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Phospholipase A2 catalysis and lipid mediator lipidomics

Varnavas D. Mouchlis* and Edward A. Dennis*

Department of Chemistry and Biochemistry and Department of Pharmacology, School of 
Medicine, University of California, San Diego, La Jolla, California 92093-0601

Abstract

Phospholipase A2 (PLA2) enzymes are the upstream regulators of the eicosanoid pathway 

liberating free arachidonic acid from the sn−2 position of membrane phospholipids. Increased 

levels of intracellular arachidonic acid serve as a substrate for the eicosanoid biosynthetic pathway 

enzymes including cyclooxygenases, lipoxygenases and cytochrome P450s that lead to 

inflammation. The Group IVA cytosolic (cPLA2), Group VIA calcium-independent (iPLA2), and 

Group V secreted (sPLA2) are three well-characterized human enzymes that have been implicated 

in eicosanoid formation. In this review, we will introduce and summarize the regulation of 

catalytic activity and cellular localization, structural characteristics, interfacial activation and 

kinetics, substrate specificity, inhibitor binding and interactions, and the downstream implications 

for eicosanoid biosynthesis of these three important PLA2 enzymes.
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Introduction

Phospholipases A2 (PLA2) are lipolytic enzymes that play a central role in cellular lipid 

metabolism and signaling [1]. When PLA2 enzymes are activated in cells, they catalyze the 

hydrolysis of the ester bond at the sn−2 position of membrane phospholipids which are 

generally enriched in arachidonic acid (AA) and other polyunsaturated fatty acids (PUFA) 

[2]. The release of AA and other PUFAs triggers a cascade of cellular processes that involve 

cyclooxygenases and lipoxygenases that are key in the biosynthesis of eicosanoids including 

leukotrienes, prostaglandins and thromboxanes [3]. Eicosanoids are lipid mediators that 

regulate a variety of cellular responses, and they are especially important in immunity and 

inflammation [4]. Lysophospholipids, which constitutes the other products of PLA2 

catalysis, can lead to a variety of cellular metabolites such as lysophosphatidic acid (LPA) 
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which can bind to G protein-coupled receptors [5, 6]. They are also precursors of platelet-

activating factor (PAF) which is a potent inflammatory lipid mediator [7, 8].

The PLA2 superfamily consists of 16 groups of structurally and functionally diverse 

enzymes [9]. The six main types of PLA2 enzymes include the secreted (sPLA2), cytosolic 

(cPLA2), calcium-independent (iPLA2), platelet-activating factor acetylhydrolase (PAF-

AH), also known as lipoprotein-associated PLA2 (Lp-PLA2), lysosomal PLA2 (LPLA2), and 

adipose-PLA2 (AdPLA) [9]. Our recent studies have focused on three human recombinant 

enzymes, namely the Group IVA cytosolic (cPLA2), Group VIA calcium-independent 

(iPLA2), and Group V secreted (sPLA2), which are all water-soluble, membrane-associated 

enzymes with distinct structures and biological functions [10, 11]. The structure of each 

enzyme contains a unique active site where the substrate binds and an interfacial surface that 

mediates association with cellular membranes [12]. Hydrogen/deuterium exchange mass 

spectrometry (HD-XMS) and molecular dynamics simulations were successfully employed 

by our laboratory to study the interactions of these enzymes with membranes, substrates, and 

inhibitors [13–15]. In this review, we discuss what we have now learned about the regulation 

of activity and cellular localization, structural characteristics, interfacial activation and 

kinetics, substrate specificity, inhibitor binding and interactions, and implications for the 

biosynthesis of eicosanoids by these three PLA2 enzymes under physiological conditions.

Regulation of activity and cellular localization

PLA2 activity is regulated by complex mechanisms of activation that cause translocation of 

the PLA2 enzymes to cellular membranes. cPLA2 activity is regulated by calcium and 

phosphorylation [16]. The C2 domain contains a calcium binding site that aids in the 

translocation of cPLA2 to the membrane upon increases in intracellular calcium [17, 18]. 

Several studies demonstrated a calcium-mediated translocation of cPLA2 to the nuclear 

envelop and endoplasmic reticulum [19–22]. Phosphorylation of Ser505 has been also found 

to contribute to cPLA2 activation [23]. In addition to activation by calcium and 

phosphorylation, phosphatidylinositol 4,5-bisphosphate (PIP2) has been shown to enhance 

the enzymatic activity of cPLA2 [24, 25]. iPLA2 is a calcium-independent enzyme whose 

activity is regulated, stabilized, and increased by ATP [9, 26, 27]. It has been shown that 

iPLA2 is also regulated through other mechanisms of activation including caspase cleavage, 

calmodulin, and ankyrin repeat mediated oligomerization [9]. Individual sPLA2 enzymes are 

expressed in specific cell types such as immune cells, epithelial cells, and others [28–30]. It 

has been shown that sPLA2 hydrolyzes the plasma membrane to release lysophospholipids 

and free fatty acids which may cause an increase in intracellular calcium concentration that 

activates cPLA2 [31, 32]. It has been reported that sPLA2 also hydrolyzes oxidized 

phospholipids in LDL and HDL contributing to atherosclerosis [33, 34]. Figure 1 is a 

cartoon representation that depicts some of the reported cellular localizations of cPLA2, 

iPLA2, and sPLA2.

Structural Characteristics

cPLA2 and iPLA2 share a common catalytic Ser/Asp dyad and they have a similar molecular 

weight of approximately 85 to 90 kDa. In both enzymes, the catalytic Ser lies in a lipase 
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consensus motif of GXSXG/S [9]. They also contain a very similar sequence motif called 

the “dual signature nucleotide” (GXGXXG) that contains two important features for 

catalysis: first an oxyanion hole which stabilizes the tetrahedral intermediate after the attack 

of the catalytic Ser at the sn−2 carbonyl group, and second a positively charged residue of 

Arg (cPLA2) or Lys (iPLA2) that stabilizes the binding of the phosphate group [14, 35]. The 

crystal structure of cPLA2 identified the C2 domain and an α/β hydrolase catalytic domain 

[18]. Human iPLA2 is expressed in two active splice variants that differ by a 54 amino acid 

insert. Sequence alignment studies revealed an ankyrin repeat region, a linker region, and an 

α/β hydrolase catalytic domain [36, 37]. The crystal structure of the short splice variant was 

recently published and showed a dimer [38]. For the long splice variant, a homology model 

was previously published [13, 14], and the catalytic domain was consistent with the crystal 

structure of the short form where applicable [38]. sPLA2 is a small 14 kDa protein that 

contains six disulfide bonds [9]. The crystal structure of the Group V sPLA2 has not been 

reported, but a homology model was previously published [13]. sPLA2 utilizes a His/Asp 

catalytic dyad. It has been suggested that sPLA2 activity may be affected by cPLA2 or vice 

versa [22, 39].

Interfacial activation and kinetics

PLA2 enzymes can exist in a water-soluble state (E), but their water-insoluble phospholipid 

substrates are part of cellular membranes (M). The first step of the PLA2 catalytic cycle is 

the association with the surface of the membrane (EM) through their interfacial surface 

(Figure 2). By using HD-XMS and molecular dynamics, we showed that the membrane acts 

as an allosteric ligand, shifting the conformation of a PLA2 from the closed form in water to 

the open form on the surface of the membrane [13, 14]. This process enables the enzyme to 

extract and bind a phospholipid molecule in the active site (ES·M), where it is converted into 

product (EP·M). Figure 3 shows the mechanism for the hydrolysis of a phospholipid 

molecule by cPLA2 or iPLA2 [14]. The interfacial activation of PLA2 enzymes can best be 

explained by the “surface dilution kinetics” model [40, 41]. These studies were conducted 

by developing interaction models of cPLA2, iPLA2, and sPLA2 with the membrane (Figure 

4). Several peptide regions, which are part of the interfacial surface of each enzyme, showed 

decreased in H/D exchange rates upon association with phospholipid vesicles [13, 14]. 

These peptide regions were used to place each enzyme on the surface of the membrane. It is 

worth noting that the membrane interaction models only consider a monomeric association 

of the enzyme with the membrane, although these enzymes may be aggregated, and iPLA2 

was reported to exist as a dimer or a tetramer [42].

Substrate specificity

Determining the activity of PLA2 enzymes toward a wide variety of phospholipid substrates 

has always been a very challenging task using traditional radioactive assays. We have 

recently developed a novel lipidomics-based PLA2 assay that enabled us to measure the 

activity of cPLA2, iPLA2, and sPLA2 toward a variety of commercially available synthetic 

and natural phospholipids [13]. cPLA2 showed distinct specificity for arachidonic acid at the 

sn−2 position, while iPLA2 and GV sPLA2 are more permissive with preference for linoleic 

and myristic acid (Figure 5). No significant differences in specificity for the fatty acid at the 
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sn−2 position were observed between palmitic and stearic acid at the sn−1 position. cPLA2 

and sPLA2 activities are slightly better toward phospholipids containing stearic acid at the sn
−1 position, whereas iPLA2 activity is somewhat better toward phospholipids containing 

palmitic acid at the sn−1 position [13]. Previously published studies suggested that, although 

both cPLA2 and iPLA2 contribute to LPC accumulation during stimulation of macrophages, 

18:0 LPC appears to be produced primarily by cPLA2 whereas 16:0 LPC appears to be 

produced primarily by iPLA2 [46, 47]. Molecular dynamics simulations guided by HD-XMS 

revealed that cPLA2 contains a deep channel-like active site which accommodates a 

phospholipid molecule in its entirety (see Movie S1 from ref 14: http://

movieusa.glencoesoftware.com/video/10.1073/pnas.1424651112/video-1). The active site of 

cPLA2 is enriched with aromatic residues that interact with the four double bonds of the 

arachidonic acids through pi-pi stacking (see Movie 1 from ref 13: http://pubs.acs.org/doi/

suppl/10.1021/jacs.7b12045/suppl_file/ja7b12045_si_002.avi). In contrast, iPLA2 and 

sPLA2 contain a more flexible active site that allows them to tightly bind phospholipids 

containing a larger variety of fatty acids in the sn−2 position by recruiting different binding 

pockets. Linoleic acid containing a single bis-allylic position binds to an aromatic pocket 

while myristic acid binds to an aliphatic pocket in both iPLA2 and sPLA2 [13, 14].

Inhibitor binding and interactions

The implication of cPLA2, iPLA2, and sPLA2 in chronic inflammatory diseases makes them 

attractive targets for the development of potent and selective inhibitors [9, 48]. HD-XMS 

and molecular dynamics simulations were used to understand the binding and interactions of 

cPLA2 and iPLA2 inhibitors [49–56]. Fluoroketone inhibitors were identified as potent 

iPLA2 inhibitors in 2010 [57]. In our effort to improve their potency and selectivity, we have 

developed structureactivity relationships using computer-aided drug design [51, 52]. Using 

these models, we were able to design, synthesize, and test new fluoroketone compounds. 

These studies led to the development of new more potent and selective fluoroketone 

inhibitors. We were also able to identify a novel class of iPLA2 inhibitors that contain a 

heterocyclic ring instead of the fluoromethyl group [51]. Molecular dynamics simulations 

showed that the carbonyl group of the inhibitor forms hydrogen bonding with the oxyanion 

hole (Gly486/Gly487) and the heterocyclic ring with Asn658 (Figure 6). The hydrophobic 

tail of the inhibitor binds in a pocket where the sn2 fatty acid normally binds.

Eicosanoid biosynthesis

cPLA2, iPLA2, and sPLA2 have all been implicated in cellular eicosanoid biosynthesis. 

cPLA2 is activated by various stimuli that mobilize intracellular calcium and/or 

phosphorylation, such as Toll-like and purinergic receptors that initiate signaling during an 

inflammatory response. When activated, cPLA2 translocates to the perinuclear and 

endoplasmic reticulum membranes, releasing the free arachidonic acid from the 

phospholipid to which it is esterified. The release of arachidonic acid triggers a cascade of 

molecular events that involves cyclooxygenase (COX), lipoxygenase (LOX), and 

cytochrome P450 (CYP) enzymes leading to inflammation [3]. iPLA2 is involved in 

homeostatic cellular functions, primarily membrane homeostasis and remodeling [58]. Since 
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iPLA2 does not show strong specificity for the esterified fatty acid, it may contribute to the 

release of arachidonic acid. sPLA2 enzymes are induced in several if not all situations [59].

Eicosanoids are products of the oxidation of arachidonic acid by downstream enzymes 

including COX [60], LOX [61], and CYP [62]. Oxidation of arachidonic acid can also be 

caused via non-enzymatic free radical mechanisms [3]. Prostaglandins and thromboxanes 

are produced by the downstream enzymes of the COX pathway. In particular, functional 

coupling of thromboxane A synthase 1 (TBXAS1) and PGD synthase (PGDS) with COX1 

has been shown to produce the eicosanoids thromboxane A2 (TXA2) and PGD2 during 

stimulation of macrophages [63]. In addition, PGE synthase 1 (mPGES1; also known as 

PTGES) and PGI2 synthase (PGIS) are coupled with COX2 to produce PGE2 and PGI2 [63, 

64]. Leukotrienes are produced by the downstream enzymes of the LOX pathway. An 

example is the 5-LOX pathway that involves coupling of cPLA2 to 5-LOX, which are both 

calcium dependent, and formation of leukotrienes B4 (LTB4) and C4 (LTC4) by LTA4 

hydrolase (LTA4H) and LTC4 synthase (LTC4S), respectively [65, 66]. Advances in the 

lipidomics field now allows routine monitoring of eicosanoid production in stimulated 

macrophages. This information can be used to develop computational models that predict 

the outcomes of drug candidates [67].
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Figure 1. 
Cartoon representation that depicts reported cellular localizations of cPLA2, iPLA2, and 

sPLA2. cPLA2 translocates to the perinuclear membranes including the Golgi. iPLA2 was 

found in the cytosol and was also found associated with mitochondria and may have 

different functions/localizations in different cells. sPLA2 was found to be secreted where it 

may act on cells or may be internalized and act intracellularly. Extracellularly, sPLA2 was 

found to act on extracellular phospholipids such as microvesicles/exosomes, surfactants, 

lipoproteins, and bacterial membranes. AA is an abbreviation for arachidonic acid. S/U FAs 

is an abbreviation for saturated and unsaturated fatty acids.
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Figure 2. 
Cartoon representation of the catalytic cycle of PLA2 enzymes (reprinted from reference 

13).
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Figure 3. 
Mechanism for the hydrolysis of a phospholipid molecule by cPLA2 or iPLA2 (reprinted 

from reference 14).
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Figure 4. 
Interaction models for (A) cPLA2, (B) iPLA2, and (C) sPLA2 with the membrane based on 

HD-XMS data (adapted form references 13 and 14). The colored peptide regions on each 

enzyme showed decreased deuteration levels upon association with phospholipid vesicles 

[43–45].
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Figure 5. 
Enzymatic activity of (A, D) cPLA2, (B, E) iPLA2, and (C, F) sPLA2 toward a variety of 

phospholipid substrates (reprinted from reference 13).

Mouchlis and Dennis Page 14

Biochim Biophys Acta Mol Cell Biol Lipids. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Binding and interactions of an iPLA2 inhibitor containing a heterocyclic ring.
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