
UC Irvine
ICS Technical Reports

Title
Specification languages for embedded systems : a survey

Permalink
https://escholarship.org/uc/item/5hd5n4pz

Author
Melhart, Bonnie E.

Publication Date
1988-06-29

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5hd5n4pz
https://escholarship.org
http://www.cdlib.org/

Notice: Tt:lls Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Specification Languages for Embedded
Systems: a Survey

Bonnie E. Melhart1

Department of Information and Computer Science

University of California, Irvine

Technical Report #88-1 7

June 29, 1988

1This work was supported by the Office of Research and Graduate Studies, University
of California, Irvine.

.1

/' r ('·j

r' ~)
L''

)'1•' '', I 1 ;)

·'

·' •'

Abstract

Requirements specification is an important part of the software develop­

ment process. Use of well developed techniques, tools, and languages during

requirements specification is especially crucial for complex embedded soft­

ware systems. Four languages appropriate for the specification of software

requirements for complex embedded systems (RSL, PAISLey, Statecharts,

and SCR) are reviewed in detail here. In addition, other representation

languages with features relevant to the embedded software systems domain

are mentioned. Conclusions about the current status of embedded systems

requirements specificatio'n and indications of further research are given.

Contents

1 Introduction 1

2 Desirable Characteristics 5

3 RSL 9

3.1 Context 9

3.2 Overview 13

3.3 Experience 16

3.4 Assessment 19

4 PAISLey 21

4.1 Context 21

4.2 Overview 22

4.3 Experience 27

4.4 Assessment 30

5 Statecharts 32

5.1 Context 32

5.2 Overview 35

5.3 Experience 39

5.4 Assessment 40

6 SCR 42

6.1 Context 42

6.2 Overview 44

6.3 Experience 49

6.4 Assessment 50

1

7 Others

8 Current Status

9 Conclusions

2

52

56

58

1 Introduction

In any development process, it is essential to understand what you are

building. This defining activity should take place before you start building,

not halfway through the development process when it is too late or too

expensive to make changes. A clear statement of the problem and potential

solution is required for analysis and to provide a well-documented path for

change and/ or correction when modifications are deemed necessary. This

is true for software engineering as for other system building processes. The

requirements specification phase is essential to the progress of the entire

software development process. It is at this time that the definition of what

the system is required to do is established. If the requirements are specified

correctly, the rest of development is made easier and cheaper. However, if

the requirements are incorrect, the rest is harder and costlier. It is no

simple task to get the requirements correct; indeed, it is not known how

to determine whether or not they are correct. To this end, an important

research area in software engineering is the development of requirements

analysis techniques.

The general purpose of specifying requirements is to facilitate the un­

derstanding of the system that is under development. The goal of the en­

deavor is an explicit statement of the behavioral requirements for the new

system, where behavioral may include both functional and non-functional

(sometimes called performance) requirements. It is important that these

requirements be precisely documented, not just expressed in vague terms

or entrusted to someone's memory. Otherwise, at each stage of develop­

ment, the requirements must be intuitively recreated for application at that

level-an imprecise procedure at best [Par77]. The specification statement

1

should be independent of any particular implementation, and certain qual-
I

ity characteristics are called for: it must be possible to tell whether or

not a system meets the requirements; two different systems with differ­

ent functionality cannot both satisfy the requirements; internal consistency

and consistency with the system's environment are required; and verifiable

correctness, which includes completeness, is needed. Such a specification

document is often used as a basis for contractual negotiation between the

user and the developer. It also provides a blueprint for the next level of

software development and may be used in later phases as a guide for change

control.

The research discussed here is focused on the specification of require­

ments for complex embedded systems. Embedded systems, for our pur­

poses, are those that are part of a larger system and have a primary purpose

other than computation. Appropriate applications for this work involve

process control and are characterized by concurrency, complex interfaces,

and urgent performance requirements [Zav82]. There is a high cost asso­

ciated with determining the correctness of such software and a still higher

cost associated with its incorrectness [WL85].

Software engineering is involved in the development of many complex

embedded systems, e.g., air traffic control, on-board aircraft flight control,

robots, military weapons, and medical patient monitoring. Most real-time,

reactive systems (i.e., those with requirements to interact with and respond

to their environment during execution) will benefit from research on em­

bedded system specification. One essential feature of such a specification

is incorporation of an environmental (or plant) model. Validation of this

model may be required before it is used to draw conclusions about the

representation of the system that is being developed. The interface of the

2

embedded system with its environment and the assumed constraints on the

environment should be a part of the requirements specification. Analy­

sis for correctness of the system's specified response to external stimuli is

facilitated by the inclusion of this environmental model in the specification.

Boebert described the development of embedded software systems as

"One of the most rapidly growing areas of software activity and one whose

characteristics and special problems are rarely considered by the computer

scientist or verification communities." [Boe80]. While there are some popu­

lar requirements specification languages that may be used for less complex

software (see e.g., [Egg80], [CL81], [TH77], [GMT*SO], [BCF*83]), there

are currently few languages that are seriously considered appropriate for

specifying the requirements for complex, embedded systems. It is gener­

ally agreed that any such representation language should be formal (or at

the very least semi-formal) for several reasons. The discipline required to

use a formal language implies a more complete treatment of the specifica­

tion. Formal models are mathematically analyzable and may even lead to

automated verification. The complexity and size of most elements of this

domain require considerable modularization of systems, which may increase

the difficult task of interface specification; formal treatments facilitate the

correctness of these specifications [WL85].

Of the available languages, the following four are best known: RSL,

part of the SREM methodology for real-time specifications developed in the

1970's; PAISLey, developed by Zave in the early 1980's for the specification

of embedded systems from an operational viewpoint; Statecharts, a recent

technique developed by Harel, Pnueli, and others for specifying reactive

systems; and a semi-formal technique developed by Parnas, Heninger, and

others for specifying the A-7 aircraft flight software, referred to in this work

3

as SCR.

The purp~se of this paper is to provide an overview of the languages

for specifying embedded systems and assess how they may be extended

or augmented with other techniques to better serve the developers of em­

bedded software systems. Progress in the area will best be promoted by

careful consideration of the existing methods as a starting point for further

work. This is supported by Place: "We must be wary of performing a too

rapid examination of current techniques and concluding that there is no

appropriate technique." (Pla85], and by Shaw: "It is extremely desirable

to extend existing methods to new properties instead of developing new

methods whenever possible." (Sha85]. The organization of this paper is

based on this premise. After a discussion of certain standards desirable for

requirements specification languages, the four previously enumerated lan­

guages (RSL, PAISLey, Statecharts, and SCR) will be surveyed. For each

language, the context for its development/use, an overview of the language

itself, experience with its use, and as assessment of its effectiveness for

the embedded systems domain will be given. Some other less known/used

languages will be mentioned in section 7, although they are not fully re­

viewed. Finally the current status and research areas of embedded systems

requirements specification will be assessed.

4

2 Desirable Characteristics

While there is no absolute checklist for properties that a requirements spec­

ification must have to be good, useful, or even to satisfy the purposes set

forth in the previous section, there are certain characteristics that are desir­

able in a software specification. Some are not only desirable, but essential

according to the intended application area. Alford [Alf77] has provided an

extensive list of such properties; Heninger [Hen80] has described more de­

sirable characteristics specific to real-time applications. Their features and

a few other generally accepted ones are listed in figure 1.

Correctness properties. No matter what the application domain for the

software specification, it should be as correct as possible. Correctness is

an evaluation of whether or not it solves the problem as put forth by the

system requirements that have been allocated to the software subsystem

or, in a less complex situation, as put forth by the user to the software

developer.

Completeness addresses whether or not the specified system is suffi­

cient to this required task. There is no absolute criterion for establishing

the completeness of a software specification; ongoing research is address­

ing this area [Jaf88] [Yue87]. Two kinds of consistency are desired for a

specification: static and dynamic. Static consistency means the statement

of the requirements has only well defined entities, whereas dynamic con­

sistency implies the functioning software system is well-defined. This is

usually measured by simulation.

Two other correctness features are closely related. To be precise a spec­

ification must not be satisfiable by more that one distinct system; a spec­

ification is ambiguous if it is not possible to tell whether or not a system

5

Correctness properties.
complete
consistent
precise
unambiguous
formal

Verification properties.
traceable
testable

Correction/modification properties.
changeable
extensible
free of design

User properties.
executable
communicable
usable

Real-time/embedded properties.
address: environment

exception handling
performance

Figure 1.

satisfies the specification. The discipline of a formal specification may be

desired to achieve the other properties. Correctness properties are desirable

for all specifications.

Verification properties. The next two properties on the list relate to

verification of the specification and of the implementation of the specifica­

tion. A traceable specification relates each requirement to the preliminary

requirements from which it arose, either a user statement or a sub-system

specification. A testable specification states requirements in terms of the

tests that can be used to verify compliance to it.

Correction/modification properties. Correction or modification proper­

ties are desirable when the requirements for the system must be changed

due to errors or otherwise. Some have argued that all design decisions

should be kept out of the requirements specification [Par77], while others

6

argue for postponing design decisions as long as possible, but not precluding

some design decisions from the specification [Hen80].

A changeable specification allows minor corrections without redoing ma­

jor pieces of the work; modularity is usually a technique to encourage

a changeable specification. Requirements specifications that are extensi­

ble are especially desirable for applications that are dynamic as frequent

changes in the application mean frequent changes in the software capability.

User properties. The requirements specification is a document for many

users. Maintainers, for example, may desire a document organized as a

reference tool. The inclusion of a graphical model may be desired for com­

munication of the representation among analysts and designers or even

communication to the customer (user). Some may desire an executable

specification for simulation demonstrations or to build a prototype model.

As with correctness, formality is desirable to help achieve an executable

specification.

Real-time, embedded properties. The last set of features are key ones

for the application area, i.e. complex embedded systems. The inclusion

of an environment model with the software subsystem representation fa­

cilitates the specification of interfaces and of any assumptions made about

inputs and outputs. Specification of non-functional constraints including

performance requirements such as response time, space bounds, time outs,

accuracy, and reliability as well as communication, synchronization, and se­

curity are often essential to the development of systems in this domain. In ,

particular, safety critical system specifications demand explicit stipulation

of how the occurrence of undesired events will be handled.

Of course, these properties are not without cost (in personnel, time,

dollars, or all three), and their desirability is a balance between that cost

7

and the benefit they provide for a particular application. Specification
I

languages and the methods for using them may incorporate features that

demand, encourage, or allow such desirable properties in the resultant spec­

ification. As the details of selected languages are given in ensuing sections,

care will be taken to establish whether or not the language has such fea­

tures.

8

3 RSL

The first language to be described is the Requirements Statement Language

(RSL). RSL was developed in the 1970s by the Ballistic Missile Division

of TRW as a part of its Software Requirements Engineering Methodology

(SREM). This description of RSL begins with a discussion of SREM and its

major parts. An overview of RSL is given, and the major experiences with

its use are related. These are followed by an assessment of the usefulness of

this specification language in the SREM context. References for RSL and

SREM are [Alf77], [BBD77], [Alf85].

3.1 Context

The intended arena for the use of RSL is within SREM. This methodology

came about as the result of frustration felt by the defense industry with

the hierarchy of functionality model used for requirements specification. In

this model functions are decomposed into sub-functions which are in turn

decomposed until the units are of desirable size. Frequently, a particular

design is implied by the specification as subroutines are used to deliver sub­

functionality. The model lacks the capability to represent conditions and

sequences of processing and often leads to a specification that is ambiguous

and difficult to test [Alf85].

The developers of SREM wanted a methodology that dealt with the

technical issues (such as work-products to be produced, language support,

the form of the requirements) and the management issues (such as schedul­

ing and evaluation) that are essential to the development of software re­

quirements. Their hope was that inclusion. of these aspects into a formal,

thorough methodology might result in reduced life cycle time and cost.

9

SREM is made up of four parts: RSL, the language used to represent

the software requirements; Requirements Engineering and Validation Sys­

tem (REVS), a set of tools for maintaining, manipulating, and analyzing

the requirements; a relational database called the Abstract System Seman­

tic Model (ASSM); and a methodology for performing the requirements

specification task.

REVS is responsible for information contained in the database and for

analysis of the evolving requirements representation. It has many capabili­

ties. REVS interprets and translates the RSL statements for incorporation

into the ASSM, which it maintains. Included in the tools is an interactive

graphics package for graphical description of R-nets and subnets (described

in section 3.2 of this paper). The graphical representation is equivalent to,

and interchangeable with, the formal language representation. REVS also

has static analysis capability for checking consistency, completeness, and

correctness of intermediate products as well as the complete specification.

There is a simulation generator included that can provide discrete event

simulation of the functional model processing steps or an analytical sim­

ulation using Pascal algorithms. These algorithms are supplied by the

requirements engineer; the intent is that they be similar to those that will

eventually be used.

Another important part of REVS is the extraction and reporting capa­

bility used to recover and report information from the ASSM that is useful

to requirements engineers and to management. As will be discussed in the

next subsection, RSL can be extended to meet application needs; any such

extensions are supported and maintained by the tools in REVS. REVS is

a tool set with a broad range of capabilities.

The relational data base, ASSM, maintained for SREM is a central

10

repository for all the requirements of the software system being developed.
J

Large systems may be subdivided with subsection responsibilities assigned

to many different teams. All the requirements specified by all teams are

kept in the one data base for the software system. ASSM contains any

extensions added to RSL for the application as well. Representations are

kept for each primitive type defined in the system; instances of these are

linked back to their associated primitives. Thus the data base facilitates

tool support and extensibility.

SREM is intended for systems that are predominantly stimulus-response

(S-R), having a required set of actions, possibly ordered, for a particular

input. To establish these requirements, the methodology follows eight steps.

The steps are not necessarily independent of one another in content or time.

The assumption is made that the overall system requirements have been

allocated so that preliminary requirements exist for the software subsystem.

1. Define the kernel elements consisting of input messages, output mes­

sages, basic processing nodes, and requirements networks using RSL.

2. Establish the baseline database, including plots of the requirements

nets, and do checking for completeness and consistency.

3. Assign the data inputs and outputs for the processing nodes.

4. Establish the traceability of requirements to and from preliminary

requirements, determine validation points for performance require­

ments, and their traceability.

5. Perform functional simulation by REVS. Specially defined artificial data

may be used for simulation inputs, or a simulation of the proposed

system's environment can provide the interface data.

11

6. Identify testable performance requirements; determine appropriate val­

idation points for these, and establish their traceability.

7. Perform analytical simulation to demonstrate feasibility for critical

algorithms.

8. Analyze the dynamic behavior for time delays (including time-outs),

communication and synchronization procedures, and failure identifi­

cation methods.

Originally this automated system was run on a Texas Instruments Ad­

vanced Scientific Computer. In 1981 the tools were moved to a Vax 11/780,

and in 1983 the software managing ASSM was rewritten in Pascal to im­

prove performance. By 1985, all of SREM had been extended to include

specification of requirements at the system level through software specifi­

cation. This front end extension addresses system requirement definition

and allocation to subsystems. A state hierarchy is established that allows

concurrent and/or sequential states.

Some work has also been done to establish a computing design sys­

tem. This will add to SREM a transition phase for establishing the design

specification from the requirements. The planned multipart phase includes

allocation of processing to code units and data structures as well as inter­

face decomposition and allocation in a distributed system. Fault tolerance

functions may be incorporated and allocated. The design system ideas re­

main experimental. The ultimate goal is to extend RSL, REVS, and the

methodology to a complete software engineering environment for embedded

system development.

12

A patient monitoring program is required for a hospital.
Each patient is monitored by an analog device which
measures factors such as pulse, temperature, blood
pressure, and skin resistance.
The program reads these factors on a periodic basis
(specified for each patient) and stores these factors
in a data base.
For each patient, safe ranges for each factor are
specified (e.g. patient X's valid temperature range is
98 to 99.5 degrees Fahrenheit).
If a factor falls outside of the patient's safe range,
or if an analog device fails, the nurse's station is
notified.

Figure 2: [SMC74].

3.2 Overview

The Requirements Statement Language (RSL) for SREM is a flow-oriented

language, i.e. the specified operations are expressed as flows through the

processing system. It is a formal language, leading to reduced ambiguity

and increased automatability. In fact RSL is machine processable. The

system being developed is described in terms of stimulus-response using a

highly structured finite state machine underlying model. This model allows

the expression of the S-R relationships, promoting response and accuracy

requirements as well as static analysis. To aid in the discussion of RSL, a

simple example has been included. Preliminary requirements for a patient

monitoring program taken from .[SMC74] are given in figure 2, and some

RSL requirements developed from these are in figures 3 and 4 (adapted

from [Alf77]). Special considerations for system startup have been omitted

here for simplicity.

RSL employs hierarchical conceptual networks called Requirements Nets

(R-nets) to specify flows. Each R-net specifies processing flow by describing

the transformations of an input to one or more outputs and also specifies

the accompanying changes in the system state. Figure 3a. shows the R-net

13

for input FROMJ)EVICE. Basic nodes of these R-nets may be processing
I

nodes, called alphas, or subnets which are R-nets at the next lower level in

the network hierarchy. All basic nodes have a single entrance and a single

exit point. Other nodes used in R-nets are structured nodes; they enable

the description of conditional, parallel, and synchronized fl.ow processing.

The four types of structured nodes are:

AND- represents two or more mutually order independent paths with a

synchronized end point.

OR- represents conditional paths, each with an explicit condition. The

first path with a true condition is taken, where first is determined

implicitly or explicitly. An otherwise path is required by RSL for OR

nodes.

FOREACH- represents iteration of a path for each element of a specified

set.

SELECT- is similar to FOREACH except iteration is subject to an explicit

conditional.

Figure 3 contains examples of AND and OR structured nodes.

The formal language of RSL describes the 2-dimensional R-nets in a 1-

dimensional computer input. Four primitive building blocks are used to de­

scribe the system processing: elements, relationships, attributes, and struc­

tures. Elements are the specification objects such as functional processing

units (alphas), conceptual data, and processing fl.ow specifications (R-nets).

A relationship specifies a certain non-commutative association between two

elements; e.g., alpha EXAMINE_FACTORS inputs data SAFE.RANGES.

14

""FAU .• \14',,

(a)

INPUT INTERFACE FRCM DEVICE
VALIDATION POINT Vl -
ALPHA DETERMINE_HESSAGE-T\'PE
IF TYPE-MESSAGE IS FAILURE

ALPHA NOTIFY NURSE-OF-FAIWRE
OUTPUT-INTERFACE TCrNURSF.S-STATION

OTHERWISE
DO

AND

Figure 3.

15

ALPHA STaU:-FACTOR-DATA

ALPHA EXAMINE-FACTORS
IF RANGE-SAFE

VALIDATION POINT V2
OTHERWISE -

ALPHA TELL NURSE OF FACTORS
OVTPUT-INTERFACE-ro=NURSES­

STATION

(b)

(c)

Attributes specify properties of elements; e.g., HLTEMPERATURE is an
I

attribute of SAFE_RANGES. Among its attributes, each element has a de-

scription which is used to document its purpose. Structures specify the

flow model in RSL. The graphical representation of the R-nets in figure 3a

and 3c is equivalent to the formal language description in RSL, shown in

figure 3b and in figure 4.

RSL is extensible; new elements, relationships, and attributes appropri­

ate for a particular application may be defined and added to the language.

Structures are not, however, extensible. The developers have provided a

base language of primitives (21 elements, 23 relationships, 20 attributes)

considered useful for all applications. The extension capability has a lock­

out feature for controlling change as management may want to constrain

casual additions.

It is possible to specify accuracy and response time requirements in RSL.

Special nodes called validation points are placed along paths in the R-nets,

used in figure 3a and 3b to determine how frequently readings are taken.

Accuracy is then specified, and determined, by the state at a particular

validation point. Response times are expressed by specifying maximum

and/ or minimum times to complete the path between two validation points.

Both accuracy and response time specifications are given in terms of a test

to avoid ambiguity.

3.3 Experience

Several experiences with the use of RSL have been reported. Two early

attempts and a more recent case study are discussed here. The developers

of SREM tried out their ideas for the methodology and RSL on a real-time

16

RSL Data Descriptions

ORIGINATING REQ. : INPUT 1
DESCRIPTION: "oefines analog device measurements."
REQ. TRACES TO: MESSAGE MONITOR_REPORT

MESSAGE: MONITOR REPORT
HOW PASSED: INPUT INTERFACE FRCM MONITOR
REQ. TRACES FRCM: -ORIGINATING REQ. INPUT 1
MADE BY: DATA MONITOR ID, - -

DATA TYPE MESSAGE,
DATA INPUT=DATA

DATA: INPUT DATA
INCLUoES: DATA Pl.JISE,

DATA TEMPERATURE,
DATA BLOOD_PRESSURE,
DATA SKIN_RESISTANCE

ENTITY CLASS: PATIENT
- ASSOCIATES: DATA PATIENT ID,

DATA SAFE RANGES,
FILE HISTORY

DATA: SAFE RANGES
INcLunES: DATA LOW Pt.JISE, DATA HI Pt.JISE, DATA LOW PRESSURE,

DATA.HI PRESSURE, DATA~ TEMPERATURE,-DATA
HI TEMPERATURE, DATA LOW SKIN RESISTANCE, DATA
HI=SKIN_RESISTANCE, DATA-PATIENT_MONITOR_ID

FILE: HISTORY
CONTAINS: DATA MEASUREMENT TIME, DATA HPt.JISE, DATA HTEMP,

DATA HPRESSURE, DATA HRESISTANCE
REQ. TRACES FRCM: "Preliminary statement"

ORIGINATING REQ.: INPUT 2
DESCRIPTION: "Defines safe factor ranges for each patient."
REQ. TRACES TO: MESSAGE PATIENT_REPORT

MESSAGE: PATIENT REPORT
HOW PASSED: INPUT INTERFACE FRCM PATIENT
REQ, TRACES FROM: ORIGINATING REQ. INPUT_2
MADE BY: DATA SAFE_RANGES -

ALPHA: DETERMINE MESSAGE TYPE
INPUTS: MONITOR REPORT
OUTPUTS: TYPE MEsSAGE
DESCRIPTION: "separates incoming message to discern type."

ALPHA: NOTIFY NURSE OF FAIWRE
INPUTS7 DATA MONITOR ID
OUTPUTS: MESSAGE FAILED MONITOR
DESCRIPTION: "Forms message to notify nurses station."

ALPHA: STORE FACTOR DATA
INPUTS: DATA INPUT DATA
OUTPUTS: None -
DESCRIPTION: "Store the input in a data base for future reference."

ALPHA: EXAMINE FACTORS
INPUTS: - DATA DEVICE DATA

DATA SAFE RANGES
OUTPUTS: RANGE -
DESCRIPTION: "Compares device data to safe ranges and determines

if range is safe or not."

ALPHA: STORE SAFE RANGES
INPUTS: PATIENT REPORT
OUTPUTS: None -
DESCRIPTION: "Store safe ranges for this patient monitor."

Figure 4.

17

test control. A software specification for the control was already available

in another fotm, but it did not include some desired enhancements. The

specification was rewritten in terms of stimulus-response relationships and

paths, incorporating the extensive modifications for enhancement. Positive

results were achieved: the new design-free specification required no change

during subsequent design modification; time for requirements maintenance

and change was cut in half.

The language was further tested on the tracking loop portion of the

terminal defense program of an anti-ballistic missile. The specification was

written in RSL; REVS was not available yet for automated analysis. The

outcome of this trial indicated weaknesses in RSL for translating prelim­

inary requirements and 2-dimensional R-nets. After upgrading the lan­

guage, the specification was rewritten with a better result. Ambiguities

were found, in particular, by having to specify performance in terms of a

test. This completed specification was eventually used as a test case for the

developed REVS system.

More recently, Martin Marietta Denver Aerospace undertook to test

the applicability of RSL and SREM for expressing requirements for Com­

mand, Control, Communication, and Intelligence (ca I) embedded systems

[SSR85). The reported study was done in the early 1980s as a follow up to

a preliminary study, by Rome Air Development Center in the late 1970s,

which determined SREM adequate and useful for ca I. The purpose for the

experiment was 3-fold: to study the ability of RSL/SREM to do ca I, to

study where in the Air Force life cycle SREM is useful, and to determine

training needed for using the methodology.

Two systems with existing specifications for different levels of develop­

ment were used. The first was the communication switch interface develop-

18

ment system which was part of an Air Force communications system and

already had a' software design specification. The other, the advanced sensor

exploitation system for handling and distributing sensor data, was described

in a software requirements specification. Both of these were translated into

RSL and analyzed using REVS.

The case study results supported SREM as a viable approach for C3 I

software requirements; the formal discipline of RSL resulted in early er­

ror detection. It was felt that the method is best applied to requirements

specification, but it could and perhaps should be extended for use during

design specification. However, there was some disappointment with RSL's

capabilities for expressing parallel and distributed processing, and REVS

was felt to be inefficient. Finally, the cost of learning to use the method­

ology was significant. It is unclear whether this is a reflection upon the

RSL/SREM system in particular or the nature of requirements engineering

methods in general.

3.4 Assessment

An assessment of the Requirements Statement Language is actually an

assessment of SREM, as its only use is within that context. As previously

' mentioned, there are plans to extend SREM with design capabilities and

eventually to create an entire software life-cycle development system.

At the current level of capability, there are positive and negative aspects

to the language and methodology. On the positive side: consistency and

some completeness verification is provided; performance specifications are

testable; and the requirements are traceable. RSL is a formal language that

encourages precise and unambiguous requirements; the extensibility of the

language is certainly beneficial for the dynamic domain considered here,

19

and the simulation generators are equally valuable. With the centralized

data base, change control and recording should be expedited. SREM is

appropriate for the generation of real-time software requirements.

On the other hand, extensions should be provided for specification of

other non-functional requirements such as fault tolerance, reliability, syn­

chronization, time-outs, etc. Also, the performance requirements are not

addressed in the methodology until step 6; they ought to be considered

earlier in the specification process. The dynamic behavior analysis step in

the methodology is not clearly defined. More work remains to be done here,

especially for the sensitive dynamic application area of embedded systems.

Additionally, the methodology does not address the explicit determination

of requirements for undesired event handling, and no environmental repre­

sentation is included.

The experiences of requirements engmeers who have reported usmg

SREM indicate a lot of effort expended during the requirements phase.

This may be due to their unfamiliarity with stimulus-response networks

versus their familiarity with hierarchy of function models, which as previ­

ously indicated are often not design-free.

20

4 PAISLey

The next language to be described is the Process-oriented, Applicative,

and Interpretable Specification Language, better known simply as P AISLey.

Most of the work on PAISLey was done by Pamela Zave at AT&T. The

original paper described the language [Zav82]. This was followed by two

other papers in which the context for the language was refined [Zav84], and

further details of the language features and the environmental model were

given [ZS86]. The discussion of PAISLey is in four parts: context, language

overview, experience, and finally assessment of PAISLey.

4.1 Context

The context for PAISLey is the operational approach to software develop­

ment. Here the conventional approach is viewed as top-down decomposi­

tion of black boxes organized around the problem solution. In contrast,

the organization of a specification in the operational approach is based

on the problem itself. Implementation independent structures are used to

describe all mechanisms of the system. These may be viewed as virtual

structures; they may or may not be present intact in the implementation.

Optimizations are accomplished during the development process. Opera­

tional languages are formal which leads to a machine processable represen­

tation, i.e., the resultant requirements specification is executable. While it

is not a prototype, a useful prototype can often be rapidly generated from

the specification. Efficiency is not a concern of the specification process,

but rather the conversion process from the specification to an implementa­

tion. The emphasis of the approach is on constructing an operating model

of the system functioning in and interacting with its environment. PAIS-

21

Ley, GIST [BCF*83], and Jackson System Development (JSD) [Jac83] are

instances of the operational approach. PA IS Ley is intended for embedded

systems, while JSD is best applied to data processing systems and GIST

does not include apparatus for real-time systems.

Also part of the context for PAISLey are transformational methods.

The intent is for requirements analysis and definition to be followed by a

transformational phase. The formal PAIS Ley specification will be subjected

to transformations that preserve the external behavior of the specification

description and yield an implementation-oriented specification, indeed ul­

timately result in an implementation. The hope is for automation of the

transformation phase with human intervention to guide the process. This

may turn out to be a very complex human task. Examples of transforma­

tions that may be performed are structure movement (for modifiability and

comprehensibility) and additions. For example, whereas the intermediate

results of a Fibonacci series calculation may be recomputed in the original

requirements specification, the specification may be transformed so they are

saved for efficiency reasons rather than recomputed. As another example, a

resource allocation mechanism that was not needed for specification might

be added during transformation. Similarly, the example in figure 8 enlists

several monitor processes that might be combined through transformations

into one that splits cycles.

4.2 Overview

P AISLey is actually a set of tools embedded in the UNIX operating sys­

tem (see figure 5). The parser accepts a specification written in PAISLey

and forms the internal specification representation. The interpreter tool is

22

Figure 5: [ZS86].

23

an important one; it is interactive and is responsible for the display and
I

any break points. The consistency-checker verifies domains and ranges and

checks timing constraints for system feasibility. This tool was not imple­

mented as of the 1986 writing, but seems to be present for the technology

transfer experiment reported in 1987 [Zav82].

A system is declared in PAISLey as a set of asynchronous processes.

Each process is specified by giving a state space (domain and range of the

defining function) and a successor function. Processes are cyclic; i.e., their

mapping functions continue to be evaluated forever. The size of the system

structures is fixed: there are a bounded number of processes, no state can

require unbounded store, and no step can take unbounded time.

The process evaluation steps give the language a state orientation. Each

process step amounts to the evaluation of the successor function of one of

the system's asynchronous processes. Process states occur before the map­

ping evaluation and after; the process is in a computation phase between

states.

A system environment model made up of one or more asynchronous pro­

cesses is included with the embedded system model. The aim is to provide

an explicit model of the proposed system interacting with an explicit model

of the system environment. Processes in the environment model may be

people, machines, other programs, etc.

The forced discipline of a formal language reduces the number of errors

that are retained in the representation. Execution of the formal specifica­

tion is tolerant of incompleteness in the system description. This incom­

pleteness may take the form of undefined mappings; the system declaration

and mapping declarations must be present, however. There are three ways

for an incomplete mapping to be handled. The first is by defining a default

24

4 TYPES OF STATEMENTS

System declarations: tuples
e.g. (monitor-l[data],

monitor-2[data],
update-cycle-l[db],
update-cycle-2[db],
nurses-station)

Functional declarations: mappings
e.g. update-cycle-1: DATA-BASE --> DATA-BASE

get-data-j: --> DEVICE-DATA

Set definitions: expressions (union, cross
product, enumeration)

e.g. DEVICE-DATA - TYPE X INPUT-DATA
PULSE - REAL

Functional definitions: expressions (constants,
composition, tuples,
cond. selection)

e.g. new-func-1 - /pl:fl, p2:f2,
'true' :f3/

Figure 6.

value to be used whenever an undefined mapping is encountered. Another

is for the interpreter to select a value from the function range at random.

Finally, the function value may be requested and supplied interactively. In

fact, the interpreter could be instructed to consult a function written in the

programming language C when the undefined mapping is encountered.

Executable specification capability facilitates validation in several ways.

Demonstrations may be provided for users to validate the external behavior

of the system; in some cases, the executable specification may be extendible

to a prototype. Furthermore, the behavior of the final system may be

compared to the behavior of the executing specification during acceptance

testing.

The PAISLey language is composed of applicative statements and spe­

cial functions called exchange functions. Functions are used to describe

relationships and are not procedural. Figure 6 shows the four types of

25

3 FORMS OF EXCHANGE FUNCTIONS

x-channel_id

xm_channel_id

xr_channel_id

0
•

/\
a () xr

(b)

basic type, universal
match on same channel

matches all but xm
on same channel

matches xm or x on
same channel, but
does not wait

(a)

.. u­
•ttchln&

non­
.. u­

utchin1

aynchronl1ln1 f r•~·runnln~

•

..

(c)

Figure 7: [Za82].

statements in the language. A functional declaration statement gives a

domain (optional) and a range for a mapping. Tuples in the functional

definitions are executed in parallel. Most functions are side-effect-free.

Exchange functions bind the asynchronous processes together. They

may be viewed as ordinary mappings at the local level, except that they

have side-effects. From the global point of view, they provide two-way mu­

tually synchronized, interprocess communication. The three forms of ex­

change functions are listed in figure 7a, where channel-id is a user supplied

label. Figure 7b further depicts the possible exchange function interactions,

26

while figure 7c points out the possible correspondence between process syn­

chronization type and synchronization mechanism type. It is impossible to

have a free-running process match with another free- running process, be­

cause they never wait and cannot both be in the same channel at the same

time.

An example of PAISLey in use is given in figure 8. These requirements

describe the patient monitoring program in figure 2. Note the use of the

exchange functions x and xm for communication on channel nurse-needed,

and x and xr on channels new-safe-ranges-j and read-data-j. Due to the

bounded system requirement for PAISLey, the example assumes ten pa­

tients, each with separate monitors.

It is possible to include some performance constraints for the proposed

system in PAISLey. Timing constraints may be defined for individual func­

tions; these are for simulated time, however, not real time. Scheduling is

done by the interpreter in a top-down fashion, so inherited constraints are

implied by this procedure. Upper bound, lower bound, distribution mean,

or combinations of these are possible timing constraints. Reliability con­

straints have not yet been implemented but plans do exist for constraints

such as required ranges for probability of success for given functions. Cur­

rent syntax is unavailable for both timing and reliability performance con­

straints; the periodic requirement for the monitor reading by updata-cycle-j

is given as a comment in figure 8.

4.3 Experience

Reference has been made to three different early experiences with PAISLey.

A finite-element system for partial differential equations was specified using

the language [ZS86]. At the time of the experiment, the interpreter tool was

27

"Definitions"
SAFE-RANGES • LOW-PULSE X HI-PULSE X LOW-PRESSURE X HI-PRESSURE X

LOW-TEMPERATURE X HI-TEMPERATURE X LOW-SKIN-RESISTANCE
X HI-SKIN RESISTANCE;

DEVICE-DATA • TYPE X INPUT-DATA;
TYPE - ('failure','success');
INPUT-DATA • PULSE X TEMPERATURE X BLOOD-PRESSURE X SKIN-RESISTANCE;
PULSE, TEMPERATURE • REAL 1
SKIN-RESISTANCE • INTEGER;
BLOOD-PRESSURE • INTEGER X INTEGER1
RANGE - (1 safe 1

,
1 unsafe')1

"System declaration"
(jll .. 10 <, monitor-j[data],

update-cycle-j[db] >,
nurses-station)1

"Environment"
nurses-station: --> FILLER;
nurses-station - "Contains x-nurse-needed, and xrn-new-safe-ranges-j

for j•l. .10";
jfl .. 10 <; monitor-j: DEVICE-DATA--> DEVICE-DATA;

monitor-j - "Contains xr-read-data-j[data].
Data is continuously available; however, for simulation
purposes will have to model as a discrete process.">;

"Functional declarations and definitions"
jfl .. 10 <; update-cycle-j: DATA-BASE--> DATA-BASE;

update-cycle-j: ! --> "Must repeat every patient-j-time
seconds";

updata-cycle-j[db] •
proj[l,(process-msg-j[db,get-data-j])];

get-data-j: -->DEVICE-DATA;
get-data-j • xm-read-data-j[from-monitor);
process-msg-j: DATA-BASE X DEVICE-DATA~>

DATA-BASE X DEVICE-DATA;
process-msg-j[db,d) •

/proj[l,(d)]•'failure': send-warning-j,
'true': process-data-j[db,d]/;

send-warning-j: --> FILLER;
send-warning-j • xm-nurse-needed['failure', j];
process-data-j: DATA-BASE X DEVICE-DATA-->

DATA-BASE X DEVICE-DATA;
process-data-j[db,d] • proj[2,(store-data-j[db,d],

examine-data-j
[compare[ck-new-safe-ranges[db],d]])];

ck-new-safe-ranges: DATA-BASE ~> DATA-BASE1
ck-new-safe-ranges[db] - /xr-new-safe-ranges-j

[new-range]<>~null':
update-ranges [db,new-range], true': db/;

compare-j: DATA-BASE X DEVICE-DATA~)
RANGE X DATA-BASE X DEVICE-DATA1

compare-j[db,d] • "Compare input to stored information
and determine if range is safe or not.";

examine-data-j: RANGE X DATA-BASE X DEVICE-DATA-->
DATA-BASE X DEVICE-DATA/

examine-data-j[r,db,d] • /r-'unsafe':
xm-nurse-needed['unsafe',d,j], 'true': [db,d]/;

store-data-j: DATA-BASE X DEVICE-DATA~> FILLER;
store-data-j[db,d] - "Store device data in current

data base." >;
update-ranges: DATA-BASE X SAFE-RANGES --> DATA-BASE.

Figure 8.

28

not completed so the specification was translated into Fortran for execution.

Reportedly the experience turned out well. Workshops in using PAISLey

have been conducted at AT&T to gain perception into and experience with

the use of the language. Some participants were enthusiastic about the

language, however a major complaint was that the functional notation is

difficult to learn and difficult to use. Work is in progress on an experience

with robot-based factory stations to automate the testing of lightwave diode

chips. The goal for this work is to maximize station throughput.

Insight was gained from the experience of specifying a portion of the

user interface of SALT at AT&T [BZ87). There were two stated purposes

for the experiment. The goal of those working on the SALT system was to

capture the requirements of the system so that the subsystem interfaces and

the user interface were clarified, documented, and validated. The P AISLey

purpose was to test the success of doing a specification in P AISLey, to

measure the success professionals have with learning to read and write the

language, and to judge the quality and productivity results with PAISLey.

The project selected is a part of the Undersea Lightwave Cable System.

The communication system controlling transmission for the cable consists

of hardware and a computer system called SCOUT which has 17 processes,

one of which is the user interface. SALT is the computer system used when

SL is off line; it therefore has much overlap with SCOUT. Part of the user

interface for SALT was specified in PAISLey. The experiment included a

workshop, prototype specification (to explore the suitability of project),

informal training, formal specification, review, and demonstration.

This experiment provided information about P AISLey that is both neg­

ative and positive. On the negative side, there was a poor language-to­

problem match in that the user interface is basically a sequential appli-

29

cation. There is a high cost of adoption for P AISLey; much time and

frustration was spent learning to use the language. Exceptions were poorly

handled and had to be specified informally. No modularity is available

in PAISLey, and this amplified the complexity of doing the specification.

Since all names are global, a naming convention had to be used to refer to

common subfunctions in the system.

On the positive side, the demonstration capability worked out very well.

Also, the formality of the language was important for reducing errors. There

was a substantial "fear of the new" when the experiment was begun, and

this was overcome with management commitment, hard work, earned cred­

ibility, and eventually an enthusiasm for state-of-the-art involvement.

4.4 Assessment

The assessment of the work done with PAISLey has three parts: future

plans, strengths, and weaknesses.

There are several additions and modifications planned for PAISLey.

Zave would like to make the system more interactive, perhaps adding graph­

ics editing and animated execution. Support for the transformational im­

plementation has yet to be developed; the reliability performance constraint

is not functional. These are cuiT~nt concerns. Support for modularity is

planned, possibly in the form of abstract data types for the set definitions.

Plans also exist for a report generation capability from a database repre­

sentation of the specification. It is recognized that extension for exception

mechanisms is necessary, probably allowing the language to leave the func­

tional notation temporarily for exception handling specification.

Strengths of the language are many. PAISLey is a formal language that

produces an executable specification. Tools include a consistency checker

30

for static consistency. Inclusion of the environmental model is a big plus,

and this systems approach can lead to increased reliability for applications

in the targeted domain. The environment is often a source of change, so

its inclusion in the model allows incorporation of this change. This feature,

however, does not seem to be the current emphasis. Communication with

the user is facilitated since the specification is a problem model. This orien­

tation may also facilitate traceability as the requirements are closely related

to the corresponding problem statement. The tolerance of incompleteness

in the executable specification is an unquestionable advantage.

Criticism of PAISLey includes various aspects. The approach incorpo­

rates design level decisions with the explanation that they are necessary

for the transformation approach. However, the requisite transformational

methods are not available yet. The approach is a poor predictor of solution

complexity, since it does not model the solution. An embedded system

description in PAISLey is not extensible. It is changeable in the sense

that incomplete descriptions can be further defined from within or out­

side the system, but processes cannot be added to the system. While it

leads to a representation that is machine processable, the functional nota­

tion is very difficult to use, for requirements engineers as well as end users

of the specification documents. Suggestions have been made to augment

the specification with diagrams and to augment the language with appli­

cation dependent notations, similar to macros. More performance analysis

capability is needed. The urgent performance requirements of the target

application require attention here. Reliability is still a future plan; PAISLey

lacks the capability to express testable timing and fault tolerant properties.

31

5 Statecharts

Another specification language, one that is a relative newcomer to the scene,

is the language of Statecharts, being developed at the Weizmann Institute

in Israel by David Harel. Primary references for the language are [Har87],

which describes the syntax and intended use, and [HPSS87], an extended

abstract of the semantics of the language. Other sources include a technol­

ogy assessment by Microelectronics and Computer Technology Corporation

(MCC) in [BGFG86] and information about STATEMATE, a development

environment that incorporates the Statecharts specification language, in

[iLo87] and [HLN*88]. Statecharts are discussed by first considering the

intended context for the language, followed by an overview of the language

itself. Experience with the technique is related, and finally, an assessment

of its current status and future plans is given.

5.1 Context

Statecharts are intended to deal with the specification problems of reac­

tive systems. Reactive systems are those that are essentially event-driven

systems, reacting continuously to external and internal stimuli [Har87].

Statecharts could also be used for applications such as data transformation

systems, but their special features would not be exploited in that realm.

The targeted systems involve real-time, embedded, control and communi­

cation, and interactive applications; all of these require maintenance of a

relationship with the software system's environment rather than computa­

tion of input/output functions.

States, events, and conditions of finite state machines are suitable for

describing real-time reactive systems. This is not a new idea; for example,

32

specify
start behavior

design
impl a ti on

system

Figure 9.

Petri Nets provide a state-event description. Problems with state diagram

descriptions in the past have stemmed from the exponential explosion in

the number of possible states in a complex system, the single dimension

of the flat state diagram, and the lack of communication description ca­

pabilities. Harel states that to overcome these problems an effective state

event language requires modularity, hierarchy, structuring, a way of reduc­

ing the number of states considered, orthogonality, and generalized transi­

tions [Har87]. Statecharts is the implementation of his ideas for extending

finite state machines to include these features.

Typically, reactive systems require complex behavior that does not de­

compose recursively into simpler functions; modules of the behavioral de­

scription are not apt to correspond to modules of an implementation. Yet

the implementation process must break a complex system down into smaller

physical parts. Harel and Pnueli have presented a magic square for develop­

ment of reactive systems that combines the development of. the behavioral

specification with the activity decomposition necessary for design and ad­

dresses interconnections among the two representations [HP85].

As previously indicated, problem structure does not necessarily reflect

33

the required system structure in complex reactive systems. The imple­

mentation m~y be constrained by existing interconnections, distribution,

or other structure. Magic square development is a two-dimensional process

with the design of an implementation and the specification of the behav­

ior for that system progressing at once on some path through the two­

dimensional space (cf. figure 9). Progress along the horizontal dimension is

achieved by the refinement of a statecharts representation, while progress

along the vertical is from decomposition of system activities into a tree-like

structure.

The ideal path through the space is not determined. However, it should

have some horizontal progress prior to each significant vertical advance.

The behavioral representation at a point on the path corresponds to the

implementation description at that point. Consistency between the mul­

tiple behavioral representations is very important (and non-trivial), where

consistency is taken to imply that the external behavior of a system module

on one vertical level must be equivalent to the external behavior of the next

level of system modules that implement it.

Major current employment of statecharts is within the evolving devel­

opment environment by i-Logix, Inc. and Ad Cad Ltd. STATEMATE is

a graphical working environment for use by system developers not only for

requirements definition, but also for design, for analysis, and for documen­

tation. The expectation is that a reactive system is better developed by

considering three views-functional, structural, and behavioral-to create

a visual formalism of the developing system. Four graphical languages are

provided in STATEMATE, one for each of these views plus a forms language

for nongraphical information and for specifying relationships between the

different views.·

34

The functional view uses activity charts to describe activities, data

stores, and the data-items (including control) flowing between them. The

system being developed is assumed as the highest level activity, and it is de­

composed recursively into sub-activities, with base activities at the lowest

level. Each non-base activity has a controlling statechart in the behavioral

view. The structural view accomplishes high level design as the physical

components and data structures of the system's implementation are spec­

ified. The language of STATEMATE for the structural view is module

charts. The behavioral view specifies control with statecharts.

Besides the four languages, STATEMATE provides definitions of prim­

itives for all four representations that are useful for statecharts such as

time-out, true, false, exit, history-clear, deep-clear. STATEMATE has

tools to check for incompleteness, inconsistency, and redundancy between

and within the views and their hierarchical levels. Prototyping and coding

packages are also available.

5.2 Overview

The finite state machine approach employs states, events, and transitions

to describe the dynamic behavior of a system. There can be a finite num­

ber of independent states, and all are on the same level. Missing from

this approach is any method for structuring the system, which is a· serious

problem as the number of states grows and with it the number of transi­

tion possibilities. To correct this, statecharts begins with the finite state

machine approach and adds modularity, hierarchy, and broadcast commu­

nication across levels. In so doing, the complexity of the system description

is reduced for users of the description as well as for engineers establishing

the description.

35

r•tiu\-j·\ ... c -£ < po1\i1al·j-+: ... e +(

f'\O~ l'TO~

efvJ!!.~1 "'~'"""

bOIUllTE
,UtC.t 111\'Tll

c.

CltHIC .. ,ir1ol11<AUY

sroa I "'c-.,.,--.,._,-
~I ~:..z-~1

~""'"

Note: While monitor is an analog device, it can only be modeled here
as discrete.

Events and conditions:
a--safe ranges require changing
b--notification of failure or unsafe ranges
c--device-data available
d--type-"FAILURE"
e-data read
f--f actors outside safe range
g-- [data stored I\ (range is safe V nurses station so notified)]

v nurses station notified of monitor failure

Variables:
device-data • pulse,temperature,blood-pressure,skin-resistance
message • type,device-data

Figure 10.

36

Statecharts begin with conventional state diagrams, add AND/OR de­

composition bf states, and allow interlevel transitions between states plus

broadcast communication. States may be composed in a bottom-up fashion

by clustering states with common features or decomposed top-down by re­

fining states into substates with more details. Note that clustering reduces

the number of states to be dealt with at the higher level. If substates are to

run in parallel, the decomposition is said to be AND, and the independent

states are called orthogonal; if only one state or the other is to execute, the

decomposition is exclusive OR. Parallel states may know the status of one

another if that is desirable. Figure 10 describes requirements for the pa­

tient monitoring program (cf. figure 2) in statecharts. STORE FACTORS

DATA and EXAMINE are orthogonal states, indicated by a dashed line

dividing the superstate in which they are contained.

The notation for the language is a formal, graphical one. Rectan­

gles with rounded corners represent states, while directed arcs represent

events. Sub-statehood is depicted by containment. Events are labeled as

event(condition)/action where the condition must be true at the instant

the event occurs if the transition is to take place. If the transition does

occur, the action is taken and the arc is traversed to the next state. Events

can be junctions of events, such as e /\ f, but the junction must be instan­

taneous. Actions can include such things as start(activity A), stop(activity

A), or schedule(activity A, in x units). The latter indicates activity A will

be scheduled to occur in x time units from now. Actions may also generate

events which in turn trigger other state transitions.

As timing is an essential consideration for reactive systems, it may be

necessary to represent minimum and/ or maximum times that can be al­

lowed for certain activities. This may be shown in Statecharts with a

37

jagged edge on a section of the state box and indication of an upper and/or
I

lower bound. The appropriate transition to be taken in the event of timeout

or delay should be so labeled. The example in figure 10 requires periodic

checking of monitor outputs. This is expressed as a time range of not less

than patient-j-time-c: and not more than patient-j-time+c: (which does al­

low a phase shift for the periodic checking).

Two special connectives are provided for specifying entrance to partic­

ular substates of a superstate hierarchy. On entrance into a state with no

indication of which substate to select, a transition is implied to the default

substate. This is indicated by a small arrow originating inside the super­

state with no source and pointing to the substate. The history connective

(@) is used to indicate that the last previously occupied substate should

be entered on transition to the superstate (a default entrance should be

specified for the first entrance of the superstate). ® may be used for

recursive substate history entrance.

Other special notations included for convenience are transition stubs

and connectives for conditional and selective state entrance. Conditional

substate entrance is indicated by @. The next substate is based on con­

ditions that must be true at the instant the transition is taken (cf. state

REACT of figure 10). Similarly, selection entries, denoted by @, allow

transition based on a selected event. The event is usually based on the

value of some element. In some diagrams it may be desirable to eliminate

unnecessary details from consideration, and, therefore, only the more ab­

stract superstates are shown. This zooming-out process, as it is sometimes

called, may require transition stubs, i.e. arrows whose source is a short

perpendicular line within superstates. Substate entrances that do not fol­

low the default and transitions that are not relevant for all substates are

38

indicated in the abstract chart with these stubs.

Some additional features have been considered for statecharts. These

include arrays of states (substates) and overlapping states with common

substate(s). STATEMATE has not included either of these; overlapping

states are not permitted in any of its views. Semantics for a base set of

elements and some interrelations have been defined in [HPSS87]. Included

are states, history and default entrances, variables, expressions, conditions,

events, actions, and transition labels. It is not determined as of this writing

whether or not these semantics can be readily extended for such additional

features as overlapping states.

5.3 Experience

Examples of the use of statecharts for problems of sample size are avail­

able. A detailed Statecharts specification of a Citizen's watch is included

in [Har87]. STATEMATE has been used successfully by Israel Aircraft In­

dustries to design the avionics system for a fighter airplane [HLN*88]; this

indicates the appropriateness of STATEMATE for large, real, development

projects. As automated support was not available, Statecharts were used

manually for the behavioral description of the developing system. The re­

sults were encouraging; a substantial time savings was attributed to the

language.

Statecharts are being used experimentally in the software, electronics,

and semiconductor industries. The developers of Statecharts are testing

their suitability for hardware components, communications systems, and

interactive software systems.

The Software Technology Program of Microelectronics and Computer

Technology Corporation (MCC) undertook a 2-week study in 1986 of Stat-

39

echarts' capabilities for specification and analysis [BGFG86]. Statecharts

experts were ~mployed to specify the requirements for an elevator control

using the method. Results indicate that use of extended features such as

overlapping states and conditional entrances may complicate the specifica­

tion for readers. Structuring of the control description by hierarchies and

decomposition is seen as a clear advantage for Statecharts. Although those

involved in the study at MCC felt the notation is in its infancy and there­

fore has some weak points, it is a phenomenon that bears watching and

may prove useful for the development of many complex systems.

5 .4 Assessment

Statecharts is an evolving technology for representation of reactive systems

and is useful for embedded software systems. The developers hope to some­

day include parameterized and overlapping states into the language; both

are a means for economizing the notation. They also want to include the

use of temporal logic as an assertion language to accompany statecharts or

as a scenario language providing a basis for the Statechart system repre­

sentation.

There are a few drawbacks to the current Statechart formalism. As with

other formal notations, it is difficuit to tell when the line between specifica­

tion and design has been crossed, so design may slip into the requirements

specification. furthermore, there is no mechanism provided for recording

decisions made requiring tradeoffs of alternatives. This is needed for the

rest of development as well as during requirements analysis, ·There is also

a need for representation of arrays of states that is simple to understand.

Statecharts provides a visual formalism of the behavioral requirements

of the system. This is a distinct advantage for communication, as a graph-

40

ical model is more readily understood, and for verification, as the model

is backed by 'formal semantics. Orthogonality and hierarchy structuring

augmenting the underlying finite state machine model provide the modular

breakdown needed for dealing with large, complex systems. The inclusion

of the environmental model and means for expressing timing constraints are

important for embedded systems. In particular, time-outs allow expression

of exceptions to timing assumptions for the environment. This formalism

is still very new and reports of its use for other large, real problems will be

eagerly awaited.

41

6 SCR

One of the most well-known experiences with specification of a large em­

bedded system is the work done for the operational flight program of the

A-7 aircraft by the Naval Research Laboratory (NRL). This experiment

resulted in a semi-formal language technique for expressing requirements.

As the stated purpose of the project was Software Cost Reduction (SCR),

the work is referred to here as the SCR technique. Much of the work

of David Parnas influenced the approach taken, and thus his preliminary

work is discussed as the context for the SCR technique. An overview of the

specification language technique is given, along with a description of the

experience with its use. Finally, the value of the SCR model is discussed.

6.1 Context

From 1972 through 1978, Dave Parnas published a series of papers that set

the stage for the SCR work [Par72b), [Par72a), [Par76), [Par77), (Par78).

These writings focused on his interest in ways to improve the design process.

The following five (overlapping) themes are recurrent in this work.

1- The criteria for modularization of a system during design must be in­

formation hiding, not time ordering. Information hiding implies the

encapsulation of a design decision (often called a secret) in one mod­

ule.

2- The design is structured to accommodate change. The information

hiding criteria discourages the distribution of information so that if

decisions are changed, fewer modules are affected. Small components

incorporating only one function are required.

42

3- The system structure of modules may be viewed as a partial ordering
J

based on the relation uses-a module uses another if a correct ex-

ecution of the second is essential for the first to meet its specified

requirements.

4- A precise record of all decisions, including those intermediate to spec­

ification or design, must be maintained for consistency and future

analysis.

5- It is important to verify as early in the development process as possible

the correctness of decisions that have been made.

In light of these ideas, a methodology was suggested in [Par77] for de­

velopment of software that encourages the fulfillment of Parnas' ideas. The

requirements definition is stressed as a process that must anticipate change.

To have flexibility in the product, it must be a concern early in develop­

ment. At this time the subsets should be identified, i.e. a minimal subset

of functionality, a minimal system if you will, that provides useful service.

Then minimal increments can be determined. Not only does this encour­

age ease of change and extensibility, but it provides small increments of

specification that can be verified. Information hiding is used to modular­

ize the system design for changeability. The system should be viewed as

layers of virtual machines providing the identified subsets through the uses

hierarchy, a graph with no loops. This aids in verification at all levels of

development as it avoids the problems encountered when nothing works

until it all works.

Individual modules will be further specified during high-level design

to provide such information as the set of possible values, initial values,

parameters, and effects (including any error handling).

43

Throughout this work, the specification is viewed as "the precise state­

ment of the ~equirements that a product must satisfy." [Par77]. This is

in contrast to the often used description of a high-level implementation to

meet informal or perhaps unstated requirements. A major goal for the re­

quirements specification process is to establish subsets of capabilities that

will work. The requirements statement need not be in a formal language,

but it should not be an informal, natural language description; a precisely

defined notation is preferred. Parnas stresses the importance of an abstract,

but not vague, description in terms of user observables without reference

to any implementation. The SCR technique incorporates most of Parnas'

ideas for the specification of requirements.

6.2 Overview

The language for the Software Cost Reduction model, described in [Hen80],

is a semi-formal one. The organization of the document is intended for ref­

erence, with a glossary of terms, table of contents, indices, etc. included.

Standard formats are used that include value templates and allow English

descriptions within a formal setting. These provide for a consistency in

the specification description that leads to better understanding and a rep­

resentation that is useful throughout the life cycle. The requirements are

organized in tables whenever possible; these are aids to completeness and

consistency checking as well as reference. Selection tables specify functions

that depend only on the particular operating mode of the software, where

mode indicates an abstract state. Condition tables are used to specify

functions dependent on other disjoint conditions being true. Event tables

specify actions required of demand functions and periodic functions upon

the occurrence of certain events.

44

Environmental Interface
Input Data Item: Message-From-Monitor

Names /Data/
Description: Indicates !message-type! and the

! device-data ! .

Input Data Item: Safe-Factor-Ranges
Name: /SRanges/
Description: Provides new value of safe ranges

for the indicated patient and monitor.

output Data Item: Notification of Device Failure
Name: / /DFail/ /
Description: Alerts nurses station of device

failure message.

OUtput Data Item: Notification of Unsafe Ranges
Name: //RUnsafe//
Description: Identifies patient and factors that

are not in safe range.

Figure 11.

A specification in this language describes what the system must do to

pass acceptance testing; it does not describe how the system is to be imple­

mented. The specification document addresses not only the requirements

at the present time, but likely changes or additions to the system require­

ments.

Information comprising the specified requirements is related in five cat­

egories, each of which may be further subdivided as the application and

available information warrant. See figures 11, 12, and 13 for an example of

specification using the SCR language.

1- Environmental Interface Requirements. Here the environment of the

embedded system is described including the type of computer on

which it will be required to run, if this is known. The complete

interface that is required between the system and its environment is

specified.

Each independent input and output is defined in a data-item. Data-

45

States and Functions

Mode

Modes:
•startup• New safe ranges are input or

other restart conditions.
Normal operating mode. •stable system•

•intervention•

Transitions to •intervention• when
//DFail// or //RUnsafe// is output.
Device failure (implies some
operation(s) has ceased) or
an unsafe reading has occurred.

Functions:

demand function name: New-ranges
Modes in which function required: •startup•
Initiating event: !new-ranges-avail! becomes $TRUE$
Output affect: Stores new/replacement ranges in

an internal data base.

periodic function name: Read-data
Modes in which function required: •stable system•
Initiation and Termination Events: None (always done)
Output affect: Stores input patient data in an

internal data base.

demand function name: Check-data
Modes in which function required: •stable system•
Initiating event: !new-data-avail! becomes $TRUE$
Output data items: //DFail// and //RUnsafe//
Output description: If no failure of device has

occurred, !device-data! is checked for unsafe
patient ranges for this patient.

Condition table (Check-data):
Conditions

•stable system• /message-type/•$FAILURE$!device-data! not within
/SRanges/

ACTION output //DFail// output //RUnsafe//

Figure 12.

46

otherwise

no action

Timing Requirements
Read-data function:

Dictionary

current rate • $patient-j-time$
minimum allowable rate • $patient-j-time$ - (/2
maximum allowable rate • $patient-j-time$ + E/2

/Data/ • !message-type! and !device-data!
!device-data! • (pulse, temperature, blood-pressure,

skin-resistance, device-id)
!message-type! • ($FAILURE$ or OK)
!new-data-avail! • indicates new data has been read

and stored
!new-ranges-avail! - indicates new safe ranges should be

input
$patient-j-time$ • predefined rate for reading monitor

from patient j
/SRanges/ • (hi-pulse, low-pulse, hi-temperature, low­

ternperature, hi-blood-pressure, low-blood-pressure,
hi-skin-resistance, low-skin-resistance, patient-id)

Figure 13.

items are described via templates. Relevant facts about hardware

interfaces that constrain the system should be related here as well

as accuracy, value range, resolution,, and timing characteristics (for

input). Details common to any hardware device are noted as well as

those relevant to the specific device whose use is planned. Care must

be taken to avoid assumptions. The templates encourage complete­

ness without requiring a rigid syntax.

Each output data-item is associated with a unique function that must

be addressed in the next information category.

2- States and Functions. Functions the system is required to compute are

described in terms of externally visible effects only, no algorithms are

implied. As the relevant details of hardware interface are included in

data-items, the functions do not address this information and so are

meant to be relevant even if the devices are changed. A function may

result in one or many outputs, but each output is associated with

only one functiOn. Functions are described using tables of conditions

47

and events. A condition stipulates aspects that must occur for a

measur~ble length of time, while an event describes the moment in

time that conditions change value. In order to reduce the number of

conditions that must be considered, a finite state machine approach

is taken. Without detailing all the states that are possible, operating

modes are defined as superstates of the system. These are described

in terms of the conditions they require (true and/ or false conditions)

and events that cause transition from one mode to another.

3- Performance Requirements. Instead of scattering timing and accuracy

requirements throughout the specification, they are described sepa­

rate from the data-items and functions. In an ideal situation, the

maximum delay between request and response for each demand func­

tion will be specified and the minimum and/ or maximum frequency

for each periodic function will be specified.

4- Look Ahead. In keeping with the background work of Parnas, SCR

specification techniques encourage a precautious approach. Required

behavior of the system should undesired events occur is specified here.

Also indicated are constraints on the design to allow for features likely

to change during the system's lifetime and to allow for reduced func­

tionality by identifying subsets of capability.

5- Aids for document use. Finally, a glossary of terms, dictionary of

identifiers, and indices are included in the requirements document.

A list of references that includes relevant works and people consulted

is also given.

48

6.3 Experience

The SCR techniques were used to specify the operational flight program of

the A-7 navy aircraft. The program, which interfaces to twenty-two devices,

is part of the navigation/weapons delivery system. Before this project was

begun, no requirements document was in existence, but there were flight

manuals, mathematical algorithm analyses, flowcharts, and code (approx­

imately 12,000 assembly language instructions) for the existing program.

The goals of the project were three-fold:

1. to demonstrate the feasibility of using software engineering principles

for a large, real-time, program,

2. to establish a model for future systems specifications, and

3. to provide a forum for study of additional research ideas for complex

systems.

The motivation for the undertaking is well expressed in this paragraph

taken from [PCW84]:

"More than five years ago a number of people at the Naval Re­

search Laboratory became concerned about what we perceived

to be a growing gap between software engineering principles be­

ing advocated at major conferences and the practice of software

engineering at many industrial and governmental laboratories.

The conferences and many journals were filled with what ap­

peared to be good ideas illustrated using examples that were ei­

ther unrealistically simple fragments or complex problems that

were not worked out in much detail. When we examined actual

49

software projects and their documentation, few showed any use

of the ideas and no successful product appeared to have been

designed by consistent application of the principles touted at

conferences and in journals. The ideas appeared to be easier to

write about than to use."

The project resulted in a 500 page specification document [HKPS78]

after some seventeen man months to establish the techniques and the re­

quirement specifications. Included are seventy input and ninety-five output

data-items. Certainly the document has become a model for future system

specification [HM83]. It has also provided the desired forum for refinement

of such ideas as use of the specification during design, proper content and or­

ganization, and additional documentation for design (PCW84]. The results

of the undertaking indicate the feasibility of the principles demonstrated

for requirements specification of a complex embedded software system.

6 .4 Assessment

Since the A-7 project using the SCR specification techniques, the document

produced has been studied and used as a guide for other projects. Positive

features are numerous. The consistency of the description through docu­

ment format and templates makes· the requirements specification easier to

use and to understand; such aids also encourage completeness checking.

The organization as a reference tool is a positive feature throughout soft­

ware design, testing, and especially maintenance. Look ahead. sections that

allow for future changes also encourage a maintainable specification and

system. The requirements are testable because they are stated in terms of

observables only. In addition, the technique avoids any reference to how the

50

system is to be implemented, and includes documentation of performance

requirements,' essential for the embedded systems domain of interest in this

paper.

The A-7 project showed the feasibility of the SCR technique for a system

that existed, but was undocumented. It would be interesting to apply these

ideas to a "start from scratch" development effort as well. Automated tools

to augment and extend the techniques would also be helpful, especially for

large systems where manual checking for such things as consistency is a

mammoth undertaking.

It remains to be seen how well the techniques developed explicitly for

the A-7 program can be applied to other projects. Heitmeyer and McLean

[HM83] report using the SCR ideas as a starting point for their work.

However, they wanted a more formal approach for the specification that

did not rely on externally visible factors.

51

7 Others

There are other languages that merit some consideration for the specifica­

tion of complex embedded systems. These, however, do not have the depth

of development as do the languages already discussed. Brief descriptions of

special features of these others are given as appropriate.

RTRL

A finite state machine model is used to define the language called Real-Time

Requirements Language (RTRL) [Dav82], [CDK85]. The basic model is ex­

tended to allow modularity, signal handling, resource synchronization, and

timing expression. The latter capability is of special interest. Maximal and

minimal timing constraints are representable in one of four categories: stim­

ulus to stimulus, stimulus to response, response to stimulus, and response

to response time restriction requirements. Constraints on event duration

time are also representable. Assumptions about the environment providing

stimuli to the system are included as requirements in the model.

There is a set of tools for consistency and completeness analysis for

RTRL called the Requirements Language Processor (RLP). RLP has the

capability for processing a set of languages called a family that are each

special purpose languages. RTRL is appropriate for real-time systems that

are dominated by sequential compµtations. In particular, it was developed

for telephone switching programs.

Another language, Specification and Description Language (SDL) cre­

ated by the Consultative Committee of International Telephone and Tele­

graph (CCITT) circa 1980 [RS82], is also intended for telephony applica­

tions. It has a pictorial and graphical notation, but the program represen-

52

tation is not yet available.

EBS

Chen and Yeh have developed a language that, while intended for dis­

tributed systems, could be used to describe some embedded systems by di­

viding the system into processes [CY83]. In this Event Based Specification

(EBS) language, the behavioral specification is in three parts: environment,

embedded distributed system, and interface.

The model consists of events and their two relationships, precedes and

enables, with concurrency implied for events that are not related (implied

or stated). First order predicate calculus is used to describe the required

behavior.

The EBS language is also used to develop a top-level design or structural

view. The behavioral specification is then used to verify the structural

description and to analyze for such properties as safety and liveness. It

is not clear that the language can be used to express other accuracy and

timing requirements.

ESML

Recently, a language based on extended data flow diagrams has been pro­

posed called Extended System Modeling Language (ESML) [BJKW88].

The work is founded on the transformational schema of Ward and Mel­

lor [WM85]. The language includes notation called termination for rep­

resenting the environment of the system that supplies input's and receives

outputs. There are also notations for data flows and for control flows called

transformation schema. Data flow schema may be decomposed into several

53

lower-level schema or specified as primitives; primitive schema must then

be thoroughly described in some other language or graphical form. Control

transformations must be further specified with state transition diagrams or

some other table form.

Analysis of the transformation schema model is possible by providing

tokens that flow through the diagram in much the same way that tokens

are used in Petri nets. This leads to the last set of languages that will be

discussed, i.e., those based on Petri nets.

Petri Nets

A popular and powerful medium for specifying control flow of concurrent

systems is Petri nets. Based also on the finite state machine model, they

provide a graphical notation for system description [Pet77]. Graph nodes

called transitions are used to represent the occurrence of events, while nodes

called places represent conditions that make up the overall system state.

Control flow is depicted by tokens passed from place to place through en­

abled transitions. Concurrency is easily represented by multiple enabled

transitions. Various authors have worked with extensions to this model

for representing data flow (using colored tokens and memory) and timing

(using transition execution time). In particular, Coolahan and Roussopou­

los [CR83] specify timing requirements for time-driven systems that have

critical timing constraints and a master timing mechanism for the system.

The complexity of embedded systems calls for some type.of hierarchical

model to simplify the specification task, however. Petri nets are a flat

model, without hierarchy, and can require quite a complex graph to describe

a large concurrent system. The nets are difficult to analyze [Age79], though

automated analysis tools are available to aid in analyses for deadlock, safety,

54

mutual exclusion, etc. (see e.g. [MR85]).

55

8 Current Status

There is no language for specifying the requirements of complex embedded

software systems that embodies all the desirable characteristics described

in section 2 of this paper (cf. figure 1). Nor should a language be expected

to have all these features in order to be selected for use in this context. The

current state of the art in requirements specification for embedded systems

requires the developer to choose a language with features and accompanying

methods that are appropriate to the particular task at hand.

The languages discussed in this paper reflect many correctness fea­

tures. Almost all are formal, promoting precision and minimizing ambi­

guity. Static internal consistency checkers have been developed for RSL,

PAISLey, and Statecharts (the latter are part of STATEMATE). Dynamic

consistency is usually examined by means of simulation; simulation gener­

ators are part of SREM (for RSL), while the PAISLey specification itself is

executable for simulation.

Both RSL and SCR include techniques supportive of verification. Re­

quirements are stated in terms of testables (observables) only. The database

used with RSL also enhances traceability of requirements.

Most applications need flexibility for change due to omissions, errors,

advancements, etc. Two different dimensions of this capability are reflected

in RSL and SCR. The SCR technique considers decisions that are likely to

change and requires they be handled accordingly throughout development.

RSL enables the specification to be easily modified through the use of a

centralized data base. PAISLey allows execution of the specification before

it is complete; omitted details can be provided at a later time. RSL can

be extended as a language to incorporate special features defined for a

56

specific application. The languages reviewed discourage the inclusion of

design decisi~ns in the requirements; SCR is entirely free of design.

The visual qualities of Statecharts promote communication among all

those using the requirements. In this sense, the Statecharts formalism

appears to be usable throughout development. There is indication that

requirements generated using SCR are useful for reference throughout de­

velopment also.

The importance of the interface with the system environment is clear

for embedded software systems. PAISLey, SCR, and Statecharts examine

an included model of the environment. It is possible to consider the envi­

ronment modeled as a processing node in RSL, although this is not directly

addressed. The expression of performance requirements is also clearly im­

portant to this area. RTRL considers maximal, minimal, and duration

timing constraints. SCR and Statecharts have capabilities for expressing

some timing requirements.

Enhanced capabilities are being considered for most of the languages dis­

cussed. It may be useful to incorporate temporal logic as an assertion lan­

guage to accompany a requirements specification. This is being examined

for Statecharts. Diagrams are important for understanding and communi­

cating the specification. Confidence in their potential is evidenced by their

use in RSL, Statecharts, ESML, and Petri Nets. Diagrams have been sug­

gested to accompany a requirements description in PAISLey. Application

dependent notations are also under consideration for PAISLey. RSL/SREM

is being studied for extension to a life-cycle development system. The value

of a complete, correct requirements specification is recognized for the entire

software development life-cycle.

57

9 Conclusions

This work has examined the need for requirements specification languages

for complex embedded systems. There are several desirable properties for a

specification, namely, that it be complete, consistent, precise, unambiguous,

formal, traceable, testable, changeable, extensible, design free, executable,

communicable, and usable. In addition, for the embedded systems domain,

the ability to represent the system environment, actions required upon the

occurrence of undesired events and/ or performance requirements is also

desirable.

Research is encouraged in this area to improve languages and meth­

ods that already exist, rather than the development of new ones. In this

light, four major languages were discussed. RSL, a language with graphi­

cal requirements nets and formal descriptions supported by REVS tool set;

P AISLey, a formal, applicative language that is intended for an operational

approach to software requirements specification; Statecharts, a graphical

yet formal representation that is receiving attention; and SCR, the semi­

formal language technique resulting from the specification of an embedded

software system for the A-7 aircraft.

Other representation languages exist that have features desirable for

the embedded systems domain. RTRL, EBS, ESML, Petri Nets, and a few

others were mentioned.

As the previous discussions indicate, significant effort has been expended

towards the goal of providing an appropriate representation language for

the software requirements of embedded systems. However, much remains

to be done.

First, studies involving use of current approaches are encouraged. Expe-

58

rience with specification of the requirements for genuine systems of realistic

size is import~nt for the languages we have and for newly proposed tech­

niques. Without such documented experiences, those who have need of the

technology will not be convinced of its usefulness or applicability.

Another aspect that demands further research is the type of representa­

tion used. In his taxonomy of requirements specification languages, Roman

states "(T)he industrial success of a specification technique is heavily de­

pendent upon its treatment of human factors, that is the concepts it makes

available and the interface style it supports." (Rom85). Graphical represen­

tations that can be used to represent the system at different, appropriate

levels of abstraction have a lot of intuitive appeal, perhaps because they

describe the system in a manner close to the mental model of analysts. It

is hoped that a graphical model promotes communication among the users,

analysts, and design engineers despite their diverse backgrounds. Empirical

studies are called for to demonstrate the degree of validity of these conjec­

tures. The use of a graphical language, however, may not be adequate. For

example, there is no convenient way to record tradeoff decisions in a graph­

ical notation. It is not clear that this type of representation would be best

for reference in later stages of the development. Other reference documen­

tation is probably required. The Embedded Computer System Workshop

recommended an abstract model that will facilitate analysis; such a model is

represented in a language of objects, relationships, and attributes (WL85).

Perhaps multiple consistent representations are required for the description

of such complex systems.

There is quite a bit of emphasis on having an executable requirements

specification for embedded software systems. While this is certainly a desir­

able feature for analysis and demonstration, it does not come cheap. Care

59

must be exercised so that the executable formal language is not objection­

ably close to a programming language. It is not practical to deal with the

details of coding the solution twice, once during requirements specification,

and once again in implementation.

The fourth area of concern is with the representation of non-functional

requirements. These are difficult to express in a formal notation because of

the lack of a theoretical foundation [Rom85]. Research is ongoing for solu­

tions to this problem, [Jus88] and [Jaf88], but more is needed. Especially

encouraged are techniques that can be used as part of available languages.

Two different types of timing requirements are treated alike in most nota­

tions: those that specify assumptions about the timing of environmental

stimuli and those that specify required timed behavior of the embedded

system. The former usually includes a time-out requirement. Different

notation options for these would encourage completeness checking and cor­

rectness without overconstraining the designer.

The importance of the inclusion of an environmental model in the spec­

ification has already been pointed out. Completeness and correctness anal­

yses should also include this representation of the embedded system's en­

vironment. White and Lavi state: "insufficient analysis of external phe­

nomena is trouble" [WL85], and White indicates the importance of a well

defined boundary between the two [Whi85]. The interface between the en­

vironment and the embedded system is very complex and requires special

consideration.

Most of the languages discussed are part of a method for requirements

specification and analysis. These methods must advocate a careful, system­

atic, and disciplined approach to specification that leads to completeness

of the representation. They also must include analysis capability to al-

60

low checking for various required properties before the construction of the

system begins. Some completeness criteria can be checked by automated

tools. Checking for other criteria may depend on the experience of the ana­

lyst in the particular application area. Development of techniques that will

promote and improve completeness and other requirements specification

properties are essential.

Finally, it is important that the work done on specifying requirements be

integrated with the rest of the development process for embedded systems.

It is difficult to draw the line between high-level design and requirements

specification for this domain; however, the distinction is necessary so as not

to under- or over-constrain the software designer. Plans for change included

in the requirements specification may add constraints on the designer, but

they are important to the overall development process. Methods that facil­

itate cooperation between all levels of development will surely reduce the

overall cost (in both money and time) of software production.

It is probably true that no one language or technique will meet all the

needs of complex embedded systems. If this is the case, integration of the

good features of several languages should be considered with the possibility

of multiple consistent representation views for various specification users.

Requirements specification methods for embedded systems is an im­

portant research area in software engineering. Work is encouraged in such

areas as actual experience with language use, graphical representations, ex­

ecutability, non-functional requirements expression, environmental model

inclusion, disciplined techniques for completeness, and issues affecting the

entire development process.

61

References

[Age79)

[Alf77)

[Alf85)

Tilak Agerwala. Putting Petri nets to work. Computer, 85-94,

December 1979.

Mack W. Alford. A Requirements engineering methodology

for real-time processing requirements. IEEE Transactions on

Software Engineering, SE-3(1):60-69, January 1977.

Mack W. Alford. SREM at the age of eight; the Distributed

computing design system. Computer, 18(4):36-46, April 1985.

[BBD77) Thomas E. Bell, David C. Bixler, and Margaret E. Dyer. An

Extendable approach to computer-aided software requirements

engineering. IEEE Transactions on Software Engineering, SE-

3(1):49-60, January 1977.

[BCF*83) Robert M. Balzer, Donald Cohen, Martin S. Feather, Neil M.

Goldman, William Swartout, and David S. Wile. Operational

specification as the basis for specification validation. In D. Fer­

rari, M. Bolognani, and J. Goguen, editors, Theory and Practice

of Software Technology, pages 21-49, North-Holland Publishing

Company, 1983.

[BGFG86) Glenn R. Bruns, Susan L. Gerhart, Ira Forman, and Michael

Graf. Design Technology Assessment: The Statecharts Ap­

proach. Technical Report STP-107-86, Microelectronics and

Computer Technology Corporation, Austin, Texas, March 1986.

[BJKW88) William Bruyn, Randall Jensen, Dinesh Keskar, and Paul T.

Ward. ESML: an Extended systems modeling language based

62

[Boe80]

[BZ87]

on the data flow diagram. ACM SIGSOFT, Software Engineer­

ing Notes, 13(1):58-67, January 1988.

W. E. Boebert. Formal verification of embedded software.

ACM SIGSOFT, Software Engineering Notes, 5(3):41-42, July

1980.

Edward F. Berliner and Pamela Zave. An experiment in tech­

nology transfer: PAISLey specification of requirements for an

undersea lightwave cable system. In Proceedings of the Ninth

International Conference on Software Engineering, pages 42-

50, IEEE, Monterey, California, March 1987.

[CDK85] M. Chandrasekharan, B. Dasarathy, and Z. Kishimoto.

[CL81]

[CR83]

[CY83J

Requirements-based testing of real-time systems: Modeling for

testability. Computer, 18(4):71-80, April 1985.

C. S. Chandersekaran and R. C. Linger. Software specification

using the SPECIAL language. Journal of Systems and Soft­

ware, 2:31-38, 1981.

James E. Coolahan, Jr. and Nicholas Roussopoulos. Timing re­

quirements for time-driven systems using augmented Petri nets.

IEEE Transactions on Software Engineering, SE-9(5):603-616,

September 1983.

Bo-Shoe Chen and Raymond T. Yeh. Formal specification and

verification of distributed systems. IEEE Transactions on Soft­

ware Engineering, SE-9(6):710-722, November 1983.

63

[Dav82]

[Egg80]

Alan M. Davis. The Design of a family of application-oriented

r~quirements languages. Computer, 15(5):21-28, May 1982.

Paul R. Eggert. Overview of the Ina Jo Specification Language.

Technical Report SP-4082, System Development Corporation,

October 1980.

[GMT*80] Susan L. Gerhart, D. R. Mussner, D. H. Thompson, D. A.

[Har87]

[Hen80]

Baker, R. L. Bates, R. W. Erickson, R. L. London, D. G. Taylor,

and D. S. Wile. An Overview of AFFIRM: a Specification and

verification system. In Simon H. Lavington, editor, Proceedings

of IFIP Congress 80, pages 343-347, 1980.

David Harel. Statecharts: a Visual formalism for complex sys­

tems. Science of Computer Programming, 8:231-274, 1987.

Kathryn L. Heninger. Specifying software requirements for

complex systems: New techniques and their application. IEEE

Transactions on Software Engineering, SE-6(1):2-13, January

1980.

[HKPS78] Kathryn L. Heninger, J. Kallender, David L. Parnas, and J.E.

Shore. Software Requirements for the A-1E Aircraft. Naval

Research Lab, Washington, D.C., November 1978.

[HLN*88] David Harel, H. Lachover, A. Naamad, A. Pnueli, M.Politi, R.

Sherman, and A. Shtul-Trauring. STATEMATE: a Working en­

vironment for the development of complex reactive systems. In

Proceedings of the Tenth International Conference on Software

Engineering, pages 396-406, IEEE, Singapore, April 1988.

64

[HM83]

[HP85]

Constance L. Heitmeyer and John D. McLean. Abstract re­

q~irements specification: a New approach and its application.

IEEE Transactions on Software Engineering, SE-9(5):580-589,

September 1983.

David Harel and A. Pnueli. On the development of reactive

systems. In K.R. Apt, editor, Logics and Models of Concurrent

Systems, pages 4 77-498, Springer-Verlag, 1985.

[HPSS87] David Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the

formal semantics of statecharts. In Proceedings of the Second

Symposium on Logic in Computer Science, pages 54-64, Ithica,

New York, 1987.

[i1o87]

[Jac83]

[Jaf88]

[Jus88]

[MR85]

i-Logix. The Languages of STATEMATE. March 1987.

STCON-00.

Michael Jackson. System Development. International Series in

Computer Science, Prentice-Hall, Englewood Cliffs, New Jersey,

1983.

Matthew S. Jaffe. Completeness, Robustness, and Safety in the

Behavioral Requirements for Embedded Command and Control

Systems. PhD thesis, University of California, Irvine, 1988.

Debra Sue Jusak. Modelling the Semantics of Time Dependent

Computations. PhD thesis, University of California, Irvine,

1988.

E. Timothy Morgan and Rami R. Razouk. Computer-aided

analysis of concurrent systems. In Proceedings of the Fifth In-

65

ternational Workshop on Protocol Specification Verification and

T~sting, Toulouse, France, June 1985.

[Par72a] David L. Parnas. On the criteria to be used in decomposing sys­

tems into modules. Communications of the A CM, 15(12):1053-

1058, December 1972.

[Par72b] David L. Parnas. A Technique for software module specification

with examples. Communications of the ACM, 15(5):330-336,

May 1972.

[Par76] David L. Parnas. Response to undesired events in software

systems. In Proceedings of the Second International Conference

on Software Engineering, pages 437-446, IEEE, San Francisco,

California, October 1976.

[Par77] David L. Parnas. The Use of precise specifications in the de­

velopment of software. In Bruce Gilchrist, editor, Proceedings

of IFIP Congress 77, pages 861-867, Toronto, Canada, August

1977.

[Par78] David L. Parnas. Designing software for ease of extension and

contraction. In Proceedings of the Third International Confer­

ence on Software Engineering, pages 264-277, IEEE, Atlanta,

Georgia, May 1978.

[PCW84] David L. Parnas, Paul C. Clements, and David M. Weiss.

The Modular structure of complex systems. In Proceedings of

the Seventh International Conference on Software Engineering,

pages 408-417, IEEE, Orlando, Florida, March 1984.

66

[Pet77]

[Pla85]

James L. Peterson. Petri nets. Computing Surveys, 9(3):223-

2512, September 1977.

Patrick R. H. Place. Position paper for the third international

workshop on software specification and design. In Proceedings

of the Third International Workshop on Software Specification

and Design, pages 184-185, London, August 1985.

[Rom85] Gruia-Catalin Roman. A Taxonomy of current issues in re­

quirements engineering. Computer, 18(4):14-22, April 1985.

[RS82]

[Sha85]

Anders Rockstrom and Roberto Saracco. SDL-CCITT speci­

fication and description language. IEEE Transactions of Com­

munications, COM-30(6):1310-1318, June 1982.

Mary Shaw. What can we specify? Issues in the domains of soft­

ware specifications. In Proceedings of the Third International

Workshop on Software Specification and Design, pages 214-215,

London, August 1985.

[SMC74] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured

design. IBM Systems Journal, 13(2):115-139, 1974.

[SSR85] Paul A. Scheffer, Albert H. Stone, III, and William E. Rzepka.

A Case study of SREM. Computer, 18(4):47-54, April 1985.

[TH77] Daniel Teichroew and Ernest A. Hershey, III. PSL/PSA: a

Computer-aided technique for structured documentation and

analysis of information processing systems. IEEE Transactions

on Software Engineering, SE-3(1):41-48, January 1977.

67

[Whi85)

[WL85)

[WM85)

[Yue87)

[Zav82)

[Zav84)

[ZS86)

Stephanie M. White. Requirements modeling for embedded

co'mputer systems. In Proceedings of the Third International

Workshop on Software Specification and Design, pages 238-240,

London, August 1985.

Stephanie M. White and Jonah Z. Lavi. Embedded computer

system requirements workshop. Computer, 18(4):67-70, April

1985.

Paul T. Ward and Stephen J. Mellor. Structured Development

for Real-Time Systems, Volume 2. Yourdan Press, New York,

1985.

Kaizhi Yue. What does it mean to say that a specification is

complete? In Proceedings of the Fourth International Workshop

on Software Specification and Design, pages 42-49, Monterey,

California, April 1987.

Pamela Zave. An Operational approach to requirements speci­

fication for embedded systems. IEEE Transactions on Software

Engineering, SE-8(3):250-269, May 1982.

Pamela Zave. The Operational versus the conventional ap­

proach to software development. Communications of the A CM,

27(2):104-118, February 1984.

Pamela Zave and William Schell. Salient features of

an executable specification language and its environment.

IEEE Transactions on Software Engineering, SE-12(2):312-

325, February 1986.

68

