelation function is defined as

A(r) =

∫

R2

ρ(r + r′)ρ(r′)dr′, (4.24)

whose circular harmonic coefficient Am(r) is supported on [0, L], and thus can be represented
through a Fourier-Bessel series

Am(r) =
∞∑

n=1

amn

√
2Jm

(
umn
L
r
)

LJm+1(umn)
. (4.25)
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Notice that we don’t need L to be precisely determined: it is only required to be larger than
the true value of the diameter to ensure the convergence of Eq. (4.30).

Since the Fourier transform of A(r) is I(q) (Theorem A.3), the circular harmonic coefficient
Im can be obtained by the Hankel transform of Am,

Im(q) = 2π(−1)m
∫ L

0

Am(r)Jm(2πqr)rdr. (4.26)

Combining Eq. (4.25) and Eq. (4.26) gives

Im(q) =
∞∑

n=1

amn
2
√

2π(−1)m

LJm+1(um,n)

∫ L

0

Jm

(umn
L
r
)
Jm(2πqr)rdr (4.27)

=
∞∑

n=1

amn
2
√

2π(−1)mLumnJm(2πqL)

u2
mn − (2πqL)2

. (4.28)

Then letting

vmn(q) =





√
2π(−1)mLJm+1(umn) if q =

umn
2πL

2
√

2π(−1)mLumnJm(2πqL)

u2
mn − (2πqL)2

otherwise,
(4.29)

we derive an basis expansion of the circular harmonic coefficients of the intensity I,

Im(q) =
∞∑

n=1

amnvmn(q). (4.30)

A special property of the set of basis functions vmn is that its mass concentrates around
q = umn

2πL
(See Figure 4.2), which implies that it is practicable to take truncation of Eq. (4.30)

based on the number of terms whose majority of mass is within the measured q range. We
truncated the series Eq. (4.30) to the first Nm terms as Nm is chosen as the maximal n such
that

umn
2πL

≤ αqmax. (4.31)

where qmax is the maximum of the measure-q grid {qi}Nqi=1 and α is a hyperparameter.

Combining Eq. (4.10) and Eq. (4.30), we have

B::mk = Vm(Gm)::kV
∗
m, (4.32)

where
(Vm)in = v(2m)n(qi), (Gm)nn′k = a(2m)na(2m)n′e

−4m2k∆tDr . (4.33)
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Figure 4.2: Examples of the band-limiting basis functions vmn. The black vertical bar
represents positions of values of associated umn

2πL
.

Since the matrices Vm as well as their pseudoinverses V †m can be computed explicitly, we
define the band-limiting projector to solve Eq. (4.32) for Gm as

(Gm)::k = V †mB::mkV
†∗
m . (4.34)

According to Theorem A.6 and orthogonality of the Fourier-Bessel series, the basis
functions vmn are orthogonal to each other in the sense that

∫ ∞

0

vmn(q)vmn′(q)qdq = δnn′ . (4.35)

Therefore, prior to computation of the pseudoinverse V †m, we weight Vm by multiplying the
n-th row by

√
qndn with dn = qn+1−qn−1

2
. This weighted Vm is denoted by V m. We calculate

the singular value decomposition of V m,

V m = UBΛBV∗B, (4.36)

and then the pseudoinverse of V m as

V
†
m = VBΛinv

B U∗B, (4.37)
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where Λinv
B is a diagonal matrix with diagonal entries

(Λinv
B )nn =

{
1

(ΛB)nn
if (ΛB)nn ≥ β(ΛB)11,

0 if (ΛB)nn < β(ΛB)11.
(4.38)

The pseudoinverse V †m is attained by dividing the n-th column of V
†
m by

√
qndn.

4.3 Rank-one Tensor Decomposition

Next, we obtain the coefficients a(2m)n and the term e−4m2k∆tDr . According to Eq. (4.33),
for each m, the tensor Gm ∈ CNm×Nm×K can be viewed as an outer product:

Gm = Am ⊗ Am ⊗R:m, (4.39)

where
(Am)n = a(2m)n, Rkm = e−4m2k∆tDr . (4.40)

The above equation implies that Gm is at most rank one. Relying on this, Am and R:m

can be retrieved using a weighted partially-Hermitian bound-constrained rank-one tensor
decomposition:

min
Am∈CNm ,R:m∈RK

K−1∑

k=0

(ωtd)k‖(Gm)::k −RkmAmA
∗
m‖2

F , (4.41)

s.t. R0m = 1, 0 ≤ Rkm ≤ 1 for each k, (4.42)

where ωtd are weights, and ‖ · ‖F is the Frobenius norm. We express this subpart briefly as

JAm;R:mK = POGm, for each m. (4.43)

The purpose of the weights ωtd is to balance the exponentially-decaying signal and the
noise whose magnitude remains the same with respect to different k. If K or Dr is quite
large, the unweighted tensor decomposition Eq. (4.41) tends to pick up the noise instead of
true signal. A reasonable choice of ωtd is based on the decaying terms e−4m2k∆tDr where Dr

is the current estimation.

The above problem can be solved by modified alternating least square [6, 16]. In particular,
we initialize R0m = 1 and let Rkm, k ∈ [1, K−1]∩Z independently and identically distributed
uniformly on [0, 1]. Then the Am-subproblem and R:m-subproblem are solved iteratively:
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• The Am-subproblem is equivalent to

min
Am∈CNm

∥∥∥∥∥
1

‖wtd ◦R:m‖2

K−1∑

k=0

(wtd)
2RkmG::k − AmA∗m

∥∥∥∥∥

2

F

(4.44)

where ◦ is the element-wise multiplication. The solution to the above minimization
is Am = λ0v0 where λ0 is the largest positive eigenvalue and v0 is the corresponding
eigenvector of the matrix

1

‖wtd ◦R:m‖2

K−1∑

k=0

(wtd)
2RkmG::k. (4.45)

• The R:m-subproblem can be solved element-wisely, for each k > 0

min
0≤Rkm≤1

‖G::k −RkmAmA
∗
m‖2

F . (4.46)

The solution to the above minimization is

Rkm = P[0,1]

(<(A∗mG::kAm)

‖Am‖4

)
, (4.47)

where P[0,1] projects any real number to [0, 1],

P[0,1](x) =





0 if x < 0,

x if 0 ≤ x ≤ 1,

1 if x > 1.

(4.48)

The uniqueness of optimal Am is up to a complex factor. Therefore, we stop the iterations
when value of difference between the values of the objective function Eq. (4.41) at two
consecutive iterations are smaller than a tolerance.

Remark 4.3.1. The best method for computing partially-symmetric tensor rank decomposi-
tion, for instance,

X ≈
R∑

r=1

A:r ⊗ A:r ⊗ C:r, (4.49)

which is called individual differences in scaling (INDSCAL), is still an open problem. One
widely-used method is to treat two A matrices as distinct factors A and A′, and then
update them separately through the conventional alternating least square and enforce A =
A′ at the end of iterations. Here we select a different strategy which is to impose the
conjugacy (symmetry) directly through the eigenvalue decomposition (Am-subproblem),
though eigenvalue decomposition is usually computationally expensive, since the size of the
matrix Eq. (4.45), Nm ×Nm, is not large.
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4.4 Exponential Fitting

Once the matrix R of decaying terms e−4m2k∆tDr is computed, we are able to estimate
the rotational diffusion coefficient Dr by solving the following minization:

xmin = argmin
0<x<1

K−1∑

k=1

M∑

m=−M
m 6==0

ωm(Rkm − x4m2k)2, (4.50)

and then letting

Dr = − log xmin
∆t

. (4.51)

If the magnitudes of Im are too close to zero for some m, which happens when the particles
possess unknown radial symmetry, then R:m could be too noisy for these m. To deal with
this situation, the algorithm allows assigning the weights ωm according to the estimated
magnitude of Im, e.g. ωm = ‖VmAm‖2. This subpart is denoted by

PER = Dr. (4.52)

4.5 MTECS Algorithm

We now assemble the subparts described in the previous subsections to give an iterative
algorithm, MTECS (See Figure 4.1 for the flowchart). With initialization B̃(0) = 0 and p = 0,
the algorithm consists of the following steps:

Step 1: Given the cross-correlation C, apply the correlation noise projector to compute
B(p) = PCB̃(p);

Step 2: Enforce the conjugacy by B(p)
::m: := 1

2
(B(p)

::m: + B(p)
::(−m):) for m ∈ [1,M ] ∩ Z;

Step 3: For m ∈ [1,M ] ∩ Z, compute (G(p)
m )::k = V †mB(p)V †∗m by performing the band-limiting

projector for k ∈ [0, K − 1] ∩ Z;

Step 4: Compute the rank-one tensor decomposition POG(p)
m = JA(p)

m ;R
(p)
:m K for m ∈ [1,M ]∩Z;

Step 5: Make an current estimation of the rotational diffusion coefficient as D
(p)
r = PER

(p);

Step 6: Form an updated matrix of the decay terms whose entries are R̃
(p)
km = e−4m2k∆tD

(p)
r

for m ∈ [1,M ] ∩ Z and k ∈ [0, K − 1] ∩ Z;
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Step 7: For m ∈ [1,M ] ∩ Z, obtain the tensors G̃(p)
m = A

(p)
m ⊗ A(p)

m ⊗ R̃(p)
:m ;

Step 8: Update the tensor B̃(p+1) by calculating B̃(p+1)
::mk = Vm(G̃(p)

m )::kV
∗
m for m ∈ [1,M ] ∩ Z

and k ∈ [0, K − 1] ∩ Z;

Step 9: For m ∈ [1,M ] ∩ Z, let B̃(p+1)
::(−m): = B̃(p+1)

::m: ;

Step 10: Terminate if

d(B̃(p+1), B̃(p)) =
K+1∑

k=0

‖B̃(p+1)
:::k − B̃(p)

:::k‖2
F

‖B̃(p+1)
:::k ‖2

F

(4.53)

is smaller than a preset tolerance, otherwise set p := p+ 1 and go to 1.

The algorithm terminates when the relative change between B̃(n) and B̃(n+1) is smaller
than a tolerance: this provides a more robust algorithm, rather than choosing to let the
stopping criteria hinge on the desired coefficient D

(n)
r .

Before applying the algorithm, to ameliorate bias that may result from the estimation of
the cross-correlation data Eq. (4.3) and Eq. (4.4), a further operation can be conducted. For
each i, i′, k, we seek out the real number αii′k to make Cii′:k − αii′k1 as close to the column
space of E as possible,

αii′k = argmin
α∈R

‖U∗C2(Cii′:k − α1)‖2

=
<
(
(U∗C21)∗(U∗C2Cii′:k)

)

‖U∗C21‖2
,

(4.54)

where 1 is the all-ones vector and <(·) takes the real part of a complex number, and then we
perform

Cii′:k := Cii′:k − αii′k1. (4.55)

The upper bound L of the diameter of the minimal bounding circle of the particle required
by Step 2 is the only required prior knowledge. Additionally, MTECS can be modified
to capitalize on additional prior information of particle structure when such knowledge is
available. Some additional constraints on the intensity I and its circular harmonic coefficients
Im can be derived accordingly. For example, if the particles have s-fold symmetry, then
Im = 0 for m that is not a multiple of s. Then Eq. (4.8) can be adapted accordingly.

Analogous to the methods introduced in [39], a filtered cross-correlation tensor, Cfiltered, is
acquired through Eq. (4.8) using the last B̃(n). Against the input C, the signal-to-noise ratio
of Cfiltered is significantly enhanced (See Chapter 5) to benefit the aforementioned angular
cross-correlation analysis for other X-ray diffraction techniques, e.g. structure reconstruction
[10, 43].
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Chapter 5

Numerical Experiments

To illustrate the capabilities of the MTECS algorithm outlined in Chapter 4, we applied
this approach to a series of carefully designed numerical experiments. We first construct a
forward solver to simulate the motion of particles in the sample and collections of XPCS
images are synthesized through application of the forward solver. We then applied the
MTECS algorithm to the angular-temporal cross-correlation estimated from different number
of images produced from this forward solver.

In Section 5.1, we introduce the construction of the simulation and provide some imple-
mentation details. In Section 5.2 and Section 5.3, we present the results of two types of
numerical experiments, including both the accuracy of the estimated rotational diffusion
coefficient Dr and the filtered cross-correlation data given by our algorithm.

5.1 Simulation and Implementation Details

Here we simulate a monodisperse system, i.e. all the particles of interest in the systems
are assumed to be identical. Each particle is constructed by attaching two spheres to the
ends of a cylinder in three-dimensional space, then projected to two-dimensional space by
integrating along z-axis. See Figure 5.1a for the shape. The analytical formulation of the
electron density distribution ρ of an individual particle is (up to a scaling constant)

ρ(r) =





√
W 2 − 4r2

2 if 2|r1| ≤ T and 2|r2| ≤ W,

2
√
H2 − (r1 − (H + T/2)))2 − r2

2 if (r1 − (H + T/2))2 + r2
2 ≤ H2,

2
√
H2 − (r1 + (H + T/2)))2 − r2

2 if (r1 + (H + T/2))2 + r2
2 ≤ H2,

0 otherwise,

(5.1)

where H = W = 4
2047

, and T = 8
2047

.
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The intensity I, which is the squared magnitude of the Fourier transform of ρ, can be
calculated explicitly,

I(q, φ) =

∣∣∣∣
TWJ1(πWq sinφ) sin(Tq cosφ)

2Tq2 sinφ cosφ
+

2H3/2J3/2(2πHq) cos(2π(T/2 +H)q cosφ)

q3/2

∣∣∣∣
2

.

(5.2)
See Figure 5.1b for an illustration of the intensity I. The values of the circular harmonic
coefficients Im are approximated by numerical integration schemes with high precision.

(a) (b)

Figure 5.1: (a) The electron density of an individual particle ρ. (b) The intensity of an
individual particle I.

The systems are simulated on a 2047 × 2047 Cartesian grid equally spaced in domain
[0, 1]×[0, 1]. In each system, there are 500 particles whose initial positions and orientations are
uniformly distributed. The position replacements and orientation perturbations are treated
as Gaussian random variables. Since we are not focused on estimation of the translation
diffusion coefficient in this work, Dt is set to be Dt = 1/20472 in all the simulated systems,
while the rotational diffusion coefficients Dr are selected differently for different systems.
Overlapping and collisions are ignored. Figure 5.2a shows an example of part of the simulated
samples.

The scattering fields, which are the Fourier transform of the density of the overall sample
(Eq. (2.26)), are calculated via the 2D fast Fourier transform. Instead of using the whole
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(a) (b)

Figure 5.2: (a) Part of an example of the density of the simulated samples. (b) An example
of generated XPCS images (Colormap accentuated to make more graphically visible). The
shaded area enclosed by the two circles describes the domain of the polar grid on which the
intensity is used.

images on Cartesian grid, we interpolate them to a polar grid with Nq = 350 radial coordinates
spaced equally on [51, 400] and 3210 angular coordinates spaced equally on [0, 2π). See Figure
5.2b for an example of the images. The time difference ∆t between consecutive images is 1.0.

For each system, we let K = 16, and calculated a cross-correlation data tensor C ∈
R350×350×3210×16. The wall time of the calculation of a such tensor from 40, 000 images is 4
hours using 32 single-socket Intel Xeon Phi 7250 processor with 68 cores at 1.4 GHz. Since
the number of time lag K is fixed, the time consumed by such calculation scales linearly with
respect to the number of images collected.

Some curves of cross-correlation data against the angular coordinates ∆φ are shown in
Figure 5.3. There are two sharp peaks at ∆φ = 0 and φ in all the plots. The derivation of
these peaks can be seen from Theorem 3.1. When ∆φ = 0 or π and q = q′, i.e. q = q′ or
q = −q′, the third or fourth term in the right hand side of Eq. (3.4) remains, leaving a term
with factor Np(Np − 1) in Eq. (3.9), which manifests as one of the peaks after subtraction of
the second term. Since χ is not exactly the indicator function of 0 in the simulation, there are
also two peaks in Figure 5.3b though q 6= q′. The peaks disappear as the difference between
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(a)
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0.3
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(b)
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(c)
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0.3
(150, 150, , 8)

(d)

Figure 5.3: Examples of the angular-temporal cross-correlation data with Dr = 0.01 at (a)
q = q′ = 150, k∆ = 0, (b) q = 150, q′ = 151, k∆t = 0, (c) q = 150, q′ = 155, k∆t = 0, and
(d) q = q′ = 150, k∆t = 8 against angular coordinates ranging from [0, π). The data on
∆φ ∈ [0, π) and the data on ∆φ ∈ [π, 2π) are identical. The vertical black bars indicate the
boundaries of the masking that masks out the peaks at ∆φ = 0 and π.
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q and q′ becomes larger (See Figure 5.3c). In Figure 5.3d, the heights of the peaks are much
smaller, due to the translational diffusion relaxation. Additionally, the data on ∆φ ∈ [0, π)
are identical to the data on ∆φ ∈ [π, 2π) due to symmetry of the intensity I. Thus we kept
only the data on ∆φ ∈ [ π

32
, 31π

32
], ending up with a data tensor C ∈ R350×350×1503×16.

We used M = 9 in the truncation of the cross-correlation Eq. (4.8) and the upper bound
of the diameter of the particle L = 0.0128969 that is 10% larger than the actual diameter.
Such precision can be easily achieved in practice.

The first subpart, the correlation noise projector PC , was solved by methods described in
Section 4.1. In computation of the second subpart, the band-limiting projector, we chose
α = 8 in Eq. (4.31). We solved the tensor decomposition PO, through a modified alternating
least square algorithm depicted in Section 4.3. In the first iterative step of MTECS, we
let (wtd)0 = 1 and (wtd)k = 0 for k > 0, and then in the following iterations of MTECS,

let (wtd)k = e−4m2k∆tD
(p)
r , where D

(p)
r is the current estimation of the rotational diffusion

coefficient. The tolerance of the change of the objective function Eq. (4.41) is 1e-12. To
acquire better results, each tensor rank decomposition was repeated 100 times with different
random initialization. The exponential fitting PE was handled by L-BFGS-B [5] with multiple
random starts.

In the MTECS algorithm, we first ran several preprocessing iterations which skips the
exponential fitting PE and takes R̃(p) = R(p) (See Figure 4.1 and Section 4.5). This process
ceased if d(B̃(p+1), B̃(p)) defined by Eq. (4.53) is smaller the 1e-16 or 100 preprocessing
iterations is completed. Then we ran the full iterations of MTECS, and terminated the
algorithm if d(B̃(p+1), B̃(p)) is smaller than 1e-16 or after 100 full iterations. It took at most
20 minutes to complete the algorithms on a single core of a 2.3 GHz 16-core Intel Xeon
Processor E5-2698 v3.

5.2 First Set of Experiments

In the first type of experiments, for each of the 10 rotational diffusion coefficient Dr ∈
{0.01i}10

i=1, we simulated a sample from which 40, 000 synthesized images are collected. Then
we calculated 10 angular-temporal cross-correlation datasets corresponding to different Dr

and input these datasets to the MTECS algorithm.

Table 5.1 gives the ground truth, the estimated Dr given by the MTECS algorithm and
the relative error between them. All the relative errors are smaller than 3%.

In Figure 5.4-5.13, we present the curves of the filtered cross-correlation data Cfiltered

against the angular coordinate ∆φ. The input data C and ground truth calculated from the
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Table 5.1: Ground truth of Dr, estimation of Dr, and the relative errors.

True Dr 0.01 0.02 0.03 0.04 0.05
Estimated Dr 0.010062 0.020086 0.030490 0.040521 0.0509191
Relative Error 0.62% 0.43% 1.63% 1.30% 1.84%

True Dr 0.06 0.07 0.08 0.09 0.10
Estimated Dr 0.061311 0.071812 0.080488 0.092633 0.1000931
Relative Error 2.19% 2.59% 0.61% 2.93% 0.09%

the circular harmonic coefficients Im via Eq. (4.8) are also shown for comparison. These
figures show that the curves of filtered cross-correlation data almost completely overlap
with the ground truth, demonstrating the ability of the MTECS algorithm to filter the
cross-correlation data.

According to Eq. (4.10), we know

Biim0 = |I2m(qi)|2. (5.3)

To further exhibit the ability of the MTECS algorithm to filter the angular-temporal cross-
correlation data, the Figure 5.14-5.23 show the Bfiltered

iim0 , which is the B̃(p) output by the latest
iteration of the algorithm, and |I2m(qi)|2 against measured qi. Overall, these figures shows
that the circular harmonic coefficients Im can be estimated up to a phase factor by our
algorithm successfully.
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Figure 5.4: Filtered cross-correlation data corresponding to system with Dr = 0.01 at (top
left) q = q′ = 100, k∆t = 0, (top right) q = q′ = 100, k∆t = 1, (middle left) q = q′ = 150,
k∆t = 0, (middle right) q = q′ = 150, k∆t = 1, (bottom left) q = q′ = 250, k∆t = 0, and
(bottom right) q = q′ = 250, k∆t = 1, against angular coordinates ∆φ. The cyan dots are
the cross-correlation data computed from images, which are the input to MTECS. The black
solid lines are the cross-correlation filtered by the algorithm. Ground truth calculated from ρ
is indicated by the red dashed lines.
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Figure 5.5: Filtered cross-correlation data corresponding to system with Dr = 0.02 at (top
left) q = q′ = 100, k∆t = 0, (top right) q = q′ = 100, k∆t = 1, (middle left) q = q′ = 150,
k∆t = 0, (middle right) q = q′ = 150, k∆t = 1, (bottom left) q = q′ = 250, k∆t = 0, and
(bottom right) q = q′ = 250, k∆t = 1, against angular coordinates ∆φ. The cyan dots are
the cross-correlation data computed from images, which are the input to MTECS. The black
solid lines are the cross-correlation filtered by the algorithm. Ground truth calculated from ρ
is indicated by the red dashed lines.
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Figure 5.6: Filtered cross-correlation data corresponding to system with Dr = 0.03 at (top
left) q = q′ = 100, k∆t = 0, (top right) q = q′ = 100, k∆t = 1, (middle left) q = q′ = 150,
k∆t = 0, (middle right) q = q′ = 150, k∆t = 1, (bottom left) q = q′ = 250, k∆t = 0, and
(bottom right) q = q′ = 250, k∆t = 1, against angular coordinates ∆φ. The cyan dots are
the cross-correlation data computed from images, which are the input to MTECS. The black
solid lines are the cross-correlation filtered by the algorithm. Ground truth calculated from ρ
is indicated by the red dashed lines.
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Figure 5.7: Filtered cross-correlation data corresponding to system with Dr = 0.04 at (top
left) q = q′ = 100, k∆t = 0, (top right) q = q′ = 100, k∆t = 1, (middle left) q = q′ = 150,
k∆t = 0, (middle right) q = q′ = 150, k∆t = 1, (bottom left) q = q′ = 250, k∆t = 0, and
(bottom right) q = q′ = 250, k∆t = 1, against angular coordinates ∆φ. The cyan dots are
the cross-correlation data computed from images, which are the input to MTECS. The black
solid lines are the cross-correlation filtered by the algorithm. Ground truth calculated from ρ
is indicated by the red dashed lines.
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Figure 5.8: Filtered cross-correlation data corresponding to system with Dr = 0.05 at (top
left) q = q′ = 100, k∆t = 0, (top right) q = q′ = 100, k∆t = 1, (middle left) q = q′ = 150,
k∆t = 0, (middle right) q = q′ = 150, k∆t = 1, (bottom left) q = q′ = 250, k∆t = 0, and
(bottom right) q = q′ = 250, k∆t = 1, against angular coordinates ∆φ. The cyan dots are
the cross-correlation data computed from images, which are the input to MTECS. The black
solid lines are the cross-correlation filtered by the algorithm. Ground truth calculated from ρ
is indicated by the red dashed lines.
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Figure 5.9: Filtered cross-correlation data corresponding to system with Dr = 0.06 at (top
left) q = q′ = 100, k∆t = 0, (top right) q = q′ = 100, k∆t = 1, (middle left) q = q′ = 150,
k∆t = 0, (middle right) q = q′ = 150, k∆t = 1, (bottom left) q = q′ = 250, k∆t = 0, and
(bottom right) q = q′ = 250, k∆t = 1, against angular coordinates ∆φ. The cyan dots are
the cross-correlation data computed from images, which are the input to MTECS. The black
solid lines are the cross-correlation filtered by the algorithm. Ground truth calculated from ρ
is indicated by the red dashed lines.
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Figure 5.10: Filtered cross-correlation data corresponding to system with Dr = 0.07 at (top
left) q = q′ = 100, k∆t = 0, (top right) q = q′ = 100, k∆t = 1, (middle left) q = q′ = 150,
k∆t = 0, (middle right) q = q′ = 150, k∆t = 1, (bottom left) q = q′ = 250, k∆t = 0, and
(bottom right) q = q′ = 250, k∆t = 1, against angular coordinates ∆φ. The cyan dots are
the cross-correlation data computed from images, which are the input to MTECS. The black
solid lines are the cross-correlation filtered by the algorithm. Ground truth calculated from ρ
is indicated by the red dashed lines.
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Figure 5.11: Filtered cross-correlation data corresponding to system with Dr = 0.08 at (top
left) q = q′ = 100, k∆t = 0, (top right) q = q′ = 100, k∆t = 1, (middle left) q = q′ = 150,
k∆t = 0, (middle right) q = q′ = 150, k∆t = 1, (bottom left) q = q′ = 250, k∆t = 0, and
(bottom right) q = q′ = 250, k∆t = 1, against angular coordinates ∆φ. The cyan dots are
the cross-correlation data computed from images, which are the input to MTECS. The black
solid lines are the cross-correlation filtered by the algorithm. Ground truth calculated from ρ
is indicated by the red dashed lines.
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Figure 5.12: Filtered cross-correlation data corresponding to system with Dr = 0.09 at (top
left) q = q′ = 100, k∆t = 0, (top right) q = q′ = 100, k∆t = 1, (middle left) q = q′ = 150,
k∆t = 0, (middle right) q = q′ = 150, k∆t = 1, (bottom left) q = q′ = 250, k∆t = 0, and
(bottom right) q = q′ = 250, k∆t = 1, against angular coordinates ∆φ. The cyan dots are
the cross-correlation data computed from images, which are the input to MTECS. The black
solid lines are the cross-correlation filtered by the algorithm. Ground truth calculated from ρ
is indicated by the red dashed lines.
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Figure 5.13: Filtered cross-correlation data corresponding to system with Dr = 0.10 at (top
left) q = q′ = 100, k∆t = 0, (top right) q = q′ = 100, k∆t = 1, (middle left) q = q′ = 150,
k∆t = 0, (middle right) q = q′ = 150, k∆t = 1, (bottom left) q = q′ = 250, k∆t = 0, and
(bottom right) q = q′ = 250, k∆t = 1, against angular coordinates ∆φ. The cyan dots are
the cross-correlation data computed from images, which are the input to MTECS. The black
solid lines are the cross-correlation filtered by the algorithm. Ground truth calculated from ρ
is indicated by the red dashed lines.
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Figure 5.14: The log(Bfiltered
iim0 ) (in orange) corresponding to the system with Dr = 0.01 and

log |I2m(qi)|2 (in blue) versus measured qi.
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Figure 5.15: The log(Bfiltered
iim0 ) (in orange) corresponding to the system with Dr = 0.02 and

log |I2m(qi)|2 (in blue) versus measured qi.
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Figure 5.16: The log(Bfiltered
iim0 ) (in orange) corresponding to the system with Dr = 0.03 and

log |I2m(qi)|2 (in blue) versus measured qi.
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Figure 5.17: The log(Bfiltered
iim0 ) (in orange) corresponding to the system with Dr = 0.04 and

log |I2m(qi)|2 (in blue) versus measured qi.
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Figure 5.18: The log(Bfiltered
iim0 ) (in orange) corresponding to the system with Dr = 0.05 and

log |I2m(qi)|2 (in blue) versus measured qi.
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Figure 5.19: The log(Bfiltered
iim0 ) (in orange) corresponding to the system with Dr = 0.06 and

log |I2m(qi)|2 (in blue) versus measured qi.
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Figure 5.20: The log(Bfiltered
iim0 ) (in orange) corresponding to the system with Dr = 0.07 and

log |I2m(qi)|2 (in blue) versus measured qi.
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Figure 5.21: The log(Bfiltered
iim0 ) (in orange) corresponding to the system with Dr = 0.08 and

log |I2m(qi)|2 (in blue) versus measured qi.
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Figure 5.22: The log(Bfiltered
iim0 ) (in orange) corresponding to the system with Dr = 0.09 and

log |I2m(qi)|2 (in blue) versus measured qi.
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Figure 5.23: The log(Bfiltered
iim0 ) (in orange) corresponding to the system with Dr = 0.10 and

log |I2m(qi)|2 (in blue) versus measured qi.
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5.3 Second Set of Experiments

To understand how the computed accuracy depends on the number of images, for Dr =
0.01, 0.02, 0.04, 0.08, we gradually reduced the number of images from 40, 000 to 4, 000. Due
to the stochastic nature of the experiments, which is also true in practice, the outputs exhibit
some randomness. To characterize the results better, for each value of Dr and each number of
images, we repeated the experiments 10 times, and hence generated 10 different estimations,
whose statistics are shown in Figure 5.24. We note that the MTECS algorithm is still able to
give reasonable estimation while using less images. Despite the fluctuation, the trend shows
that as the number of images increases, the quality of the estimations improves. The result
of each experiment is shown in Table 5.2-5.5.
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Figure 5.24: Quantiles of 10 different estimated values against number of images. Horizontal
bars from top to bottom are maxima, third quartiles, medians, first quartiles, and minima.
White boxes are averages. Horizontal lines behind boxes are ground truth.
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Table 5.2: Dr estimated from different number of images generated by systems with the
ground truth Dr = 0.01.

Number of images

4, 000 8, 000 12, 000 16, 000 2, 0000

E
st

im
at

ed
D
r

0.009776 0.010763 0.010151 0.010260 0.009854

0.009504 0.010772 0.009908 0.010441 0.010276

0.010887 0.010748 0.009869 0.010247 0.010433

0.011173 0.009946 0.009580 0.009581 0.010266

0.010486 0.009478 0.010199 0.010008 0.010230

0.009753 0.009814 0.009525 0.010215 0.009659

0.010565 0.009653 0.010032 0.009821 0.010080

0.010530 0.010569 0.009116 0.009611 0.009879

0.010599 0.009699 0.010640 0.010249 0.009458

0.009343 0.010146 0.010274 0.010650 0.010184

Number of images

24, 000 28, 000 32, 000 36, 000 40, 000

E
st

im
at

ed
D
r

0.010377 0.010101 0.010087 0.010415 0.010226

0.010047 0.009935 0.010067 0.009976 0.009903

0.009851 0.010151 0.010757 0.010081 0.010372

0.010277 0.010061 0.010165 0.010057 0.010300

0.010541 0.010011 0.009834 0.009711 0.009926

0.010247 0.009606 0.010288 0.010154 0.010248

0.010168 0.010344 0.010129 0.009973 0.010047

0.009780 0.010265 0.010121 0.009991 0.010120

0.010289 0.010271 0.009829 0.009882 0.010201

0.010596 0.010093 0.010211 0.010056 0.009875
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Table 5.3: Dr estimated from different number of images generated by systems with the
ground truth Dr = 0.02.

Number of images

4, 000 8, 000 12, 000 16, 000 2, 0000

E
st

im
at

ed
D
r

0.019651 0.021060 0.021338 0.021807 0.019410

0.021003 0.020006 0.020068 0.019270 0.019974

0.019715 0.019617 0.021424 0.019370 0.019943

0.021078 0.021023 0.021552 0.020703 0.019714

0.020193 0.019936 0.021184 0.020512 0.020252

0.020275 0.021681 0.020515 0.019431 0.019776

0.021733 0.019304 0.019464 0.021692 0.019870

0.021455 0.018388 0.020358 0.021291 0.020568

0.019810 0.020305 0.021443 0.019002 0.020281

0.020213 0.019577 0.020601 0.019739 0.020129

Number of images

24, 000 28, 000 32, 000 36, 000 40, 000

E
st

im
at

ed
D
r

0.020859 0.019708 0.020357 0.020588 0.020381

0.019985 0.021010 0.019550 0.020110 0.020089

0.021098 0.020383 0.020486 0.020218 0.019521

0.020578 0.019757 0.020453 0.020311 0.020777

0.021020 0.020050 0.020532 0.020430 0.020742

0.020532 0.020862 0.020266 0.020447 0.020571

0.020369 0.020225 0.020257 0.019814 0.020459

0.019772 0.020630 0.020274 0.020603 0.019965

0.020582 0.020037 0.020568 0.020496 0.020594

0.020860 0.020158 0.020091 0.020498 0.020625
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Table 5.4: Dr estimated from different number of images generated by systems with the
ground truth Dr = 0.04.

Number of images

4, 000 8, 000 12, 000 16, 000 2, 0000

E
st

im
at

ed
D
r

0.042482 0.038119 0.041792 0.038354 0.040701

0.042250 0.037198 0.038996 0.041104 0.038965

0.036396 0.038022 0.036229 0.039551 0.038271

0.038844 0.039833 0.038531 0.039966 0.040023

0.041045 0.039486 0.039495 0.039586 0.037891

0.043497 0.040252 0.041162 0.038136 0.040502

0.036117 0.042284 0.039368 0.038917 0.038230

0.039007 0.038445 0.038841 0.040427 0.038381

0.041927 0.038531 0.038359 0.039628 0.039758

0.037979 0.041386 0.037712 0.039444 0.039288

Number of images

24, 000 28, 000 32, 000 36, 000 40, 000

E
st

im
at

ed
D
r

0.040247 0.040005 0.039619 0.039139 0.040002

0.039772 0.037970 0.040113 0.038851 0.040386

0.039379 0.039070 0.038770 0.039742 0.038938

0.040239 0.038756 0.039139 0.038749 0.039376

0.038357 0.038987 0.039493 0.040373 0.039154

0.040420 0.037820 0.039705 0.038065 0.038141

0.038961 0.038955 0.038604 0.039896 0.038859

0.039436 0.039566 0.039942 0.040096 0.040716

0.040213 0.040594 0.039672 0.040320 0.039478

0.039865 0.039754 0.038582 0.040544 0.041253
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Table 5.5: Dr estimated from different number of images generated by systems with the
ground truth Dr = 0.08.

Number of images

4, 000 8, 000 12, 000 16, 000 2, 0000

E
st

im
at

ed
D
r

0.084387 0.077137 0.078410 0.078938 0.078761

0.078475 0.074075 0.082237 0.081887 0.077938

0.086231 0.083450 0.075308 0.082137 0.080075

0.077179 0.079486 0.082369 0.079660 0.077425

0.076623 0.080197 0.078634 0.079570 0.079998

0.069808 0.079664 0.080833 0.077699 0.077849

0.078132 0.072949 0.078292 0.082144 0.079924

0.082525 0.081010 0.076916 0.079144 0.077510

0.077604 0.076396 0.079452 0.076127 0.079901

0.079279 0.078088 0.075951 0.078591 0.076146

Number of images

24, 000 28, 000 32, 000 36, 000 40, 000

E
st

im
at

ed
D
r

0.078976 0.075630 0.078508 0.079124 0.077992

0.079270 0.079017 0.080684 0.077928 0.079515

0.076110 0.077441 0.078190 0.079077 0.080172

0.077082 0.076215 0.080115 0.080601 0.077672

0.076626 0.081348 0.077788 0.078146 0.078836

0.079772 0.078493 0.078422 0.079493 0.075923

0.079126 0.078243 0.077677 0.076900 0.078212

0.075587 0.076862 0.078203 0.078971 0.078309

0.078041 0.077024 0.077299 0.077102 0.079757

0.080050 0.078834 0.078320 0.076824 0.076910
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5.4 Summary of Results

These two sets of numerical experiments show the capability of the MTECS algorithm to
estimate the rotational diffusion coefficients from the angular-temporal cross-correlation data
and filter the cross-correlation data so as to boost the signal-to-noise ratio.

In the first set of experiments, the algorithm estimated accurately the coefficient Dr, whose
ground truth ranges from 0.01 to 0.1, indicating that the algorithm is able to handle both
relatively fast and slow dynamics. However, we have to point out that special care is supposed
to be taken in the cases that the particles rotate extremely slow or fast. If the particles rotates
extremely slow, i.e. Dr is very small, then according to the theoretical analysis presented in
Section 3.3, a huge amount of time is required to let the system experience different states to
obtain accurate estimation of the angular-temporal cross-correlation. At the other extreme,
when the Dr is large, for fixing ∆t, the input data C (Eq. (4.5)) decays to zero very quickly,
which may cause numerical instability in the algorithm. Thus either the motion should be
slowed down, or the images are supposed to be taken much more frequently to make ∆t
smaller.

The filtered data output by the algorithm agrees with the ground truth calculated
based the electron density ρ (Eq. (5.1)) and the theoretical formulation of the input data C
(Eq. (4.5)), which implies that the MTECS algorithm is robust against the noise caused by
the randomness of particle motion.

According to the figures of Bfiltered
iim0 against the ground truth, the algorithm generated

successfully the estimation of each of the circular harmonic coefficients Im. We notice that
the error in estimation of Im increases as m becomes larger. Intuitively, this is because the
magnitude of Im with large m is much smaller than Im with small m. The correlation noise
projector PC tends to fit the overall cross-correlation data, so that the estimation of the Im
with small m is relatively better than the estimation of Im with large m. Further refinement
of the following subparts that handle Im for each individual m separately might be helpful to
this situation, and thus enable the production of better filtered data.

In the second set of experiments, we focused on applying the MTECS algorithm to data
estimated from less number of images. The MTECS algorithm was still able to give good
estimation of the rotational diffusion coefficients while much less images were used, confirming
the robustness of the algorithm, since the angular-temporal cross-correlation data would
become more noisy as the number of images collected decreases.

In the practical experiments performed on X-ray light sources, the data may contain many
other types of noises, including the scattering of the background, the Poisson photon-counting
noises, cosmic ray penetrating through the instruments, bad pixels on the detectors, etc. The
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complication of the composition of these noises causes a lot of difficulties to model and clean
the data. Currently, we are testing the performance of the MTECS algorithm on the datasets
contaminated by these noises through numerical simulations. We are also seeking potential
practical experiments to examine and improve the MTECS algorithm further.
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Chapter 6

Conclusion

We have shown how to estimate rotational diffusion coefficients Dr from the angular-
temporal cross-correlation estimated from XPCS images. The cross-correlation provides
significant information which cannot be acquired through the autocorrelation function g2. In
fact, viewed as a natural generalization of g2, the cross-correlation function has the potential
of being applied to various other problems, despite the fact that it takes substantially more
effort and resources to process and interpret the cross-correlation data owing to the size of
data.

There are several advantages of our approach. One is that it requires little amount of
prior knowledge, and in the presence of additional prior knowledge of the particles and the
system, other operators can be incorporated into the algorithm to leverage these knowledge
to find better estimation. Another advantage is its great expandability. The combination
of cross-correlation functions and MTECS provides a reliable methodology to measure the
rotational dynamics even beyond rotational diffusion. One can derive a conclusion similar
to Theorem 3.1 for other rotational dynamics. The circular harmonic coefficients of cross-
correlation curves vary because of the rotation. These variations can be computed through
the first three subparts of the MTECS algorithm, and be studied by other operators that
replace the last subpart, the exponential fitting PE.

The flexibility of our algorithm allows the formulation of the subparts to be modified
when necessary. In fact, there are several refinement of the subparts that can be investigated.
In our implementation, the band-limiting projector can be viewed as a principal component
regression (PCR), which are calculated without iterative solvers except the one looking for
the singular value decomposition of the basis. It is still possible that the circular harmonic
coefficients Im can not be approximated well by those principal components. Though increase
of the number of principal components can solve this, it will also impair the ability of
denoising. One possible refinement is to replace the PCR by sparse linear regression. This
computationally more expensive optimization is only needed to be solved in the first several
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iterations, and the selection of the basis functions can be repeatedly used in the following
iterations. Another possible refinement is of the last subparts, the exponential fitting PE.
The capability of PE can be enhanced by deepened understanding of the noise propagation
through the other subparts. By analyzing the structure of noises contained in the input to
this subpart, we could find a formulation that handles the noises better and thus produces
better estimation of the coefficients Dr.

One bottleneck of our algorithm is the lack of the analysis of the convergence. We just
run the algorithm for enough number of iterations until the change between consecutive
iterations is small. The analysis of convergence might not only guide us about how many
iteration is required, but also help to develop useful tools to escape from the local ”minima”
and accelerate the convergence.

There are several other improvements and extensions that can be explored. In Chapter 7,
two future works we plan to research will be discussed.
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Chapter 7

Future Works

7.1 Polydispersity

In this section, we discuss the polydispersive case, i.e. the particles in the systems are
not exactly identical. First assume that there are S different types of particles, and N

(s)
p is

the number of the s-th particles. Here we use similar notations, which are differentiated by
superscript (s) when corresponding to the s-th particles. Then following the same steps, the
Eq. (4.5) can be modified as

Cii′jk =
S∑

s=1

N (s)
p

∞∑

m=−∞
m 6=0

e−i2m∆φI
(s)
2m(qi)I2m(qi′)

(s)
e−4m2k∆tD

(s)
r . (7.1)

After applying the correlation noise projector PC and the band-limiting projector, we obtain
the tensors

Gm =
S∑

s=1

A(s)
m ⊗ A(s)

m ⊗R(s)
:m . (7.2)

We conjecture that if the tensor rank decomposition and the exponential fitting are applied
in the same was as in Section 4.3 and Section 4.4, then the estimated rotational diffusion
coefficient Dr is between the maximum and minimum of {D(s)

r }Ss=1. We plan to examine such
conjectures by further numerical experiments.

If the presence of the S types of particles is known, and S is small enough, then the
decomposition Eq. (7.2) is unique (up to a scaling) [23, 24, 48, 50], so that {A(s)

m }Ss=1 and

{R(s)
:m}Ss=1 could be retrieved by seeking the rank-S decomposition of Gm. If S is large, then

the decomposition Eq. (7.2) is not unique and extra knowledge is needed. Moreover, we
assume the distribution of different particles can be continuously parameterized by coefficient
s, as p(s), s ∈ [smin, smax]. In the context of determination of the size distribution [3, 41], s
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is the radius of the particle. Then Eq. (7.2) becomes

Gm =

∫ smax

smin

(
A(s)
m ⊗ A(s)

m ⊗R(s)
:m

)
p(s)ds. (7.3)

Through the discretization of the above expression and utilization of prior knowledge, the
distribution p(s) could be attained.

7.2 Three-dimensional Case

The current MTECS algorithm is designed for estimating the rotational diffusion coefficient
in 2D rotational diffusion. A natural next step is to estimate the 3× 3 rotational diffusion
tensor of three-dimensional rotational diffusion.

Again, J(q, t) is the intensity measured at scattering vector q and time t. The first step
is also the evaluation of the ensemble average

〈J(q, τ)J(q′, τ + t)〉 = E[J(q, τ)J(q′, τ + t)], (7.4)

where the expectation is over the distribution of motion of all the particles.

Still, we consider a monodisperse system containing Np identical particles. Assuming that
the characteristic function χ equals to the indicator function 10, and q, q′, q + q′, q − q′ 6= 0,
then applying the same computation as in Section 3.2, we can obtain

E[J(q, τ)J(q′, τ + t] = NpE[I(Ω(τ)q)I(Ω(τ + t)q′)] +Np(Np − 1)E[I(Ω(τ)q)]E[I(Ω(τ)q′)],
(7.5)

where Ω(·) is the three-dimensional rotation matrix depending on the orientation of particles.

Once the above equation is evaluated explicitly in terms of the rotational diffusion tensor,
in the same manner as Chapter 4, we could design a series of subparts to solve the optimization
for the rotational diffusion tensor. We are currently working on this extension.
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Appendix A

List of Theorems

Theorem A.1 (Parseval’s Theorem for Fourier transform). For functions f, g ∈
L2(Rd), we have ∫

Rd
f(r)g(r)dr =

∫

Rd
f̂(q)ĝ(q)dq. (A.1)

Theorem A.2 (Poisson Summation Formula). Let f : R → C be a Schwartz function,
i.e. it is a smooth function satisfying

sup
x∈R
|x|k|f (l)(x)| <∞, ∀k, l ≥ 0. (A.2)

Then
∞∑

n=−∞

f(x+ nP ) =
1

P

∞∑

k=−∞

f̂

(
k

P

)
ei2π

k
P
x, ∀P > 0. (A.3)

Theorem A.3 (Wiener-Khinchin Theorem). For f ∈ L2(Rd),

Âf = |f̂ |2. (A.4)

Theorem A.4 (Friedel’s Law). For a real-value function f ∈ L1(Rd) + L2(Rd),

f̂(q) = f̂(−q). (A.5)

This theorem implies that the squared magnitude of Fourier transform of real-valued
function exhibits centrosymmetry,

|f̂(q)|2 = |f̂(−q)|2. (A.6)

Theorem A.5 (Parseval’s Theorem for Fourier series). For f, g ∈ L2([0, 2π]), with
Fourier series coefficients {fm}∞m=−∞ and {gm}∞m=−∞, we have

1

2π

∫ 2π

0

f(φ)g(φ) =
∞∑

m=−∞

fmgm. (A.7)
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Theorem A.6 (Parseval’s Theorem for Hankel transform). For f, g ∈ L1(R+)∩L2(R+)
and m ≥ −1

2
, we have

∫ ∞

0

f(r)g(r)rdr =

∫ ∞

0

(Hmf)(q)(Hmg)(q)qdq. (A.8)

Theorem A.7 (Azuma-Hoeffding Inequality). Suppose a discrete time martingale {Xn :
n ∈ Z+} satisfies

|Xn −Xn−1| ≤ cn, n = 1, 2, · · · , (A.9)

where cn are all constants. Then for any ε > 0, n = 0, 1, · · · ,

P(|Xn −X0| ≥ ε) ≤ 2 exp

( −2ε2∑n
k=1 c

2
k

)
. (A.10)

Theorem A.8 (Fubini’s Theorem). Let X and Y be σ-finite measure spaces, and f :
X × Y → R is integrable. If

∫

X×Y
|f(x, y)|d(x, y) <∞, (A.11)

then ∫

X

∫

Y

f(x, y)dydx =

∫

Y

∫

X

f(x, y)dxdy =

∫

X×Y
f(x, y)d(x, y). (A.12)
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Appendix B

Derivation of Eq. (3.5)

Here we derive Eq. (3.5) using exactly the same techniques as the derivation of Theorem 3.1.
Similar notations will also be used.

Proof of Eq. (3.5). According to Eq. (2.30),

E[J(q, φ, t)] =

Np∑

n1,n2=1

E
[
e−2πiq·(rn1 (0)−rn2 (0))

]
· E
[
ρ̂
(
q, φ− θn1(0)

)
ρ̂
(
q, φ− θn2(0)

)
ρ̂
]
. (B.1)

We denote the terms in the above summation as Sn1n2 . The value of the Np terms associated
with n1 = n2 is

S11 = E
[
I
(
q, φ− θ(t)

)]
(B.2)

=
∞∑

m=−∞

Im(q)eimφE
[
e−imθ(0)

]
E
[
e−im(θ(t)−θ(0))

]
(B.3)

=
∞∑

m=−∞

Im(q)eimφδm0e
−m2tDr (B.4)

= I0(q). (B.5)

When n1 6= n2, the terms can be written as:

S12 = E
[
e−2πiq·r1(t)

]
E
[
ρ̂
(
q, φ− θ1(t)

)]
E
[
e2πiq·r1(t)

]
E
[
ρ̂
(
q, φ− θ1(t)

)]
. (B.6)

Similarly to the calculation of S11, we can obtain

E
[
ρ̂
(
q, φ− θ1(t)

)]
= ρ̂0(q). (B.7)

Additionally,

E
[
e−2πiq·r1(t)

]
= E

[
e−2πiq·(r1(t)−r1(0))

]
E
[
e−2πiq·r1(0)

]
(B.8)
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= χ(2πq)e−4π2q2tDt . (B.9)

Thus
S12 = |χ(2πq)|2e−8π2q2tDt|ρ̂0(q)|2. (B.10)

Combination of Eq. (B.1),Eq. (B.5) and Eq. (B.10) completes the proof of Eq. (3.5).
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