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Abstract 

Requirements specification is an important part of the software develop­

ment process. Use of well developed techniques, tools, and languages during 

requirements specification is especially crucial for complex embedded soft­

ware systems. Four languages appropriate for the specification of software 

requirements for complex embedded systems (RSL, PAISLey, Statecharts, 

and SCR) are reviewed in detail here. In addition, other representation 

languages with features relevant to the embedded software systems domain 

are mentioned. Conclusions about the current status of embedded systems 

requirements specificatio'n and indications of further research are given. 
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1 Introduction 

In any development process, it is essential to understand what you are 

building. This defining activity should take place before you start building, 

not halfway through the development process when it is too late or too 

expensive to make changes. A clear statement of the problem and potential 

solution is required for analysis and to provide a well-documented path for 

change and/ or correction when modifications are deemed necessary. This 

is true for software engineering as for other system building processes. The 

requirements specification phase is essential to the progress of the entire 

software development process. It is at this time that the definition of what 

the system is required to do is established. If the requirements are specified 

correctly, the rest of development is made easier and cheaper. However, if 

the requirements are incorrect, the rest is harder and costlier. It is no 

simple task to get the requirements correct; indeed, it is not known how 

to determine whether or not they are correct. To this end, an important 

research area in software engineering is the development of requirements 

analysis techniques. 

The general purpose of specifying requirements is to facilitate the un­

derstanding of the system that is under development. The goal of the en­

deavor is an explicit statement of the behavioral requirements for the new 

system, where behavioral may include both functional and non-functional 

(sometimes called performance) requirements. It is important that these 

requirements be precisely documented, not just expressed in vague terms 

or entrusted to someone's memory. Otherwise, at each stage of develop­

ment, the requirements must be intuitively recreated for application at that 

level-an imprecise procedure at best [Par77]. The specification statement 
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should be independent of any particular implementation, and certain qual-
I 

ity characteristics are called for: it must be possible to tell whether or 

not a system meets the requirements; two different systems with differ­

ent functionality cannot both satisfy the requirements; internal consistency 

and consistency with the system's environment are required; and verifiable 

correctness, which includes completeness, is needed. Such a specification 

document is often used as a basis for contractual negotiation between the 

user and the developer. It also provides a blueprint for the next level of 

software development and may be used in later phases as a guide for change 

control. 

The research discussed here is focused on the specification of require­

ments for complex embedded systems. Embedded systems, for our pur­

poses, are those that are part of a larger system and have a primary purpose 

other than computation. Appropriate applications for this work involve 

process control and are characterized by concurrency, complex interfaces, 

and urgent performance requirements [Zav82]. There is a high cost asso­

ciated with determining the correctness of such software and a still higher 

cost associated with its incorrectness [WL85]. 

Software engineering is involved in the development of many complex 

embedded systems, e.g., air traffic control, on-board aircraft flight control, 

robots, military weapons, and medical patient monitoring. Most real-time, 

reactive systems (i.e., those with requirements to interact with and respond 

to their environment during execution) will benefit from research on em­

bedded system specification. One essential feature of such a specification 

is incorporation of an environmental (or plant) model. Validation of this 

model may be required before it is used to draw conclusions about the 

representation of the system that is being developed. The interface of the 
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embedded system with its environment and the assumed constraints on the 

environment should be a part of the requirements specification. Analy­

sis for correctness of the system's specified response to external stimuli is 

facilitated by the inclusion of this environmental model in the specification. 

Boebert described the development of embedded software systems as 

"One of the most rapidly growing areas of software activity and one whose 

characteristics and special problems are rarely considered by the computer 

scientist or verification communities." [Boe80]. While there are some popu­

lar requirements specification languages that may be used for less complex 

software (see e.g., [Egg80], [CL81], [TH77], [GMT*SO], [BCF*83]), there 

are currently few languages that are seriously considered appropriate for 

specifying the requirements for complex, embedded systems. It is gener­

ally agreed that any such representation language should be formal (or at 

the very least semi-formal) for several reasons. The discipline required to 

use a formal language implies a more complete treatment of the specifica­

tion. Formal models are mathematically analyzable and may even lead to 

automated verification. The complexity and size of most elements of this 

domain require considerable modularization of systems, which may increase 

the difficult task of interface specification; formal treatments facilitate the 

correctness of these specifications [WL85]. 

Of the available languages, the following four are best known: RSL, 

part of the SREM methodology for real-time specifications developed in the 

1970's; PAISLey, developed by Zave in the early 1980's for the specification 

of embedded systems from an operational viewpoint; Statecharts, a recent 

technique developed by Harel, Pnueli, and others for specifying reactive 

systems; and a semi-formal technique developed by Parnas, Heninger, and 

others for specifying the A-7 aircraft flight software, referred to in this work 
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as SCR. 

The purp~se of this paper is to provide an overview of the languages 

for specifying embedded systems and assess how they may be extended 

or augmented with other techniques to better serve the developers of em­

bedded software systems. Progress in the area will best be promoted by 

careful consideration of the existing methods as a starting point for further 

work. This is supported by Place: "We must be wary of performing a too 

rapid examination of current techniques and concluding that there is no 

appropriate technique." (Pla85], and by Shaw: "It is extremely desirable 

to extend existing methods to new properties instead of developing new 

methods whenever possible." (Sha85]. The organization of this paper is 

based on this premise. After a discussion of certain standards desirable for 

requirements specification languages, the four previously enumerated lan­

guages (RSL, PAISLey, Statecharts, and SCR) will be surveyed. For each 

language, the context for its development/use, an overview of the language 

itself, experience with its use, and as assessment of its effectiveness for 

the embedded systems domain will be given. Some other less known/used 

languages will be mentioned in section 7, although they are not fully re­

viewed. Finally the current status and research areas of embedded systems 

requirements specification will be assessed. 
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2 Desirable Characteristics 

While there is no absolute checklist for properties that a requirements spec­

ification must have to be good, useful, or even to satisfy the purposes set 

forth in the previous section, there are certain characteristics that are desir­

able in a software specification. Some are not only desirable, but essential 

according to the intended application area. Alford [ Alf77] has provided an 

extensive list of such properties; Heninger [Hen80] has described more de­

sirable characteristics specific to real-time applications. Their features and 

a few other generally accepted ones are listed in figure 1. 

Correctness properties. No matter what the application domain for the 

software specification, it should be as correct as possible. Correctness is 

an evaluation of whether or not it solves the problem as put forth by the 

system requirements that have been allocated to the software subsystem 

or, in a less complex situation, as put forth by the user to the software 

developer. 

Completeness addresses whether or not the specified system is suffi­

cient to this required task. There is no absolute criterion for establishing 

the completeness of a software specification; ongoing research is address­

ing this area [Jaf88] [Yue87]. Two kinds of consistency are desired for a 

specification: static and dynamic. Static consistency means the statement 

of the requirements has only well defined entities, whereas dynamic con­

sistency implies the functioning software system is well-defined. This is 

usually measured by simulation. 

Two other correctness features are closely related. To be precise a spec­

ification must not be satisfiable by more that one distinct system; a spec­

ification is ambiguous if it is not possible to tell whether or not a system 
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Correctness properties. 
complete 
consistent 
precise 
unambiguous 
formal 

Verification properties. 
traceable 
testable 

Correction/modification properties. 
changeable 
extensible 
free of design 

User properties. 
executable 
communicable 
usable 

Real-time/embedded properties. 
address: environment 

exception handling 
performance 

Figure 1. 

satisfies the specification. The discipline of a formal specification may be 

desired to achieve the other properties. Correctness properties are desirable 

for all specifications. 

Verification properties. The next two properties on the list relate to 

verification of the specification and of the implementation of the specifica­

tion. A traceable specification relates each requirement to the preliminary 

requirements from which it arose, either a user statement or a sub-system 

specification. A testable specification states requirements in terms of the 

tests that can be used to verify compliance to it. 

Correction/modification properties. Correction or modification proper­

ties are desirable when the requirements for the system must be changed 

due to errors or otherwise. Some have argued that all design decisions 

should be kept out of the requirements specification [Par77], while others 
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argue for postponing design decisions as long as possible, but not precluding 

some design decisions from the specification [Hen80]. 

A changeable specification allows minor corrections without redoing ma­

jor pieces of the work; modularity is usually a technique to encourage 

a changeable specification. Requirements specifications that are extensi­

ble are especially desirable for applications that are dynamic as frequent 

changes in the application mean frequent changes in the software capability. 

User properties. The requirements specification is a document for many 

users. Maintainers, for example, may desire a document organized as a 

reference tool. The inclusion of a graphical model may be desired for com­

munication of the representation among analysts and designers or even 

communication to the customer (user). Some may desire an executable 

specification for simulation demonstrations or to build a prototype model. 

As with correctness, formality is desirable to help achieve an executable 

specification. 

Real-time, embedded properties. The last set of features are key ones 

for the application area, i.e. complex embedded systems. The inclusion 

of an environment model with the software subsystem representation fa­

cilitates the specification of interfaces and of any assumptions made about 

inputs and outputs. Specification of non-functional constraints including 

performance requirements such as response time, space bounds, time outs, 

accuracy, and reliability as well as communication, synchronization, and se­

curity are often essential to the development of systems in this domain. In , 

particular, safety critical system specifications demand explicit stipulation 

of how the occurrence of undesired events will be handled. 

Of course, these properties are not without cost (in personnel, time, 

dollars, or all three), and their desirability is a balance between that cost 
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and the benefit they provide for a particular application. Specification 
I 

languages and the methods for using them may incorporate features that 

demand, encourage, or allow such desirable properties in the resultant spec­

ification. As the details of selected languages are given in ensuing sections, 

care will be taken to establish whether or not the language has such fea­

tures. 
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3 RSL 

The first language to be described is the Requirements Statement Language 

(RSL). RSL was developed in the 1970s by the Ballistic Missile Division 

of TRW as a part of its Software Requirements Engineering Methodology 

(SREM). This description of RSL begins with a discussion of SREM and its 

major parts. An overview of RSL is given, and the major experiences with 

its use are related. These are followed by an assessment of the usefulness of 

this specification language in the SREM context. References for RSL and 

SREM are [Alf77], [BBD77], [Alf85]. 

3.1 Context 

The intended arena for the use of RSL is within SREM. This methodology 

came about as the result of frustration felt by the defense industry with 

the hierarchy of functionality model used for requirements specification. In 

this model functions are decomposed into sub-functions which are in turn 

decomposed until the units are of desirable size. Frequently, a particular 

design is implied by the specification as subroutines are used to deliver sub­

functionality. The model lacks the capability to represent conditions and 

sequences of processing and often leads to a specification that is ambiguous 

and difficult to test [Alf85]. 

The developers of SREM wanted a methodology that dealt with the 

technical issues (such as work-products to be produced, language support, 

the form of the requirements) and the management issues (such as schedul­

ing and evaluation) that are essential to the development of software re­

quirements. Their hope was that inclusion. of these aspects into a formal, 

thorough methodology might result in reduced life cycle time and cost. 
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SREM is made up of four parts: RSL, the language used to represent 

the software requirements; Requirements Engineering and Validation Sys­

tem (REVS), a set of tools for maintaining, manipulating, and analyzing 

the requirements; a relational database called the Abstract System Seman­

tic Model (ASSM); and a methodology for performing the requirements 

specification task. 

REVS is responsible for information contained in the database and for 

analysis of the evolving requirements representation. It has many capabili­

ties. REVS interprets and translates the RSL statements for incorporation 

into the ASSM, which it maintains. Included in the tools is an interactive 

graphics package for graphical description of R-nets and subnets (described 

in section 3.2 of this paper). The graphical representation is equivalent to, 

and interchangeable with, the formal language representation. REVS also 

has static analysis capability for checking consistency, completeness, and 

correctness of intermediate products as well as the complete specification. 

There is a simulation generator included that can provide discrete event 

simulation of the functional model processing steps or an analytical sim­

ulation using Pascal algorithms. These algorithms are supplied by the 

requirements engineer; the intent is that they be similar to those that will 

eventually be used. 

Another important part of REVS is the extraction and reporting capa­

bility used to recover and report information from the ASSM that is useful 

to requirements engineers and to management. As will be discussed in the 

next subsection, RSL can be extended to meet application needs; any such 

extensions are supported and maintained by the tools in REVS. REVS is 

a tool set with a broad range of capabilities. 

The relational data base, ASSM, maintained for SREM is a central 
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repository for all the requirements of the software system being developed. 
J 

Large systems may be subdivided with subsection responsibilities assigned 

to many different teams. All the requirements specified by all teams are 

kept in the one data base for the software system. ASSM contains any 

extensions added to RSL for the application as well. Representations are 

kept for each primitive type defined in the system; instances of these are 

linked back to their associated primitives. Thus the data base facilitates 

tool support and extensibility. 

SREM is intended for systems that are predominantly stimulus-response 

(S-R), having a required set of actions, possibly ordered, for a particular 

input. To establish these requirements, the methodology follows eight steps. 

The steps are not necessarily independent of one another in content or time. 

The assumption is made that the overall system requirements have been 

allocated so that preliminary requirements exist for the software subsystem. 

1. Define the kernel elements consisting of input messages, output mes­

sages, basic processing nodes, and requirements networks using RSL. 

2. Establish the baseline database, including plots of the requirements 

nets, and do checking for completeness and consistency. 

3. Assign the data inputs and outputs for the processing nodes. 

4. Establish the traceability of requirements to and from preliminary 

requirements, determine validation points for performance require­

ments, and their traceability. 

5. Perform functional simulation by REVS. Specially defined artificial data 

may be used for simulation inputs, or a simulation of the proposed 

system's environment can provide the interface data. 
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6. Identify testable performance requirements; determine appropriate val­

idation points for these, and establish their traceability. 

7. Perform analytical simulation to demonstrate feasibility for critical 

algorithms. 

8. Analyze the dynamic behavior for time delays (including time-outs), 

communication and synchronization procedures, and failure identifi­

cation methods. 

Originally this automated system was run on a Texas Instruments Ad­

vanced Scientific Computer. In 1981 the tools were moved to a Vax 11/780, 

and in 1983 the software managing ASSM was rewritten in Pascal to im­

prove performance. By 1985, all of SREM had been extended to include 

specification of requirements at the system level through software specifi­

cation. This front end extension addresses system requirement definition 

and allocation to subsystems. A state hierarchy is established that allows 

concurrent and/or sequential states. 

Some work has also been done to establish a computing design sys­

tem. This will add to SREM a transition phase for establishing the design 

specification from the requirements. The planned multipart phase includes 

allocation of processing to code units and data structures as well as inter­

face decomposition and allocation in a distributed system. Fault tolerance 

functions may be incorporated and allocated. The design system ideas re­

main experimental. The ultimate goal is to extend RSL, REVS, and the 

methodology to a complete software engineering environment for embedded 

system development. 
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A patient monitoring program is required for a hospital. 
Each patient is monitored by an analog device which 
measures factors such as pulse, temperature, blood 
pressure, and skin resistance. 
The program reads these factors on a periodic basis 
(specified for each patient) and stores these factors 
in a data base. 
For each patient, safe ranges for each factor are 
specified (e.g. patient X's valid temperature range is 
98 to 99.5 degrees Fahrenheit). 
If a factor falls outside of the patient's safe range, 
or if an analog device fails, the nurse's station is 
notified. 

Figure 2: [SMC74]. 

3.2 Overview 

The Requirements Statement Language (RSL) for SREM is a flow-oriented 

language, i.e. the specified operations are expressed as flows through the 

processing system. It is a formal language, leading to reduced ambiguity 

and increased automatability. In fact RSL is machine processable. The 

system being developed is described in terms of stimulus-response using a 

highly structured finite state machine underlying model. This model allows 

the expression of the S-R relationships, promoting response and accuracy 

requirements as well as static analysis. To aid in the discussion of RSL, a 

simple example has been included. Preliminary requirements for a patient 

monitoring program taken from .[SMC74] are given in figure 2, and some 

RSL requirements developed from these are in figures 3 and 4 (adapted 

from [Alf77]). Special considerations for system startup have been omitted 

here for simplicity. 

RSL employs hierarchical conceptual networks called Requirements Nets 

(R-nets) to specify flows. Each R-net specifies processing flow by describing 

the transformations of an input to one or more outputs and also specifies 

the accompanying changes in the system state. Figure 3a. shows the R-net 
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for input FROMJ)EVICE. Basic nodes of these R-nets may be processing 
I 

nodes, called alphas, or subnets which are R-nets at the next lower level in 

the network hierarchy. All basic nodes have a single entrance and a single 

exit point. Other nodes used in R-nets are structured nodes; they enable 

the description of conditional, parallel, and synchronized fl.ow processing. 

The four types of structured nodes are: 

AND- represents two or more mutually order independent paths with a 

synchronized end point. 

OR- represents conditional paths, each with an explicit condition. The 

first path with a true condition is taken, where first is determined 

implicitly or explicitly. An otherwise path is required by RSL for OR 

nodes. 

FOREACH- represents iteration of a path for each element of a specified 

set. 

SELECT- is similar to FOREACH except iteration is subject to an explicit 

conditional. 

Figure 3 contains examples of AND and OR structured nodes. 

The formal language of RSL describes the 2-dimensional R-nets in a 1-

dimensional computer input. Four primitive building blocks are used to de­

scribe the system processing: elements, relationships, attributes, and struc­

tures. Elements are the specification objects such as functional processing 

units (alphas), conceptual data, and processing fl.ow specifications (R-nets ). 

A relationship specifies a certain non-commutative association between two 

elements; e.g., alpha EXAMINE_FACTORS inputs data SAFE.RANGES. 
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""FAU .• \14',, 

(a) 

INPUT INTERFACE FRCM DEVICE 
VALIDATION POINT Vl -
ALPHA DETERMINE_HESSAGE-T\'PE 
IF TYPE-MESSAGE IS FAILURE 

ALPHA NOTIFY NURSE-OF-FAIWRE 
OUTPUT-INTERFACE TCrNURSF.S-STATION 

OTHERWISE 
DO 

AND 

Figure 3. 
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ALPHA STaU:-FACTOR-DATA 

ALPHA EXAMINE-FACTORS 
IF RANGE-SAFE 

VALIDATION POINT V2 
OTHERWISE -

ALPHA TELL NURSE OF FACTORS 
OVTPUT-INTERFACE-ro=NURSES­

STATION 

(b) 

(c) 



Attributes specify properties of elements; e.g., HLTEMPERATURE is an 
I 

attribute of SAFE_RANGES. Among its attributes, each element has a de-

scription which is used to document its purpose. Structures specify the 

flow model in RSL. The graphical representation of the R-nets in figure 3a 

and 3c is equivalent to the formal language description in RSL, shown in 

figure 3b and in figure 4. 

RSL is extensible; new elements, relationships, and attributes appropri­

ate for a particular application may be defined and added to the language. 

Structures are not, however, extensible. The developers have provided a 

base language of primitives (21 elements, 23 relationships, 20 attributes) 

considered useful for all applications. The extension capability has a lock­

out feature for controlling change as management may want to constrain 

casual additions. 

It is possible to specify accuracy and response time requirements in RSL. 

Special nodes called validation points are placed along paths in the R-nets, 

used in figure 3a and 3b to determine how frequently readings are taken. 

Accuracy is then specified, and determined, by the state at a particular 

validation point. Response times are expressed by specifying maximum 

and/ or minimum times to complete the path between two validation points. 

Both accuracy and response time specifications are given in terms of a test 

to avoid ambiguity. 

3.3 Experience 

Several experiences with the use of RSL have been reported. Two early 

attempts and a more recent case study are discussed here. The developers 

of SREM tried out their ideas for the methodology and RSL on a real-time 
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RSL Data Descriptions 

ORIGINATING REQ. : INPUT 1 
DESCRIPTION: "oefines analog device measurements." 
REQ. TRACES TO: MESSAGE MONITOR_REPORT 

MESSAGE: MONITOR REPORT 
HOW PASSED: INPUT INTERFACE FRCM MONITOR 
REQ. TRACES FRCM: -ORIGINATING REQ. INPUT 1 
MADE BY: DATA MONITOR ID, - -

DATA TYPE MESSAGE, 
DATA INPUT=DATA 

DATA: INPUT DATA 
INCLUoES: DATA Pl.JISE, 

DATA TEMPERATURE, 
DATA BLOOD_PRESSURE, 
DATA SKIN_RESISTANCE 

ENTITY CLASS: PATIENT 
- ASSOCIATES: DATA PATIENT ID, 

DATA SAFE RANGES, 
FILE HISTORY 

DATA: SAFE RANGES 
INcLunES: DATA LOW Pt.JISE, DATA HI Pt.JISE, DATA LOW PRESSURE, 

DATA.HI PRESSURE, DATA~ TEMPERATURE,-DATA 
HI TEMPERATURE, DATA LOW SKIN RESISTANCE, DATA 
HI=SKIN_RESISTANCE, DATA-PATIENT_MONITOR_ID 

FILE: HISTORY 
CONTAINS: DATA MEASUREMENT TIME, DATA HPt.JISE, DATA HTEMP, 

DATA HPRESSURE, DATA HRESISTANCE 
REQ. TRACES FRCM: "Preliminary statement" 

ORIGINATING REQ.: INPUT 2 
DESCRIPTION: "Defines safe factor ranges for each patient." 
REQ. TRACES TO: MESSAGE PATIENT_REPORT 

MESSAGE: PATIENT REPORT 
HOW PASSED: INPUT INTERFACE FRCM PATIENT 
REQ, TRACES FROM: ORIGINATING REQ. INPUT_2 
MADE BY: DATA SAFE_RANGES -

ALPHA: DETERMINE MESSAGE TYPE 
INPUTS: MONITOR REPORT 
OUTPUTS: TYPE MEsSAGE 
DESCRIPTION: "separates incoming message to discern type." 

ALPHA: NOTIFY NURSE OF FAIWRE 
INPUTS7 DATA MONITOR ID 
OUTPUTS: MESSAGE FAILED MONITOR 
DESCRIPTION: "Forms message to notify nurses station." 

ALPHA: STORE FACTOR DATA 
INPUTS: DATA INPUT DATA 
OUTPUTS: None -
DESCRIPTION: "Store the input in a data base for future reference." 

ALPHA: EXAMINE FACTORS 
INPUTS: - DATA DEVICE DATA 

DATA SAFE RANGES 
OUTPUTS: RANGE -
DESCRIPTION: "Compares device data to safe ranges and determines 

if range is safe or not." 

ALPHA: STORE SAFE RANGES 
INPUTS: PATIENT REPORT 
OUTPUTS: None -
DESCRIPTION: "Store safe ranges for this patient monitor." 

Figure 4. 
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test control. A software specification for the control was already available 

in another fotm, but it did not include some desired enhancements. The 

specification was rewritten in terms of stimulus-response relationships and 

paths, incorporating the extensive modifications for enhancement. Positive 

results were achieved: the new design-free specification required no change 

during subsequent design modification; time for requirements maintenance 

and change was cut in half. 

The language was further tested on the tracking loop portion of the 

terminal defense program of an anti-ballistic missile. The specification was 

written in RSL; REVS was not available yet for automated analysis. The 

outcome of this trial indicated weaknesses in RSL for translating prelim­

inary requirements and 2-dimensional R-nets. After upgrading the lan­

guage, the specification was rewritten with a better result. Ambiguities 

were found, in particular, by having to specify performance in terms of a 

test. This completed specification was eventually used as a test case for the 

developed REVS system. 

More recently, Martin Marietta Denver Aerospace undertook to test 

the applicability of RSL and SREM for expressing requirements for Com­

mand, Control, Communication, and Intelligence (ca I) embedded systems 

[SSR85). The reported study was done in the early 1980s as a follow up to 

a preliminary study, by Rome Air Development Center in the late 1970s, 

which determined SREM adequate and useful for ca I. The purpose for the 

experiment was 3-fold: to study the ability of RSL/SREM to do ca I, to 

study where in the Air Force life cycle SREM is useful, and to determine 

training needed for using the methodology. 

Two systems with existing specifications for different levels of develop­

ment were used. The first was the communication switch interface develop-
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ment system which was part of an Air Force communications system and 

already had a' software design specification. The other, the advanced sensor 

exploitation system for handling and distributing sensor data, was described 

in a software requirements specification. Both of these were translated into 

RSL and analyzed using REVS. 

The case study results supported SREM as a viable approach for C3 I 

software requirements; the formal discipline of RSL resulted in early er­

ror detection. It was felt that the method is best applied to requirements 

specification, but it could and perhaps should be extended for use during 

design specification. However, there was some disappointment with RSL's 

capabilities for expressing parallel and distributed processing, and REVS 

was felt to be inefficient. Finally, the cost of learning to use the method­

ology was significant. It is unclear whether this is a reflection upon the 

RSL/SREM system in particular or the nature of requirements engineering 

methods in general. 

3.4 Assessment 

An assessment of the Requirements Statement Language is actually an 

assessment of SREM, as its only use is within that context. As previously 

' mentioned, there are plans to extend SREM with design capabilities and 

eventually to create an entire software life-cycle development system. 

At the current level of capability, there are positive and negative aspects 

to the language and methodology. On the positive side: consistency and 

some completeness verification is provided; performance specifications are 

testable; and the requirements are traceable. RSL is a formal language that 

encourages precise and unambiguous requirements; the extensibility of the 

language is certainly beneficial for the dynamic domain considered here, 
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and the simulation generators are equally valuable. With the centralized 

data base, change control and recording should be expedited. SREM is 

appropriate for the generation of real-time software requirements. 

On the other hand, extensions should be provided for specification of 

other non-functional requirements such as fault tolerance, reliability, syn­

chronization, time-outs, etc. Also, the performance requirements are not 

addressed in the methodology until step 6; they ought to be considered 

earlier in the specification process. The dynamic behavior analysis step in 

the methodology is not clearly defined. More work remains to be done here, 

especially for the sensitive dynamic application area of embedded systems. 

Additionally, the methodology does not address the explicit determination 

of requirements for undesired event handling, and no environmental repre­

sentation is included. 

The experiences of requirements engmeers who have reported usmg 

SREM indicate a lot of effort expended during the requirements phase. 

This may be due to their unfamiliarity with stimulus-response networks 

versus their familiarity with hierarchy of function models, which as previ­

ously indicated are often not design-free. 
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4 PAISLey 

The next language to be described is the Process-oriented, Applicative, 

and Interpretable Specification Language, better known simply as P AISLey. 

Most of the work on PAISLey was done by Pamela Zave at AT&T. The 

original paper described the language [Zav82]. This was followed by two 

other papers in which the context for the language was refined [Zav84], and 

further details of the language features and the environmental model were 

given [ZS86]. The discussion of PAISLey is in four parts: context, language 

overview, experience, and finally assessment of PAISLey. 

4.1 Context 

The context for PAISLey is the operational approach to software develop­

ment. Here the conventional approach is viewed as top-down decomposi­

tion of black boxes organized around the problem solution. In contrast, 

the organization of a specification in the operational approach is based 

on the problem itself. Implementation independent structures are used to 

describe all mechanisms of the system. These may be viewed as virtual 

structures; they may or may not be present intact in the implementation. 

Optimizations are accomplished during the development process. Opera­

tional languages are formal which leads to a machine processable represen­

tation, i.e., the resultant requirements specification is executable. While it 

is not a prototype, a useful prototype can often be rapidly generated from 

the specification. Efficiency is not a concern of the specification process, 

but rather the conversion process from the specification to an implementa­

tion. The emphasis of the approach is on constructing an operating model 

of the system functioning in and interacting with its environment. PAIS-
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Ley, GIST [BCF*83], and Jackson System Development (JSD) [Jac83] are 

instances of the operational approach. PA IS Ley is intended for embedded 

systems, while JSD is best applied to data processing systems and GIST 

does not include apparatus for real-time systems. 

Also part of the context for PAISLey are transformational methods. 

The intent is for requirements analysis and definition to be followed by a 

transformational phase. The formal PAIS Ley specification will be subjected 

to transformations that preserve the external behavior of the specification 

description and yield an implementation-oriented specification, indeed ul­

timately result in an implementation. The hope is for automation of the 

transformation phase with human intervention to guide the process. This 

may turn out to be a very complex human task. Examples of transforma­

tions that may be performed are structure movement (for modifiability and 

comprehensibility) and additions. For example, whereas the intermediate 

results of a Fibonacci series calculation may be recomputed in the original 

requirements specification, the specification may be transformed so they are 

saved for efficiency reasons rather than recomputed. As another example, a 

resource allocation mechanism that was not needed for specification might 

be added during transformation. Similarly, the example in figure 8 enlists 

several monitor processes that might be combined through transformations 

into one that splits cycles. 

4.2 Overview 

P AISLey is actually a set of tools embedded in the UNIX operating sys­

tem (see figure 5). The parser accepts a specification written in PAISLey 

and forms the internal specification representation. The interpreter tool is 
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Figure 5: [ZS86]. 
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an important one; it is interactive and is responsible for the display and 
I 

any break points. The consistency-checker verifies domains and ranges and 

checks timing constraints for system feasibility. This tool was not imple­

mented as of the 1986 writing, but seems to be present for the technology 

transfer experiment reported in 1987 [Zav82]. 

A system is declared in PAISLey as a set of asynchronous processes. 

Each process is specified by giving a state space (domain and range of the 

defining function) and a successor function. Processes are cyclic; i.e., their 

mapping functions continue to be evaluated forever. The size of the system 

structures is fixed: there are a bounded number of processes, no state can 

require unbounded store, and no step can take unbounded time. 

The process evaluation steps give the language a state orientation. Each 

process step amounts to the evaluation of the successor function of one of 

the system's asynchronous processes. Process states occur before the map­

ping evaluation and after; the process is in a computation phase between 

states. 

A system environment model made up of one or more asynchronous pro­

cesses is included with the embedded system model. The aim is to provide 

an explicit model of the proposed system interacting with an explicit model 

of the system environment. Processes in the environment model may be 

people, machines, other programs, etc. 

The forced discipline of a formal language reduces the number of errors 

that are retained in the representation. Execution of the formal specifica­

tion is tolerant of incompleteness in the system description. This incom­

pleteness may take the form of undefined mappings; the system declaration 

and mapping declarations must be present, however. There are three ways 

for an incomplete mapping to be handled. The first is by defining a default 
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4 TYPES OF STATEMENTS 

System declarations: tuples 
e.g. ( monitor-l[data], 

monitor-2[data], 
update-cycle-l[db], 
update-cycle-2[db], 
nurses-station) 

Functional declarations: mappings 
e.g. update-cycle-1: DATA-BASE --> DATA-BASE 

get-data-j: --> DEVICE-DATA 

Set definitions: expressions (union, cross 
product, enumeration) 

e.g. DEVICE-DATA - TYPE X INPUT-DATA 
PULSE - REAL 

Functional definitions: expressions (constants, 
composition, tuples, 
cond. selection) 

e.g. new-func-1 - /pl:fl, p2:f2, 
'true' :f3/ 

Figure 6. 

value to be used whenever an undefined mapping is encountered. Another 

is for the interpreter to select a value from the function range at random. 

Finally, the function value may be requested and supplied interactively. In 

fact, the interpreter could be instructed to consult a function written in the 

programming language C when the undefined mapping is encountered. 

Executable specification capability facilitates validation in several ways. 

Demonstrations may be provided for users to validate the external behavior 

of the system; in some cases, the executable specification may be extendible 

to a prototype. Furthermore, the behavior of the final system may be 

compared to the behavior of the executing specification during acceptance 

testing. 

The PAISLey language is composed of applicative statements and spe­

cial functions called exchange functions. Functions are used to describe 

relationships and are not procedural. Figure 6 shows the four types of 
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3 FORMS OF EXCHANGE FUNCTIONS 

x-channel_id 

xm_channel_id 

xr_channel_id 

0 
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Figure 7: [Za82]. 

statements in the language. A functional declaration statement gives a 

domain (optional) and a range for a mapping. Tuples in the functional 

definitions are executed in parallel. Most functions are side-effect-free. 

Exchange functions bind the asynchronous processes together. They 

may be viewed as ordinary mappings at the local level, except that they 

have side-effects. From the global point of view, they provide two-way mu­

tually synchronized, interprocess communication. The three forms of ex­

change functions are listed in figure 7a, where channel-id is a user supplied 

label. Figure 7b further depicts the possible exchange function interactions, 

26 



while figure 7c points out the possible correspondence between process syn­

chronization type and synchronization mechanism type. It is impossible to 

have a free-running process match with another free- running process, be­

cause they never wait and cannot both be in the same channel at the same 

time. 

An example of PAISLey in use is given in figure 8. These requirements 

describe the patient monitoring program in figure 2. Note the use of the 

exchange functions x and xm for communication on channel nurse-needed, 

and x and xr on channels new-safe-ranges-j and read-data-j. Due to the 

bounded system requirement for PAISLey, the example assumes ten pa­

tients, each with separate monitors. 

It is possible to include some performance constraints for the proposed 

system in PAISLey. Timing constraints may be defined for individual func­

tions; these are for simulated time, however, not real time. Scheduling is 

done by the interpreter in a top-down fashion, so inherited constraints are 

implied by this procedure. Upper bound, lower bound, distribution mean, 

or combinations of these are possible timing constraints. Reliability con­

straints have not yet been implemented but plans do exist for constraints 

such as required ranges for probability of success for given functions. Cur­

rent syntax is unavailable for both timing and reliability performance con­

straints; the periodic requirement for the monitor reading by updata-cycle-j 

is given as a comment in figure 8. 

4.3 Experience 

Reference has been made to three different early experiences with PAISLey. 

A finite-element system for partial differential equations was specified using 

the language [ZS86]. At the time of the experiment, the interpreter tool was 
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"Definitions" 
SAFE-RANGES • LOW-PULSE X HI-PULSE X LOW-PRESSURE X HI-PRESSURE X 

LOW-TEMPERATURE X HI-TEMPERATURE X LOW-SKIN-RESISTANCE 
X HI-SKIN RESISTANCE; 

DEVICE-DATA • TYPE X INPUT-DATA; 
TYPE - ('failure','success'); 
INPUT-DATA • PULSE X TEMPERATURE X BLOOD-PRESSURE X SKIN-RESISTANCE; 
PULSE, TEMPERATURE • REAL 1 
SKIN-RESISTANCE • INTEGER; 
BLOOD-PRESSURE • INTEGER X INTEGER1 
RANGE - ( 1 safe 1

,
1 unsafe')1 

"System declaration" 
(jll .. 10 <, monitor-j[data], 

update-cycle-j[db] >, 
nurses-station)1 

"Environment" 
nurses-station: --> FILLER; 
nurses-station - "Contains x-nurse-needed, and xrn-new-safe-ranges-j 

for j•l. .10"; 
jfl .. 10 <; monitor-j: DEVICE-DATA--> DEVICE-DATA; 

monitor-j - "Contains xr-read-data-j[data]. 
Data is continuously available; however, for simulation 
purposes will have to model as a discrete process.">; 

"Functional declarations and definitions" 
jfl .. 10 <; update-cycle-j: DATA-BASE--> DATA-BASE; 

update-cycle-j: ! --> "Must repeat every patient-j-time 
seconds"; 

updata-cycle-j[db] • 
proj[l,(process-msg-j[db,get-data-j])]; 

get-data-j: -->DEVICE-DATA; 
get-data-j • xm-read-data-j[from-monitor); 
process-msg-j: DATA-BASE X DEVICE-DATA~> 

DATA-BASE X DEVICE-DATA; 
process-msg-j[db,d) • 

/proj[l,(d)]•'failure': send-warning-j, 
'true': process-data-j[db,d]/; 

send-warning-j: --> FILLER; 
send-warning-j • xm-nurse-needed['failure', j]; 
process-data-j: DATA-BASE X DEVICE-DATA--> 

DATA-BASE X DEVICE-DATA; 
process-data-j[db,d] • proj[2,(store-data-j[db,d], 

examine-data-j 
[compare[ck-new-safe-ranges[db],d]])]; 

ck-new-safe-ranges: DATA-BASE ~> DATA-BASE1 
ck-new-safe-ranges[db] - /xr-new-safe-ranges-j 

[new-range]<>~null': 
update-ranges [db,new-range], true': db/; 

compare-j: DATA-BASE X DEVICE-DATA~) 
RANGE X DATA-BASE X DEVICE-DATA1 

compare-j[db,d] • "Compare input to stored information 
and determine if range is safe or not."; 

examine-data-j: RANGE X DATA-BASE X DEVICE-DATA--> 
DATA-BASE X DEVICE-DATA/ 

examine-data-j[r,db,d] • /r-'unsafe': 
xm-nurse-needed['unsafe',d,j], 'true': [db,d]/; 

store-data-j: DATA-BASE X DEVICE-DATA~> FILLER; 
store-data-j[db,d] - "Store device data in current 

data base." >; 
update-ranges: DATA-BASE X SAFE-RANGES --> DATA-BASE. 

Figure 8. 
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not completed so the specification was translated into Fortran for execution. 

Reportedly the experience turned out well. Workshops in using PAISLey 

have been conducted at AT&T to gain perception into and experience with 

the use of the language. Some participants were enthusiastic about the 

language, however a major complaint was that the functional notation is 

difficult to learn and difficult to use. Work is in progress on an experience 

with robot-based factory stations to automate the testing of lightwave diode 

chips. The goal for this work is to maximize station throughput. 

Insight was gained from the experience of specifying a portion of the 

user interface of SALT at AT&T [BZ87). There were two stated purposes 

for the experiment. The goal of those working on the SALT system was to 

capture the requirements of the system so that the subsystem interfaces and 

the user interface were clarified, documented, and validated. The P AISLey 

purpose was to test the success of doing a specification in P AISLey, to 

measure the success professionals have with learning to read and write the 

language, and to judge the quality and productivity results with PAISLey. 

The project selected is a part of the Undersea Lightwave Cable System. 

The communication system controlling transmission for the cable consists 

of hardware and a computer system called SCOUT which has 17 processes, 

one of which is the user interface. SALT is the computer system used when 

SL is off line; it therefore has much overlap with SCOUT. Part of the user 

interface for SALT was specified in PAISLey. The experiment included a 

workshop, prototype specification (to explore the suitability of project), 

informal training, formal specification, review, and demonstration. 

This experiment provided information about P AISLey that is both neg­

ative and positive. On the negative side, there was a poor language-to­

problem match in that the user interface is basically a sequential appli-
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cation. There is a high cost of adoption for P AISLey; much time and 

frustration was spent learning to use the language. Exceptions were poorly 

handled and had to be specified informally. No modularity is available 

in PAISLey, and this amplified the complexity of doing the specification. 

Since all names are global, a naming convention had to be used to refer to 

common subfunctions in the system. 

On the positive side, the demonstration capability worked out very well. 

Also, the formality of the language was important for reducing errors. There 

was a substantial "fear of the new" when the experiment was begun, and 

this was overcome with management commitment, hard work, earned cred­

ibility, and eventually an enthusiasm for state-of-the-art involvement. 

4.4 Assessment 

The assessment of the work done with PAISLey has three parts: future 

plans, strengths, and weaknesses. 

There are several additions and modifications planned for PAISLey. 

Zave would like to make the system more interactive, perhaps adding graph­

ics editing and animated execution. Support for the transformational im­

plementation has yet to be developed; the reliability performance constraint 

is not functional. These are cuiT~nt concerns. Support for modularity is 

planned, possibly in the form of abstract data types for the set definitions. 

Plans also exist for a report generation capability from a database repre­

sentation of the specification. It is recognized that extension for exception 

mechanisms is necessary, probably allowing the language to leave the func­

tional notation temporarily for exception handling specification. 

Strengths of the language are many. PAISLey is a formal language that 

produces an executable specification. Tools include a consistency checker 
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for static consistency. Inclusion of the environmental model is a big plus, 

and this systems approach can lead to increased reliability for applications 

in the targeted domain. The environment is often a source of change, so 

its inclusion in the model allows incorporation of this change. This feature, 

however, does not seem to be the current emphasis. Communication with 

the user is facilitated since the specification is a problem model. This orien­

tation may also facilitate traceability as the requirements are closely related 

to the corresponding problem statement. The tolerance of incompleteness 

in the executable specification is an unquestionable advantage. 

Criticism of PAISLey includes various aspects. The approach incorpo­

rates design level decisions with the explanation that they are necessary 

for the transformation approach. However, the requisite transformational 

methods are not available yet. The approach is a poor predictor of solution 

complexity, since it does not model the solution. An embedded system 

description in PAISLey is not extensible. It is changeable in the sense 

that incomplete descriptions can be further defined from within or out­

side the system, but processes cannot be added to the system. While it 

leads to a representation that is machine processable, the functional nota­

tion is very difficult to use, for requirements engineers as well as end users 

of the specification documents. Suggestions have been made to augment 

the specification with diagrams and to augment the language with appli­

cation dependent notations, similar to macros. More performance analysis 

capability is needed. The urgent performance requirements of the target 

application require attention here. Reliability is still a future plan; PAISLey 

lacks the capability to express testable timing and fault tolerant properties. 
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5 Statecharts 

Another specification language, one that is a relative newcomer to the scene, 

is the language of Statecharts, being developed at the Weizmann Institute 

in Israel by David Harel. Primary references for the language are [Har87], 

which describes the syntax and intended use, and [HPSS87], an extended 

abstract of the semantics of the language. Other sources include a technol­

ogy assessment by Microelectronics and Computer Technology Corporation 

(MCC) in [BGFG86] and information about STATEMATE, a development 

environment that incorporates the Statecharts specification language, in 

[iLo87] and [HLN*88]. Statecharts are discussed by first considering the 

intended context for the language, followed by an overview of the language 

itself. Experience with the technique is related, and finally, an assessment 

of its current status and future plans is given. 

5.1 Context 

Statecharts are intended to deal with the specification problems of reac­

tive systems. Reactive systems are those that are essentially event-driven 

systems, reacting continuously to external and internal stimuli [Har87]. 

Statecharts could also be used for applications such as data transformation 

systems, but their special features would not be exploited in that realm. 

The targeted systems involve real-time, embedded, control and communi­

cation, and interactive applications; all of these require maintenance of a 

relationship with the software system's environment rather than computa­

tion of input/output functions. 

States, events, and conditions of finite state machines are suitable for 

describing real-time reactive systems. This is not a new idea; for example, 
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Petri Nets provide a state-event description. Problems with state diagram 

descriptions in the past have stemmed from the exponential explosion in 

the number of possible states in a complex system, the single dimension 

of the flat state diagram, and the lack of communication description ca­

pabilities. Harel states that to overcome these problems an effective state 

event language requires modularity, hierarchy, structuring, a way of reduc­

ing the number of states considered, orthogonality, and generalized transi­

tions [Har87]. Statecharts is the implementation of his ideas for extending 

finite state machines to include these features. 

Typically, reactive systems require complex behavior that does not de­

compose recursively into simpler functions; modules of the behavioral de­

scription are not apt to correspond to modules of an implementation. Yet 

the implementation process must break a complex system down into smaller 

physical parts. Harel and Pnueli have presented a magic square for develop­

ment of reactive systems that combines the development of. the behavioral 

specification with the activity decomposition necessary for design and ad­

dresses interconnections among the two representations [HP85]. 

As previously indicated, problem structure does not necessarily reflect 

33 



the required system structure in complex reactive systems. The imple­

mentation m~y be constrained by existing interconnections, distribution, 

or other structure. Magic square development is a two-dimensional process 

with the design of an implementation and the specification of the behav­

ior for that system progressing at once on some path through the two­

dimensional space (cf. figure 9). Progress along the horizontal dimension is 

achieved by the refinement of a statecharts representation, while progress 

along the vertical is from decomposition of system activities into a tree-like 

structure. 

The ideal path through the space is not determined. However, it should 

have some horizontal progress prior to each significant vertical advance. 

The behavioral representation at a point on the path corresponds to the 

implementation description at that point. Consistency between the mul­

tiple behavioral representations is very important (and non-trivial), where 

consistency is taken to imply that the external behavior of a system module 

on one vertical level must be equivalent to the external behavior of the next 

level of system modules that implement it. 

Major current employment of statecharts is within the evolving devel­

opment environment by i-Logix, Inc. and Ad Cad Ltd. STATEMATE is 

a graphical working environment for use by system developers not only for 

requirements definition, but also for design, for analysis, and for documen­

tation. The expectation is that a reactive system is better developed by 

considering three views-functional, structural, and behavioral-to create 

a visual formalism of the developing system. Four graphical languages are 

provided in STATEMATE, one for each of these views plus a forms language 

for nongraphical information and for specifying relationships between the 

different views.· 
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The functional view uses activity charts to describe activities, data 

stores, and the data-items (including control) flowing between them. The 

system being developed is assumed as the highest level activity, and it is de­

composed recursively into sub-activities, with base activities at the lowest 

level. Each non-base activity has a controlling statechart in the behavioral 

view. The structural view accomplishes high level design as the physical 

components and data structures of the system's implementation are spec­

ified. The language of STATEMATE for the structural view is module 

charts. The behavioral view specifies control with statecharts. 

Besides the four languages, STATEMATE provides definitions of prim­

itives for all four representations that are useful for statecharts such as 

time-out, true, false, exit, history-clear, deep-clear. STATEMATE has 

tools to check for incompleteness, inconsistency, and redundancy between 

and within the views and their hierarchical levels. Prototyping and coding 

packages are also available. 

5.2 Overview 

The finite state machine approach employs states, events, and transitions 

to describe the dynamic behavior of a system. There can be a finite num­

ber of independent states, and all are on the same level. Missing from 

this approach is any method for structuring the system, which is a· serious 

problem as the number of states grows and with it the number of transi­

tion possibilities. To correct this, statecharts begins with the finite state 

machine approach and adds modularity, hierarchy, and broadcast commu­

nication across levels. In so doing, the complexity of the system description 

is reduced for users of the description as well as for engineers establishing 

the description. 
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Events and conditions: 
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f--f actors outside safe range 
g-- [data stored I\ (range is safe V nurses station so notified)] 

v nurses station notified of monitor failure 

Variables: 
device-data • pulse,temperature,blood-pressure,skin-resistance 
message • type,device-data 

Figure 10. 
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Statecharts begin with conventional state diagrams, add AND/OR de­

composition bf states, and allow interlevel transitions between states plus 

broadcast communication. States may be composed in a bottom-up fashion 

by clustering states with common features or decomposed top-down by re­

fining states into substates with more details. Note that clustering reduces 

the number of states to be dealt with at the higher level. If substates are to 

run in parallel, the decomposition is said to be AND, and the independent 

states are called orthogonal; if only one state or the other is to execute, the 

decomposition is exclusive OR. Parallel states may know the status of one 

another if that is desirable. Figure 10 describes requirements for the pa­

tient monitoring program (cf. figure 2) in statecharts. STORE FACTORS 

DATA and EXAMINE are orthogonal states, indicated by a dashed line 

dividing the superstate in which they are contained. 

The notation for the language is a formal, graphical one. Rectan­

gles with rounded corners represent states, while directed arcs represent 

events. Sub-statehood is depicted by containment. Events are labeled as 

event( condition)/action where the condition must be true at the instant 

the event occurs if the transition is to take place. If the transition does 

occur, the action is taken and the arc is traversed to the next state. Events 

can be junctions of events, such as e /\ f, but the junction must be instan­

taneous. Actions can include such things as start( activity A), stop( activity 

A), or schedule(activity A, in x units). The latter indicates activity A will 

be scheduled to occur in x time units from now. Actions may also generate 

events which in turn trigger other state transitions. 

As timing is an essential consideration for reactive systems, it may be 

necessary to represent minimum and/ or maximum times that can be al­

lowed for certain activities. This may be shown in Statecharts with a 
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jagged edge on a section of the state box and indication of an upper and/or 
I 

lower bound. The appropriate transition to be taken in the event of timeout 

or delay should be so labeled. The example in figure 10 requires periodic 

checking of monitor outputs. This is expressed as a time range of not less 

than patient-j-time-c: and not more than patient-j-time+c: (which does al­

low a phase shift for the periodic checking). 

Two special connectives are provided for specifying entrance to partic­

ular substates of a superstate hierarchy. On entrance into a state with no 

indication of which substate to select, a transition is implied to the default 

substate. This is indicated by a small arrow originating inside the super­

state with no source and pointing to the substate. The history connective 

(@) is used to indicate that the last previously occupied substate should 

be entered on transition to the superstate (a default entrance should be 

specified for the first entrance of the superstate). ® may be used for 

recursive substate history entrance. 

Other special notations included for convenience are transition stubs 

and connectives for conditional and selective state entrance. Conditional 

substate entrance is indicated by @. The next substate is based on con­

ditions that must be true at the instant the transition is taken (cf. state 

REACT of figure 10). Similarly, selection entries, denoted by @, allow 

transition based on a selected event. The event is usually based on the 

value of some element. In some diagrams it may be desirable to eliminate 

unnecessary details from consideration, and, therefore, only the more ab­

stract superstates are shown. This zooming-out process, as it is sometimes 

called, may require transition stubs, i.e. arrows whose source is a short 

perpendicular line within superstates. Substate entrances that do not fol­

low the default and transitions that are not relevant for all substates are 
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indicated in the abstract chart with these stubs. 

Some additional features have been considered for statecharts. These 

include arrays of states (substates) and overlapping states with common 

substate(s). STATEMATE has not included either of these; overlapping 

states are not permitted in any of its views. Semantics for a base set of 

elements and some interrelations have been defined in [HPSS87]. Included 

are states, history and default entrances, variables, expressions, conditions, 

events, actions, and transition labels. It is not determined as of this writing 

whether or not these semantics can be readily extended for such additional 

features as overlapping states. 

5.3 Experience 

Examples of the use of statecharts for problems of sample size are avail­

able. A detailed Statecharts specification of a Citizen's watch is included 

in [Har87]. STATEMATE has been used successfully by Israel Aircraft In­

dustries to design the avionics system for a fighter airplane [HLN*88]; this 

indicates the appropriateness of STATEMATE for large, real, development 

projects. As automated support was not available, Statecharts were used 

manually for the behavioral description of the developing system. The re­

sults were encouraging; a substantial time savings was attributed to the 

language. 

Statecharts are being used experimentally in the software, electronics, 

and semiconductor industries. The developers of Statecharts are testing 

their suitability for hardware components, communications systems, and 

interactive software systems. 

The Software Technology Program of Microelectronics and Computer 

Technology Corporation (MCC) undertook a 2-week study in 1986 of Stat-
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echarts' capabilities for specification and analysis [BGFG86]. Statecharts 

experts were ~mployed to specify the requirements for an elevator control 

using the method. Results indicate that use of extended features such as 

overlapping states and conditional entrances may complicate the specifica­

tion for readers. Structuring of the control description by hierarchies and 

decomposition is seen as a clear advantage for Statecharts. Although those 

involved in the study at MCC felt the notation is in its infancy and there­

fore has some weak points, it is a phenomenon that bears watching and 

may prove useful for the development of many complex systems. 

5 .4 Assessment 

Statecharts is an evolving technology for representation of reactive systems 

and is useful for embedded software systems. The developers hope to some­

day include parameterized and overlapping states into the language; both 

are a means for economizing the notation. They also want to include the 

use of temporal logic as an assertion language to accompany statecharts or 

as a scenario language providing a basis for the Statechart system repre­

sentation. 

There are a few drawbacks to the current Statechart formalism. As with 

other formal notations, it is difficuit to tell when the line between specifica­

tion and design has been crossed, so design may slip into the requirements 

specification. furthermore, there is no mechanism provided for recording 

decisions made requiring tradeoffs of alternatives. This is needed for the 

rest of development as well as during requirements analysis, ·There is also 

a need for representation of arrays of states that is simple to understand. 

Statecharts provides a visual formalism of the behavioral requirements 

of the system. This is a distinct advantage for communication, as a graph-

40 



ical model is more readily understood, and for verification, as the model 

is backed by 'formal semantics. Orthogonality and hierarchy structuring 

augmenting the underlying finite state machine model provide the modular 

breakdown needed for dealing with large, complex systems. The inclusion 

of the environmental model and means for expressing timing constraints are 

important for embedded systems. In particular, time-outs allow expression 

of exceptions to timing assumptions for the environment. This formalism 

is still very new and reports of its use for other large, real problems will be 

eagerly awaited. 
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6 SCR 

One of the most well-known experiences with specification of a large em­

bedded system is the work done for the operational flight program of the 

A-7 aircraft by the Naval Research Laboratory (NRL). This experiment 

resulted in a semi-formal language technique for expressing requirements. 

As the stated purpose of the project was Software Cost Reduction (SCR), 

the work is referred to here as the SCR technique. Much of the work 

of David Parnas influenced the approach taken, and thus his preliminary 

work is discussed as the context for the SCR technique. An overview of the 

specification language technique is given, along with a description of the 

experience with its use. Finally, the value of the SCR model is discussed. 

6.1 Context 

From 1972 through 1978, Dave Parnas published a series of papers that set 

the stage for the SCR work [Par72b), [Par72a), [Par76), [Par77), (Par78). 

These writings focused on his interest in ways to improve the design process. 

The following five (overlapping) themes are recurrent in this work. 

1- The criteria for modularization of a system during design must be in­

formation hiding, not time ordering. Information hiding implies the 

encapsulation of a design decision (often called a secret) in one mod­

ule. 

2- The design is structured to accommodate change. The information 

hiding criteria discourages the distribution of information so that if 

decisions are changed, fewer modules are affected. Small components 

incorporating only one function are required. 
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3- The system structure of modules may be viewed as a partial ordering 
J 

based on the relation uses-a module uses another if a correct ex-

ecution of the second is essential for the first to meet its specified 

requirements. 

4- A precise record of all decisions, including those intermediate to spec­

ification or design, must be maintained for consistency and future 

analysis. 

5- It is important to verify as early in the development process as possible 

the correctness of decisions that have been made. 

In light of these ideas, a methodology was suggested in [Par77] for de­

velopment of software that encourages the fulfillment of Parnas' ideas. The 

requirements definition is stressed as a process that must anticipate change. 

To have flexibility in the product, it must be a concern early in develop­

ment. At this time the subsets should be identified, i.e. a minimal subset 

of functionality, a minimal system if you will, that provides useful service. 

Then minimal increments can be determined. Not only does this encour­

age ease of change and extensibility, but it provides small increments of 

specification that can be verified. Information hiding is used to modular­

ize the system design for changeability. The system should be viewed as 

layers of virtual machines providing the identified subsets through the uses 

hierarchy, a graph with no loops. This aids in verification at all levels of 

development as it avoids the problems encountered when nothing works 

until it all works. 

Individual modules will be further specified during high-level design 

to provide such information as the set of possible values, initial values, 

parameters, and effects (including any error handling). 
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Throughout this work, the specification is viewed as "the precise state­

ment of the ~equirements that a product must satisfy." [Par77]. This is 

in contrast to the often used description of a high-level implementation to 

meet informal or perhaps unstated requirements. A major goal for the re­

quirements specification process is to establish subsets of capabilities that 

will work. The requirements statement need not be in a formal language, 

but it should not be an informal, natural language description; a precisely 

defined notation is preferred. Parnas stresses the importance of an abstract, 

but not vague, description in terms of user observables without reference 

to any implementation. The SCR technique incorporates most of Parnas' 

ideas for the specification of requirements. 

6.2 Overview 

The language for the Software Cost Reduction model, described in [Hen80], 

is a semi-formal one. The organization of the document is intended for ref­

erence, with a glossary of terms, table of contents, indices, etc. included. 

Standard formats are used that include value templates and allow English 

descriptions within a formal setting. These provide for a consistency in 

the specification description that leads to better understanding and a rep­

resentation that is useful throughout the life cycle. The requirements are 

organized in tables whenever possible; these are aids to completeness and 

consistency checking as well as reference. Selection tables specify functions 

that depend only on the particular operating mode of the software, where 

mode indicates an abstract state. Condition tables are used to specify 

functions dependent on other disjoint conditions being true. Event tables 

specify actions required of demand functions and periodic functions upon 

the occurrence of certain events. 
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Environmental Interface 
Input Data Item: Message-From-Monitor 

Names /Data/ 
Description: Indicates !message-type! and the 

! device-data ! . 

Input Data Item: Safe-Factor-Ranges 
Name: /SRanges/ 
Description: Provides new value of safe ranges 

for the indicated patient and monitor. 

output Data Item: Notification of Device Failure 
Name: / /DFail/ / 
Description: Alerts nurses station of device 

failure message. 

OUtput Data Item: Notification of Unsafe Ranges 
Name: //RUnsafe// 
Description: Identifies patient and factors that 

are not in safe range. 

Figure 11. 

A specification in this language describes what the system must do to 

pass acceptance testing; it does not describe how the system is to be imple­

mented. The specification document addresses not only the requirements 

at the present time, but likely changes or additions to the system require­

ments. 

Information comprising the specified requirements is related in five cat­

egories, each of which may be further subdivided as the application and 

available information warrant. See figures 11, 12, and 13 for an example of 

specification using the SCR language. 

1- Environmental Interface Requirements. Here the environment of the 

embedded system is described including the type of computer on 

which it will be required to run, if this is known. The complete 

interface that is required between the system and its environment is 

specified. 

Each independent input and output is defined in a data-item. Data-
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States and Functions 

Mode 

Modes: 
•startup• New safe ranges are input or 

other restart conditions. 
Normal operating mode. •stable system• 

•intervention• 

Transitions to •intervention• when 
//DFail// or //RUnsafe// is output. 
Device failure (implies some 
operation(s) has ceased) or 
an unsafe reading has occurred. 

Functions: 

demand function name: New-ranges 
Modes in which function required: •startup• 
Initiating event: !new-ranges-avail! becomes $TRUE$ 
Output affect: Stores new/replacement ranges in 

an internal data base. 

periodic function name: Read-data 
Modes in which function required: •stable system• 
Initiation and Termination Events: None (always done) 
Output affect: Stores input patient data in an 

internal data base. 

demand function name: Check-data 
Modes in which function required: •stable system• 
Initiating event: !new-data-avail! becomes $TRUE$ 
Output data items: //DFail// and //RUnsafe// 
Output description: If no failure of device has 

occurred, !device-data! is checked for unsafe 
patient ranges for this patient. 

Condition table (Check-data): 
Conditions 

•stable system• /message-type/•$FAILURE$ !device-data! not within 
/SRanges/ 

ACTION output //DFail// output //RUnsafe// 

Figure 12. 
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Timing Requirements 
Read-data function: 

Dictionary 

current rate • $patient-j-time$ 
minimum allowable rate • $patient-j-time$ - (/2 
maximum allowable rate • $patient-j-time$ + E/2 

/Data/ • !message-type! and !device-data! 
!device-data! • (pulse, temperature, blood-pressure, 

skin-resistance, device-id) 
!message-type! • ($FAILURE$ or $OK$) 
!new-data-avail! • indicates new data has been read 

and stored 
!new-ranges-avail! - indicates new safe ranges should be 

input 
$patient-j-time$ • predefined rate for reading monitor 

from patient j 
/SRanges/ • (hi-pulse, low-pulse, hi-temperature, low­

ternperature, hi-blood-pressure, low-blood-pressure, 
hi-skin-resistance, low-skin-resistance, patient-id) 

Figure 13. 

items are described via templates. Relevant facts about hardware 

interfaces that constrain the system should be related here as well 

as accuracy, value range, resolution,, and timing characteristics (for 

input). Details common to any hardware device are noted as well as 

those relevant to the specific device whose use is planned. Care must 

be taken to avoid assumptions. The templates encourage complete­

ness without requiring a rigid syntax. 

Each output data-item is associated with a unique function that must 

be addressed in the next information category. 

2- States and Functions. Functions the system is required to compute are 

described in terms of externally visible effects only, no algorithms are 

implied. As the relevant details of hardware interface are included in 

data-items, the functions do not address this information and so are 

meant to be relevant even if the devices are changed. A function may 

result in one or many outputs, but each output is associated with 

only one functiOn. Functions are described using tables of conditions 
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and events. A condition stipulates aspects that must occur for a 

measur~ble length of time, while an event describes the moment in 

time that conditions change value. In order to reduce the number of 

conditions that must be considered, a finite state machine approach 

is taken. Without detailing all the states that are possible, operating 

modes are defined as superstates of the system. These are described 

in terms of the conditions they require (true and/ or false conditions) 

and events that cause transition from one mode to another. 

3- Performance Requirements. Instead of scattering timing and accuracy 

requirements throughout the specification, they are described sepa­

rate from the data-items and functions. In an ideal situation, the 

maximum delay between request and response for each demand func­

tion will be specified and the minimum and/ or maximum frequency 

for each periodic function will be specified. 

4- Look Ahead. In keeping with the background work of Parnas, SCR 

specification techniques encourage a precautious approach. Required 

behavior of the system should undesired events occur is specified here. 

Also indicated are constraints on the design to allow for features likely 

to change during the system's lifetime and to allow for reduced func­

tionality by identifying subsets of capability. 

5- Aids for document use. Finally, a glossary of terms, dictionary of 

identifiers, and indices are included in the requirements document. 

A list of references that includes relevant works and people consulted 

is also given. 
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6.3 Experience 

The SCR techniques were used to specify the operational flight program of 

the A-7 navy aircraft. The program, which interfaces to twenty-two devices, 

is part of the navigation/weapons delivery system. Before this project was 

begun, no requirements document was in existence, but there were flight 

manuals, mathematical algorithm analyses, flowcharts, and code (approx­

imately 12,000 assembly language instructions) for the existing program. 

The goals of the project were three-fold: 

1. to demonstrate the feasibility of using software engineering principles 

for a large, real-time, program, 

2. to establish a model for future systems specifications, and 

3. to provide a forum for study of additional research ideas for complex 

systems. 

The motivation for the undertaking is well expressed in this paragraph 

taken from [PCW84]: 

"More than five years ago a number of people at the Naval Re­

search Laboratory became concerned about what we perceived 

to be a growing gap between software engineering principles be­

ing advocated at major conferences and the practice of software 

engineering at many industrial and governmental laboratories. 

The conferences and many journals were filled with what ap­

peared to be good ideas illustrated using examples that were ei­

ther unrealistically simple fragments or complex problems that 

were not worked out in much detail. When we examined actual 
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software projects and their documentation, few showed any use 

of the ideas and no successful product appeared to have been 

designed by consistent application of the principles touted at 

conferences and in journals. The ideas appeared to be easier to 

write about than to use." 

The project resulted in a 500 page specification document [HKPS78] 

after some seventeen man months to establish the techniques and the re­

quirement specifications. Included are seventy input and ninety-five output 

data-items. Certainly the document has become a model for future system 

specification [HM83]. It has also provided the desired forum for refinement 

of such ideas as use of the specification during design, proper content and or­

ganization, and additional documentation for design (PCW84]. The results 

of the undertaking indicate the feasibility of the principles demonstrated 

for requirements specification of a complex embedded software system. 

6 .4 Assessment 

Since the A-7 project using the SCR specification techniques, the document 

produced has been studied and used as a guide for other projects. Positive 

features are numerous. The consistency of the description through docu­

ment format and templates makes· the requirements specification easier to 

use and to understand; such aids also encourage completeness checking. 

The organization as a reference tool is a positive feature throughout soft­

ware design, testing, and especially maintenance. Look ahead. sections that 

allow for future changes also encourage a maintainable specification and 

system. The requirements are testable because they are stated in terms of 

observables only. In addition, the technique avoids any reference to how the 
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system is to be implemented, and includes documentation of performance 

requirements,' essential for the embedded systems domain of interest in this 

paper. 

The A-7 project showed the feasibility of the SCR technique for a system 

that existed, but was undocumented. It would be interesting to apply these 

ideas to a "start from scratch" development effort as well. Automated tools 

to augment and extend the techniques would also be helpful, especially for 

large systems where manual checking for such things as consistency is a 

mammoth undertaking. 

It remains to be seen how well the techniques developed explicitly for 

the A-7 program can be applied to other projects. Heitmeyer and McLean 

[HM83] report using the SCR ideas as a starting point for their work. 

However, they wanted a more formal approach for the specification that 

did not rely on externally visible factors. 
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7 Others 

There are other languages that merit some consideration for the specifica­

tion of complex embedded systems. These, however, do not have the depth 

of development as do the languages already discussed. Brief descriptions of 

special features of these others are given as appropriate. 

RTRL 

A finite state machine model is used to define the language called Real-Time 

Requirements Language (RTRL) [Dav82], [CDK85]. The basic model is ex­

tended to allow modularity, signal handling, resource synchronization, and 

timing expression. The latter capability is of special interest. Maximal and 

minimal timing constraints are representable in one of four categories: stim­

ulus to stimulus, stimulus to response, response to stimulus, and response 

to response time restriction requirements. Constraints on event duration 

time are also representable. Assumptions about the environment providing 

stimuli to the system are included as requirements in the model. 

There is a set of tools for consistency and completeness analysis for 

RTRL called the Requirements Language Processor (RLP). RLP has the 

capability for processing a set of languages called a family that are each 

special purpose languages. RTRL is appropriate for real-time systems that 

are dominated by sequential compµtations. In particular, it was developed 

for telephone switching programs. 

Another language, Specification and Description Language (SDL) cre­

ated by the Consultative Committee of International Telephone and Tele­

graph (CCITT) circa 1980 [RS82], is also intended for telephony applica­

tions. It has a pictorial and graphical notation, but the program represen-
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tation is not yet available. 

EBS 

Chen and Yeh have developed a language that, while intended for dis­

tributed systems, could be used to describe some embedded systems by di­

viding the system into processes [CY83]. In this Event Based Specification 

(EBS) language, the behavioral specification is in three parts: environment, 

embedded distributed system, and interface. 

The model consists of events and their two relationships, precedes and 

enables, with concurrency implied for events that are not related (implied 

or stated). First order predicate calculus is used to describe the required 

behavior. 

The EBS language is also used to develop a top-level design or structural 

view. The behavioral specification is then used to verify the structural 

description and to analyze for such properties as safety and liveness. It 

is not clear that the language can be used to express other accuracy and 

timing requirements. 

ESML 

Recently, a language based on extended data flow diagrams has been pro­

posed called Extended System Modeling Language (ESML) [BJKW88]. 

The work is founded on the transformational schema of Ward and Mel­

lor [WM85]. The language includes notation called termination for rep­

resenting the environment of the system that supplies input's and receives 

outputs. There are also notations for data flows and for control flows called 

transformation schema. Data flow schema may be decomposed into several 
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lower-level schema or specified as primitives; primitive schema must then 

be thoroughly described in some other language or graphical form. Control 

transformations must be further specified with state transition diagrams or 

some other table form. 

Analysis of the transformation schema model is possible by providing 

tokens that flow through the diagram in much the same way that tokens 

are used in Petri nets. This leads to the last set of languages that will be 

discussed, i.e., those based on Petri nets. 

Petri Nets 

A popular and powerful medium for specifying control flow of concurrent 

systems is Petri nets. Based also on the finite state machine model, they 

provide a graphical notation for system description [Pet77]. Graph nodes 

called transitions are used to represent the occurrence of events, while nodes 

called places represent conditions that make up the overall system state. 

Control flow is depicted by tokens passed from place to place through en­

abled transitions. Concurrency is easily represented by multiple enabled 

transitions. Various authors have worked with extensions to this model 

for representing data flow (using colored tokens and memory) and timing 

(using transition execution time). In particular, Coolahan and Roussopou­

los [CR83] specify timing requirements for time-driven systems that have 

critical timing constraints and a master timing mechanism for the system. 

The complexity of embedded systems calls for some type.of hierarchical 

model to simplify the specification task, however. Petri nets are a flat 

model, without hierarchy, and can require quite a complex graph to describe 

a large concurrent system. The nets are difficult to analyze [Age79], though 

automated analysis tools are available to aid in analyses for deadlock, safety, 
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mutual exclusion, etc. (see e.g. [MR85]). 

55 



8 Current Status 

There is no language for specifying the requirements of complex embedded 

software systems that embodies all the desirable characteristics described 

in section 2 of this paper (cf. figure 1). Nor should a language be expected 

to have all these features in order to be selected for use in this context. The 

current state of the art in requirements specification for embedded systems 

requires the developer to choose a language with features and accompanying 

methods that are appropriate to the particular task at hand. 

The languages discussed in this paper reflect many correctness fea­

tures. Almost all are formal, promoting precision and minimizing ambi­

guity. Static internal consistency checkers have been developed for RSL, 

PAISLey, and Statecharts (the latter are part of STATEMATE). Dynamic 

consistency is usually examined by means of simulation; simulation gener­

ators are part of SREM (for RSL), while the PAISLey specification itself is 

executable for simulation. 

Both RSL and SCR include techniques supportive of verification. Re­

quirements are stated in terms of testables (observables) only. The database 

used with RSL also enhances traceability of requirements. 

Most applications need flexibility for change due to omissions, errors, 

advancements, etc. Two different dimensions of this capability are reflected 

in RSL and SCR. The SCR technique considers decisions that are likely to 

change and requires they be handled accordingly throughout development. 

RSL enables the specification to be easily modified through the use of a 

centralized data base. PAISLey allows execution of the specification before 

it is complete; omitted details can be provided at a later time. RSL can 

be extended as a language to incorporate special features defined for a 
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specific application. The languages reviewed discourage the inclusion of 

design decisi~ns in the requirements; SCR is entirely free of design. 

The visual qualities of Statecharts promote communication among all 

those using the requirements. In this sense, the Statecharts formalism 

appears to be usable throughout development. There is indication that 

requirements generated using SCR are useful for reference throughout de­

velopment also. 

The importance of the interface with the system environment is clear 

for embedded software systems. PAISLey, SCR, and Statecharts examine 

an included model of the environment. It is possible to consider the envi­

ronment modeled as a processing node in RSL, although this is not directly 

addressed. The expression of performance requirements is also clearly im­

portant to this area. RTRL considers maximal, minimal, and duration 

timing constraints. SCR and Statecharts have capabilities for expressing 

some timing requirements. 

Enhanced capabilities are being considered for most of the languages dis­

cussed. It may be useful to incorporate temporal logic as an assertion lan­

guage to accompany a requirements specification. This is being examined 

for Statecharts. Diagrams are important for understanding and communi­

cating the specification. Confidence in their potential is evidenced by their 

use in RSL, Statecharts, ESML, and Petri Nets. Diagrams have been sug­

gested to accompany a requirements description in PAISLey. Application 

dependent notations are also under consideration for PAISLey. RSL/SREM 

is being studied for extension to a life-cycle development system. The value 

of a complete, correct requirements specification is recognized for the entire 

software development life-cycle. 
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9 Conclusions 

This work has examined the need for requirements specification languages 

for complex embedded systems. There are several desirable properties for a 

specification, namely, that it be complete, consistent, precise, unambiguous, 

formal, traceable, testable, changeable, extensible, design free, executable, 

communicable, and usable. In addition, for the embedded systems domain, 

the ability to represent the system environment, actions required upon the 

occurrence of undesired events and/ or performance requirements is also 

desirable. 

Research is encouraged in this area to improve languages and meth­

ods that already exist, rather than the development of new ones. In this 

light, four major languages were discussed. RSL, a language with graphi­

cal requirements nets and formal descriptions supported by REVS tool set; 

P AISLey, a formal, applicative language that is intended for an operational 

approach to software requirements specification; Statecharts, a graphical 

yet formal representation that is receiving attention; and SCR, the semi­

formal language technique resulting from the specification of an embedded 

software system for the A-7 aircraft. 

Other representation languages exist that have features desirable for 

the embedded systems domain. RTRL, EBS, ESML, Petri Nets, and a few 

others were mentioned. 

As the previous discussions indicate, significant effort has been expended 

towards the goal of providing an appropriate representation language for 

the software requirements of embedded systems. However, much remains 

to be done. 

First, studies involving use of current approaches are encouraged. Expe-
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rience with specification of the requirements for genuine systems of realistic 

size is import~nt for the languages we have and for newly proposed tech­

niques. Without such documented experiences, those who have need of the 

technology will not be convinced of its usefulness or applicability. 

Another aspect that demands further research is the type of representa­

tion used. In his taxonomy of requirements specification languages, Roman 

states "(T)he industrial success of a specification technique is heavily de­

pendent upon its treatment of human factors, that is the concepts it makes 

available and the interface style it supports." (Rom85). Graphical represen­

tations that can be used to represent the system at different, appropriate 

levels of abstraction have a lot of intuitive appeal, perhaps because they 

describe the system in a manner close to the mental model of analysts. It 

is hoped that a graphical model promotes communication among the users, 

analysts, and design engineers despite their diverse backgrounds. Empirical 

studies are called for to demonstrate the degree of validity of these conjec­

tures. The use of a graphical language, however, may not be adequate. For 

example, there is no convenient way to record tradeoff decisions in a graph­

ical notation. It is not clear that this type of representation would be best 

for reference in later stages of the development. Other reference documen­

tation is probably required. The Embedded Computer System Workshop 

recommended an abstract model that will facilitate analysis; such a model is 

represented in a language of objects, relationships, and attributes (WL85). 

Perhaps multiple consistent representations are required for the description 

of such complex systems. 

There is quite a bit of emphasis on having an executable requirements 

specification for embedded software systems. While this is certainly a desir­

able feature for analysis and demonstration, it does not come cheap. Care 
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must be exercised so that the executable formal language is not objection­

ably close to a programming language. It is not practical to deal with the 

details of coding the solution twice, once during requirements specification, 

and once again in implementation. 

The fourth area of concern is with the representation of non-functional 

requirements. These are difficult to express in a formal notation because of 

the lack of a theoretical foundation [Rom85]. Research is ongoing for solu­

tions to this problem, [Jus88] and [Jaf88], but more is needed. Especially 

encouraged are techniques that can be used as part of available languages. 

Two different types of timing requirements are treated alike in most nota­

tions: those that specify assumptions about the timing of environmental 

stimuli and those that specify required timed behavior of the embedded 

system. The former usually includes a time-out requirement. Different 

notation options for these would encourage completeness checking and cor­

rectness without overconstraining the designer. 

The importance of the inclusion of an environmental model in the spec­

ification has already been pointed out. Completeness and correctness anal­

yses should also include this representation of the embedded system's en­

vironment. White and Lavi state: "insufficient analysis of external phe­

nomena is trouble" [WL85], and White indicates the importance of a well 

defined boundary between the two [Whi85]. The interface between the en­

vironment and the embedded system is very complex and requires special 

consideration. 

Most of the languages discussed are part of a method for requirements 

specification and analysis. These methods must advocate a careful, system­

atic, and disciplined approach to specification that leads to completeness 

of the representation. They also must include analysis capability to al-
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low checking for various required properties before the construction of the 

system begins. Some completeness criteria can be checked by automated 

tools. Checking for other criteria may depend on the experience of the ana­

lyst in the particular application area. Development of techniques that will 

promote and improve completeness and other requirements specification 

properties are essential. 

Finally, it is important that the work done on specifying requirements be 

integrated with the rest of the development process for embedded systems. 

It is difficult to draw the line between high-level design and requirements 

specification for this domain; however, the distinction is necessary so as not 

to under- or over-constrain the software designer. Plans for change included 

in the requirements specification may add constraints on the designer, but 

they are important to the overall development process. Methods that facil­

itate cooperation between all levels of development will surely reduce the 

overall cost (in both money and time) of software production. 

It is probably true that no one language or technique will meet all the 

needs of complex embedded systems. If this is the case, integration of the 

good features of several languages should be considered with the possibility 

of multiple consistent representation views for various specification users. 

Requirements specification methods for embedded systems is an im­

portant research area in software engineering. Work is encouraged in such 

areas as actual experience with language use, graphical representations, ex­

ecutability, non-functional requirements expression, environmental model 

inclusion, disciplined techniques for completeness, and issues affecting the 

entire development process. 
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