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Remote Detection and Location of Explosive Volcanism
in Alaska With the EarthScope Transportable Array
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1Department of Earth Science and Earth Research Institute, University of California, Santa Barbara, CA, USA, 2Wilson
Alaska Technical Center, Alaska Volcano Observatory, Geophysical Institute, University of Alaska Fairbanks, Fairbanks,
AK, USA, 3U.S. Geological Survey Volcano Science Center, Alaska Volcano Observatory, Anchorage, AK, USA

Abstract The current deployment of the EarthScope Transportable Array (TA) in Alaska affords an
unprecedented opportunity to study explosive volcanic eruptions using a relatively dense regional
seismoacoustic network. Infrasound monitoring has demonstrated utility for the remote (>250 km range)
detection and characterization of volcanic explosions, but previous studies have used relatively sparse
regional or global networks. Seventy explosive events from the locally unmonitored Bogoslof volcano
(2016-2017) provide a unique validation data set to examine the ability of the TA and other regional
networks to detect and locate remote explosive volcanic eruptions in Alaska. With a simple envelope-based
reverse time migration (RTM) technique, we are able to detect and locate more than 72% of the 61
Bogoslof infrasound events detected by the Alaska Volcano Observatory. Notably, RTM using only sparse
regional infrasound arrays produces results similar to when incorporating the extensive single-sensor TA
network, likely due to favorable signal-to-noise ratios, seasonal propagation conditions, and source-receiver
geometries. Our implementation also detects and locates explosive eruptions from Cleveland volcano,
Alaska, and Bezymianny volcano, Kamchatka, as well as infrasound from nonvolcanic events such as
earthquakes. We characterize the success of the RTM algorithm and associated parameter choices using
receiver operating characteristic curves, event detection rates, and location accuracy. Our methods are
useful for explosive volcanic and nonvolcanic event detection and localization using real-time data and for
scanning continuous waveform data archives.

1. Introduction
1.1. Motivation and Background

The deployment of the EarthScope Transportable Array (TA) in Alaska has brought one of the densest ever
seismoacoustic networks to one of the world's most active volcanic regions (Figure 1a). Alaska is home to 130
potentially active volcanoes, of which more than 50 have been active in historical times (Cameron et al.,
2018). On average, two volcanoes are in a state of eruption every year (Figure 1b) and are capable of sudden,
explosive, ash cloud-forming eruptions, which are potentially hazardous to passenger and freight aircraft
along this heavily traveled air corridor (Webley & Mastin, 2009). Monitoring of these volcanoes is performed
at the Alaska Volcano Observatory (AVO) by integrating multiple ground-based and satellite monitoring
technologies (e.g., Coombs et al., 2018). However, Aleutian volcanoes in particular represent a formidable
monitoring challenge. Because of their remote locations, many volcanoes are not instrumented, which is
also the case for the majority of potentially active volcanoes worldwide (National Academies of Sciences,
Engineering, & Medicine, 2017). Eruptions of Okmok and Kasatochi in 2008 exemplify these challenges,
as each volcano produced large atmospheric ash releases with little warning. Despite local instrumentation,
precursory indicators at Okmok were few (Haney, 2010). In contrast, precursors at Kasatochi were more
numerous but limited to seismic observation from more than 40 km away (Waythomas et al., 2010).

Volcanic eruptions produce seismic, acoustic, and air-ground coupled wavefields, each of which help pro-
vide constraints on internal and external volcanic processes (Chouet & Matoza, 2013; Fee & Matoza, 2013;
Johnson & Ripepe, 2011; Matoza et al., 2019). Infrasound (acoustic waves <20 Hz) is well suited to remote
detection (De Angelis et al., 2012; Fee et al., 2013; Garcés et al., 2008; Matoza et al., 2007; Matoza, Le
Pichon, et al., 2011; Matoza, Vergoz, et al., 2011; Matoza et al., 2013; Ripepe et al., 2018). Infrasound attenua-
tion is low, and infrasound can often be recorded thousands of kilometers from the source (Drob et al., 2003;
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Figure 1. (a) Locations of historically active volcanoes and available seismic (S) and infrasound (I) data in Alaska.
Volcanoes and infrasound arrays that are referenced in this study are labeled. (b) Evolution of the number of infra-
sound sensors deployed within 3,000 km of Bogoslof, 2011-2018. The TA has greatly increased the infrasound recording
capacity in Alaska, with TA capacity outnumbering all other networks combined. Overlapping eruptive episodes from
multiple volcanoes are shown as orange bars (Alaska Volcano Observatory, 2019).

Le Pichon et al., 2009; Waxler, 2017). Further, infrasound data reduces ambiguity in explosive eruption
detection compared to seismic data alone and thus also provides value in the quantification and modeling
of subaerial eruptive processes (Harris & Ripepe, 2007; Johnson & Aster, 2005; Marchetti et al., 2004;
Marchetti et al., 2013; Matoza et al., 2007; Ripepe et al., 2007; Vergniolle & Caplan-Auerbach, 2006). In
cloudy weather conditions, satellite observations of hot material and plumes are limited, where
infrasound is unaffected (Fee, Steffke, & Garcés, 2010; Garcés et al., 2008; Matoza, Le Pichon, et al., 2011;
Pyle et al., 2013). Lighting detection can also serve as a useful proxy for atmospheric injection, but not all
ash-producing eruptions produce lightning (Behnke & McNutt, 2014; Haney, Van Eaton, et al., 2020;
McNutt & Williams, 2010; Van Eaton et al., 2016).

Global infrasound networks have been shown to be effective at detecting relatively violent eruptions, even in
remote locations (Dabrowa et al., 2011; Evers & Haak, 2005; Fee, Steffke, & Garcés, 2010; Fee et al., 2013; Le
Pichon et al., 2005; Liszka & Garcés, 2002; Matoza et al., 2017; Matoza et al., 2018; Matoza, Le Pichon, et al.,
2011; Matoza, Vergoz, et al., 2011). Local infrasound networks (sources <15 km distant), however, are better
placed for identifying smaller explosions, degassing, or effusive behavior within a limited radius (e.g., De
Angelis et al., 2012; Fee et al., 2016; Fee, Garcés, et al., 2010; Johnson et al., 2003; Jolly et al., 2017,
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Matoza et al., 2010; Petersen & McNutt, 2007). A dense regional seismoacoustic network such as the TA falls
between these two endmember network geometries, affording an unprecedented opportunity to evaluate
explosive volcanic eruptions, wave propagation, coupling, and signal evolution for source-sensor ranges
out to a few thousand kilometers (e.g., study of the Pavlof March 2016 eruption by Fee et al., 2017).
Regional infrasound coverage on a similar scale to the TA is currently limited to combinations of national
networks such as those in the Euro-Mediterranean region (Tailpied et al., 2017). Other national infrasound
networks include those in Iceland (Jonsdottir et al., 2015), Japan (Batubara et al., 2018), Chile (Matoza et al.,
2018), and Singapore (Perttu et al., 2018).

Regional-scale studies using seismoacoustic TA data have previously considered nonvolcanic events in the
contiguous United States, with signals ranging from short and impulsive (e.g., de Groot-Hedlin & Hedlin,
2015; Edwards et al., 2014; Walker et al., 2011), to long and emergent (e.g., de Groot-Hedlin et al., 2014;
Fan et al., 2018). Infrasound produced by explosive volcanism can be equally complex, from minutes to days
in duration, with impulsive or emergent signals of time-varying frequency (e.g., Fee & Matoza, 2013; Johnson
& Ripepe, 2011; Lees et al., 2004; Matoza et al., 2017; Matoza et al., 2019; Petersen et al., 2006; Ruiz et al.,
2006). Here we describe how seismoacoustic signals from a range of Alaskan and Kamchatkan volcanoes
are recorded on regional and seasonal scales and present a method derived from those observations for the
detection, location, and characterization of these eruptions. We use existing volcano catalog information to
validate our results and determine the capabilities and limitations of the method for this data set.

1.2. Monitoring Networks

This study incorporates data from regional seismoacoustic networks including the TA, those of the AVO and
Alaska Earthquake Center (AEC), and local elements of the International Monitoring System (IMS) and
Global Seismograph Network (Figure 1). Telemetered data sampled at 20 Hz and higher are available in real
time for public download from servers operated by Incorporated Research Institutions for Seismology and
the U.S. Geological Survey. Stations in these networks include both stand-alone seismic and infrasound sen-
sors (Busby et al., 2018; USArray, 2019), as well as seven infrasound arrays (Lyons et al., 2020). AVO arrays
are located at Adak, Akutan, Cleveland, Okmok, Sand Point, and Dillingham, with the Fairbanks array (IMS
IS53) operated by the University of Alaska Fairbanks Geophysical Institute (Figure 1a). During the study
period, there are up to 274 infrasound sensors from these networks within 3,000 km of Bogoslof volcano
(Figure 1b). The term “array” is typically used for sensor geometries where signal wavelengths of interest
(here, 1 km or less) are of the order of the sensor spacing (Havskov & Alguacil, 2016). To avoid ambiguity,
hereafter “arrays” should be interpreted to mean only the AVO and IMS arrays, which have sensor spacing
of 1 km or less. Stations in the TA will be referred to as single-sensor stations, which have typical sensor spa-
cings of 85 km in Alaska.

1.3. Bogoslof Volcano Eruption

The 2016-2017 eruption sequence of the remote Bogoslof volcano, Alaska, provided a unique data set for
developing and testing our algorithm. Seventy distinct eruptive events were characterized by AVO between
12 December 2016 and 30 August 2017, using a combination of geophysical data at local AVO stations
(within 900 km), satellite images, lightning records, and eyewitness accounts (Coombs et al., 2019). The vast
majority of these eruptions produced detectable infrasound, which, depending on event size, vent
exposure/submersion, and atmospheric conditions, is observed at distances of up to 2,000 km or more
(Figure 2). Infrasound signal durations lasted from minutes to hours, with infrasound frequencies extending
from below 0.1 Hz to more than 10 Hz (Lyons et al., 2019, 2020; Fee et al., 2020; Schwaiger et al., 2020). The
AVO eruption chronology catalog (Coombs et al., 2019) represents the best possible record of Bogoslof
activity, and thus provides a metric by which to test our trial detection algorithms. Additional seismoacoustic
studies of Bogoslof using proximal stations include those by Tepp et al. (2020), who characterize seismic and
hydroacoustic data from swarms and eruptive activity; Haney, Van Eaton, et al. (2020), who describe
thunder and electromagnetic signals produced by volcanic lightning from Bogoslof; Wech et al. (2018),
who incorporate hydroacoustic T phases to model magma intrusion and eruption dynamics; Fee et al.
(2020), who examine the relation between vent submersion and seismoacoustic ratios; and Lyons et al.
(2019), who model low-frequency infrasound signals as giant, explosion-driven gas bubbles. Details of
historical eruptions and hazards at Bogoslof are given by Waythomas and Cameron (2018) and
Waythomas et al. (2020).
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Figure 2. (a) Infrasound record section for Bogoslof eruption on 22 December 2016 using data filtered 0.35-1.0 Hz. The
14-min event signal is enclosed by diagonal green lines (celerity: 315 m/s). Traces for array sensors are colored red, and
nonarray sensors colored black. (b) Traces from (a) following all data preprocessing stages which increase interstation
event coherence (section 2.2). (c and d) Record sections for 8 March 2017 eruption. Event signal ~2.5 hr; best fit celerity:
280 m/s. Other details per (a) and (b). Although both these events are relatively large for the Bogoslof eruption sequence,
sensors may not always record clear event arrivals due to atmospheric propagation paths and/or wind noise.

2. Methodology

2.1. Reverse Time Migration Overview

Reverse time migration (RTM) is a method for acoustic signal source localization; it is a time domain back-
projection technique that identifies potential locations as those with the largest corresponding stack ampli-
tude of waveform envelopes time-aligned with an appropriate velocity model. RTM has been used with
seismic data (e.g., Arrowsmith et al., 2018; Shearer, 1994; Xu et al., 2009), as well as infrasonic ground-
coupled airwaves (e.g., Walker et al., 2010, 2011, with TA data). Alternatives to RTM have been proposed
for seismoacoustic event location with TA data; for example, de Groot-Hedlin and Hedlin (2015, 2018)
and Park et al. (2018) employed a mesh of subnetworks in an array processing scheme. Other recent
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Figure 3. Sequence of the main preprocessing steps (going from top to bottom) for infrasound data recorded by station TA.
N32M, located 2,210 km from Bogoslof at Quiet Lake, Yukon, Canada, on 8 March 2017.

methods for locating volcanic infrasound using combinations of single sensors are available (e.g., Jones &
Johnson, 2011; Kim & Lees, 2015; Pinsky et al., 2017; Szuberla et al., 2006). Here we choose to evaluate
the ability of RTM to provide coarse initial locations as starting points for more accurate techniques and
for near-real-time operation at remote distances (<2,000 km) from the source. Our approach builds upon
the formulation of Walker et al. (2010, 2011), who applied RTM over a large grid (western United States)
for a range of celerities (defined as the total distance along the Earth's surface, or range traveled, divided
by the travel time). To develop our algorithm, we use data from 15 December 2016 to 14 January 2017.
This period contains frequent Bogoslof explosions with a range of amplitudes and durations.
Furthermore, stratospheric wind directions were typically toward the bulk of the network, thereby improv-
ing signal-to-noise ratios (SNR). The same algorithm is subsequently applied to all data from 1 December
2016 to 30 September 2017. All dates and times in this paper are in Coordinated Universal Time (UTC).
Additional details about the various stages of our methodology are included in the supporting information.

2.2. Preprocessing of Data

Significant preprocessing of data is necessary to improve SNR and waveform coherency between stations.
Our prestack processing performs the following steps for each sensor trace: (1) demean; (2) taper with a
Tukey window (to reduce filtering artifacts); (3) filter with a zero-phase order-2 band-pass Butterworth filter
0.35-1.0 Hz (a balance between eruption signal and background noise); (4) form envelopes (to increase inter-
station coherence); (5) decimate to one sample per 5 s after applying an anti-alias filter (computational effi-
ciency); (6) smooth with a Gaussian window of width 75 s and standard deviation 10 s (to further increase
interstation coherence and reduce spatial aliasing); (7) detrend via subtraction of a running minimum func-
tion with a 7-hr low-pass setting, hereafter called subtrending and inspired by Blackburn (2015) (to reduce
wind noise while avoiding filter artifacts); (8) apply automatic gain correction (AGC) using a 3,600 s window
(to further suppress wind and emphasize weak signals under noisy conditions); (9) demean and set any nega-
tive values to 0 (to emphasize peaks); (10) normalize on a 0 to 1 scale (to avoid dominance by noisy stations
and account for attenuation). Figure 3 illustrates the main preprocessing steps for a single trace from the 8
March 2017 Bogoslof event (Figures 2c and 2d).

As the preprocessing steps do not preserve signal shape, the resultant stack cannot be directly and quantita-
tively linked to source process and event size. However, in general, larger and more sustained volcanic
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Figure 4. (a) Signal source and stations within a grid of trial source nodes. (b) Envelopes recorded by stations when using
true source as the trial source. Data sections are extracted according to modeled celerity (diagonal blue lines). (c) Data
sections from (b) are reverse migrated in time to the projected origin time. (d) The migrated data are stacked. (e) Stacks for
all grid nodes. The stack for the true source (colored black) has the highest amplitude; stacks far from the true origin have
small stacks (colored blue). A simple DF is the running maxima of all these stacks (colored red). The time of the DF
maximum is marked with a green dashed line. (f) Contoured map of stack amplitudes at the time of the DF maximum in
(e). Hotter colors toward the center are associated with stacks with higher amplitudes. Correct source locations are only
provided by choosing times from (e) when the stack from the true source node is the highest.

explosive eruptions will produce higher SNR and longer-duration signals across more stations, resulting in
higher stack values. Similarly, our location approach relies on increasing SNR through stacking rather than
relying on the amplitudes of nonnormalized traces. Preprocessing generally improves the SNR of stacked
data, but the degree of improvement varies with parameter choices and varies from event to event. For
the example in Figure 3, the smoothing stage provides the clearest signal, but for other stations and
events, this is typically not the case. Noise emphasized by AGC is less coherent across the network than
signals from events and does not often stack constructively during RTM. The waveform data in this study
are processed in nonoverlapping 24-hr sections, with additional data padding to accommodate all
travel times.

2.3. Stacking of Data

We search for potential source locations across a 2-D spatial grid covering Alaska at 1.0° intervals in latitude
and longitude. We test each grid node by delaying and linearly stacking waveform data from all sensors
within 2,000 km of Bogoslof using 11 trial celerities, linearly spaced between 250 and 350 m/s
(Figures 4a-4d). Rather than repeat the spatial grid search at a series of trial origin times, we treat the data
samples themselves as a time grid, and the intersample spacing (5 s) as time windows. The grid search pro-
duces 11 sets of stacks, one set for each celerity. These 11 sets are then reduced to an adopted final set by
retaining the highest stack amplitude at each time step (Walker et al., 2010, 2011); this is analogous to the
beamforming approach of, for example, Green and Nippress (2019). Before and after the celerity set reduc-
tion, the stacks for each grid node are subtrended with a 6-hr low-pass setting. Applying these detrending
steps here produces higher SNR than if applied in subsequent steps, and also ensures similar background
amplitudes when concatenating multiple data sections.

Although infrasound for some Bogoslof events is detected to more than 2,000 km (Figure 2), we limit the sta-
tion radius for this study to 2,000 km to preserve detectability for small events from Bogoslof, while retaining
the bulk of stations. For RTM, including data from more sensors in the stack does not necessarily improve
SNR and can worsen it as more noisy traces are added; this can be exacerbated by coherent noise and certain
network geometries (Koper et al., 2012).
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We treat the data from each sensor in an array as an individual contribution to the stack, rather than beam-
forming the array elements together to produce a single waveform for the array. Furthermore, in contrast to
other backprojection studies (e.g., Walker et al., 2010; Xu et al., 2009), we do not apply any trace weighting
based on sensor spacing. The rationale is that the sensors closest to each other (i.e., those at arrays, rather
than single-sensor stations) are also those with the best wind-noise-reduction systems. Effects of different
station subsets are explored in section 3.3.

2.4. Event Detection Method

Identifying and locating events in the stack requires stack metrics that provide an optimal balance between
detecting volcanic events while minimizing false positive signals. This process begins by using a detector
function (DF) in order to identify events (Arrowsmith et al., 2018; Walker et al., 2010, 2011). The DF shown
in Figure 4e is simply a time series made up of the maximum amplitude of stacks. High DF values result from
higher SNR signals across more sensors. Source locations are defined by regions with spatially coherent and
high DF values (Figure 4f).

We refine this DF approach for volcanic eruptions, which can differ significantly in signal character from
event to event and station to station. Importantly, variability in eruption durations (from minutes to hours)
means that signals cannot be decimated to single impulses (a method employed by Walker et al., 2010, 2011).
However, such expected properties of volcanic signals can be exploited to enhance detection using a
regional-global network (Matoza et al., 2017). Here we specifically take advantage of the extended-duration
signal property by using a summation window to increase SNR and simultaneously reduce the prevalence of
artifacts and short, nonvolcanic signals. Due to this temporal summation process in forming the DF, the DF
amplitude can be higher than the number of normalized waveform envelopes being stacked. The maximum
possible DF value is the product of the number of traces and the number of time windows summed. We will
continue to use DF when referring to this approach, or explicitly refer to it as a time-summed DF (TS-DF), to
distinguish the method from the standard single-time-window DF (STW-DF) approach when needed.
Similarly, we will use stack to indicate the time-summed stacks from which the DF is derived.

Event detection is performed on DF time series using a minimum threshold of 12.5 dB, which is the typical
maximum background level for our data. DF samples above this detection threshold are grouped automati-
cally into peaks (requiring a minimum gap of 1,800 s), which are then located automatically. DFs are con-
verted to an SNR in decibel (dB) units using the following equation (adapted from Walker et al., 2010):

DFgng = 20log __IPFul
SNK 10\ median(|DF|) )’

where DFj, is a DF that has been high-pass filtered above a particular period to remove the DF background
offset. Here, to calculate DFy;;, we subtrend with a 48-hr low-pass setting. All results in this paper derive from
event detection and location on month-long time series, except when focusing on individual events. In such
cases, we use 24-hr time periods instead.

2.5. Event Localization

We locate events based on spatial and temporal maxima in the RTM stacks, exploring two primary methods.
Given that each sample in a DF is tied to a particular grid location, simply taking the maximum value of a
peak in the DF provides a nominal event location (Figures 4e and 4f). We define the resulting distance
between the calculated and true location as the mislocation. However, in some cases there is no clear max-
imum to the peak, while the derived source location may be offset due to atmospheric propagation artifacts (
section 3.6). Furthermore, as the shape of the peak is dependent upon network geometry, choosing the med-
ian DF sample of the peak is not a robust approach. Consequently, we focus on two alternate strategies to
locate events, each using a windowed section of the peak, rather than just one sample. For each peak, k num-
ber of DFgnr samples above a location threshold (LT) are assessed, where LT is defined as the 75th percentile
of the DFgyg samples in the peak. The location methods applied to the corresponding time period are as fol-
lows: (i) MAX (maximum): for DFgygr(k) > LT, the final location is the average of the locations correspond-
ing to samples within +75 s of the maximum amplitude; (ii) COM3 (center of mass in three dimensions): the
final location derives from the weighted-mean of all stack samples while DFgyr(k) > LT.
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Figure 5. Time series of infrasound detection for the Bogoslof eruption sequence. Eruptions are marked by red lines if
AVO registered infrasound for the events, and black if AVO did not (eruptions were confirmed through other data
types). Similarly, events detected by RTM above the 12.5 dB detection threshold are marked with green stars, and events
below this threshold are marked with white stars. The vertical scale represents the maximum amplitude of the DF within
15 min of the cataloged event.

3. Results
3.1. RTM of Bogoslof Eruption Sequence

For each Bogoslof explosion, detection of infrasound by AVO did not necessarily correspond with the start of
eruptive activity, nor was infrasound observed for all eruptive activity (Coombs et al., 2019; Lyons et al., 2020;
Schwaiger et al., 2020). AVO detected 61 of the 70 Bogoslof events with their infrasound array data (Figure 5,
red lines) using analyses deriving from least squares beamforming (e.g., Lyons et al., 2020; Szuberla & Olson,
2004). When including all available sensors, our RTM method detects 44 of 61 of these cataloged infrasound
events (72%, Figure 5, green stars), and 46 of 70 of the events as a whole (66%, Figure 5, white stars). Notably,
our RTM implementation identifies two cataloged eruptions that were reported by AVO as having below-
detection threshold levels of infrasound (22:10 14 December 2016 and 11:17 27 June 2017).

Monthly DFs for December 2016 to September 2017 are presented in section S3 of the supporting informa-
tion. These figures include further details on AVO and RTM detections for each event. In addition to the con-
firmed explosions from Bogoslof, the DFs suggest additional events that were not cataloged. For example, on
11-12 January 2017, a relatively large peak in the Alaska-wide DF is observed, with the corresponding loca-
tion less than 200 km from Bogoslof. However, as no AVO monitoring data types showed any volcanic activ-
ity (Coombs et al., 2019; Searcy & Power, 2020; Wech et al., 2018), we interpret this as a nonvolcanic
infrasound source. Similar examples occur on, for example, 1, 9, 16, and 24 February 2017, several in
April 2017, and also 24 July 2017.

3.2. RTM of 8 March 2017 Bogoslof Event

To illustrate the event detection and location procedure, we continue to focus on the 8 March 2017 eruption
of Bogoslof. This event is of interest for being one of the largest across all of the monitoring categories used by
AVO, including plume height, SO, mass, number of lightning strikes, event duration, and geographical
range of seismoacoustic observations (Coombs et al., 2019). DFs for this event (Figure 6a, top panel) retain
the two subpeaks broadly seen in Figures 2d and 3. With the chosen detection threshold, only the larger sub-
peak is automatically located. A lower threshold or manual analysis would allow for locating both subpeaks
separately. Divergence of the Alaska-wide DF (colored) from the Bogoslof-specific DF (black) during the
eruption is due to the contributions from stacks at nonsource grid nodes (as per Figure 4e). Changes in
the mislocation value with time (Figure 6a, bottom panel) reflect the evolving location of these nonsource
grid nodes in response to Alaska-wide infrasound sources.

A time slice through the stack information (Figure 6b) also shows the two location estimates for the event.
The time of the map corresponds to that of the highest Alaska-wide DF amplitude (as per Figures 4e and 4f).
The color scale represents the amplitude of time-aligned data stacks at each grid location. The MAX event
location coincides with Bogoslof (zero mislocation), and the COM3 method locates the event 341 km SSW
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Figure 6. (a) Top panel: Alaska-wide DF (colored by mislocation) and Bogoslof-specific DF (colored black) for the 8 March 2017 Bogoslof explosion. The Bogoslof-
specific DF is the stack corresponding to the trial source location (grid point) at Bogoslof. Matching amplitudes between the two DFs (marked with bold black
line segments) indicate zero mislocation. Final location estimates for peaks are performed only on the high amplitude values boxed with solid green lines. Data are
from all available infrasound sensors within 2,000 km of Bogoslof. The vertical dashed line is the AVO cataloged event onset, and the dark gray section the period
of AVO cataloged infrasound. Dotted lines earmark samples above the 12.5 dB detection threshold. Bottom panel: Variation in mislocation from Bogoslof for
each DF sample. (b) Time slice of results corresponding to larger subpeak in the Alaska-wide DF. The timestamp of the map is that of the DF maximum amplitude,
marked by a yellow arrow in (a). The color scale represents the amplitude of time-aligned data stacks at each grid location. Locations provided by the MAX

and COM3 methods are marked. Sensors are shaded red proportional to stack contribution for the corresponding source time. Circles are at 500 km spacing. (c) As
per (b) but at the time of the maximum in the Bogoslof-specific DF. A purple arrow in (a) is typically used to mark the corresponding time; however, in this case the
two map times are identical so the purple arrow is not distinguishable. (d-f) As for (a-c) but using data from only the infrasound arrays. (g-i) As for (a—c) but
using data from only the single-sensor stations.

of Bogoslof. Sensor shading (red) is proportional to relative stack contributions assuming the MAX location
is the true source. Such sensors comprise those in nearby arrays as well as several single-sensor stations to
2,000 km range with no clear distribution pattern. A time slice during the Bogoslof-specific DF maximum
(Figure 6¢) is identical to that of Figure 6b.
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3.3. Subnetwork Influence

Here we assess the relative contributions to stacks from single-sensor stations and arrays in order to under-
stand their respective impact. The first influential factor is proximity to volcanic sources. With infrasound
arrays making up the majority of sensors within 900 km of Bogoslof (Lyons et al., 2020), these sites are nom-
inally better placed to have higher SNR than stations at greater distance. Mitigating factors, however,
include potential shadow zones within the first few hundred kilometers (Fee & Matoza, 2013, and references
therein) and higher local wind noise away from the Alaskan interior. The second factor is mechanical noise
suppression. Half of the sensors comprising the infrasound arrays in this study use physical noise canceling
technology, such as wind domes (Lyons et al., 2020; Raspet et al., 2019; Walker & Hedlin, 2010). The TA sta-
tions in contrast, which make up the bulk of the single-sensor stations, do not use spatial wind filtering
devices. The third factor is sensor separation. The seven arrays in our study contain between four (AVO
OKIF) and eight (IMS IS53) sensors. Data recorded by each sensor in an array are typically highly similar
because of their close proximity (tens of meters to a few kilometers depending on the frequency range of
interest). Hence, stacked envelope data for a single array will provide a higher SNR compared to an equal
number of nonarray stations.

Array and single-sensor station results for the 8 March 2017 event are compared in Figure 6. For the array
data, the two subpeaks (Figure 6d) are similar to those of the combined station data (Figure 6a). The
MAX location for the second subpeak here has a mislocation of 233 km (Figure 6e), compared to no misloca-
tion when using all sensors. In contrast, the single-sensor DF has a low SNR, and does not resolve the first
subpeak (Figure 6g). Further, the location estimates for the second subpeak (Figure 6h) are highly inaccu-
rate. This occurs because the relatively high samples in the Alaska-wide DF represent grid nodes far from
Bogoslof. Accurate automated locations are only obtained if the highest Alaska-wide DF amplitudes are
from stacks for grid nodes close to Bogoslof (e.g., Figures 6a—c). The absolute prominence of the Bogoslof-
specific DF in Figure 6g, or its similar appearance to those in Figures 6a and 6d is therefore not a factor in
event localization. Rather, the relative amplitudes of the Bogoslof and Alaska-wide DFs are important.
More accurate locations for the single-sensor station example would be provided by automated or manual
selection of DF samples when the Alaska and Bogoslof DFs intersect at ~09.45 (Figure 6i). Animations show-
ing the time-evolution of Figure 6 are provided in the supporting information as Movies S1-S3.

The relative location accuracy of the three station groupings is in part a consequence of the source-station
geometry, with the single-sensor stations having the lowest azimuthal coverage of Bogoslof. Hence with
the addition of noise, and increased wavefield dispersion with source-receiver distance (e.g., Green &
Nippress, 2019), stacked data at grid nodes other than the true source may have the highest amplitudes
(Figures 6h). This scenario is reflected by the contrast in mean mislocation for the background/nonevent
DF samples in Figures 6a, 6d, and 6g (bottom panels). The array-only data (Figure 6d) have a majority of
location values close to Bogoslof, whereas the single-sensor station data (Figure 6g) have typical mislocations
of 1,000-2,000 km, reflecting grid nodes in mainland Alaska. Therefore, for stations with good azimuthal
coverage of the source, or for stations that are close to the source, selecting nonoptimal DF samples can still
give a reasonable position (Figures 6b and 6e). The 15 January 2017 Bogoslof eruption is another event
widely recorded across Alaska (Figure 7). In contrast to the 8 March 2017 event (Figure 6), here, each of
the three groups of stations under consideration locate the event more similarly.

Given the anticipated effects of seasonal stratospheric wind direction on signal detection (Le Pichon et al.,
2009), Figure 8 explores how the Alaska-wide DF maxima for AVO-cataloged infrasound events varied dur-
ing 2016-2017. We compare results from single-sensor stations and arrays, as well as account for the number
of sensors in operation. DF amplitudes for both data sets are lower for June through August 2017 (Figures 8a
and 8b) compared to earlier in the year, despite the increase in installed sensors. Figure 8c shows that in rela-
tive terms, there is a positive relation between sensor contributions to DFs for either station category. In
absolute terms, the array sensors contribute more to DFs than single sensors. For both data sets, the DF con-
tributions per sensor are higher from December to March, than June to August. A switch in stratospheric
wind direction from eastward to westward over the time period does not, however, preferentially affect
one set of stations over the other, despite the arrays having better azimuthal coverage of Bogoslof
(Figure 1la). Detailed analysis of atmospheric behavior during the Bogoslof sequence is provided by
Schwaiger et al. (2020).
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Figure 7. As for Figure 6 but using data from the 15 January 2017 Bogoslof eruption. Each map plots the location for the first peak, which has AVO cataloged infra-
sound, whereas the second peak does not have such information. In each case, the MAX and COM3 location estimates are colocated. The event locations from each
sensor grouping are relatively similar compared to those in Figure 6.

Accounting for event size in the observations from Figure 8 is challenging as independent metrics of volcanic
intensity such as plume height, SO, mass, and number of lightning strikes (Coombs et al., 2019), do not robustly
correlate with infrasound signal characteristics (e.g., Lopez et al., 2020). A particular complication in this regard
is accounting for the fluctuating vent conditions (submarine to subaerial), dome building activity, and any
cloud coverage which hampers satellite observations. Given these constraints, however, no particular decrease
in event magnitude is identified over the course of the eruption. Similar event size comparisons exist for precur-
sory seismicity (Tepp & Haney, 2019), and eruptive seismicity (Haney, Fee, et al., 2020; Tepp et al., 2020).

3.4. Algorithm Performance for Bogoslof Eruption Sequence

We use receiving operator characteristic (ROC) curves (Fawcett, 2006) to compare the ability of different
RTM algorithms to correctly classify events. These ROC curves plot the true-positive rate (TP rate) versus
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Figure 8. (a) Single-sensor station DF amplitude (in dB) and sensor number versus time, for infrasound-generating events
cataloged by AVO (£15 min). Sensor quantity is shown for both total sensors (blue line) and sensors within 500 km of
Bogoslof (red line). (b) As per (a) but for arrays. (c) Sensor contribution to DFs in absolute and relative terms for the arrays
and single-sensor stations, shaded by time.

false-positive rate (FP rate) of a DF for a range of detection thresholds (Figure 9). An algorithm that classifies
events perfectly will have a threshold that gives a TP rate of 1, and an FP rate of 0. For such an algorithm, the
area under the curve (AUC) accounts for 100% of the total possible area. AUC values close to 50% are
equivalent to classifications being a random guess. A ROC curve is equivalent to plotting the probability
of an eruption versus the probability of a false alarm. We automatically classify detections by comparing
AVO infrasound catalogs for Bogoslof to DF samples at equivalent times, on a sample by sample basis.
Other volcanic events such as those from Cleveland are not treated as cataloged events, nor are known
nonvolcanic events. ROC calculations are performed on month-long DFy;, time series.

ROC curves are also useful for comparing RTM parameter choices, station

101 Rom-======—=====s=mssmms s choices, and time of year, all factors which can affect the SNR of DFs
500 (Figures 5 and 8). For instance, to further illustrate seasonal weather
08 4 Optimal Low influences for the three station groups, Figure 10 compares ROC results
N\ tresholdsep o7 threshold 400 for each month using AUC as a classification metric. Figure 10 also com-
z \\ , /’ g pares implementation of the TS-DF and STW-DF approaches to assess if
d 7 \\ e 300 2 there are differences in classification performance between the two meth-
g /’;o@‘f § ods. We find that for both DF formats, AUC values are typically at or
£ 041 /'q@’° ﬁ 200 = above 75% for the majority of the year. Only July and August 2017 have
= /’ ° AUC values close to 50%. The classification performance for the single-
02 ,,” I 100 sensor stations is poorer than the other two station configurations.
e Overall, TS-DFs classify volcanic events marginally better than STW-DFs.

High
0od B% freshold Poor classification '0 We also evaluate seasonal effects on algorithm performance over the
- - - - - A Bogoslof eruption sequence by plotting (1) the percentage of AVO cata-

Figure 9. ROC curve for December 2016 data. A DF detection threshold of

FP rate [FP/(FP+TN)]

29.4 gives a moderately high TP rate (~0.8) and moderately low FP rate

loged infrasound events detected by RTM (allowing a +15-min margin),
and (2) the location accuracy of those detected events using monthly
averages (Figure 10). As with the ROC classification performance, the
event detection rates and location accuracy are typically better from

(~0.2). The area under the curve (AUC) is 85%. TP, true positive = eruption
with DF > threshold T; FP, false positive = no eruption with DF > T; TN,
true negative = no eruption with DF < T; FN, false negative = eruption with
DF < T.

December 2016 to May 2017, and poorer subsequently. Notable differ-
ences between the DF methods include STW-DFs being relatively strong
for event detection rates (up to 85% overall), with the greatest difference
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Figure 10. Comparison of detection and location results using TS-DF (left column) and STW-DF (right column)
approaches. Though broadly similar, the TS-DF method, as used throughout the paper, is relatively strong for array-
only stations versus single-sensor stations, whereas the STW-DF is particularly advantageous for single-sensor station and
combined sensor results in terms of event detection. Bogoslof events were cataloged by AVO for every month except April
2017. Absence of markers for a particular month here indicates no detections by the method.

being for the single-sensor stations. Similarly, for the location methods, STW-DFs perform relatively well for
the single-sensor station data, though direct comparison is challenging given the contrasting event
detection rates.

3.5. Algorithm Performance for non-Bogoslof Events

Since the beginning of the Bogoslof eruption sequence in December 2016, many other volcanoes in the
North Pacific have erupted. The volcanoes from Alaska are: Cleveland, Great Sitkin, Semisopochnoi, and
Veniaminof (Figure 1) (Alaska Volcano Observatory, 2019), and from Kamchatka: Bezymianny, Ebeko,
Kambalny, Karymsky, Khangar, Klyuchevskoy, Koshelev, Sarychev Peak, Sheveluch, Zheltovsky, and
Zhupanovsky (KVERT, Institute of Volcanology and Seismology FEB RAS, 2019). We assessed a subset of
these (Table S2 of the supporting information) based on network proximity, event size, and plume direction.
Of the Alaska events, only the Cleveland explosions are clearly detected by RTM (using the same parameter
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set for Bogoslof). These results are somewhat expected as most of the nondetected eruptions were relatively
small. Of the five Kamchatka events focused on, only the Bezymianny explosion on 20 December 2017 is
clearly identified. Candidate events from near Koshelev and Zheltovsky are suggested by RTM but these
do not match events in KVERT catalogs. Unfavorable propagation and attenuation conditions may explain
the lack of clear observations from nondetected Kamchatka events, which were on a similar scale to that of
Bogoslof on 8 March 2017. Detection performance for eruptions in Kamchatka and the western Aleutians
could increase with inclusion of data from the IMS stations in Kamchatka (IS44) and others in the northern
Pacific region (Fee, Steffke, & Garcés, 2010; Matoza et al., 2017), as well as any local infrasound networks in
those areas (Gordeev et al., 2013; Matoza et al., 2019).

Additional nonvolcanic events are regularly seen in our DFs (section S3, supporting information). The IMS
1S53 array in central Alaska is particularly well positioned to record urban noise, industrial and military
blasts (Gibbons et al., 2019; Schneider et al., 2018), and rocket launches (de Groot-Hedlin et al., 2008) from
the Poker Flat Research Range. Many of these types of events, and others such as debris flows (IRIS DMC,
2014; Toney et al., 2019) and bolides (Edwards et al., 2014; Walker et al., 2010), were recorded by the TA
while it was traversing the continental United States. Such observations are detailed in the TA Infrasound
Reference Event Database (de Groot-Hedlin & Hedlin, 2015; IRIS DMC, 2012). Several M6+ earthquakes
in Alaska were also located by applying our RTM algorithm to air-coupled ground waves (also see Shani-
Kadmiel, Assink, Fee, et al., 2018, and a review by Mikumo & Watada, 2010).

3.6. Source Resolvability and Stack Artifacts

The stacked data here contain significant artifacts, manifesting as event data being smeared across space-
time in a phenomenon known as swimming (e.g., Meng et al., 2012). A correctly tuned RTM algorithm
should generate event-based stack maxima only at the physical source, rather than earlier or later along a
swimming track. Swimming is clearly apparent in Figures 6 and 7 by comparing the widths of peaks in
the Alaska-wide and Bogoslof-specific DFs, as well as by observing the evolving mislocation during the
event. Movies S1-S3 show this migration particularly well prior to, during, and after the 8 March 2017 event.
Swimming is principally a consequence/function of the network geometry's response to a series of impulses
(Koper et al., 2012). The artifacts are emphasized where sources are complex and outside the majority of the
network (due to poor azimuthal coverage). Consequently, there are implications for being able to clearly
resolve and accurately locate a source using stack information even under ideal atmospheric propagation
and noise conditions.

To illustrate the impact of network geometry and source type further, Figure 11 compares synthetic sources
(1- and 10-min durations) at three locations across the north Pacific. These locations represent sources
within the network center (Fairbanks, Alaska), network margin (Bogoslof, Alaska) and far outside the net-
work (Bezymianny, Kamchatka). During each DF shown, the stack for each true source is only represented
briefly at time 00:00. For shorter impulse sources (Figure 11a), DFs at all three source locations have larger
oscillations and generally clearer peaks than for longer, emergent sources (Figure 11b). These oscillations
are simply the original source information stacking at non-true grid nodes with lower amplitudes. As the
source duration grows (and/or grid spacing decreased), these peaks merge together. Relatively clear DF
peaks occur for sources closer to the network center due to improved azimuthal coverage. Further, peak
sharpness is also celerity dependent—the narrower the celerity search range, the narrower the DF
(Figure 11 uses a single celerity of 300 m/s for simplicity).

Figures 11c and 11d show the stack information at time 00:00 in map form. Here, RTM location estimates are
reflected by the intersection of ring features around individual sensors. When particular sensors contribute
heavily to the location, the rings centered on those sensors are more pronounced. Such features are commonly
seen around arrays which contain multiple equally weighted sensors, for example, Figure 7 and Movies S1-S3.
Figures 11e and 11f plot cumulative stack amplitudes, illustrating the swimming tracks along the respective
source-station axes. Stacked energy is more concentrated for short events and for source proximity to the net-
work center, providing higher location resolution. The azimuthal coverage of these sources has parallels to how
the groupings of combined, array, and single sensors are positioned in relation to Bogoslof.

The swimming artifact for the 8 March 2017 Bogoslof event is explicitly illustrated by Figure 12. The DFs in
Figure 12a are the same as those from Figure 6a, but here the time slice map (Figure 12b) corresponds to the
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Figure 11. (a) Normalized DFs for a 1-min synthetic Gaussian source pulse, placed at three locations and propagated to all
marked stations with a 300 m/s celerity. Sharp steps in the Bezymianny and Fairbanks DFs are a result of proximity to the
grid boundary. (b) As per (a) but with 10-min Gaussian source pulse. (c, d) Maps showing time slices through time-
summed stack data at times 00:00. Rings are at 500-km intervals. (e, f) Maps showing cumulative time-summed stack
values at each grid node for the 1- and 10-min pulses.

maximum amplitude of the first, smaller subpeak of the Alaska-wide DF, rather than the second. The
location of the highest stack energy is to the SW of Bogoslof, rather than at the true source. For
subsequent time slices, the region of maximum stack energy migrates NE, passing Bogoslof at 07:53
(Figure 12c). A similar migration is observed for the second subpeak from 08:30-11:00. Figure 12d shows
the cumulative stack amplitude at each grid node for the time period covering both DF subpeaks (06:00-
12:00). Though the highest cumulative amplitude is at Bogoslof, there is significant energy distributed
elsewhere. In particular, the SW corner of the grid accumulates amplitude values that would otherwise
locate SW of the grid edge if it were not for this boundary. Consequently, the corner node is masked here
to avoid dominating the color scale.
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Figure 12. (a) DFs for the 8 March 2017 explosion from Bogoslof without a mask. Other details per Figure 6a. There is no
mislocation of the maximum of the larger subpeak. The mislocation of the maximum of the smaller subpeak is ~200 km,
however. (b) Time slice map corresponding to maximum of smaller subpeak (marked with arrow in Figure 12a). Other
details per Figure 6b. (c) RTM locations for each sample in the Alaska-wide DF (Figure 12a), color-coded by time. (d)
Location data from the Alaska-wide DF is binned by grid node and tallied. (e-h) As for (a)-(d) with a mask applied such
that the DF is formed only from stacks for grid nodes close to land.

Limiting the grid search (or DF components) to nodes that are on land is a potential approach for mitigating
swimming artifacts applicable to arc volcanism. Given the direction of swimming here is from SW to NE, the
initial swimming artifact is entirely over the ocean until the Aleutian Islands are reached. By excluding grid
nodes over the ocean, this preartifact can be removed from the DF, though postartifacts remain due to the
remaining land (Figure 12e). Locations for the first subpeak are now accurate compared to without the
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mask (Figure 12fvs. 12b). The evolution of mislocation with time also becomes unclear (Figure 12g) and the
cumulative stack energy now shows a constrained distribution (Figure 12h). More severe masks could be
used in order to restrict DFs to particular regions of interest (indeed the Bogoslof-specific DFs are an extreme
case of this). Notably Landés et al. (2012) take the opposite approach whereby grid values over the continents
are masked to avoid locating microbaroms on the continents. Arrowsmith et al. (2018) describe a range of
related methods.

Other strategies to minimize or account for swimming include time-frame averaging (Koper et al., 2012),
reference windows (Meng et al., 2012), as well as combining results from azimuthally distinct subnetworks,
and exotic stacking techniques (e.g., Xu et al., 2009 and references therein). In evaluating three such stacking
methods (Nth root, semblance, and F ratio) we find that though swimming artifacts improve in some cases,
in other cases the artifacts remain. Use of azimuthally distinct subnetworks for this study is problematic
given the progressive deployment of the TA during the Bogoslof eruption. The westernmost stations (well
placed to constrain events) were only deployed at the end of the eruption (Figure 1).

4. Discussion

Bogoslof was a complex seismoacoustic source, with the vent submerged for most of the nine-month erup-
tion, impacting acoustic coupling with the atmosphere (Godin, 2008; Ichihara et al., 2009; Lyons et al., 2019,
2020; Fee et al., 2020). Infrasound from some explosions is detectable at ranges of 2,000 km or more by regio-
nal networks (Figure 2). Distant arrivals are sometimes clearer than those more proximal due to refractive
shadow zones and atmospheric waveguides (Drob et al., 2003). The dense regional network in Alaska is,
despite poor azimuthal coverage of the Aleutian Arc, capable in principle of identifying and locating explo-
sions to subdegree accuracy using RTM. However, detection and location capability depends upon the num-
ber of arrivals, their azimuthal distribution, SNR, and processing methods.

One demonstrated shortcoming of RTM, though not unique to it, is that for sources outside the network,
the location estimate has a spatiotemporal error ellipse along the source-network axis (Cochran &
Shearer, 2006), manifesting as swimming artifacts (Figures 6, 7, 11, and 12). These artifacts result in loca-
tions for both background and high-amplitude DF samples migrating over the grid space. Thus, having
an event trigger based only on whether a volcano-specific DF matches the Alaska-wide DF will have
many false alarms, even during background noise. Without adequate azimuthal coverage of the source,
a DF amplitude threshold is an insufficient control to resolve this issue (Figure 11). The majority of vol-
canoes of interest in Alaska are outside the margins of the bulk of monitoring stations, and consequently
incorporation of an independent location estimate provided by local infrasound arrays would provide this
azimuthal control. These arrays can provide individual back azimuths (Fee et al., 2016; Fee, Steffke, &
Garcés, 2010; Gibbons et al., 2005; Iezzi et al., 2019; Le Pichon et al., 2005; Ripepe et al., 2007), and dis-
tances (Green & Nippress, 2019; Shang et al., 2019; Shani-Kadmiel, Assink, Smets, et al., 2018; Szuberla
et al., 2006), in addition to source triangulation through a cross-bearings approach (e.g., Le Pichon et al.,
2008; Matoza, Le Pichon, et al., 2011; Matoza, Vergoz, et al., 2011; Mialle et al., 2015; Matoza et al.,
2017). The relative consistency with which stacked array data characterizes eruption records, when com-
pared to a network of single sensors demonstrates the importance of these arrays. Similarly, deriving
locations by treating the existing network as a mesh of three-station triads is another approach (de
Groot-Hedlin & Hedlin, 2015).

The success of the RTM method also depends on the alignment and shape of envelopes being stacked.
For instance, events tend to locate well if the original waveforms have features that are sharp/impulsive
enough, or can be processed in such a way that a DF reflects that sharp feature (Figure 7). The contrary
is also true—broadly topped DFs may not locate well, particularly if the DF maximum is taken arbitra-
rily (Figures 6g and 6h). An important related factor is that RTM stacks energy rather than phases, and
thus stack amplitudes and the ability to locate an event are impacted by the change in wavefield
between source and receiver. Such changes are typically proportional to source-receiver distance on
the order of the scales in this study (Green & Nippress, 2019). In the presence of realistic atmospheric
multipathing, observing interstation similarity on the order of the 8 March 2017 Bogoslof eruption
(Figure 2) across 2,000+ km is unlikely, particularly for weak signals. Short signals can be incorporated
into a single envelope, and thus easily stacked (e.g., Hedlin & Walker, 2013). However, for signals
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longer than a few minutes and for sources outside the network, stacking is more challenging and thus
the true locations become difficult to resolve (Figure 11). In such cases, phase association and variable
window lengths may be advantageous (Park et al., 2018), as well as allowing for multiple celerities at
each time step between grid nodes and stations.

Seasonal variability in dominant stratospheric wind direction affects detection capability (Hedlin & Walker,
2013; Le Pichon et al., 2008; Le Pichon et al., 2009; Mutschlecner & Whitaker, 2010; Tailpied et al., 2017). In
the Alaskan winter months, stratospheric winds typically blow eastward (from west to east) from the
Aleutians toward the network, whereas in the summer the case is the opposite (De Angelis et al., 2012).
In both cases, however, tropospheric and thermospheric ducting may still take place under different influ-
ences (De Angelis et al., 2012; de Groot-Hedlin, 2017; Iezzi et al., 2019; Schwaiger et al., 2019, 2020).
Surface winds can also mask signals of interest, though such winds are typically weaker inland. Increased
snow cover during winter can be beneficial by isolating sensors from turbulence and gusts (Woodward
et al., 2005). It is reasonable that different parameter choices would work better at some times of year than
others, for different event characteristics, and for different station combinations (Figure 10). For example,
the lower frequency filter limit of 0.35 Hz is set in order to retain data above the microbarom peak and
reduce wind noise. However, given the seasonal change in strength of the microbarom in the northern
Pacific (Garcés et al., 2010; Walker, 2012), such a lower limit could be made flexible to take advantage of
this situation.

The factors discussed above are interpreted here to affect the ROC classification, event-detection rates, and
location accuracy results presented in section 3.4. The temporal features observed in Figure 10 are also
reflected in results from other AGC and stacking methods (section S4, supporting information). However,
the number of events in any particular month and their relative or absolute amplitudes are also important
considerations when interpreting temporal statistics (including Figures 5 and 8). Given that ROC classifica-
tion is performed with only Bogoslof events, rather than all known volcanic or nonvolcanic infrasound-
generating signals, a more detailed assessment may produce improved results. In a similar vein, it is worth
noting that the final AVO catalog was a retroactive assessment of data products, with some infrasound detec-
tions based on just a single array.

The choice of the DF type also affects the capacity for isolating, detecting, and locating explosive events,
depending on the station configuration and event duration. Synthetic results show clear differences
between DF types for the 1-min events (Figure 11a), and would be expected for sources up to several
minutes. For Bogoslof, AVO cataloged infrasound durations vary from 2-409 min (median 14 min), with
17 of the 61 events <5 min. For out-of-network sources, STW-DFs have relatively clear peaks compared
to TS-DFs (Figure 11a). This factor may contribute to the relatively high event detection rates for the
single-sensor stations using STW-DFs (Figure 10). These implications extend to Cleveland, which is more
remote than Bogoslof, and typically exhibits brief explosive eruptions (De Angelis et al., 2012; Werner
et al., 2017; Iezzi et al., 2019; Table S2). However, Figure 10 shows that for combined and array station
configurations, TS-DFs have a slight advantage for both reducing false positives, and for location accu-
racy of detected events.

Overall, 72% and 85% of known infrasound-generating events from Bogoslof were identified with TS-DF
and STW-DF methodologies respectively, when using all sensors. Successful detections include the onset
of the Bogoslof eruption sequence on 12 December 2016, and the following three events (section S2, sup-
porting information), something not observed at the time by routine AVO monitoring (Coombs et al.,
2018). Had Bogoslof been suspected of unrest, however, alarms at AVO arrays would likely have been
set and triggered by the eruptions (Lyons et al., 2020). Detection of these events with RTM is in addition
to several other cataloged events not documented as having detectable infrasound by AVO (section 3.1).
Larger explosive events, such as the 2008 eruptions of Kasatochi and Okmok volcanoes, Alaska (Fee,
Steffke, & Garcés, 2010), would likely be detected and located well with the RTM algorithm, even in
the presence of unfavorable acoustic propagation or other conditions. Supplementing the network with
strategically placed sensors in quiet locations would also likely improve RTM performance (e.g., Biasi
& Alvarez, 2018; Tailpied et al., 2017), as would refined wind noise suppression for TA sensors.
Improved algorithm performance is expected in areas with less challenging network geometries and
weather conditions.
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5. Conclusions
We have shown that simple RTM methods using the TA and other regional network infrasound data are cap-
Acknowledgments able of detecting and locating relatively small and emergent events from remote Alaskan volcanoes such as
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Bogoslof and Cleveland. Our RTM implementation is able to detect and locate more than 72% of the Bogoslof
infrasound events cataloged by AVO. Such statistics, as well as those for location accuracy and classification
success, vary significantly with RTM parameters choices. Identification and location of events with RTM is
improved by the presence of the TA; however, individually, the TA typically performs worse than existing
infrasound arrays in the region. This deficit is likely due to a combined function of greater source-station dis-
tances, lower azimuthal coverage, and lower intersensor signal coherence. Our efforts to locate infrasound
signals from known eruptions in Kamchatka had a low success rate (one of five) due to more extreme cases
of the above factors. The presence of spatial wind noise filters at most arrays is also a key difference versus
TA sites. The effectiveness of RTM in the region also varies seasonally, with no apparent dependence on
event size. Lower event detection rates during the summer, when stratospheric winds typically blow away
from the network, show that increased azimuthal coverage of remote volcanoes is crucial and not compen-
sated for by high sensor quantity alone. Opportunities for refining and improving these RTM strategies
include data-adaptive processing, provision for atmospheric specifications, and incorporating azimuthal
information from arrays. The frequent eruptions and dense regional network in Alaska provide an excellent
opportunity to continue assessing the capability of regional-scale seismoacoustic networks for remote
volcanic monitoring.
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