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Abstract

Coupling Renewable Energy Supply with Deferrable Demand

by

Anthony Papavasiliou

Doctor of Philosophy in Engineering / Industrial Engineering and Operations Research

University of California, Berkeley

Professor Shmuel S. Oren, Chair

The large-scale integration of renewable energy sources such as wind and solar power is
advancing rapidly in numerous power systems in Europe and the United States. However,
utilizing renewable resources at a bulk scale is hindered by the fact that these resources are
neither controllable nor accurately predictable. Our analysis focuses on the cost of balancing
power system operations in the presence of renewable resources and on the amount of capital
investment in operating reserves that is necessary for ensuring the reliable operation of the
system when renewable resources are integrated at a large scale. We also explore the extent
to which demand-side flexibility can mitigate these impacts. We specifically focus on a
contract that couples the operations of renewable energy resources with deferrable loads
that can shift a fixed amount of energy demand over a given time window. Various flexible
energy consumption tasks can be characterized in this way, including electric vehicle charging
or agricultural pumping.

We use a two-stage stochastic unit commitment model for our analysis. The use of
this model is justified by the fact that it is capable of quantifying the operating costs of the
system and the amount of required capacity in order to face the increased uncertainty of daily
operations. We present a dual decomposition algorithm for solving the model and various
scenario selection algorithms for representing uncertainty that are necessary for achieving
computational tractability in the stochastic unit commitment formulation.

We present results for a reduced network of the California power system that consists of
124 generators, 225 buses and 375 lines. Our analysis proceeds in two steps. We first validate
the stochastic unit commitment policy that we derive from the stochastic optimization model
by demonstrating that it outperforms deterministic unit commitment rules commonly used
in practice. We demonstrate this superior performance for both a transmission-constrained
as well as an unconstrained system for various types of uncertainty including network element
failures as well as two levels of wind integration that roughly correspond to the 2012 and
2020 renewable energy integration targets of California. Once we establish the validity
of the stochastic unit commitment policy we quantify the impacts of coupling renewable
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energy supply with deferrable demand on operating costs and reserve requirements. We also
demonstrate the superiority of coupling contracts to demand-side bidding in the day-ahead
market which is due to the fact that demand bids fail to account for the inter-temporal
dependency of shiftable demand.
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Chapter 1

Introduction

Over the past decades, society has embraced the goal of curbing carbon emmisions and
combating global warming. As a result, renewable energy sources have undergone massive
growth, to the point that the large-scale integration of resources such as wind and solar
power in power systems is technically and economically conceivable.

As numerous power systems in the United States and Europe have come to rely on renew-
able resources for supplying bulk quantities of power, system operators are faced with the
unnerving fact that these resources are available by nature. Consequently, their availability
is beyond human control and largely unpredictable. System operators are now faced with
exotic challenges from the integration of resources the fluctuations of which are no longer
lost as statistical noise in the system. A recent event that exemplifies the force of nature
occurred in February 2008, when wind power supply in Texas dropped by 1700 MW within
three and a half hours and necessitated the curtailment of large industrial consumers in order
to prevent a blackout.

Since the birth of power systems, the prevailing paradigm of power systems operations has
been load-following: controllable generation resources have been required to track demand,
regardless of its patterns, location, unpredictability and the stress that is imposed on the
system. People have become so accustomed to the idea of having power at the flick of
a switch that the incredible reliability of electric power supply and the resources that are
required to maintain it are often overlooked. The proliferation of renewable energy sources
in modern power systems calls for a paradigm shift in our energy consumption philosophy.
Since we need to rely on resources that cannot be controlled or accurately forecast, we need to
transition to a mode of operation that is supply-following: we need to exploit our flexibility
in consuming power in order to accommodate the availability of renewable energy resources.

In this thesis we analyze the impacts of large-scale renewable energy integration. Our
analysis focuses on quantifying three metrics:

• power system operating costs,

• renewable energy utilization, and
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• generation capacity requirements for reliable power system operations.

We then propose various mechanisms for integrating deferrable electricity demand in power
system operations and analyze the impact of deferrable demand on the aforementioned met-
rics.

1.1 A Brave New World: Renewable Energy and De-

mand Response Proliferation in the U.S.

The proliferation of renewable energy sources in the United States is taking place at an
unprecedented pace. The federal government is coordinating these efforts at a national level.
The American Clean Energy and Security Act (2009), also known as the Waxmen-Markey
bill, sets a target of sourcing 20% of U.S. electricity consumption from renewable energy
by 2020, requires that U.S. emissions be reduced by 17% compared to their 2005 levels and
also sets various goals for limiting reliance on non-renewable resources. Twenty four states
and the district of Columbia have set renewable portfolio standards, which commit electric
utilities to procure at least a certain percentage of their energy from renewable energy sources.
California has the second greatest installed wind capacity in the U.S. and covered 11% of
state energy needs with renewable energy in 2006. Since 2002, California has enacted the
Participating Intermittent Resources Program, which facilitates the integration of renewable
energy sources, and the state has set a Renewable Portfolio Standard that requires 20% of
the energy mix to be sourced from renewable sources by 2012 and 33% by 2020.

Demand-side integration is also being favored by policy makers both at the federal level
and in individual states. The American Clean Energy and Security Act has allocated $3.4
billion in order to spawn the development and deployment of the necessary technology for
enabling active management of electricity demand. San Diego Gas and Electric received
$28 million from the Act in order to deploy 1.4 million meters and in 2012 Pacific Gas and
Electric will have deployed its smart meter program in its entire service area. Anticipating
the importance of demand-side flexibility, the California electricity market rules have been
adapted in order to accommodate the participation of demand resources through the recent
Market Redesign and Technology Upgrade (MRTU) of 2009.

1.2 Limitations to Large-Scale Renewable Energy In-

tegration

The large-scale integration of renewable energy resources is limited by two adverse character-
istics of renewable power supply. In contrast to conventional generation, renewable supply
cannot be controlled and it cannot be forecast accurately. The requirement of maintaining
a continuous balance between the supply and demand of electricity and the fact that the
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storage of electricity is not economical greatly complicates the scheduling of power system
operations in the presence of renewable resources.

1.2.1 Power Systems Scheduling

To appreciate the complications that renewable power supply disruptions cause, it is useful
to understand the process of operating and balancing power system supply. The schedul-
ing of the system is achieved in multiple stages: day-ahead decisions commit high-output,
inflexible generation resources such as nuclear generators; hour-ahead scheduling responds
to the circumstances that arise as the actual operating hour approaches by rescheduling
flexible generators such as gas-fired units; and real-time scheduling and automatic control
systems correct supply deviations in real time. In vertically integrated systems the sys-
tem operator controls generation resources centrally, whereas in deregulated systems most
balancing stages are cleared in markets that are operated by the system operator. Each
market utilizes the latest information that is available. The scheduling of the California
independent system operator (CAISO), which is representative of the operations of deregu-
lated systems, is described in the 2007 CAISO report [53] and briefly summarized here. A
more detailed description of the California system operator market operations can be found
in the corresponding business practice manual [1].

• Day-ahead unit commitment. Load serving entities and power generators submit
hourly bids in the day-ahead market. The day-ahead market closes at 10 a.m. the
day before actual operation. A unit commitment algorithm determines the optimal
dispatch and the system operator publishes instructions by 1 p.m. the same day. The
result is an hourly dispatch schedule for generators with 20-minute ramps between
hours.

• Hour-ahead dispatch. As the actual operating hour approaches, generators and
loads adjust their positions to forecast errors or unanticipated events by bidding in the
hour-ahead market. These bids are settled by economic dispatch and the results are
published by the California system operator 75 minutes before the beginning of the
operating hour. Like day-ahead schedules, hour-ahead schedules are also hourly blocks
with intra-hour ramps.

• Real-time dispatch (also load following or supplemental energy dispatch). Within
each operating hour the system operator continues to adjust generator operating points
every 5 minutes. 7.5 minutes prior to the beginning of a 5-minute operating interval
the system operator uses hour-ahead generation bids and load forecasts to re-adjust
the operating point of each generator for that interval.

• Regulation. Every one minute the system operator adjusts the output of specific gen-
erators and/or loads based on reliability criteria. These generators and loads provide
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ancillary services to the system. The ancillary services market is cleared hour-ahead.
The actual dispatch of regulation resources is empirical rather than economic.

1.2.2 Reserve Requirements

Uncertainty in power system operations is commonly classified in discrete and continuous
disturbances [73]. Discrete disturbances include generation and transmission line outages
and require the commitment of contingency reserves. Contingency reserves include spinning
reserve, online generators which can respond within a few seconds, and non-spinning, or
replacement, reserve, which consists of offline generators that replace spinning reserve a
few minutes after the occurrence of a contingency in order to restore the ability of the
system to withstand a new contingency. Continuous disturbances most commonly result
from stochastic fluctuations in electricity demand. The resulting imbalances require the
utilization of operating reserves which, as in the case of contingency reserves, are classified
according to their response speed. Regulation reserves are capable of responding within
seconds in order to maintain system frequency, and load-following reserves are re-dispatched
in the intra-hour time frame in order to balance larger scale disturbances that occur within
the hour. Extensive references about reserve requirements and their interplay with large-
scale renewable energy integration can be found in Mills and Wiser [56] and Billinton and
Allan [10].

Reserve commitment rules have traditionally differentiated between operating and con-
tingency reserves, and have worked effectively in practice for standard system operations.
However, the large-scale integration of renewable power supply obscures the differentiation
between operating reserves and contingency reserves and necessitates more sophisticated
methods for dispatching and operating reserves.

1.2.3 Adverse Impacts of Renewable Energy Supply

The increase in power system operating costs and reserve capacity requirements is the result
of various impacts caused by renewable power fluctuations that affect balancing operations
in all time scales ranging from real-time control to day-ahead commitment.

• Hour-ahead re-dispatch. The unpredictability of renewable power supply may cause
imbalances to the system that require expensive deviations from day-ahead dispatch
schedules. Starting up units to compensate for a sudden shortage in renewable power
supply may take hours, lead to additional air pollution, result in wear and the need for
frequent maintenance of startup units, and upset system dispatch due to the minimum
generation capacity of startup units. Similar problems are caused by shutting down
units to balance an unanticipated increase in power supply.

• Primary control, secondary control and ramping requirements. The minute-
by-minute variability of renewable resources may also cause system imbalances. This
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variability imposes a requirement for primary control, generators that can rapidly
adjust their power output in response to an unanticipated event. Moreover, secondary
control units are necessary that can back up and dismiss primary control units. The
inability to perfectly forecast renewable resources exacerbates this problem. Since
renewable supply also tends to vary rapidly and in great magnitude, an additional
backup of ramping generators is necessary.

• Positive correlation with hydropower, negative correlation with load. Vari-
ous systems absorb large amounts of hydroelectric power. During the months that snow
melts and hydroelectric power supply increases and must be absorbed, the additional
generation of renewable energy causes an over-supply problem. In certain systems,
including California, renewable supply increases during the night and abates during
daytime. The negative correlation with power demand therefore makes it difficult to
utilize the resource.

• Intermittency at high wind speeds. Wind generators shut down for mechanical
protection when winds become very strong. Since wind generators supply a significant
amount of power to a system during periods of high winds, there is an increased risk of
substantial supply shortage during storms. This problem is exacerbated in large wind
parks operating generators with identical cutoff speeds. Similar disruptions can occur
in the supply of solar power as a result of clouding.

An additional concern that has been raised regarding the large-scale integration of renew-
able energy sources such as wind power is the effect on system inertial response. Although
the increase in conventional synchronous generation can enhance the inertial response of a
system, the increase in wind power generation does not necessarily contribute to system
inertia. In scenarios of large-scale wind integration, the displacement of conventional gen-
eration may result in more frequent frequency excursions. This issue is not caused by the
unpredictable and highly variable fluctuation of renewable power supply and not addressed
in this thesis, however it is a major concern regarding the large-scale integration of wind
power.

1.2.4 Cost, Utilization, Investment

Though the integration of renewable energy is increasing, an integration level beyond 20-30%
is hardly perceived as economical (integration levels count 20% in Denmark with a target for
50% integration, 9% in Spain, 7% in Germany, and California is aiming for 33% by 2030).
Assuming capital costs for renewable power will continue to decline in the future, one of the
major challenges for the large scale integration of renewable energy will be its variability.
Currently renewable generators operate under favorable regulations in many markets. A
number of system operators in China, Europe (Denmark, Germany, Greece) and the United
States (PJM, NYISO, CAISO, Ontario IMO) accept renewable generation on a priority basis
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[26]. It is clear that this preferential treatment has its limitations. Large-scale renewable
power integration cannot rely on regulatory support alone, but will also require technological
innovations, such as the utilization of demand-side flexibility. Ultimately, the variable and
unpredictable nature of renewable power supply limits large-scale integration for one of the
three following reasons, which are the metrics that we focus on quantifying:

• increases in operating costs,

• increases in the amount of renewable energy that is discarded and, most importantly,

• capital investment requirements in generation capacity in order to operate the system
reliably.

Operating costs. The operating cost impacts of renewable energy variability are captured
by market tariffs and may be allocated to the whole market or directly to renewable gener-
ators, depending on market regulations. Research and experience indicate that integration
costs range between 0 and 7$/MWh [2], [41]. Gross et al. [37] place an estimate of no
more than 5 British pounds for wind power integration. Another recent study conducted
by Enernex for wind power integration in Minnesota [100] concludes that the cost of addi-
tional reserves and costs related to variability and day-ahead forecast errors will result in an
additional $2.11 (15% penetration) to $4.41 (25% penetration) per MWh of delivered wind
power. In a similar vein, the renewable integration report of the California Independent
System Operator (CAISO) [53] has predicted an expected increase in 10-minute real-time
energy prices due to wind forecasting errors that become comparable to load forecasting
errors.

Discarded power. Renewable energy may be discarded during hours of excess renewable
supply if power systems cannot reliably absorb this supply [2], [45]. During early spring the
California system operator either spills water supplies from hydroelectric dams or discards
renewable power [53]. Renewable power is also discarded under normal operating conditions
in California whenever forecasting underestimates the amount of renewable power supply
to the system and the excess power cannot be sold. In Texas the system operator discards
renewable power during load pick-up for reliability reasons [90].

Capacity requirements. Gross et al. [37] have assembled a variety of renewable power
integration studies with the objective of estimating the costs and impacts of intermittent
generation on the U.K. electricity network. Over 80% of the studies that the authors ex-
amined conclude that for renewable energy penetration levels above 20% an investment in
system backup in the range of 5-10% of installed renewable capacity is required in order to
balance the short term (seconds to tens of minutes) variability of renewable power supply.
The authors conclude that additional conventional capacity to maintain system reliability
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during demand peaks amounts to 15-22% of installed renewable power capacity. The Califor-
nia Independent System Operator renewable integration report [53] analyzes the integration
of 6700 MW of wind power in the California grid. According to the study the 3-hour morning
ramp-up will increase by 926 MW to 1529 MW due to the fluctuations of wind generation
at the time when morning demand increases, and the evening ramp-down will increase by
427 MW to 984 MW. The regulation capacity requirement will increase by 170 to 250 MW
for upward regulation and by 400 to 500 MW for downward regulation. There will be an
increase of 15 to 25 MW/min in upward ramping and downward ramping requirements. The
upward and downward load-following ramps will increase by 30 to 40 MW/min.

1.3 Coupling Renewable Energy with Deferrable De-

mand

In the face of the aforementioned challenges that are introduced by the large-scale integra-
tion of renewable energy sources, the value of flexibility in electricity consumption becomes
immediately apparent. A significant proportion of the energy that we consume across the
residential, commercial and industrial sector is dedicated to duties that can be postponed
for considerable amounts of time with minimal impact on comfort. Consumptions that nat-
urally fit this description include agricultural pumping, heating and cooling, refrigeration,
server farm operations and, most interestingly, electric vehicle charging. In fact, numerous
flexible energy consumption tasks can be naturally described as requests for a certain amount
of energy within a certain deadline. There is a natural complementarity between coupling
renewable resources with deferrable requests, due to the fact that renewable power supply is
more predictable over a certain time horizon than in any given moment in time, making it
easier to fulfill requests that extend over a time window.

As we discuss in Section 7, an ideal approach for harvesting the benefits of demand
flexibility would be the use of real-time pricing at the retail level. However, this is a radical
paradigm shift and is unlikely to occur in the immediate future due to political opposition
and the status quo of the industry. An alternative approach would be the provision of
ancillary services by deferrable loads via an aggregator that would represent these loads
in the wholesale market. An aggregator could bid on behalf of a population of loads for
providing capacity services to the system operator. The aggregator would then be responsible
for coordinating the aggregate consumption of loads by some price-based or direct control
method. As ancillary services requirements are expected to increase due to renewable energy
integration, this solution could prove lucrative for users who would be willing to respond to
the instantaneous needs of power system operators. This approach is certainly appealing,
however there are concerns about defining market products that correspond to the types of
services that loads can actually offer, which raises the need for reform in existing electricity
markets. As a result, it is probable that policy deliberations will delay the process of using
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aggregators for managing significant populations of load.
An alternative approach for exploiting load flexibility that could possibly be integrated

in existing markets and operational protocols is a direct coupling of renewable energy supply
with deferrable demand. According to the proposed coupling, deferrable loads are paired
up with large renewable suppliers that dedicate their supply to these loads. Consumers
program tasks to be completed within a certain deadline. An aggregator is then responsible
for serving these requests primarily from renewable resources, and to a limited extent from
the real-time market. In studying this approach, we place a limit on the participation
of the aggregator in the market during peak load periods, in order to transfer risk of the
unreliability of renewable power supply from the system operator to the aggregator. Coupling
closely matches dynamic scheduling, as described by Hirst and Kirby [42], whereby demand
and supply resources from different control areas pair their schedules in order to produce a
zero net output to the remaining system. Such scheduling is currently implemented in the
Electric Reliability Council Of Texas (ERCOT). The proposed coupling also resembles the
business model of electric vehicle service provider Better Place. The business plan of Better
Place relies on ownership of electric vehicle batteries the charging of which can be managed
by the company. Having the flexibility to charge the vehicle battery, electric vehicles can
be charged when renewable energy is available, thus undercutting the cost of gasoline and
thereby replacing gasoline with renewable power in the transportation sector [74].

The proposed coupling aligns the incentives of both contracting parties. Renewable
resources appear ”behind the meter”, thus relieving the system operator from the obligation
of procuring reserves for protecting against intermittent renewable supply. Although the
coupled system may resort to the spot market to a limited extent, the coupling contract
effectively transfers the risk of renewable power variability from the system operator to
deferrable loads, which leads to economic savings by preventing the system operator from
over-insuring against renewable power variability. The significant capital savings that stem
from avoided investment in backup reserves can be captured through capacity credit, and a
share of this credit can be allocated to deferrable loads in order to induce their participation
in the contract.

The desired result of the proposed coupling is the minimization of net impact on the power
grid. What makes this possible are the two degrees of freedom for aggregators: load flexibility
and spot market participation. Aggregators can satisfy load requests upon availability of
renewable power. If aggregators risk not meeting schedules they can in advance (after the
load has been scheduled, but before due time) purchase power from the spot market without
disturbing grid operations significantly. In case of excess renewable power supply, aggregators
can also supply the excess resource in the spot market.

The fact that demand flexibility is most naturally characterized as requests for energy
over a given time horizon renders traditional economic models for demand flexibility that are
based on demand elasticity [90], [12], [48], [49] at a disadvantage. Demand elasticity cannot
model the complexity that is entailed in a multi-stage scheduling of electricity demand. This
also suggests that the participation of flexible demand in day-ahead markets via decremental



9

ask bids fails to capture the full potential of shifting demand over time, and that alternative
mechanisms such as coupling are needed. We demonstrate the efficiency losses of decremental
demand bids relative to coupling contracts in Chapter 7.

1.4 A Modeling Framework for Analyzing Renewable

Energy Integration

In order to assess the economic impacts of large-scale renewable energy integration, it is
necessary to account for the entire system, including the controllable resources of the system
that are used for balancing renewable power supply, by formulating a unit commitment
model. As we discuss in Section 1.2, the operation of power systems can be perceived as a
multi-stage decision process under uncertainty, where resources are committed in advance
of operations and decisions are updated as an operating interval approaches and conditions
in the system reveal. In order to make our analysis computationally tractable, we model
system operations as a two-stage decision process, following the work of Ruiz et al. [84].
The first stage of decision-making represents the day-ahead commitment of generators based
on demand forecasts. Subsequently, uncertainty is revealed and in the second stage the
commitment of fast units and the dispatch of all units is updated in order to respond to
system conditions. In deregulated power systems, the first and second stage of the model
can be thought of as simulating the day-ahead and real-time market respectively.

The randomness that is caused by renewable energy supply fluctuations suggest the use of
a stochastic unit commitment model. As we discuss in Section 1.2.4, our analysis focuses on
quantifying the impacts of renewable energy and demand response integration on operating
costs, renewable energy utilization and generation capacity requirements. The stochastic
unit commitment model quantifies these three metrics while accounting for uncertainty.
Operating costs are quantified in the objective function of the problem, renewable energy
utilization is an explicit decision variable in the problem and capacity requirements are
quantified by the fact that the commitment of generators is also an endogenous decision
variable in the problem.

The estimation of capacity requirements for operating a power system under uncertainty
is an especially challenging aspect of our analysis. In order to commit reserves, system
operators and analysts have often resorted to reserve requirements that protect the system
against forecast errors and contingencies. These reserve requirements enter the deterministic
formulation of the unit commitment problem and require the commitment of excess genera-
tion capacity that can protect the system in the face of unanticipated events. In contrast to
deterministic unit commitment models, a stochastic unit commitment model endogenously
determines the optimal amount of generation capacity that is required for operating the sys-
tem under uncertainty and therefore yields an accurate assessment of reserve requirements.



10

1.5 Overview of the Thesis

Chapter 2 introduces the two stages of our analysis, scenario selection validation and the
modeling of demand flexibility. The first stage, scenario selection validation, ensures that the
stochastic unit commitment model that we use for our analysis can provide meaningful results
by ensuring that it outperforms common deterministic reserve rules in the face of uncertainty.
Upon validating our scenario selection methodology, we use the resulting stochastic unit
commitment algorithm to quantify the economic impacts of renewable energy integration
and demand flexibility.

The components of the model that are used for testing our scenario selection methodol-
ogy are described in Chapters 3 to 6. In order to validate our scenario selection methodology
we develop two competing unit commitment models, a deterministic model with exogenous
reserve requirements and a stochastic model that explicitly models uncertainty and strives
to optimize expected cost. These models, along with the economic dispatch model that is
used for simulating their performance, are described in Chapter 3. In Chapters 4 and 5 we
address the computational challenges that are introduced by stochastic unit commitment.
The problem of scenario selection, the succinct representation of uncertainty in the stochastic
model, is addressed in Chapter 4. Even after uncertainty has been reduced to a few repre-
sentative and appropriately weighted scenarios, the problem at hand remains too large to
solve by direct methods. A subgradient algorithm that exploits the decomposable structure
of the problem is presented in Chapter 5. The statistical models that are used for the Monte
Carlo simulation of the unit commitment policies are presented in Chapter 6.

Upon validating our scenario selection methodology, we proceed to the second stage of
our analysis in Chapter 7, the modeling of demand flexibility. The results of our analysis are
presented in Chapter 8. The conclusions of our research and the future directions of work
that we wish to pursue are summarized in Chapter 9. Reviews of related work are provided
at the beginning of each chapter.
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Chapter 2

Overview of the Model

In Section 1.4 we motivate the use of stochastic unit commitment as the modeling frame-
work for our analysis. However, in order to accept the results of the model as reasonable it is
necessary to ensure that the resulting unit commitment policy outperforms common reserve
rules. Ideally, this could be guaranteed by inputting all possible realizations of uncertainty
in the model and deriving the unit commitment policy that optimizes the expected perfor-
mance of the system. However, this approach is not computationally tractable. Instead, it is
necessary to select a small number of representative outcomes that succinctly represent the
sources of uncertainty in the system while maintaining the computational tractability of the
model. The performance of the stochastic unit commitment policy depends crucially on the
selection and weighing of these scenarios. Therefore, the first step of our analysis requires
developing a methodical approach for selecting scenarios and a test for guaranteeing that
the resulting unit commitment policy can outperform common reserve rules used in prac-
tice. The test that we employ is described in Section 2.1. Once we guarantee the validity
of our scenario selection algorithm, we can utilize the stochastic unit commitment model for
quantifying the benefits of coupling renewable energy supply with deferrable resources. This
constitutes the second part of our analysis and is discussed in Section 2.2.

2.1 Validating the Stochastic Unit Commitment Policy

We present the scenario selection validation procedure in Figure 2.1. Each component of the
model will be described in detail in the subsequent chapters. In this section we focus on the
logic of the validation procedure.

We use historical data of wind power production and power demand, as well as typical
failure rates of generators and transmission lines, to create a stochastic model that can be
used for simulating uncertainty in the system. The stochastic model is used for generating a
large number of samples that are filtered by a scenario selection algorithm. The selected sce-
narios are weighed appropriately by the scenario slection algorithm in order to appropriately
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Figure 2.1: Validating the scenario selection methodology.

guide the stochastic unit commitment algorithm. The stochastic unit commitment algorithm
uses the weighted scenarios to arrive at a schedule that minimizes expected operating costs.
The deterministic unit commitment model commits generation according to exogenous re-
serve requirements that are commonly used in practice. These reserve requirements commit
sufficient excess capacity in order to protect the system against unanticipated outcomes.

The deterministic and stochastic unit commitment models are two different approaches
for arriving at the same decision: the schedule of slow generators that need to be committed
in the day-ahead time frame. The performance of these first-stage decisions is then fixed and
the performance of the day-ahead schedule is simulated by running an economic dispatch
model against sample outcomes of the stochastic model. In the economic dispatch model, the
system can only respond to realized outcomes by adapting the unit commitment schedules
of fast resources and the production levels of all resources. The scenario selection algorithm
is accepted so long as the average performance of the stochastic unit commitment schedule
in terms of minimum load costs, startup costs and fuel costs in the economic dispatch
simulations is superior to that of the deterministic unit commitment schedule.

2.2 Assessing the Benefits of Coupling

Once we establish a valid scenario selection algorithm, we can use stochastic unit commitment
for assessing the three metrics that our analysis focuses on: operating costs, renewable energy
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utilization and capacity requirements. We will consider three fundamental approaches for
dealing with renewable energy supply variability via demand response:

• Centralized load dispatch by the system operator: According to this approach, the
system operator centrally coordinates the dispatch of controllable generation resources
and flexible loads in the system. This approach is an idealization that yields an estimate
of the greatest possible benefits of demand flexibility. In real practice, the system
operator cannot operate the system with such granularity and loads are not necessarily
willing to surrender the control of their appliances to the system operator.

• Coupling renewable generation with deferrable demand: We introduce coupling con-
tracts and the advantages that motivate their consideration in Section 1.3.

• Price-elastic demand bids: This is the common approach for treating demand flexi-
bility in power systems operations and the power systems economics literature [90],
[12], [48], [49]. The disadvantage of using demand functions for modeling deferrable
demand is that demand is represented as a series of bids that are independent accross
time intervals, whereas in reality the feature that characterizes deferrable demand is
dependency accross time periods: demand that is satisfied in the current time interval
will not recur and, conversely, demand that fails to be satisfied in the current time
period will return as additional demand in future time periods.

Figure 2.2 outlines how we carry out our analysis. The decision support module in the
upper part of the figure is used for determining the day-ahead schedule of generators while
accounting for the flexibility of demand. The problem that is solved for this purpose is
described in Section 7.1. The resulting day-ahed unit commitment is used for evaluating
the performance of the three aforementioned demand response paradigms in the economic
dispatch phase.

In the centralized dispatch model, the problem described in Section 7.1 is solved with the
schedule of day-ahead units fixed according to the solution of the centralized stochastic unit
commitment problem. Uncertain renewable power production and inflexible demand are
random and drive the dispatch of controllable generation and flexible demand. In the case
of coupling contracts, loads solve a multi-stage stochastic optimization whereby they seek to
satisfy a fixed amount of energy demand within a given time horizon by resorting to freely
available renewable energy and, to a limited extend, spot market procurements. The demand
schedule of deferrable loads is driven by the available renewable power supply and the real-
time price of electricity according to the optimal charging policy discussed in Section 7.3.
The net demand of deferrable loads and the firm demand of inflexible loads are the random
factors that drive the response of controllable generation in real-time operations. In the
case of demand-side bidding, the economic dispatch model of the system operator includes
decreasing demand bids in the objective function. The calibration of the demand functions
is discussed in Section 7.2. Renewable power production and firm demand drive the dispatch
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of flexible demand and controllable generation. In contrast to the case of centralized load
dispatch, however, demand bids are not adequate to capture the inter-temporal complexity
of load shifting.
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Chapter 3

Unit Commitment and Economic
Dispatch

The analysis of the economic impacts of large-scale renewable energy integration requires
a detailed representation of the generation commitment and dispatch process. The unit
commitment problem is the problem of scheduling generation for the following day in order
to meet forecast demand in the system while accounting for numerous operating constraints
on generators and the transmission network. It is a mixed integer linear program which is
solved by system operators daily in order to both operate the system but also for the purpose
of clearing the market. Once the schedules of slow-responding resources are fixed according
to their day-ahead schedule, and as the actual operating interval approaches, the economic
dispatch problem is solved. The purpose of economic dispatch is to adjust fast-responding
resources such that the system responds, at least cost, to the prevailing system conditions
which are inevitably different from what was forecast in the day-ahead time frame.

Solution techniques for the unit commitment problem have evolved over time. Simple
priority rules were used originally, as discussed by Wood and Wollenberg [98]. Due to the
fact that there is a loose coupling of generator operations via the market clearing constraint,
one of the earliest approaches for improving the solution of the unit commitment problem
was Lagrangian relaxation, which is described by Muckstadt and Koenig [60] and Bertsekas
et al. [6]. Lagrangian relaxation was soon thereafter adopted by system operators in ac-
tual operations. Recently, advances in mixed integer programming have led to the gradual
replacement of Lagrangian decomposition algorithms by branch and bound techniques for
solving the unit commitment problem, as discussed by Carrion and Arroyo [23] and Streiffert
et al. [92].

Recently, various studies have utilized unit commitment models for assessing the impacts
of renewable energy integration. A variety of modeling approaches and solution strategies
are employed in these studies. In table 3.1 we compare the various studies with respect to
some of their key modeling and computational features in order to place our work in the
context of the existing literature. The renewable integration studies compared in Table 3.1



17

Table 3.1: A comparative listing of renewable integration studies based on unit commitment.

Citation Model T.C. Cont. S.S. Algo. (S,G,T) Time Sim.
[83] 2-st. SUC No Gen. No N/A (6,60,48) 43 Step
[90] Det. No No No N/A (1,375,24) N/A Step
[96] 2-st. rob. 186 No N/A Benders (10,76,24) 1800 Single
[25] 2-st. SUC No No M.C. N/A (30,10,24) 540 Step
[95] 3-st. SUC No Gen. [38] N/A (6,45,36) 79 Step
[57] 2-st. SUC 116 No [39] N/A (20,9,24) 1600 Single
[14] 4-st. SUC No No No N/A (2401,3,4) 39 Single
[73] 2-st. SUC No No [73] L.R. (11,122,24) 5685 Types
[71] 2-st. SUC 375 Comp. [71] L.R. (42,124,24) 2736 Types

differ according to the following features:

Modeling approach (column 1): Deterministic unit commitment (Det.) is the simplest
possible approach for representing uncertainty in the model, where renewable energy supply
is replaced by its forecast value for committing resources in the day ahead. Most authors use
two- or multi-stage stochastic models (n-st. SUC). Wang et al. [96] use a robust two-stage
formulation (2-st. rob.) that requires the system to prevent load shedding given first-stage
commitment for all possible renewable supply realizations.

Transmission constraints (column 2): The inclusion of transmission constraints is cru-
cial for accurately quantifying the impacts of renewable resource integration, as we demon-
strate in Chapter 8. For those studies that include transmission constraints, the number of
lines is listed in the second column.

Contingencies (column 3): The inclusion of contingencies also improves the accuracy of
the analysis. Contingencies include generation capacity and transmission line failure. Most
studies that include contingencies are limited to generation capacity loss (Gen.). To the
best of our knowledge ours is the only renewable integration study that includes composite
generation and transmission line failures (Comp.). Contingencies in this context refer to the
explicit modeling of network element failures in the scenario tree.

Scenario selection (column 4): Some of the studies that use a stochastic model resort
to scenario selection algorithms for reducing the size of the resulting model. Alternative
approaches for controlling the run time of the studied models include relaxing the integrality
of the commitment variables of fast-start units [83], grouping generators by fuel type [59]
or forcing all generators to fix their schedules in the day-ahead commitment [25]. As we
discuss in Chapter 4, the use of the scenario generation and scenario reduction algorithms of
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Kuska et al. [38] and their extensions by Heitsch and Römisch [39] are commonly used in the
stochastic unit commitment literature. An alternative approach employed by Constantinescu
et al. [25] is the generation of Monte Carlo (M.C.) outcomes of wind power that are used
for the estimation of lower and upper bound estimates on the optimal solution.

Decomposition algorithms (column 5): Stochastic formulations exhibit a decompos-
able structure that makes them amenable to decomposition algorithms. In our analysis we
use a Lagrangian relaxation (L.R.) algorithm that is described in detail in Chapter 5. The
only other study that utilizes a special-purpose algorithm is the work by Wang et al. [96]
who use Benders’ decomposition [61, 5].

Problem size (column 6): The size of the problem (S,G, T ) is determined by the number
of scenarios S, the number of generators G and the horizon T of the problem. The number
of binary decision variables in the model is S · G · T and therefore these three dimensions
determine the computational requirements of the model. For the deterministic model of
Sioshansi and Short [90] the scenario size is trivially equal to 1.

Running time (column 7, in seconds): Running times are reported for most studies.
These running times depend both on the size of the problems at hand as well as on the
special-purpose algorithms that are used for solving the problems.

Simulation method (column 8): A common approach for simulating the impact of
renewable power integration is a full-year simulation with one-day steps (Step), where the
unit commitment problem is solved for each day and then economic dispatch is performed
against a Monte Carlo sample of the uncertain parameters. An alternative approach that
we adopt in our study in order to reduce the computational demand of the model is to focus
on representative day types (Types), and weigh the results of each day type according to
the frequency of occurence of that day type. In the analysis of Chapter 8 we consider eight
day types, one for each season and further differentiating between weekdays and weekends.
Some studies consider a single hour (Single) of system operations.

3.1 Notation

Before presenting the unit commitment and economic dispatch models, we introduce the
notation that is used in the models.
Sets

G: set of all generators
Gs: subset of slow generators
Gf : subset of fast generators
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S: set of scenarios
T : set of time periods
L: set of lines
N : set of nodes
Gn: set of generators that are located in bus n
LIn = {l ∈ L : l = (k, n), k ∈ N}
LOn = {l ∈ L : l = (n, k), k ∈ N}
IG: set of import groups
IGj: set of lines in import group j

Decision variables
ugst: commitment of generator g in scenario s, period t
vgst: startup of generator g in scenario s, period t
pgst: production of generator g in scenario s, period t
θnst: phase angle at bus n in scenario s, period t
wgt: commitment of slow generator g in period t
zgt: startup of slow generator g in period t
sgt: slow reserve provided by generator g in period t
fgt: fast reserve provided by generator g in period t
elst: power flow on line l in scenario s, period t

Parameters
πs: probability of scenario s
Kg: minimum load cost of generator g
Sg: startup cost of generator g
Cg: marginal cost of generator g
Dnst: demand in bus n, scenario s, period t
P+
gs, P

−
gs: minimum and maximum capacity of generator g in scenario s

R+
g , R

−
g : minimum and maximum ramping of generator g

UTg: minimum up time of generator g
DTg: minimum down time of generator g
N : number of periods in horizon
T req
t : total reserve requirement in period t
F req
t : fast reserve requirement in period t
Bls: susceptance of line l in scenario s
TCl: maximum capacity of line l
FRg: fast reserve limit of generator g
ICj: maximum capacity of import group j
γjl: polarity of line l in import group j
The binary variables wgt indicate whether a generator is turned on or off during a specific

time period over the planning horizon of the unit commitment problem. If a generator is
committed, the unit commitment problem specifies the level of output pgt of the generator.
The set of generators is partiotioned into a set of slow resources Gs and fast resources
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Gf . In the deterministic formulation, both types of generators can provide slow reserve sgt,
whereas only fast resources can provide fast reserve fgt. In the stochastic unit commitment
formulation, slow resources are committed in the first stage, whereas fast resources are
sufficiently flexible to be committed in the second stage.

As we discuss in Section 1.2.2, uncertainty in power system operations is caused either
by errors in the forecast of renewable power or demand in the system, or by the failure
of transmission lines and generators. There are two fundamental approaches in order to
ensure the commitment of sufficient resources in the day ahead that can protect the system
against uncertainty. In the deterministic unit commitment formulation, the approach is to
impose redundancy by forcing the commitment of excess capacity beyond what is required
for meeting forecast load, as well as to limit certain power flows in order to ensure that
the dispatch of the system can withstand the failure of critical elements. Alternatively, the
stochastic unit commitment model represents uncertainty explicitly and produces a unit
commitment policy that can attain minimum expected cost over a wide range of outcomes.

3.2 Deterministic Unit Commitment

The formulation of the deterministic unit commitment problem follows Sioshansi and Short
[90].

(DUC) : min
∑
g∈G

∑
t∈T

(Kgwgt + Sgzgt + Cgpgt)

s.t.
(3.1)

∑
l∈LIn

elt +
∑
g∈Gn

pgt = Dnt +
∑
l∈LOn

elt, n ∈ N, t ∈ T (3.2)

elt ≤ TCl, l ∈ L, t ∈ T (3.3)

−TCl ≤ elt, l ∈ L, t ∈ T (3.4)

elt = Bl(θnt − θmt), l = (m,n) ∈ L, t ∈ T (3.5)

pgt + fgt ≤ P+
g wgt, g ∈ G, t ∈ T (3.6)

pgt + sgt + fgt ≤ P+
g , g ∈ G, t ∈ T (3.7)

pgt ≥ P−g wgt, g ∈ G, t ∈ T (3.8)

pgt − pg,t−1 + sgt ≤ R+
g , g ∈ G, t ∈ T (3.9)

pg,t−1 − pgt ≤ R−g , g ∈ G, t ∈ T (3.10)∑
g∈Gf

fgt +
∑
g∈G

sgt ≥ T req
t , t ∈ T (3.11)

fgt ≤ FRg, g ∈ G, t ∈ T (3.12)
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∑
g∈Gf

fgt ≥ F req
t , t ∈ T (3.13)

∑
l∈IGj

γjlelt ≤ ICj, j ∈ IG, t ∈ T (3.14)

t∑
q=t−UTg+1

zgq ≤ wgt, g ∈ G, t ≥ UTg (3.15)

t+DTg∑
q=t+1

zgq ≤ 1− wgt, g ∈ G, t ≤ N −DTg (3.16)

zgt ≤ 1, g ∈ G, t ∈ T (3.17)

zgt ≥ wgt − wg,t−1, g ∈ G, t ∈ T (3.18)

pgt, zgt, sgt, fgt,≥ 0, wgt ∈ {0, 1}, g ∈ G, t ∈ T (3.19)

The objective of the unit commitment problem is to minimize system costs, which consist
of fuel costs, minimum load costs that are incurred whenever a generator is online and startup
costs that are incurred whenever a generator is turned on. Load shedding is modeled as a
generator with marginal cost equal to the value of lost load. Imports and controllable
renewable resources can be used at no cost by the system operator, meaning that they can
be used at zero marginal cost but also discarded in case of excess supply.

The market clearing constraint of Equation (3.2) requires that the amount of power that
is injected and produced in each bus equals the amount of power consumed and exported
from the bus.

The transmission capacity constraints of Equations (3.3) and (3.4) limit the amount of
power that can flow over a line, either due to thermal constraints on the lines or for main-
taining the angle difference between buses in a stable region. Equation (3.5) is a linearization
of Kirchoff’s voltage and current laws. Due to the fact that our model includes line contin-
gencies, we use line susceptances instead of power transfer distribution factors (PTDFs) for
modeling the direct current (DC) power flow equations since the former are independent of
topology and only depend on the electrical characteristics of the lines.

The generation capacity constraints of Equations (3.6) and (3.7) limit the amount of
power and reserves that can be supplied by a generator in both the on and off state. The
production of a generator is limited by the amount of capacity that is not committed for
providing reserve. If a generator is off it can only provide fast reserve. Constraint (3.12) limits
the amount of fast reserves that can be provided by generators, since only fast resources can
provide fast reserves. The minimum run constraint of Equation (3.8) imposes a minimum
output level for each generator that is operational.

The total reserve requirement of Equation (3.11) commits a minimum amount of excess
capacity that is readily available to the system operator from both fast and slow resources.
At least a certain amount of this total reserve capacity needs to be available from fast
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resources according to the fast reserve requirement in Equation (3.13). In the same spirit
of imposing redundancy in the system in order to ensure that it can withstand deviations
from forecasts, the import constraints of Equation (3.14) impose a limit on the amount of
power that can flow on certain groups of lines in order to protect against generator and line
contingencies. Import constraints can be categorized in two types. ”Bubble” constraints
limit the total amount of power that can flow into a load pocket in order to ensure that
the unit commitment schedule reserves sufficient transfer capability on the lines in order
to protect against the possibility of generation capacity failure within the load pocket. On
the other hand, inter-tie constraints limit the amount of power that can flow over inter-ties
in order to protect the system against the failure of major corridors that bring significant
amounts of power from out-of-state. Both reserve requirements as well as import constraints
are imposed in an ad hoc fashion by system operators, based on experience rather than some
methodical approach.

The ramping constraints of Equations (3.9) and (3.10) limit the rate at which the output
of a generator can change. These ramping constraints are especially relevant to our analysis
due to the fact that renewable resource production tends to vary rapidly and therefore
imposes excessive ramping requirements on the system.

The minimum up time constraint of Equation (3.15) requires that once a generator has
been turned on it needs to stay on for at least a certain number of hours. An analogous
constraint for minimum down time is imposed by Equation (3.16). Minimum up and down
times are modeled following O’Neill et al. [63]. Note that the integrality of the startup
variables zgt can be relaxed in order to reduce the size of the resulting branch and bound tree,
which reduces computation time. Equation (3.17) is necessary for relaxing the integrality of
the startup variables. Equation (3.18) models the state transition of the startup variables.

3.3 Stochastic Unit Commitment

The stochastic unit commitment problem can be stated as follows:

(SUC) : min
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst)

s.t.
(3.20)

∑
l∈LIn

elst +
∑
g∈Gn

pgst = Dnst +
∑
l∈LOn

elst, n ∈ N, s ∈ S, t ∈ T (3.21)

elst = Bls(θnst − θmst), l = (m,n) ∈ L, s ∈ S, t ∈ T (3.22)

elst ≤ TCl, l ∈ L, s ∈ S, t ∈ T (3.23)

−TCl ≤ elst, l ∈ L, s ∈ S, t ∈ T (3.24)

pgst ≤ P+
gsugst, g ∈ G, s ∈ S, t ∈ T (3.25)
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P−gsugst ≤ pgst, g ∈ G, s ∈ S, t ∈ T (3.26)

pgst − pgs,t−1 ≤ R+
g , g ∈ G, s ∈ S, t ∈ T (3.27)

pgs,t−1 − pgst ≤ R−g , g ∈ G, s ∈ S, t ∈ T (3.28)
t∑

q=t−UTg+1

zgq ≤ wgt, g ∈ Gs, t ≥ UTg (3.29)

t+DTg∑
q=t+1

zgq ≤ 1− wgt, g ∈ Gs, t ≤ N −DTg (3.30)

t∑
q=t−UTg+1

vgsq ≤ ugst, g ∈ Gf , s ∈ S, t ≥ UTg (3.31)

t+DTg∑
q=t+1

vgsq ≤ 1− ugst, g ∈ Gf , s ∈ S, t ≤ N −DTg (3.32)

zgt ≤ 1, g ∈ Gs, t ∈ T (3.33)

vgst ≤ 1, g ∈ G, s ∈ S, t ∈ T (3.34)

zgt ≥ wgt − wg,t−1, g ∈ Gs, t ∈ T (3.35)

vgst ≥ ugst − ugs,t−1, g ∈ Gf , s ∈ S, t ∈ T (3.36)

πsugst = πswgt, g ∈ Gs, s ∈ S, t ∈ T (3.37)

πsvgst = πszgt, g ∈ Gs, s ∈ S, t ∈ T (3.38)

pgst, vgst ≥ 0, ugst ∈ {0, 1}, g ∈ G, s ∈ S, t ∈ T (3.39)

zgt ≥ 0, wgt ∈ {0, 1}, g ∈ Gs, t ∈ T. (3.40)

The additional feature of the model compared to the deterministic unit commitment
formulation is the explicit consideration of a set of scenarios, each occurring with a probability
πs. The objective of the problem now becomes the minimization of expected operating costs
across all scenarios. Slow resources are committed in the day ahead, with wgt representing
their commitment. This is the first-stage decision of the problem. In contrast, fast resources
can be committed in the second stage of the problem according to the realized uncertainty,
hence the fast resource commitment variables are indexed by scenario, ugst. Additionally, the
production schedule pgst of all resources can be revisited in the second stage and is therefore
also indexed by scenario.

Uncertainty enters the model through net load uncertainty and contingencies. Net load
uncertainty, that results from uncertainty in demand and the production of renewable re-
sources, appears in the market-clearing constraint (3.21) by indexing net demand Dnst by
scenario. Transmission line contingencies are modeled by indexing the the susceptance of
each line by scenario, where Bls = 0 for the scenarios s ∈ S in which line l is out of order,
thereby forcing the flow in line l to equal zero. Generator contingencies are modeled in the
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minimum and maximum generator capacity limits of Equations (3.25) and 3.26. Similarly
to the case of transmission line failures, P+

gs = 0 and P−gs = 0 holds for those scenarios s ∈ S
in which generator g fails, thereby forcing power production for generator g to equal zero.

The non-anticipativity constraints of Equations (3.37) and (3.38) force the second-stage
commitment of slow generators for each scenario to be consistent with the first-stage com-
mitment. Note that we introduce redundant second-stage unit commitment and startup
decisions ugst, vgst for slow generators. As we explain in Chapter 5, this is necessary for the
derivation of the decomposition algorithm.

3.4 Economic Dispatch

The deterministic and stochastic unit commitment models in the previous two sections rep-
resent two different methods for committing slow generation resources in the day-ahead
scheduling timeframe. Once slow resources are committed, the performance of the system is
tested by performing Monte Carlo simulations of its response to net demand and contingency
outcomes, given the unit commitment schedule of slow generators. The economic dispatch
of units for each outcome c requires solving the following problem:.

(EDc) : min
∑
g∈G

∑
t∈T

(Kgwgt + Sgzgt + Cgpgt)

s.t.
(3.41)

∑
l∈LIn

elt +
∑
g∈Gn

pgt = Dnct +
∑
l∈LOn

elt, n ∈ N, t ∈ T (3.42)

elt = Blc(θnt − θmt), l = (m,n) ∈ L, t ∈ T (3.43)

pgt ≤ P+
gcugt, g ∈ G, t ∈ T (3.44)

pgt ≥ P−gcugt, g ∈ G, t ∈ T (3.45)

pgt − pg,t−1 ≤ R+
g , g ∈ G, t ∈ T (3.46)

wgt = w?gt, g ∈ Gs, t ∈ T (3.47)

zgt = z?gt, g ∈ Gs, t ∈ T (3.48)

(3.15), (3.16), (3.17), (3.18), (3.3), (3.4), (3.10)

pgt, zgt,≥ 0, wgt ∈ {0, 1}, g ∈ G, t ∈ T (3.49)

The economic dispatch problem closely follows the formulation of (DUC) in Equations
(3.1) - (3.19). In contrast to (DUC), reserve decision variables sgt, fgt and reserve require-
ment constraints do not enter the formulation and the commitment for slow generators is
fixed in Equations (3.47) and (3.48).
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Chapter 4

Scenario Selection

The challenge of selecting scenarios for the stochastic unit commitment problem is to
discover a small number of representative daily net load time series and contingencies that
properly guide the stochastic program to produce a unit commitment schedule that im-
proves average costs, as compared to a unit commitment schedule determined by solving a
deterministic model.

The basic tradeoff that needs to be balanced in dispatching fast reserves is the flexibility
that fast units offer in utilizing renewable generation versus their higher operating costs.
Fast generators are fueled by gas, which has a relatively high marginal cost. In addition, the
startup and minimum load costs of these units are similar to those of slow units, however
their capacity is smaller; hence, their startup and minimum load cost per unit of capacity is
greater than that of slow generators. The advantage of largely relying on fast units is that
the system is capable of reducing discarded renewable power, which results in significant
savings in fuel costs. Unlike fast generators which can shut down with short notice in the
case of increased renewable power generation, slow generators cannot back down from their
minimum generation levels and therefore result in the waste of excess renewable energy.

The introduction of transmission constraints complicates scenario selection considerably
due to the fact that fast reserves are not readily accessible when certain transmission lines
are congested and the availability of renewable resources may be limited due to transmission
constraints. The further introduction of composite outages introduces the complication
of protecting the system against very low probability outcomes that can severely impact
system reliability. There have been numerous publications that demonstrate the complex
influence of transmission constraints on locational reserve requirements. Arroyo and Galiana
[3] demonstrate that an ad hoc allocation of reserves in various locations of a transmission-
constrained model results in suboptimal system performance. The complex influence of
transmission constraints on locational reserve requirements is also demonstrated by Galiana
et al. [33] as well as Bouffard et al. [15].

The stochastic unit commitment literature has relied extensively on the scenario selection
and scenario reduction algorithms proposed by Dupacova et al. [30] and their faster variants
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that were proposed by Heitsch et al. [39]. The effectiveness of these algorithms in the
stochastic unit commitment problem was first demonstrated by Gröwe-Kuska et al. [38] who
apply the algorithms for scheduling hydro and thermal units in a German utility.

The original scenario selection and scenario reduction algorithms proposed by Dupacova
et al. [30] focus on two- and multi-stage stochastic programming with convex feasible regions
for the first-stage decisions1. The authors are motivated by a stability result on the optimal
value of a stochastic program with respect to perturbations in the probability measure of the
underlying probability space. The authors bound the distance among any two probability
measures by the Kantorovitch functional on the two measures, and use the stability result
to select scenarios by minimizing the following Kantorovich functional:

µ̂(P,Q) = inf{
∫

Ω×Ω

‖ω − ω̃‖2η(d(ω, ω̃)) : η(B × Ω) = P (B),

η(Ω×B) = Q(B),∀B ∈ B}

where (Ω,B, P ) is the probability space of the stochastic programming formulation and the
minimization is over η. For discrete probability measures P , Q, calculating the distance
µ̂(P,Q) requires solving a linear program. However, for a given original measure P the
search for a measure Q that minimizes the Kantorovich functional becomes a combinatorial
problem. The authors provide efficient scenario reduction and scenario selection algorithms
for approximate solutions to the problem. The scenario reduction algorithm proceeds by
removing scenarios from the set Ω and redistributing mass in order to arrive at a pre-
specified number of desired scenarios. The scenario selection algorithm proceeds by adding
scenarios to an originally empty set of scenarios in order to arrive at a desired number of
selected scenarios.

In the scenario reduction algorithm, the scenario to be removed is the one closest to all
scenarios remaining in the scenario set. The mass of the removed scenario is allocated to its
nearest neighbor that remains in the scenario set. Morales et al. [59] propose a variant of
this scenario reduction algorithm that removes the scenario that causes the least change in
the second stage costs of the optimization problem.

We proceed by presenting a scenario selection algorithm for systems exposed to net load
uncertainty that can be caused by renewable production uncertainty or demand uncertainty.
We then consider the more complex situation of a transmission-constrained system with
transmission line and generator failures, and propose a scenario selection algorithm that
formalizes the intuition that is used in the scenario selection algorithm of Section 4.1.

1Note that stochastic unit commitment does not belong to this family of problems since it is a mixed inte-
ger linear program. Nevertheless, the proposed scenario selection algorithms are shown to attain satisfactory
performance in the case study of Gröwe-Kuska et al. [38].
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4.1 Scenario Selection in the Absence of Contingencies

In Section 8.2 we study a unit commitment model without transmission constraints and
contingencies, where wind power production is the only stochastic input. Despite the theo-
retical justification of the scenario reduction algorithm presented by Dupacova et al. [30] and
Heitsch et al. [39], the algorithm is not guaranteed to preserve the moments of hourly wind
generation. Due to the predominant role of fuel costs in the operation of the system, the
accurate representation of average wind supply in the case of large-scale wind integration is
crucial for properly guiding the weighing of scenarios. Moreover, the modeler cannot specify
certain scenarios which are deemed crucial. For example, in the case of wind integration,
the realization of minimum possible wind output throughout the entire day needs to be
considered explicitly as a scenario. Otherwise, there is the possibility of under-committing
resources and incurring overwhelming costs from load shedding in economic dispatch.

In order to overcome the drawbacks that arise from implementing the scenario reduction
algorithm of Dupacova et al. [30] and Heitsch et al. [39], we generate a large number of
samples from the statistical model of the underlying process and select a subset of samples
based on a set of prescribed criteria that are deemed important. We then assign weights
to each scenario such that the first moments of hourly wind output are matched as closely
as possible. Scenario selection algorithms that match certain statistical properties of the
underlying process have been proposed in previous literature, e.g. by Hoyland and Wallace
[44]. Our proposed algorithm proceeds as follows:

Step (a). Define the size N of the reduced scenario set Ω̂ = {ω1, . . . , ωN}, where Ω ⊂ RT

is the sample space and T is the planning horizon of the unit commitment problem.
Step (b). Generate a sample set ΩS ⊂ Ω that is adequately large. The appropriate sample

size can be chosen such that
∑
ω∈ΩS

CD(ω)

|ΩS|
converges, where CD(·) is the cost of a commonly

used deterministic unit commitment policy that can be derived from the solution of (DUC),
Equations (3.1) - (3.19).

Step (c). Define a set of criteria that are deemed important for the scenario set. Select
the set of scenarios Ω̂ ⊂ ΩS that best satisfy these criteria.

Step (d). Weigh the selected scenarios such that hourly moments are matched as closely
as possible:

min
πs,s∈{1,...,N}

∑
t∈T

(
∑
s∈S

πsω
s
t − µt)2

s.t.
(4.1)

∑
s∈S

πs = 1 (4.2)

πs ≥ 0.01, (4.3)
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where µt is the mean of the process for period t. The lower bound for the probabilities is
included in order to ensure that all scenarios are considered, albeit with a small weight.

In the results that we present in Section 8.2 we use the following eleven criteria in step
(c) for selecting wind power production scenarios [73]: the scenario closest to the sampled
mean; the scenario resulting in net load with the greatest variance; the scenario resulting
in net load with the least variance; the scenario resulting in net load with the greatest
morning up-ramp; the scenario resulting in net load with the greatest evening up-ramp;
the scenario resulting in net load with the greatest sum of hourly absolute differences; the
scenario resulting in net load with the greatest min-to-max within the day; the scenario with
the least aggregate wind output throughout the day; the scenario with the greatest aggregate
wind output throughout the day; the scenario resulting in the greatest observed net load
peak; and the scenario resulting in net load with the greatest observed change within one
hour.

4.2 Scenario Selection in the Presence of Contingencies

The introduction of transmission constraints and contingencies to the model complicates the
task of scenario selection significantly. Transmission constraints necessitate the consideration
of locational renewable energy production in each renewable energy site of the network. The
scenario selection algorithms of Dupacova et al. [30] and the scenario selection algorithm
of Section 4.1 have been applied to systems that are not constrained by transmission, with
the sample space Ω typically representing a single stochastic process rather than correlated
processes in multiple regions or contingencies.

Assuming independence among net load outcomes and contingencies, which is a very rea-
sonable assumption, one natural approach for generating scenarios would be to decouple the
selection of contingencies from the selection of net load scenarios. The previously discussed
algorithms could then be adapted for selecting multi-area net load scenarios, and these sce-
narios could be multiplexed with a set of significant contingencies. One natural question
that this approach raises is which contingencies to select and how to weigh them relative to
each other. For example, the failure of any given generator has a likelihood of 1%, however
in a network with 124 generators the chances of a single-generator failure are approximately
36.0%. The question arises, then, if a scenario includes the failure of a single generator, how
should that scenario be weighed against other scenarios? Which generator failures should we
include in the scenario set? Should we consider composite failures, for example the failure of
multiple generators, multiple lines, or generators and lines in the same scenario? It quickly
becomes clear that a methodical approach for scenario selection is needed.
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4.2.1 Importance Sampling

The scenario selection algorithm that we propose in this section is inspired by importance
sampling. Importance sampling is a statistical technique for reducing the number of Monte
Carlo simulations that are required for estimating the expected value of a random variable
within a certain accuracy. For an exposition see Mazumdar [55] and Infanger [46]. As Pereira
and Balu [75] report, this technique has been used in reliability analysis in power systems with
composite generation and transmission line failures, where the estimated random variable is
a reliability metric (e.g. loss of load probability or expected load not served).

Given a sample space Ω and a measure p on this space, importance sampling defines a
measure q on the space that reduces the variance of the observed samples of the random
variable C, and weighs each simulated outcome ω by p(ω)/q(ω) in order to un-bias the
simulation results. The measure q is ideally chosen such that it represents the contribution
of a certain outcome to the expected value that is being computed, i.e.

q?(ω) =
p(ω)C(ω)

EpC
(4.4)

Of course, it is not possible to determine this measure since EpC is the quantity we wish to
compute. Nevertheless, the intuition of selecting samples according to their contribution to
the expected value can be carried over to scenario selection. For example, in the algorithm
of Section 4.1 we include the wind power production outcome with the lowest aggregate
production over the entire day. Although the likelihood of this outcome is very low, its
impact on system costs can be extremely high, making its contribution to expected cost
p(ω)C(ω) significant.

4.2.2 Proposed Algorithms

The extension of the intuition of importance sampling to the case of scenario selection is
straightforward: if the ideal measure q? of Equation (4.4) were closely approximated by
a measure q, then selecting a small number of outcomes according to this measure and
weighing them according to p(ω)/q(ω) would provide an accurate estimate of the expected
cost. Therefore, samples selected according to q can be interpreted as representative scenarios
that need to be weighted according to p(ω)/q(ω) relative to each other in the stochastic unit
commitment formulation in order not to bias the result.

As in the case of the scenario selection algorithm of Section 4.1, we proceed by generating
an adequately large subset of the sample space ΩS = {ω1, . . . , ωM} and we calculate the
cost of each sample against a deterministic unit commitment policy CD(·). Assuming C̄ =
M∑
i=1

CD(ωi)

M
provides an accurate estimate of expected cost, we interpret the sample space of

the system as ΩS and the measure as the uniform distribution over ΩS, hence p(ω) = M−1

for all ω ∈ ΩS. We then obtain q(ωi) = CD(ωi)/C̄, i = 1, . . . ,M and each selected scenario
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is weighed according to πs = p(ω)/q(ω), hence πs/πs′ = CD(ωs
′
)/CD(ωs) for each pair

of selected scenarios ωs, ωs
′ ∈ Ω̂. Hence, the proposed algorithm selects scenarios with a

likelihood that is proportional to their cost impact, and discounts these scenarios in the
stochastic unit commitment formulation in proportion to their cost impact in order not to
bias the stochastic unit commitment policy. We therefore propose the following algorithm:

Step (a). Define the size N of the reduced scenario set Ω̂ = {ω1, . . . , ωN}.
Step (b). Generate a sample set ΩS ⊂ Ω, where M = |ΩS| is adequately large. Calculate

the cost CD(ω) of each sample ω ∈ ΩS against a deterministic unit commitment policy and

compute the average cost C̄ =
M∑
i=1

CD(ωi)

M
.

Step (c). Choose N scenarios from ΩS, where the probability of picking a scenario ω is
CD(ω)/C̄.

Step (d). Set πs = CD(ω)−1 for all ωs ∈ Ω̂.

Motivated by the fact that the cost for each scenario is largely dependent on the type
of contingency that occurs (e.g. single-generator failure, 2-generator failure and so on)
and, to a lesser extent dependent on the net load realization, we can first select the types of
contingencies that are deemed most important and subsequently nest the previously proposed
method for selecting net load realizations for each type of contingency.

4.2.3 Discussion

The proposed algorithm ensures that, as long as the cost impacts of all selected scenarios are
of the same order of magnitude, which is commonly the case, then so are the weights in the
stochastic unit commitment formulation. As a result, each scenario influences the first-stage
decisions. This should be contrasted to the case where the probabilities of certain scenarios
are very small compared to the probabilities of other scenarios. In that case, as we can see
in Equation (5.9), the influence of scenarios with very small probability is minimal in the
objective function of (P2), and consequently these scenarios will not tend to influence the
optimal solution of (P2) and therefore the first-stage decision, i.e. the commitment of slow
generators. In addition, from Equations (5.11) and (5.12) we see that scenarios with small
probabilty exhibit very small changes in the values of their dual multipliers, which further
supports the argument that these scenarios do not influence (P2). In fact, we observed that
the stochastic unit commitment policy remained completely unaffected by scenarios that
were 100 times less likely to occur than their competing scenarios in the stochastic unit
commitment formulation. Therefore, the inclusion of these scenarios introduced superfluous
computational load. This is guaranteed not to happen with the proposed scenario selection
algorithm.

The rationale of the proposed scenario selection method suggests a heuristic for deciding
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on the appropriate number of scenarios to include in the stochastic unit commitment formu-
lation. Namely, the modeler should select a certain confidence interval and select N to be

such that the moving average C̄n =

∑n
i=1CD(ωi)

n
lies within the interval.

An additional appealing feature of the proposed algorithm is that it selects a rich set
of multi-area net load outcomes. This should be contrasted to the case where we would
multiplex net load scenarios selected according to the previously discussed algorithms [30],
[38], [73] with contingency scenarios. Moreover, in contrast to the scenario selection method
proposed in Section 4.1, the proposed algorithm does not depend on the judgement of the
modeler for specifying criteria that are deemed important. The proposed procedure can be
applied to a broad setting of problems under uncertainty in a straightforward fashion. In
Section 8.3 it is shown that the resulting stochastic unit commitment policy outperforms
common deterministic rules for four case studies of uncertainty.
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Chapter 5

Decomposition of the Stochastic Unit
Commitment Problem

The stochastic formulation of the unit commitment problem was pioneered by Takriti
et al. in 1996 [93]. The authors formulated a multi-stage stochastic unit commitment
problem for generating a robust unit commitment schedule that can withstand load forecast
errors and generator failures at an acceptable cost. Numerous publications adopted Takriti’s
formulation for studying the operation of power systems under uncertainty. As we discuss
in Chapter 3, interest in the stochastic unit commitment problem has recently been revived
due to its relevance to renewable energy integration studies.

The majority of researchers that consider stochastic unit commitment problems of con-
siderable size cannot attack the problem directly by the branch and bound algorithm, but
instead exploit the decomposable structure of the problem across scenarios, generators and
time periods. The literature presents a variety of decomposition schemes and algorithms for
optimizing the dual function, nevertheless the key idea of formulating and decomposing the
dual is common across all works. We summarize a variety of publications in this area.

Takriti et al. [93] use the progressive hedging algorithm of Rockafellar and Wets [82] to
decompose the problem across time periods. The authors apply the model to the Michigan
Electric Power Coordinating Center. The model includes one hydro facility and more than
one hundred thermal units. The authors solve the problem for 22 scenarios.

The work of Takriti et al. was soon followed by the multi-stage model of Carpentier et
al. [22]. The authors use the augmented Lagrangian algorithm to decompose the problem
across generators by relaxing the market clearing constraint at each node of the scenario tree
and introducing a quadratic penalty term for deviating from this constraint. They study
a system with 50 generators over a 48 hour horizon with approximately 100 scenarios and
report duality gaps that do not exceed 2%.

Nowak and Römisch [62] study a stochastic unit commitment model with load uncer-
tainty. The authors decompose the problem across generators and hydro facilities by relaxing
the market clearing and reserve requirement constraints and use a proximal bundle algorithm
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for updating dual multipliers. The authors test their algorithm on a German utility system
with 25 thermal generators and 7 hydro reservoirs. They are able to solve problems with 20
scenarios within 2 minutes, and problems with 200 scenarios within 20 minutes.

Shiina and Birge [88] develop a column generation algorithm for decomposing a multi-
stage stochastic program across generators. Their solution times range between 79 seconds
and 8962 seconds for problems consisting of 10-20 units, 24-48 periods and 4-8 scenarios.

Recently, alternative formulations of the unit commitment problem have been proposed
in order to address uncertainty. These formulations are motivated by the fact that system
operators tend to operate the system in order to prevent worst-case outcomes, and also by
the fact that the stochastic programming formulation requires an excessive amount of infor-
mation about the underlying uncertainty. Ozturk et al. [70] formulate a chance-constrained
optimization of the unit commitment problem where reserve requirements are replaced by a
constraint that bounds the probability of not meeting load for some hour of the day. The
authors use Lagrangian relaxation on the market clearing constraint and use the subgra-
dient algorithm for updating dual multipliers. The authors solve various systems with up
to 100 generators and a planning horizon of up to 96 hours within 188 minutes. Robust
optimization has also been considered recently as an appealing formulation. Jiang et al.
[47] use a robust formulation of the unit commitment problem and assume polyhedral and
cardinal uncertainty [8] on system demand. The authors use Benders’ decomposition for
solving the problem and demonstrate that the the inclusion of transmission and ramping
constraints complicates the problem considerably. Similar work has been done recently by
Bertsimas et al. [7]. However, these models do not extend to account for contingencies in a
straightforward fashion.

We proceed with a brief introduction of Lagrangian relaxation and then present a dual
decomposition algorithm for solving the stochastic unit commitment model. We also discuss
the possibility of parallelizing the algorithm.

5.1 Lagrangian Decomposition and the Subgradient Al-

gorithm

Problems with decomposable structure are often characterized by two types of constraints:
a set of constraints that partition decision variables and strongly couple decision variables
within each subset of the partition, and a set of complicating constraints that loosely couple
decision variables across the subsets of the partition. An approach for exploiting the structure
of these problems, then, is to relax the complicating constraints and optimize the dual
function. Since the complicating constraints are loosely coupled, there is a manageable
number of dual variables, but most importantly the dual function can be decomposed to
subproblems containing only subsets of the decision variables of the original problem.

The dual function is guaranteed to be convex, but not differentiable, which suggest
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the use of the subgradient algorithm for optimizing the dual function. The subgradient
algorithm is a first-order algorithm which is an analog of the steepest descent algorithm for
nondifferentiable optimization. The following is drawn from Section II.5.4 of Nemhauser and
Wolsey [61].

Given a function z, which need not be convex, s is defined as a subgradient of z at x0 if

z(x) ≥ z(x0) + s(x− x0) for all y. (5.1)

Consider a mixed integer program MIP with a set of complicating constraints and a
second set of constraints Q:

zMIP = max{cx : Ax ≤ b, x ∈ Q} (5.2)

By relaxing the complicating constraints, we obtain the following dual function zLR(λ)
in the dual space:

zLR(λ) = max
x∈Q
{cx+ λ(b− Ax)}. (5.3)

The Lagrangian is an upper bound to the optimal solution of the original problem. The
best upper bound zLD to the optimal solution of the original problem is obtained by solving
for the dual function.

zLD = min
λ≥0

zLR(λ). (5.4)

What makes the subgradient algorithm appropriate for optimizing the dual function is
that the subgradient of a dual function can be readily computed once we compute the dual
function at a certain point λ0. This follows from Proposition 4.1 of Nemhauser and Wolsey
[61]:

Proposition 5.1.1 If x0 is an optimal solution to LR(λ0) in Equation (5.3), then s0 =
b− Ax0 is a subgradient of zLR(λ) at λ0.

The subgradient method is based on the following iteration:

x(k+1) = x(k) − αks(k), (5.5)

where x(k) is the k-th iterate, s(k) is any subgradient of z at x(k) and ak > 0 is the k-th
step size. Since this is not a descent method, we keep track of the best solution so far,
z

(k)
best = min

i=1,···,k
z(x(i)). In theory, for non-summable diminishing stepsizes, which is a sequence

of stepsizes satisfying lim
k→∞

αk = 0 and
∞∑
k=1

αk = ∞, the algorithm converges to the optimal

solution: z̄ = lim
k→∞

z
(k)
best. In practice, non-summable diminishing stepsize results in very slow

convergence. An alternative stepsize is presented in the next section that works better in
practice.
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5.2 Subgradient Algorithm for Stochastic Unit Com-

mitment

By dualizing the constraints of Equations (3.37) and (3.38) we get the following Lagrangian:

L =
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst)

+
∑
g∈Gs

∑
s∈S

∑
t∈T

πs(µgst(ugst − wgt) + νgst(vgst − zgt)).
(5.6)

The first subproblem is, for each scenario,

(P1s) : min
∑
g∈G

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst)

+
∑
g∈Gs

∑
t∈T

πs(µgstugst + νgstvgst)

s.t.

(5.7)

(3.21), (3.22), (3.23), (3.24), (3.25), (3.26), (3.27), (3.28), (3.31), (3.32), (3.34), (3.36)

pgst ≥ 0, vgst ≥ 0, ugst ∈ {0, 1}, g ∈ G, t ∈ T. (5.8)

Note that if we did not have vgst ≤ 1 for g ∈ Gs, the problem could have been unbounded.
Therefore, although the constraint in Equation (3.34) is superfluous for the original formu-
lation, it is necessary for the proposed relaxation otherwise we get a dual function that
is unbounded and cannot be used for a decomposition algorithm. The second subproblem
becomes:

(P2) : min−
∑
g∈Gs

∑
s∈S

∑
t∈T

πs(µgstwgt + νgstzgt)

s.t.
(5.9)

(3.29), (3.30), (3.33), (3.35)

wgt ∈ {0, 1}, zgt ≥ 0, g ∈ Gs, t ∈ T. (5.10)

The updating of the dual variables is as follows:

µk+1
gst = µkgst + αkπs(w

k
gt − ukgst), g ∈ Gs, s ∈ S, t ∈ T (5.11)

νk+1
gst = νkgst + αkπs(z

k
gt − vkgst), g ∈ Gs, s ∈ S, t ∈ T, (5.12)

where wkgt, z
k
gt is the optimal solution of (P2) at iteration k and ukgst, v

k
gst is the optimal solution

of (P1s) at iteration k. We could have relaxed only the non-anticipativity constraint on the
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commitment variables. The advantage of also relaxing the non-anticipativity constraint on
the startup variables is that (P1s), s ∈ S, is a smaller problem, since the constraints on the
unit commitment of the slow generators are a part of (P2). An additional advantage of this
choice of decomposition is that, at each step, the slow generator unit commitment solutions of
the first subproblem can be used for generating a feasible solution to the original problem by
solving an economic dispatch problem (EDs), Equations (3.41) - (3.49), for scenario s ∈ S.
As a result, at each step of the algorithm we get an upper bound on the optimal solution,
as well as a feasible schedule. This should be contrasted to the case where we would have
chosen to relax only the non-anticipative constraints on the unit commitment variables, and
not the startup variables.

The step size rule follows Fisher [32] and Held et al. [40] and is given by

αk =
λ(L̂− Lk)∑

g∈Gs

∑
s∈S

∑
t∈T

(π2
s(u

k
gst − wkgt)2 + π2

s(v
k
gst − zkgt)2)

, (5.13)

where λ is a constant parameter, Lk is the value of Equation (5.6) at the optimal solution
and L̂ is an upper bound on the optimal solution.

In Figure 5.1 we present a schematic of the decomposition algorithm implemented in
parallel solvers. The second-stage subproblems (P1s), and the economic dispatch problems
(EDs) that are solved for obtaining a feasible solution can be solved in parallel. Additionally,
the Monte Carlo simulations that are performed for evaluating the performance of the first-
stage decisions can be implemented in parallel. We have implemented the algorithm on
a cluster of 16 machines using the Parallel Virtual Machine (PVM) library and the Java
callable library of CPLEX.
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Figure 5.1: Parallelization of the decomposition algorithm for the stochastic unit commit-
ment model.
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Chapter 6

Stochastic Models

Our model uses three stochastic inputs, as we show in Figures 2.1 and 2.2: renewable
power production, firm (inflexible) demand and real-time prices. The case study in Chapter
8 focuses on wind power integration. We will therefore discuss the calibration and simulation
of a multi-area wind production model. The demand model can be developed as a special
case. The real-time price process is modeled as a recombinant lattice and is used for driving
the response of deferrable demand coupled with renewable production. The derivation of
the real-time price model is described in Section A of the appendix.

The power output of wind generators is a nonlinear function of wind speed. Wind gen-
erators produce no output whenever wind speed is below a cut-in threshold. Once wind
speed exceeds the cut-in threshold the power output of a wind generator increases as a cubic
function of wind speed, until a saturation point. Beyond the saturation point, wind power
production remains constant at the nominal power output of the generator. When wind
speed exceeds a certain cut-off threshold, generators shut down in order to prevent mechan-
ical damage. Due to the highly nonlinear relationship of wind power production to wind
speed, the statistical modeling of wind power production is very challenging. It is therefore
common in the wind power modeling literature to model wind speed and use a static power
curve to calculate the corresponding wind power production.

The task of modeling wind speed consists of fitting wind speed data to a parametric or
non-parametric distribution, removing seasonal and daily patterns and fitting an appropriate
time series model to the underlying noise in order to capture the strong temporal correlation
of wind speed time series. Early work on wind power modeling performed by Brown et al.
[18] follows this approach. The authors list various parametric distributions for fitting wind
speed data, such as the Weibull, inverse Gaussian and exponential distribution. The authors
use an exponential function to transform their data to an approximately Gaussian data set.
They remove hourly means and estimate the order of an appropriate autoregressive model
and they use the Yule-Walker equations [17] to estimate the parameters of the autoregressive
model. Torres et al. [94] follow the same methodology as Brown et al. [18]. The authors
use autoregressive moving average models and find that these more general models provide
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a more satisfactory fit than simpler autoregressive models.
Due to the introduction of transmission constraints, it is not sufficient to describe ag-

gregate wind power production in the network, but instead it is necessary to specify the
production of wind power in each location of the network. This necessitates the develop-
ment of a multi-area wind power production model, which needs to faithfully reproduce
both the temporal as well as spatial correlations of wind power production. In recent work,
Morales et al. [58] develop a multi-area wind speed model by using a noise vector that
drives a vector autoregressive process. In order to simplify the calibration of the model, the
authors assume a diagonal matrix of autoregressive coefficients, which implies that spatial
correlations among wind speed in various locations are captured fully by the underlying noise
vector. The calibration and simulation model that we use follows the approach of Morales
et al. [58].

6.1 Calibration

Given a multi-area data set ykt, where k indexes location and t indexes time, the first step
of the calibration procedure is to filter the data set in order to obtain an approximately
Gaussian data set yGkt. Brown et al. [18], Torres et al. [94] and Morales et al. [58] use
this approach for transforming Weibull-distributed wind speed data to Gaussian data, and
Callaway [21] uses a non-parametric transformation. In the single-area wind integration
study of Section 8.2 we find that the inverse Gaussian distribution provides a satisfactory
fit for the data set. For the multi-area wind integration study of Section 8.3, no single
parametric distribution provides a close fit for the observed data in all locations, therefore
we fit an empirical distribution F̂k(·) to the data of each location k.

We next follow the methodology that is suggested in Brown et al. [18], Torres et al.
[94] and Callaway [21] for removing diurnal and seasonal patterns. We normalize the data
by subtracting the hourly mean and dividing by the hourly standard deviation in order to
obtain a Gaussian stationary data set yGSkt for each location. Systematic patterns can be
monthly, seasonal, or may even vary between weekdays and weekends as is the case for load
data. In each case, the appropriate portion of the data set should be chosen for estimating
the mean and variance. The resulting time series yGSkt can be modeled by an autoregressive
model:

yGSk,t+1 =

p∑
j=0

φ̂kjy
GS
k,t−j + ω̂kt, (6.1)

where ω̂kt is the estimated noise and φ̂kj, j ∈ {1, . . . , p}, are the estimated coefficients of the
autoregressive model. The calibration process is summarized in the following steps:
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Step (a). Transform the data in order to obtain a data set that follows a Gaussian
distribution:

yGkt = N−1(F̂k(ykt)), (6.2)

where ykt is the data, yGkt is the transformed data that follows a Gaussian distribution, N−1(·)
is the inverse of the cumulative distribution function of the normal distribution and F̂k is
the cumulative function of the (parametric or non-parametric) fit for the data in location k.

Step (b). Remove systematic seasonal and diurnal effects:

yGSkt =
yGkt − µ̂kmt
σ̂kmt

, (6.3)

where yGSkt is the transformed data that is Gaussian distributed and stationary, and µ̂kmt and
σ̂kmt are the sample mean and standard deviation respectively for location k, epoch (e.g.
month or season) m and hour t.

Step (c). Use the Yule-Walker equations [17] to estimate the autoregressive parameters
φ̂kj and covariance matrix Σ̂ of the residual noise obtained from Equation (6.1).

Load time series are typically simpler than wind speed time series since the distribution
of noise about the mean load is already Gaussian, making it possible to skip step (a) of the
above procedure. It is, however, necessary to differentiate between weekdays and weekends
for the estimation of the mean and variance in step (b), in contrast to the wind speed
calibration procedure where this differentiation is not necessary.

6.2 Simulation

In order to simulate multi-area wind power production, we assume that the process is driven
by an autoregressive ’noise’ vector. For K locations and p periods of lag the model is:

Ykt =

p∑
j=1

φkjYk,t−j + ωkt, (6.4)

where Φ = (φkj), k ∈ {1, . . . , K}, j ∈ {1, · · · , p}, is the matrix of autoregressive parameters
and (ωkt), k ∈ {1, · · · , K}, are independent, identically distributed, multivariate Gaussian
random variables with mean 0 and covariance matrix Σ. The simulation of the multi-area
process can then be summarized in the following steps:

Step (a). Generate autoregressive noise of order p by using the estimated autoregressive
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parameters and variance.

Y GS
kt =

p∑
j=1

φ̂kjY
GS
k,t−j + ωkt, (6.5)

where ωkt = (L̂ω)k, ω are independent standard normal random vectors with K entries, L̂ is
the Cholesky factorization of Σ̂ and Y GS

kt is the Gaussian stationary autoregressive process
for location k.

Step (b). Transform Y GS
kt by its seasonal and hourly mean and variance:

Y G
kt = σ̂kmtY

GS
kt + µ̂kmt, (6.6)

where Y G
kt is the resulting process that is non-stationary, Gaussian distributed.

Step (c). Transform the resulting process such that it obeys the non-Gaussian distribution
of the original data:

Ykt = F̂−1
k (N(Y G

kt )) (6.7)

where Ykt is the non-stationary process with the same distribution as the original data set
for each location, N(·) is the cumulative distribution function of the normal distribution and
F̂−1
k is the inverse of the cumulative function of the data for each location.

Step (d). Use an approximation P̂k(·) of the aggregate power curve for each location to
simulate wind power production:

Pkt = P̂k(Ykt), (6.8)

where Pkt is the simulated wind power production process for each location.

For the load time series, steps (c) and (d) of the simulation procedure are not necessary.

6.3 Fit of the Models to Observed Data

For the case studies of Chapter 8 we use wind speed and wind power production data from
the 2006 data set of the National Renewable Energy Laboratory (NREL) Western Wind
and Solar Integration Study (WWSIS), described by Potter et al. [79]. We study two wind
integration cases. The first represents a moderate energy integration level for wind power
corresponding to the 2012 integration target of California, and the second case represents
a deep integration level corresponding to the 2020 integration target. Ex post we have
estimated that the moderate integration case corresponds to approximately 7% wind energy
penetration, while the deep integration case corresponds to approximately 14% wind energy
penetration. In the subsequent analysis we will refer to these cases as moderate and deep
integration respectively.
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Table 6.1: Current and projected capacity of wind power installations (MW).

County Existing Moderate Deep
Altamont 954 954 1,086
Clark - - 1,500
Imperial - - 2,075
Solano 348 848 1,149
Tehachapi 1,346 4,886 8,333
Total 2,766 6,688 14,143

In order to collect data for each case, we examined the interconnection queue of the
California ISO until 2020 (see [19]), and placed individual wind generators in our model
by matching the geographical locations of planned wind power installations with the corre-
sponding wind park data in the WWSIS data set. In Table 6.1 we present the location of
existing wind generation capacity, as well as capacity for the moderate and deep integration
cases.

Single-area wind integration study (Section 8.2). In Section 8.2 we present a study
of integrating wind power in a network without transmission constraints, where load is
assumed to follow a deterministic pattern and the unique source of uncertainty is wind power
production. We isolate wind power production uncertainty in order to carefully analyze its
impacts on the system, before proceeding to a more complicated analysis in Section 8.3.
As we discuss in the beginning of this chapter, we model wind speed with a time series
model and use a piecewise linear approximation of wind speed to wind power production.
The piecewise linear approximation of wind speed to wind power for the Tehachapi area is
shown in the lower right frame of Figure 6.2. The fit of the wind speed and wind power
production model to the corresponding data for the deep integration case is shown in the
left and right frame of Figure 6.1 respectively. We use an inverse Gaussian distribution as
a parametric fit to the wind speed data. The deviations in the fit arise from the fact that
the wind speed distribution is not exactly inverse Gaussian and also due to the fact that the
aggregate power curve cannot exactly reproduce the behavior of the scatter plot in Figure
6.2, which is produced by aggregating data from hundreds of locations.

Multi-area wind integration study with contingencies (Section 8.3). In Section
8.3 we present an extension of our study to the case of a transmission-constrained network,
which necessitates the development of a multi-area wind power production model. Demand
is assumed to be deterministic. The fit of the wind power production model to the data set
for each location is shown in Figure 6.2. In the lower left frame of the figure we observe a
discrepancy between the model and the data for peak wind production levels in the area of
Tehachapi. This can be attributed to the piecewise linear approximation of the power curve
in the lower right frame of the figure. In order to alleviate this problem, we experimented
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Figure 6.1: Probability distribution function of wind speed (left) and wind power production
(right) for deep integration for the single-area wind production case study.

with further partitioning the Tehachapi area in smaller regions. However, this introduced
greater inaccuracy to the model due to the higher dimensions of the correlation matrix Σ. As
a result, we chose to model five areas as the best compromise between capturing locational
dependencies and retrieving marginal wind speed distributions at each location.

Demand response integration study (Section 8.4). In Section 8.4 we study the im-
pact of integrating demand flexibility to the system. In this study we assume that inflexible
(firm) demand is stochastic. As in the case of wind power production, we assume a second-
order autoregressive model. The fit of the model to the data is shown in Figure 6.3.

As we discuss in Chapter 7, in order to model the optimal response of deferrable demand
across time periods we use a stochastic dynamic programming formulation where both real-
time electricity prices and wind power production are stochastic. In order to control the
growth of the state space of the dynamic program, we use a lattice model for real-time prices
and wind power production. The fit of the price and wind power production lattice models
are shown in the left and right frame of Figure 6.4 respectively. 1

1The stochastic model used in this part of the study reverses the order of steps (b) and (c) in the
calibration and simulation phases of Sections 6.1, 6.2. In order for the procedure of Sections 6.1 to be valid,
the distribution of the transformed data after step (b) of the calibration has to be Gaussian for each hour
of the day. This is a stringent assumption that we relax in the third part of our study on demand flexibility
by reversing the order of steps (b) and (c). By reversing the order of steps (b) and (c), we are implicitly
assuming that the observed signal is produced by overlapping noise of an arbitrary distribution over a
systematic average pattern. The Kantorovich distance of the estimated measure from the measure obtained
from the data set is 39.7 for the price data and 4824 for the wind data using the original methodology
presented in Sections 6.1, 6.2. The respective distances when steps (b) and (c) are reversed are evaluated
to 37.2 and 4975 for the price and wind data respectively, indicating a small difference among the two
procedures.
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Figure 6.2: In reading order: load duration curves for Altamont, Clark County, Imperial,
Solano and Tehachapi, and power curve at the Tehachapi area for deep integration for the
multi-area wind integration case study.
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Figure 6.3: Probability distribution function of inflexible demand for the deferrable demand
case study.

Figure 6.4: Probability distribution function of real-time electricity prices (left) and wind
power production (right) for deep integration for the deferrable demand case study.



46

Chapter 7

Demand Flexibility

The large-scale integration of renewable resources in power systems has revived the in-
terest of researchers on schemes for incorporating demand-side flexibility in power systems
operations and power markets. In this Chapter we describe three fundamental approaches for
modeling demand-side flexibility: centralized load dispatch by the system operator, demand-
side bidding and coupling renewable power supply with deferrable demand. We discuss the
issues that arise with centralized load dispatch and demand-side bidding that motivate us
to consider coupling renewable supply with deferrable demand. We then present the math-
ematical model of each demand-response approach and explain how it can be integrated in
the stochastic unit commitment model in order to quantify the benefits of integrating flexible
demand in power system operations.

The most efficient approach for exploiting demand-side flexibility would be for the system
operator to centrally co-optimize the dispatch of demand-side resources and generators. This
is unrealistic in practice as the system operator operates the system at a bulk scale and
cannot enforce control on the system down to individual household loads. In addition, the
optimization problem at hand is too complex to solve. Nevertheless, this ideal model provides
a limit on the potential benefits of demand flexibility. Sioshansi [89] considers this model in
a deterministic setting. We extend this approach to account for the uncertainty introduced
by renewable energy supply and inflexible demand and present the formulation in Section
7.1.

An alternative approach for exploiting demand-side flexibility that we explore in Section
7.2 is to establish real-time pricing at the retail level. This possibility was introduced by
Schweppe et al. [87] and is discussed by Borenstein et al. [13]. The common approach
of reasoning about real-time pricing in the power system economics literature is the use of
decremental demand bids. Sioshansi and Short [90] use this approach in a study of the
impact of real-time pricing on wind power integration. Borenstein and Holland [12] and
Joskow and Tirole [48], [49] also use this approach for analyzing retail pricing. However,
there is strong political opposition to this approach as it exposes retail consumers to the
volatility of electricity prices. In addition, real-time prices often fail to convey the economic



47

value of demand response due to the non-convex operating costs of system operations [65],
[86]. This effect has been reported by Sioshansi [89], who notes that the failure of real-time
prices to capture non-convexities induces a dispatch of deferrable resources that results in
excessive startup and minimum load costs. Moreover, demand-side bidding fails to capture
the cross-elasticity of deferrable demand over time. Demand flexibility is often characterized
as a request for a certain amount of energy over a given time interval. Demand bids fail to
capture this effect by making demand appear independent across time periods.

In Section 7.3 we present a contractual agreement for coupling the operations of renew-
able resources with deferrable demand that attempts to override the difficulties that arise
from centralized load dispatch and demand-side bidding. The motivation of coupling renew-
able generation with deferrable demand is to create a net resource that appears ”behind the
meter” from the point of view of the system operator. By coupling their consumption with
renewable resources, deferrable consumers can largely absorb the uncertainty of renewable
energy fluctuation. The control of the deferrable resources is assigned to a demand-side
aggregator rather than the system operator. The aggregator adapts the inter-temporal de-
mand of power from deferrable loads in order to utilize the available renewable resource while
minimizing its reliance on the backup generators of the system.

In an alternative approach, which is described by Hirst and Kirby [43] and Kirby [51],
flexible loads can participate in the ancillary services market. An aggregator could bid
on behalf of a population of loads for providing ancillary services to the system operator.
The aggregator would then be responsible for coordinating the aggregate consumption of
loads by some price-based or direct control method. The technical feasibility of demand-
side aggregation for the provision of spinning reserve has been studied in practice by Eto
[31]. As ancillary services requirements are expected to increase due to renewable energy
integration, this solution could prove lucrative for users who would be willing to respond
to the instantaneous needs of power system operators. However, there are concerns about
defining market products that correspond to the types of services that loads can actually
offer, which raises the need for reform in existing electricity markets. As a result, it is
probable that policy deliberations will delay the process of using aggregators for managing
significant populations of load.

7.1 Centralized Load Control

In the centralized load control approach we assume that the system operator co-optimizes
the dispatch of flexible loads and generation resources both in the day-ahead scheduling as
well as in the economic dispatch phase. The system operator solves the following problem
in the day-ahead phase:
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(CSUC) : min
∑
g∈G

∑
s∈S

∑
t∈T

πs(Kgugst + Sgvgst + Cgpgst)

s.t.
(7.1)

∑
g∈G

pgst = Dst + Est, s ∈ S, t ∈ T (7.2)∑
t∈T

Est = R, s ∈ S (7.3)

0 ≤ Est ≤ C, s ∈ S, t ∈ T (7.4)

(3.25), (3.26), (3.27), (3.28), (3.29), (3.30), (3.31), (3.32),

(3.33), (3.34), (3.35), (3.36), (3.37), (3.38), (3.39), (3.40)

Note that, in contrast to problem (SUC) of Equations (3.20) - (3.40), we do not account
for transmission constraints. Total inflexible demand in the system is represented by Dst,
while Est represents deferrable demand. The total amount of energy consumed by deferrable
consumers is R and C represents the consumption rate constraint of deferrable demand.

Despite the fact that the centralized model is not realistic in practice, it is useful in es-
timating the capacity savings of demand flexibility. As we discuss in Figure 2.2, we use this
model to determine a day-ahead schedule for slow resources while accounting for demand
flexibility. We then compare the performance of centralized load dispatch, demand-side bid-
ding and coupling in the economic dispatch stage, after slow resources have been committed
according to (CSUC). Thus, we use (CSUC) as the stochastic unit commitment model that
allows us to quantify the capacity savings of integrating deferrable demand in power system
operations, as if the system operator had full control of load dispatch.

In order to evaluate the performance of centralized load dispatch in real time, we solve
(CSUC) for each stochastic realization of wind power supply and firm demand after fixing
the schedule of slow generators according to the optimal solution of (CSUC).

7.2 Demand Bids

The demand model that we present in this section is based on Borenstein and Holland [12]
and Joskow and Tirole [48], [49]. We assume a linear demand function that consists of a
fraction α of inflexible consumers who face a fixed retail price λR, and a fraction 1 − α
of price-responsive consumers who face the real-time price of electricity λt. The demand
function Dt(·) for each period can therefore be expressed as:

Dt(λt;ω) = at(ω)− αbλR − (1− α)bλt, (7.5)

where ω represents an element of the sample space that determines the realized inflexible
demand, at(ω) is the intercept and b is the slope of the demand function. Note that we



49

assume a common slope for all time periods and a time-varying stochastic intercept that
depends on the realization of inflexible demand.

We calibrate the demand functions such that they satisfy the following two prerequisites:
the demand functions have to yield a total daily demand of R subject to the charging rate
constraint C, and the demand functions have to be consistent with the observed inflexible
demand in the system. The calibration process can be summarized in the following steps:

Step (a). Select the fraction of inflexible demand α such that R represents a fraction
1− α of total daily demand for each day type.

Step (b). Set the slope b such that the supply to price-responsive consumers equals R
in the economic dispatch formulation (with slow generator schedules fixed according to the
optimal solution of (CSUC)).

Step (c). For each realization ω resulting in inflexible demand αDt(λ
R;ω), set at(ω) =

Dt(λ
R;ω) + bλR in order to be consistent with the observed inflexible demand.

Step (d). The inverse demand function for deferrable demand is given by Pt(qt;ω) =
1
b
(at(ω)− qt

1−α), qt ≤ C. We can then discretize the inverse demand function and include it in
the objective function of (EDc) in Equation 3.41. Demand can be represented in this general
model as a resource with negative marginal cost, and cost minimization can be interpreted
as welfare maximization.

7.3 Coupling

In this section we present a contractual agreement for coupling renewable resources with
deferrable demand. We discuss the implementation of the contract in a fashion that is
compatible with existing power system operations and power market mechanisms, and we
describe the optimal control problem faced by an aggregator that is responsible for serving
deferrable loads with renewable resources. Such load may include heating, cooling and air
conditioning, agricultural pumping, electric vehicles/plug-in hybrid electric vehicles etc.

7.3.1 Implementation

Consider an aggregator that contractually owns the output from a large group of renewable
generation assets. The aggregator enters into a contractual agreement to supply deferrable
loads. Loads specify their energy demand in the form of requests for a certain amount
of energy over a fixed time window. The aggregator can control the loads directly and
uses renewable power from its assets as the primary energy source for satisfying deferrable
demand. In the case of renewable supply shortage, the aggregator can resort (to a limited
extent) to the real-time market for procuring power at the prevailing real-time price. The
aggregator compensates deferrable loads at a rate ρ for each unit of unserved energy. Any
excess renewable power is supplied to the system. The setup is similar to dynamic scheduling
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[42], whereby demand and supply resources from different control areas pair their schedules
in order to produce a zero net output to the remaining system. Such scheduling is currently
implemented in the ERCOT market. In order to ensure that deferrable loads gain top priority
to the renewable resource, aggregators are not compensated for residual renewable supply
to the system on the basis of real-time prices, but instead receive the average real-time price
for their total supply over a fixed time interval, e.g. a month.

As Schweppe et al. [87] discuss, the operating cost benefits of incorporating demand flex-
ibility in power systems are expected to be outweighed by the savings in capital investment
on balancing generation capacity. Such savings can be ensured, in the context of coupling
contracts, by limiting the participation of aggregators in the real-time market or imposing
a demand charge on such participation that will incentivize aggregators to self-impose such
limits. It is therefore necessary to provide financial incentives to deferrable loads for limiting
their consumption to an efficient level that ensures the satisfaction of their demand while
not imposing excessive capacity requirements on the system. Priority pricing introduced by
Chao, Wilson, Oren and Smith [24], [69] and the derivative idea of callable forward contracts
introduced by Gedra and Varaiya [34], and Oren [67] can be used for limiting the participa-
tion of deferrable loads in the real-time market, while compensating loads for the capacity
savings they enable. Callable forward contracts bundle a forward contract on power supply
with a call option that can be exercised by the system operator in real time in order to
limit the consumption of deferrable loads whenever real-time price exceeds a strike price k.
Callable forward contracts therefore enable flexible consumers to enter the merit order stack
of the system operator at the price k, which translates to capacity savings for the system
operator.

It is important to ensure that callable forward contracts, or other mechanisms for inducing
deferrable loads to limit the degree of their participation in real-time markets, induce loads to
self-select the degree of their participation in the real-time market efficiently. In particular,
it is desirable to provide strong financial incentives for loads to limit their participation in
the real-time market to the greatest possible extent, without however making these financial
incentives so strong that loads compromise their welfare. In the context of callable forward
contracts, this translates to inducing loads to self-select the lowest strike price k that still
provides sufficient flexibility for deferrable loads to participate in the real-time market in
order to satisfy their entire demand. Self-selection has been addressed by Gedra and Varaiya
[34] in a static context, however deferrable demand introduces inter-temporal dependencies
in the valuation for power across time periods.

7.3.2 Problem Formulation

The coupling contract that we introduced in the previous section can be formulated as a
stochastic optimal control problem. The aggregator solves the following:
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min
µt(xt)

E[
N∑
t=1

λt(µt(xt)− wt)+∆t+ ρrN ], (7.6)

where µt(x) represents the rate at which power is supplied to deferrable loads and N is the
horizon of the optimal control problem. The state vector xt = (λt, wt, rt) consists of the real-
time price λt, the available renewable power supply wt and the remaining energy demand
of the deferrable consumer rt. The initial condition for the residual demand is r1 = R,
where R is the amount of energy demand to be satisfied. The control ut is constrained by
the rate of supply C and by the amount of energy that can be procured in the real-time
electricity market Mt, which is a random variable. Hence, we obtain ut ≤ CMt. Unsatisfied
energy incurs a penalty ρ. The limit on real-time market participation depends on the choice
of strike price. The optimal control problem stated above is solved by backward dynamic
programming, with a lattice representing the state space of the stochastic processes. The
lattice model of renewable power supply and real-time prices is presented in Chapter A of
the appendix.

The use of callable forward contracts does not need to be implemented strictly in the
context of coupling, but can also apply for deferrable loads that seek to satisfy their energy
demand exclusively in the real-time market. In that case the optimal control of deferrable
loads is formulated as follows:

min
µt(xt)

E[
N∑
t=1

λtµt(xt)∆t+ ρrN ], (7.7)

with ut ≤ CMt.

7.3.3 Incorporating the Coupling Model in Economic Dispatch

The integration of the coupling model with the economic dispatch model, presented in Figure
2.2, requires that the prices loads respond to be consistent with the market-clearing prices
generated from the solution of the economic dispatch model. Sioshansi [89] raises this issue in
a detailed model of electric vehicle charging in conjunction with unit commitment. In order
to achieve the desired equilibrium, Sioshansi iterates between the solution of the dynamic
optimization problem of electric vehicles and the economic dispatch problem faced by the
system operator. We adopt the same approach in our model. In particular, we generate an
outcome of firm demand and wind power production. We then generate a multi-period load
response profile based on the lookup table that we obtain from the dynamic programming
algorithm of Section 7.3.2. The induced load response is then used to generate market
clearing prices in the economic dispatch model. The resulting prices are discretized and
smoothed such that the load response moves closer to equilibrium. In the results presented
in Section 8.4, this process is iterated five times for each day type. For certain realizations
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of wind power production and firm load, the system reaches equilibrium in the sense that
the lattice values of real-time prices that loads are responding to are consistent with the
discretized value of the market-clearing prices obtained from economic dispatch. In other
cases, however, load exhibits an oscillatory behavior across iterations. For these realizations,
we adopt the convention that the equilibrium response of loads corresponds to that iteration
for which the norm of the difference between the prices loads are responding to and market
clearing prices is minimized. It is left as a topic of future research to consider alternative
equilibrium definitions that are guaranteed to exist and that can be computed efficiently.
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Chapter 8

Case Study

In this chapter we present results for three case studies. The first two case studies
ignore firm demand uncertainty and demand flexibility in order to focus on the impacts of
large-scale renewable power integration. The first wind integration case study considers a
network without transmission constraints and contingencies. These features are included in
the second case study. These case studies validate the scenario selection algorithms that we
propose in Chapter 4.

Once we establish the superior performance of the proposed stochastic unit commitment
algorithm, we use the stochastic model for assessing operating costs and capacity require-
ments in the presence of deferrable demand in the third case study. In order to gain an initial
understanding on the impacts of demand flexibility we ignore transmission constraints. The
integration of deferrable demand in a transmission-constrained network will be a topic for
future research.

8.1 Preliminaries

We first present the model of the Western Electricity Coordinating Council (WECC) that
we use for our case study. We also discuss two deterministic unit commitment rules against
which we compare the stochastic unit commitment policy.

8.1.1 The WECC Model

We use a model of the California ISO with imports from the Western Electricity Coordinating
Council (WECC) that is also used by Yu et al. [99]. We do not use the wind production data
from [99] since our wind production model is more detailed. Since the model in [99] reflects
import, hydroelectric, geothermal and biomass production data for a six-month period from
May 1, 2004, to October 1, 2004, we replicate the data for the remaining six months of the
year in order to produce an entire year of data. This extrapolation is justified by the fact
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Figure 8.1: Net load of WECC for each day type (not including wind power production).

that the average production profiles of all these resources are almost identical for the three
seasons that are covered by the data set. Since we are using 2004 import data, we also use
load data from the same year, which is publicly available at the CAISO Oasis database [20].

As we discuss in Chapter 3, in order to reduce the computational requirements of the
model we focus on eight representative day types instead of simulating an entire year of
operations for the system. This should be contrasted to the approach of Ruiz et al. [83],
Sioshansi and Short [90], Constantinescu et al. [25] and Tuohy et al. [95], who simulate
an entire year of operations. We consider one day type for each season and in addition we
differentiate between weekdays and weekends. The results of our analysis are weighed by
the frequency of occurrence of each day type.

The average load in the system is 27298 MW, with a minimum of 18412 MW and a peak
of 45562 MW. The net load profile for each type of day, that needs to be served by thermal
generators and wind power, is shown in Figure 8.1. The generation mix of the system is
presented in table 8.1.

We use a more general model for thermal generators within CAISO, with 124 generators,
compared to the model of Yu et al. [99], who use 23 aggregated thermal generators. The
value of lost load is set to 5000 $/MW-h. The number of generators and the capacity for
each fuel type are shown in Table 8.1. The last two rows of Table 8.1 describe how the fossil
fuel generation mix is partitioned into fast and slow generators. Most fast generators have
a capacity no greater than 250 MW. The entire thermal generation capacity of the system
is 28381.5 MW. The merit order curve of the thermal resources is shown in Figure 8.2.

In Figure 8.3 we present a schematic diagram of the WECC model. The dashed boxes
represent load and generation pockets. The thick solid lines represent the import constraints
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Table 8.1: Generation mix of the WECC model

Type No. of units Capacity (MW)
Nuclear 2 4,499
Gas 86 18,745.6
Coal 6 285.9
Oil 5 252
Dual fuel 23 4,599
Import 22 12,691
Hydro 6 10,842
Biomass 3 558
Geothermal 2 1,193
Wind (7.1% pen.) 5 6,688
Wind (14% pen.) 10 14,143
Fast thermal 82 9,156.1
Slow thermal 40 19,225.4

that are defined in Equation (3.14). Each thick solid line intersects a set of transmission
lines IGj over which the total amount of power cannot exceed a certain limit ICj. These
constraints limit the total flow of power into a load pocket in order to prevent load shedding
in the case of generator failure within a load pocket, and also limit the total amount of power
flow over combinations of inter-ties that connect the California ISO system to neighboring
states. The wind generators of Table 6.1 are located in the five buses that are depicted as
solid black circles. In order of appearance from top to bottom, these wind sites are Solano,
Altamont, Tehachapi, Clark and Imperial.

8.1.2 Determinstic Reserve Commitment Rules

In Section 3.2 we present the deterministic unit commitment model. There are various ad
hoc approaches for determining the total reserve and fast reserve requirements in the deter-
ministic formulation. In the following case studies we compare stochastic unit commitment
against two rules for setting reserve requirements in order to validate the scenario selection
algorithms that we propose in Chapter 4.

The first deterministic unit commitment policy sets a total reserve requirement for all
hours of the day which is a certain fraction of the forecast peak load for the day. We perform
a sensitivity analysis on the fraction of forecast peak load in order to recover the policy
that performs best. The fast reserve requirement is then set equal to half the total reserve
requirement.

The other deterministic policy that we consider is a variant of a reserve commitment
policy that was recently discussed by NREL in Piwko et al. [78]. The authors propose a
heuristic approach for committing spinning reserves, the ’3+5 rule’, that requires the system
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Figure 8.2: The merit order curve of the system.

to carry hourly spinning reserve no less than 3% of hourly forecast load plus 5% of hourly
forecast wind power. We set this as the fast reserve requirement in our model, with the
total reserve requirement at twice the level of the fast reserve requirement. In future work
we intend to compare the performance of the stochastic unit commitment model against
commitment rules based on probabilistic forecasting [4], [54].

8.2 Wind Integration in a System without Transmis-

sion Constraints

We first analyze the system for the case where there are no transmission constraints or
contingencies in the network. As we discuss in Chapter 6, we consider two wind integration
cases, one that corresponds to the 2012 wind integration targets for California, and one that
corresponds to the 2020 targets. We refer to these as the moderate and deep integration
cases respectively. We assume that wind power variability is the unique source of uncertainty
in the model.

8.2.1 Relative Performance of Policies

We begin by assessing the relative performance of the stochastic unit commitment policy
against a perfect forecast policy, as well as against the deterministic reserve rules discussed
in Section 8.1.2. The perfect foresight policy commits reserves with advance knowledge of
wind production for each day.
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Figure 8.3: A schematic of the WECC model.

10 20 30 406.9

7

7.1

Percent of peak load (%)

To
ta

l d
ai

ly 
co

st
 ($

 m
illi

on
)

20 30 40 50

5.3

5.4

5.5

5.6

Percent of peak load (%)

To
ta

l d
ai

ly 
co

st
 ($

 m
illi

on
)

Figure 8.4: Cost as a function of total reserve requirements for deep integration (left) and
moderate integration (right) for the single-area case study.



58

Table 8.2: Daily cost of operations for each day type for the single-area case study - moderate
integration

Cost ($) ∆ Cost ($) ∆ Cost ($) ∆ Cost ($)
Stoch Foresight 20% peak 3+5

WinterWD 5,970,040 -21,816 20,484 39,747
SpringWD 6,003,520 -37,218 -2,147 14,870
SummerWD 11,272,575 -62,634 102,183 110,793
FallWD 8,081,245 -39,921 15,751 21,618
WinterWE 3,166,890 -32,214 1,346 -3,587
SpringWE 2,642,864 -28,857 -12,622 14,463
SummerWE 7,595,842 -42,179 46,661 46,892
FallWE 5,106,143 -25,350 -1,806 1,002
Total 6,916,442 -38,041 26,733 37,596
improv. (%) -0.55 0.39 0.54

Table 8.3: Daily cost of operations for each day type for the single-area case study - deep
integration

Cost ($) ∆ Cost ($) ∆ Cost ($) ∆ Cost ($)
Stoch Foresight 30% peak 3+5

WinterWD 4,121,453 -169,553 27,642 55,358
SpringWD 3,906,408 -120,016 71,468 103,306
SummerWD 9,773,670 -111,811 147,861 67,553
FallWD 6,125,650 -89,470 27,721 34,900
WinterWE 1,967,672 -75,346 92,732 3,619
SpringWE 1,482,317 -57,696 113,434 96,514
SummerWE 6,309,549 -78,993 79,931 39,757
FallWE 3,524,599 -78,288 -2,508 2,443
Total 5,551,907 -108,389 69,309 56,795
improv. (%) -2.08 1.33 1.09

In Figure 8.4 we present the average cost of the peak-load-based unit commitment rule
discussed in Section 8.1.2, for various levels of total reserve requirements. We see that the
optimal reserve requirement for the moderate wind integration level is at 20% of maximum
load, whereas for the deep integration level it is at 30% of maximum load, and slightly
outperforms the policy that commits 40% of maximum load. Reserve requirements that
are exceedingly low result in significant load shedding, whereas exceedingly high reserve
requirements result in high fuel costs due to the excessive rejection of wind power.

The perfect foresight policy sets a lower limit on the cost of any policy. In Tables 8.2 and
8.3 we compare the cost performance of the perfect foresight policy, the stochastic policy, the
3+5 rule and the best peak-load-based policy for the two different wind integration cases.
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The column with bold figures, that corresponds to the stochastic policy, contains absolute
cost values. Cost figures corresponding to the other policies are relative to the stochastic
policy costs. The row with total costs weighs the cost of each day type with its relative
frequency in the year in order to yield annual results. The last row shows the improvement
of the stochastic policy over each other policy, normalized by the cost of the stochastic policy.

The stochastic policy indeed improves on the deterministic policies. The relative savings
are greater for the case of deep wind integration. This indicates that the benefits of stochas-
tic unit commitment are larger as uncertainty increases in the system. The perfect foresight
policy has a significant advantage over the stochastic policy in the deep integration case,
versus the moderate case, because greater wind integration exacerbates the level of uncer-
tainty in the system. The 3+5 rule performs better in the deep integration case versus the
moderate integration case, compared to the peak-load-based policy. The stochastic policy
yields 41% of the potential benefits of having perfect knowledge of the future compared to
the best deterministic policy for the moderate integration integration case, and 34% of the
benefits for the deep integration case.

We present the total fossil fuel capacity and the average slow generator capacity that is
committed for each day type and each policy in Tables 8.4 and 8.5. For the stochastic unit
commitment formulation, this table includes the capacity of those slow generators that are
committed for at least one hour of the day, or those fast generators that are committed for at
least one hour for at least one scenario. For the deterministic unit commitment formulation,
this table includes those generators which are required to supply power, slow reserves or
fast reserves for at least one hour of the day. The last line of these tables presents total
capacity, which is calculated by weighing the results of each day type by the frequency of
occurrence of the respective day type. We note that in the moderate integration case, the
stochastic unit commitment policy tends to commit less total capacity, and less slow capacity.
In contrast, in the deep integration case, the stochastic policy commits more slow capacity
and less total capacity. It is interesting to note that the stochastic policy achieves savings
with respect to the deterministic policies both in the case where it commits more, as well
as less capacity. In the cases where the stochastic policy commits less slow capacity (e.g.
summer weekends), the savings result from peak load periods during which the deterministic
policies incur large startup costs by committing an excessive amount of slow reserves in
order to satisfy reserve requirement constraints. In the cases where the stochastic policy
commits more slow capacity (e.g. spring weekdays) the deterministic policies commit less
capacity because they underestimate the potential fuel and minimum run savings. This is
due to the fact that the deterministic policies optimize for expected wind supply, instead of
averaging the cost savings of insuring against fast capacity dispatch for various wind supply
outcomes. Due to the fact that fuel and minimum run costs are convex for the system under
consideration (see Figure 8.2), deterministic policies underestimate savings from committing
slow reserves.

We also present the daily amount of wind that is spilled in Tables 8.6 and 8.7. In contrast
to the results presented in Ruiz et al. [83], the average wind that is spilled by the perfect
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Table 8.4: Slow and total capacity commitment for each policy for the single-area case study
(MW) - moderate integration

Stochastic 3+5 20% of peak
Day Type Slow Total Slow Total Slow Total
WinterWD 8,128 14,811 8,220 17,358 7,946 17,401
SpringWD 8,041 14,910 7,989 17,258 7,858 16,855
SummWD 11,261 20,969 11,646 25,069 11,999 25,254
FallWD 9,173 15,693 9,296 18,531 9,377 18,396
WinterWE 6,044 11,503 6,167 14,702 6,131 13,626
SpringWE 5,804 11,183 6,276 13,991 6,135 14,020
SummWE 9,018 16,647 9,401 21,141 9,443 21,076
FallWE 7,187 12,842 7,028 16,840 6,918 15,907
Total 8,540 15,580 8,696 18,729 8,648 18,528

Table 8.5: Slow and total capacity commitment for each policy for the single-area case study
(MW) - deep integration

Stochastic 3+5 30% of peak
Day Type Slow Total Slow Total Slow Total
WinterWD 7,012 15,160 7,014 14,856 6,779 14,837
SpringWD 7,818 14,845 6,810 15,889 6,643 15,506
SummWD 10,858 20,766 11,033 24,809 11,555 25,591
FallWD 8,608 16,476 8,417 18,557 8,493 19,143
WinterWE 5,630 11,746 5,569 14,815 5,353 12,010
SpringWE 5,553 11,639 5,670 11,637 5,239 12,151
SummWE 8,759 17,799 8,873 20,956 8,804 21,686
FallWE 6,904 12,823 6,632 15,349 6,687 16,044
Total 8,041 15,866 7,848 17,716 7,840 17,827

foresight policy is less. The spillage in the moderate integration case is negligible, and the
stochastic policy spills less wind compared to the deterministic policies, which is consistent
with the observations in Ruiz et al. [83]. On the contrary, losses from the stochastic unit
commitment policy in the deep integration case are slightly greater due to the fact that the
average slow capacity that is committed in the stochastic policy is greater than the average
slow capacity committed in the deterministic policies. Hence we observe that, in order to
reduce fuel and startup costs in the deep integration case, the stochastic policy commits
more reserves and sheds slightly more wind power.
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Table 8.6: Daily wind spillage (MWh) for each policy for the single-area case study - mod-
erate integration

Stoch Clair 3+5 20% peak
WinterWD 5 7 9 10
SpringWD 0 0 0 0
SummerWD 0 0 0 0
FallWD 0 0 0 0
WinterWE 3,034 3,000 3,004 3,033
SpringWE 1,641 1,648 2,145 2,136
SummerWE 0 0 0 0
FallWE 0 0 0.2 0.2
Total 335 333 369 371

Table 8.7: Daily wind spillage (MWh) for each policy for the single-area case study - deep
integration

Stoch Clair 3+5 30% peak
WinterWD 8,970 7,460 9,446 9,429
SpringWD 8,641 5,438 8,240 8,205
SummerWD 542 453 463 486
FallWD 1,746 1,248 1,697 1,696
WinterWE 28,920 19,721 28,901 28,870
SpringWE 32,261 19,330 32,344 32,040
SummerWE 3,886 3,324 3,731 3,705
FallWE 8,427 5,654 8,376 8,389
Total 8,803 6,038 8,783 8,753

8.2.2 Computational Performance

The stochastic unit commitment algorithm was implemented in AMPL. The mixed integer
programs were solved with CPLEX 11.0.0 on a DELL Poweredge 1850 server (Intel Xeon
3.4 GHz, 1GB RAM). The first and second subproblem were run for 200 iterations. For
the last 100 iterations (EDs) for all s ∈ S was solved in order to obtain an upper bound
and a feasible solution. The average elapsed time for this entire process was 5685 seconds.
The MIP gap for the first and second subproblem was set to ε1 = 1%, and the MIP gap
for obtaining a feasible schedule was set to ε2 = 0.1%. The sum of the optimal solutions
of the first and second subproblem yield a lower bound LB on the optimal cost, whereas
the optimal solution of the feasibility run results in an upper bound UB. The average gap,
UB−LB
LB

, that we obtained was 0.80%. However, to estimate an upper bound on the optimality
gap we also need to account for the MIP gap ε1 that we introduce in the solution of the first
and second subproblem. The average upper bound on the optimality gap, UB−(1−ε1)LB

(1−ε1)LB
, is



62

Table 8.8: Deterministic policy cost comparison for the multi-area case study.

Case 10% 20% 30% 40% 50% 3+5
Deep-Simple 8,115,833 5,073,691 5,075,194 5,119,032 5,213,208 5,050,497
No wind 11,549,985 11,487,036 11,520,766 11,663,405 N/A 11,508,482
Moderate 10,073,080 9,598,033 9,561,635 9,615,189 N/A 9,593,490
Deep N/A 7,742,715 7,669,950 7,693,234 7,780,604 7,671,088

1.75%.

8.3 Wind Integration in a System with Transmission

Constraints and Contingencies

We now study an enhanced model of the previous network that includes transmission con-
straints and contingencies. As we will demonstrate, it is crucial to model these features in
order to assess the cost impacts and capacity savings of wind integration accurately. We
study three levels of wind integration, the zero wind integration case as well as a case of
moderate and deep wind integration. We also perform the deep integration case study for
the case where transmission constraints and contingencies are not accounted for 1, in or-
der to quantify the impact of these effects on the analysis. The latter case is denoted as
Deep-Simple.

8.3.1 Relative Performance of Policies

As in the previous case study, we first discuss the relative performance of the stochastic and
deterministic unit commitment policies. The results are obtained by running the economic
dispatch model against 1000 Monte Carlo outcomes of wind power production and contin-
gencies, with a probability of generator failure of 1% [75] and a probability of transmission
line failure of 0.1% [36]. Wind production outcomes, generator failures and transmission
line failures are assumed to be independent. The results are shown in Table 8.8, where the
best peak-load-based policy is highlighted in italic font and the best deterministic policy is
highlighted in bold font. N/A denotes that the specific policy was not evaluated in order
to avoid superfluous computation. We note that the best peak-load policy outperforms the
3+5 rule for all but the deep integration case study without transmission constraints and
contingencies.

The relative performance of stochastic unit commitment with respect to the determistic
policies and the perfect foresight policy for the four case studies are presented in Figure
8.5. The results are presented in terms of the relative cost of each policy compared to

1This corresponds to the case study of Section 8.2, however the results of the previous study cannot be
used directly since in this case study we permit the spillage of imports and non-wind renewable supply.
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Figure 8.5: In reading order: cost comparison for the deep-simple, zero wind, moderate wind
and deep wind integration cases for the multi-area case study.

the stochastic unit commitment policy for each of the eight day types. In the last two
rows of Table 8.9 we present the absolute cost of the stochastic unit commitment policy as
well as its gains over the best deterministic policy relative to the perfect foresight policy.
We note that the stochastic policy benefits range between 32.4% to 46.7% of the potential
benefits of perfect forecasting, with higher wind integration resulting in higher benefits due
to the increased uncertainty in the system. Moreover, the introduction of transmission
constraints affects both the relative as well as absolute gains of stochastic unit commitment,
which supports the argument that stochastic unit commitment is especially valuable for the
determination of locational capacity requirements.

8.3.2 Renewables Utilization, Operating Costs and Capacity Re-
quirements

In Table 8.9 we present summary results for renewable energy spillage, operating costs and
capacity requirements for the four case studies under consideration. Renewable energy losses
are negligible relative to total renewable energy production, although accounting for trans-
mission constraints and contingencies results in a twentyfold increase in the estimated loss of
renewable power production in the case of deep integration. Operating costs decline steeply
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Table 8.9: Renewable energy spillage, operating costs and capacity requirements for the
multi-area case study.

Deep-Simple No Wind Moderate Deep
RE daily waste (MWh) 100 0 890 2,186
Cost ($M) 5.012 11.508 9.363 7.481
Capacity (MW) 20,744 26,377 26,068 26,068
Daily savings ($) 38,628 104,321 198,199 188,735
Forecast gains (%) 32.4 35.4 41.9 46.7

as the level of renewable power penetration increases, due to the decrease in fuel costs, which
is the predominant cost in the system. Failing to account for transmission constraints and
contingencies results in an underestimation of operating costs by 33.0% relative to the costs
when accounting for these factors. The significant cost increase resulting from transmission
constraints can be attributed to increased spillage of freely available energy but also to the
reduced flexibility of dispatching units in the system.

Capacity requirements, which are the most important factor in analyzing the economics
of renewable energy integration, present the most interesting results. We note that moderate
wind integration reduces capacity requirements by a mere 1.2% of the installed wind capac-
ity, whereas the capacity requirements for the deep integration case are the same as for the
moderate integration scenario, indicating that the excess wind capacity cannot contribute
to capacity savings. Most importantly, we note that failing to account for transmission con-
straints results in an overestimation of the capacity credit of wind power production by 39.8%
relative to the 1.2% capacity credit when these features are accounted for. This strongly
supports the argument that the inclusion of transmission constraints and contingencies is
crucial for accurately assessing the impact of large-scale renewable energy integration.

8.3.3 Computational Performance

The stochastic unit commitment algorithm was implemented in the Java callable library of
CPLEX 11.0.0, and parallelized using the Parallel Virtual Machine (PVM) on a network of
16 DELL Poweredge 1850 servers (Intel Xeon 3.4 GHz, 1GB RAM). (P1s), s ∈ S and (P2)
were run for 120 iterations. For the last 40 iterations, (EDs) was run for each s ∈ S in
order to obtain a feasible solution and an upper bound for the stochastic unit commitment
problem. The average elapsed time on a single machine was 43,776 seconds. The MIP gap
for (P1s), s ∈ S and (P2) was set to ε1 = 1%, and the MIP gap for obtaining a feasible
schedule from (EDs) was set to ε2 = 0.1%. The sum of the optimal solutions of the first
and second subproblem yield a lower bound LB on the optimal cost, whereas the optimal
solution of the feasibility run results in an upper bound UB. The average gap, UB−LB

LB
, that

we obtained is 1.39%. However, to estimate an upper bound on the optimality gap it is
also necessary to account for the MIP gap ε1 that is introduced in the solution of (P1) and
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Table 8.10: Key parameters of the demand response case study.

No Wind Moderate Deep
Wind capacity (MW) 0 6688 14143
DR Capacity C (MW) 0 5000 10000
Daily wind energy (MWh) 0 46485 95414
Daily DR energy R (MWh) 0 40000 80000
Flexible/firm demand (%) 0 6.1 12.2

(P2s), s ∈ S. The average upper bound on the optimality gap, UB−(1−ε1)LB
(1−ε1)LB

, is 2.41%.

8.4 Demand Response Integration

In this section we consider the simultaneous integration of renewable resources and deferrable
demand. We consider three integration cases that are summarized in Table 8.10. The
wind integration levels correspond exactly to the zero wind, moderate wind and deep wind
integration studies presented in the previous sections. For each level of wind integration, we
assume a demand response integration level that is approximately one-for-one in terms of
energy demand and capacity. We assume that deferrable requests span over 24 hours. To
put these values in perspective, if we assume that a typical electric vehicle has a power rating
of 3.6 kW and a mileage of 0.25 kWh per mile, the deep integration case with R = 80000
MWh and C = 10000 MW roughly represents the electricity demand of 4.2 million electric
vehicles that travel 96 miles per vehicle per day. We consider 6 levels of charge for the
control problem. The penalty of unserved energy is ρ = 5000 $/MWh. In addition to wind
power production uncertainty, we also model firm (non-deferrable) demand as a second-order
autoregressive process. As we discuss in Chapter 7, the commitment of slow generators in the
day ahead is determined from the solution of (CSUC) in Section 7.1. We use 12 scenarios
for the formulation of the stochastic unit commitment model.

As we discuss in Section 7.3.1, deferrable demand can produce great economic value
by limiting the requirements for balancing capacity, and this can be achieved by limiting
the extent to which deferrable loads participate in the real-time market. Callable forward
contracts can be used for this purpose. The strike price of the callable forward contracts
determines the extent to which loads can participate in the market. As the strike price of
the contracts decreases, the participation of loads in the real-time market is increasingly
limited. Below a certain threshold, deferrable loads cannot be satisfied against all possible
realizations of wind power production and prices. In Table 8.11 we present this threshold
for each of the day types for each integration study. In order to simplify the analysis, we
assume a common strike price for each hour of the day.

In table 8.12 we present the operating costs and daily load losses for the case with no
wind and no demand response in the system. The operating costs do not include the cost of
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Table 8.11: Strike price threshold for deferrable load callable forward contracts ($/MWh).

Moderate Deep
WinterWD 45 47
SpringWD 45 49
SummerWD 49 53
FallWD 49 54
WinterWE 45 45
SpringWE 45 47
SummerWE 48 51
FallWE 49 52

lost load. Note that for the average demand of the system under consideration, the 1-day-
in-10-years reliability criterion requires daily load shed of no more than 179 MWh. This can
be used as a benchmark against which we can compare the extent to which each demand
response mechanism is acceptable from a reliability perspective.

In Tables 8.13, 8.15 we present the daily operating cost of each policy for the moderate
and deep integration cases respectively. The column with bold figures, that corresponds to
centralized load dispatch by the system operator, contains absolute cost values. Cost figures
corresponding to the other policies are relative to the centralized operating costs. The row
with total costs weighs the cost of each day type with its relative frequency in the year in
order to yield annual results. The last row shows the relative performance of centralized
control with respect to the other policies, normalized by the cost of centralized control. Note
that the operating costs of the decoupled demand response mechanism outperform those of
the coupling mechanism. This can be attributed to the diversification effect of including
flexible demand in the market.

The diversification benefits of demand-side bidding can be elucidated by the following
example. If, in a certain hour of operations, firm demand is excessively high and necessitates
the shedding of load, then demand-side bids will result in an efficient dispatch of demand
down to the point where load shedding is prevented. Instead, coupling contracts will result
in deferrable consumers increasing their consumption up to the level of available wind power
supply, as they are not exposed to the real-time price up to this level of consumption. This
results in efficiency losses as the available wind power supply is, at the given hour, more
valuable to other consumers than it is to the consumers that have coupled their operations
with renewable supply.

The ”cost of anarchy” that results from using price signals in order to control load
response, rather than centralized control, ranges from 2.43% - 6.88% for the case of demand-
side bidding and 3.06% - 8.38% in the case of coupling. We note that the rate of increase in
costs relative to decentralized control increases as uncertainty in the system increases.

Although demand bids result in lower operating costs, demand-side bidding results in
load shedding that is 3.4 times greater than the 1-day-in-10-years criterion for the moderate
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Table 8.12: Daily cost of operations and load shedding for each day type for the demand
response study - no wind.

Daily Cost ($) Shed (MWh)
WinterWD 7,390,206 0.001
SpringWD 7,145,737 4.317
SummerWD 13,684,880 30.869
FallWD 9,589,506 0
WinterWE 6,079,003 0.001
SpringWE 5,855,883 0
SummerWE 11,839,573 0
FallWE 7,868,146 154.285
Total 9,012,031 17.301

Table 8.13: Daily cost of operations for each day type for the demand response study -
moderate integration.

Cost ($) ∆ Cost ($) ∆ Cost ($)
Centralized Coupled Decoupled

WinterWD 7,320,620 256,740 300,051
SpringWD 6,408,355 172,006 139,589
SummerWD 13,625,136 155,096 219,124
FallWD 9,640,017 316,089 157,159
WinterWE 5,890,755 300,701 246,408
SpringWE 3,637,240 707,223 244,353
SummerWE 11,739,177 176,230 234,101
FallWE 7,735,502 277,817 189,465
Total 8,677,857 265,128 211,010
relative (%) 3.06 2.43

integration case and 6.8 times greater for the deep integration case. The use of coupling
contracts results in the operation of the system within reliability limits as we note in Tables
8.14, 8.16.

In Table 8.17 we present a breakdown of operating costs by type for each of the four
policies that we consider for each integration level. We note that the demand function and
coupling models result in cost increases in all cost categories. As Sioshansi [89] argues, the
marginal cost signal itself does not necessarily induce efficient load response due to the fact
that it fails to capture the non-convex operating costs of the system. The observation of
Sioshansi is also supported by our results.

In Table 8.18 we present the amount of capacity that is committed by each policy as
well as the amount of renewable supply spillage. Capacity requirements do not change
significantly for each integration study, which suggests that the additional deferrable demand
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Table 8.14: Daily load loss for each day type for the demand response study - moderate
integration.

Shed (MWh) Shed (MWh) Shed (MWh)
Centralized Coupled Decoupled

WinterWD 0 0 177.257
SpringWD 1.532 1.869 701.828
SummerWD 3.617 4.346 821.719
FallWD 1.661 1.661 799.323
WinterWE 0 0 642.105
SpringWE 0 0.249 453.791
SummerWE 0.059 1.100 215.816
FallWE 6.792 10.005 976.766
Total 1.705 2.217 609.914

Table 8.15: Daily cost of operations for each day type for the demand response study - deep
integration.

Cost ($) ∆ Cost ($) ∆ Cost ($)
Centralized Coupled Decoupled

WinterWD 6,656,665 633,164 556,775
SpringWD 5,692,860 978,182 572,465
SummerWD 13,661,862 505,869 835,609
FallWD 9,321,281 772,659 404,523
WinterWE 5,220,109 711,882 616,931
SpringWE 4,251,600 910,253 576,010
SummerWE 12,136,223 329,929 472,930
FallWE 7,930,823 700,205 515,431
Total 8,419,322 705,497 578,909
relative (%) 8.38 6.88

can be fully absorbed by the installed renewable capacity. Wind spillage is negligible across
all cases.
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Table 8.16: Daily load loss for each day type for the demand response study - deep
integration.

Shed (MWh) Shed (MWh) Shed (MWh)
Centralized Coupled Decoupled

WinterWD 0.001 8.290 552.769
SpringWD 0 351.782 1382.459
SummerWD 0.001 36.643 1952.332
FallWD 33.660 143.629 1210.443
WinterWE 0 0 929.960
SpringWE 0 32.601 1008.222
SummerWE 2.081 58.725 1157.565
FallWE 57.005 132.134 1260.137
Total 10.231 112.452 1221.492

Table 8.17: Breakdown of daily operating costs for each demand response policy for each
integration level ($).

Min load Fuel Startup Total

No wind 1,382,156 7,549,491 80,384 9,098,537
Centralized Moderate 1,246,552 7,364,815 66,489 8,677,857
Bids Moderate 1,317,383 7,471,363 100,123 8,888,866
Coupled Moderate 1,330,130 7,532,898 79,958 8,942,958
Centralized Deep 1,194,606 7,174,611 50,105 8,419,322
Bids Deep 1,360,543 7,494,472 143,217 8,998,232
Coupled Deep 1,432,948 7,592,595 99,276 9,124,819

Table 8.18: Capacity requirements and wind power spillage for each demand response policy.

Capacity (MW) Spillage (MWh)
No wind 26,123 N/A
Moderate 26,254 0
Deep 26,789 2
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Chapter 9

Conclusions and Perspectives

In this thesis we present a two-stage stochastic unit commitment model that can be used
for assessing the impact of integrating renewable power and deferrable demand on renewable
energy utilization, operating costs and generation capacity requirements. We present a sub-
gradient algorithm that can be used for solving the problem, and we validate our scenario
selection methods by demonstrating the superior performance of the stochastic unit com-
mitment policy relative to common deterministic reserve rules. We then use the stochastic
unit commitment model for studying the impact of deferrable demand on mitigating the
disturbances of large-scale renewable energy integration. We first present a summary of our
conclusions and then discuss a list of areas for future work that have been inspired by the
present research.

9.1 A Summary of Conclusions

9.1.1 Single-Area Case Study

(a) The benefits of stochastic unit commitment: Stochastic unit commitment bene-
fits the system more in the case of deeper renewable energy integration, due to the fact that it
copes better with the increased uncertainty in the system. The stochastic unit commitment
policy yields 34.4% - 41.5% of the potential benefits of the perfect foresight policy compared
to the best deterministic policy.

(b) Using more wind power is not always better: In the deep integration case, the
stochastic unit commitment policy commits more slow capacity than the best deterministic
policy. This is attributed to the fact that, due to the convexity of the marginal cost curve
of the fast generation stack, the deterministic policy underestimates the value of insuring
against the uitilisation of fast reserves. The fact that the stochastic unit commitment policy
commits more slow resources results in increased shedding of wind power due to the minimum
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loading requirement of the slow units, but results in better performance of the stochastic
unit commitment policy.

9.1.2 Multi-Area Case Study

(a) The benefits of stochastic unit commitment: The stochastic unit commitment
policy yields 46.7% of the potential benefits of the perfect foresight policy relative to the
best deterministic policy. Note that the inclusion of transmission constraints enhances the
benefits of stochastic unit commitment.

(b) Transmission constraints matter for capacity requirement assessments: Ig-
noring transmission constraints can lead to highly misleading results regarding the capacity
savings of renewable energy integration. Failing to account for transmission constraints and
contingencies features results in an overestimation of wind capacity credit by 39.8%, relative
to 1.2% when these features are accounted for.

9.1.3 Demand Response Case Study

(a) The cost of anarchy: Centralized load dispatch represents a limit on the potential
benefits of demand flexibility. The ”cost of anarchy” incurred by decentralizing demand re-
sponse ranges between 3.06% - 8.38% for the case of coupling. Demand-side bidding outper-
forms coupling with respect to operating costs, resulting in a cost increase ranging between
2.43% - 6.88% of the cost resulting from centralized load dispatch. However, demand-side
bidding fails to capture the cross-elasticity of demand across time periods, resulting in exces-
sive load failures that violate the 1-day-in-10-years by 3.4 to 6.8 times. Instead, centralized
load dispatch and coupling maintain the operation of the system within acceptable reliability
criteria.

(b) Capacity requirements and renewable supply utilization: For the case studies
that we consider, the additional integration of deferrable demand imposes no additional ca-
pacity requirements to the system. Renewable supply capacity is adequate for satisfying the
added demand, which represents 6.1% - 12.2% of firm power demand for the 2012 and 2020
renewable integration targets respectively. The waste of available renewable power supply
is negligible for the demand response integration study, where transmission constraints are
ignored.

9.2 Future Areas of Research

Solar power modeling: Our analysis in Chapter 8 has focused exclusively on the impacts
of wind power integration. The same tools can also be used for analyzing the impact of solar
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power integration. The extension of our analysis in this direction is interesting for various
reasons: firstly, solar power integration is expected to increase dramatically in California
in the coming years [53], solar power supply complements wind power supply very well and
may improve the economics of large-scale renewable energy integration, but additionally solar
power supply introduces dramatic ramping requirements. We expect the modeling of solar
power supply to present interesting challenges. Mills and Wiser [56] present an extensive
literature review on solar power integration studies that have been conducted since 1981.

Price and Market Impacts of Demand Response and Renewable Energy Integra-
tion: Our model so far has focused on renewable energy utilization, cost of operations and
capacity requirements. However, we have made little mention of the impact of renewables
and demand response on market prices. This is particularly interesting since the increased
integration of renewables is expected to depress energy prices while making them at the
same time more volatile, and this is certain to result in certain technologies coming out as
winners and others as losers. We wish to examine the profitability of individual generating
technologies; whether certain areas in the network are more profitable to invest than others
and how the profitability of flexible consumers varies across the various demand response
integration approaches. One of the outputs of the economic dispatch model is the market
clearing prices for energy, therefore the information that is required for this analysis is readily
available from our model.

A major issue that can be addressed from this economic analysis is the extent to which
uplift payments become necessary for operating the system. As Scarf [86] points out, in
markets with non-convexities, of which power markets are a prime example due to their
startup and minimum load costs, efficient market clearing prices do not necessarily exist,
which raises the need for uplift payments from the system operator to generators [65]. Re-
newable energy integration is expected to increase uplift payments in the network due to
the fact that backup reserves will need to be maintained online during off-peak night hours,
during which hours these units operate at a loss. The system operator will be called to cover
these losses and it is interesting to quantify the extent of these uplift payments in scenarios
of large-scale renewable energy integration and the extent to which demand flexibility can
mitigate these payments.

Improved representation of demand response: The lattice model that we use for
modeling deferrable demand can be improved by formulating a multi-stage stochastic linear
program and using stochastic dual dynamic programming [76], [35] for solving the problem.
The advantage of this approach against a lattice model is the fact that the stochastic real-
time price and wind power production processes can be simulated as continuous processes.

Integrating demand response in a transmission-constrained model: As we demon-
strate in Section 8.3, the inclusion of transmission constraints and contingencies is essential
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for properly assessing the cost impacts and capacity savings of renewable energy integration.
We expect our analysis on demand response integration to be analogously illuminated by
the inclusion of transmission constraints.

Parallelization: The decomposition algorithm presented in Section 5.2 is particularly well
suited for parallelization. This greatly expands the size of problems that we can address using
our model.

Contracts for deferrable consumers: It is interesting to investigate business models
for enrolling flexible consumers in demand response programs. A particular problem that
we wish to address are mileage programs for enrolling drivers in electric vehicle aggregation
services. The challenge in designing these contracts is to elicit the true information about
the charging preferences of consumers. This research seeks to exploit insights from priority
service pricing, see for example Oren et al. [68], Oren et al. [69], Wilson [97], Chao and
Wilson [24].

Transmission expansion planning: The expansion of the transmission network in order
to increase the penetration of renewable resource supply from remote areas is becoming an
increasingly interesting topic to researchers [29]. The formulation of the problem resembles
the stochastic unit commitment formulation of Section 3.3, with the added complication of
deciding on transmission line buildup.

Improvement of stochastic models: The stochastic models presented in Section 4 can
be extended to autoregressive moving average models [17]. We also wish to perform diagnos-
tic checking of the performance of our models against reserved historical data. We further
wish to explore kernel density estimation techniques for modeling wind power supply data
[50], [9].

Co-optimization of hydro and non-controllable renewables: In the current model,
hydro supply is treated as a parameter that is exogenously supplied. We are interested in
exploring the simultaneous co-optimization of hydroelectric supply as well as other renewable
energy sources characterized by stochastic availability, such as wind power and solar power,
as in Gröwe-Kuska et al. [38]. For this purpose, we are interested in exploiting stochastic
dual dynamic programming, which has been used in the hydro scheduling literature [76].
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Appendix A

Recombinant Lattice Model of
Renewable Supply and Load

Recombinant lattices are used for controlling the rate of growth of the dynamic program-
ming lattice. Due to the fact that the state space of the optimal control problem of Equation
(7.6) includes residual energy demand, we need to limit the size of the state space for the
stochastic state variables, in order to solve the problem using the dynamic programming
algorithm. Therefore, although it is well known that wind power production and load (and
therefore real-time prices) exhibit significant autocorrelation [18], [94], [58], [21], we will
simplify the stochastic models of wind power and real-time prices by assuming first-order
autoregressive processes in order to control the size of the state space.

We assume that wind speed and real-time prices are driven by two correlated mean-
reverting processes:

Xt+1 = Xt + κλ(θλ −Xt)∆t+ σλ
√

∆tω1 (A.1)

Yt+1 = Yt + κw(θw − Yt)∆t+ ρσw
√

∆tω1 +√
(1− ρ2)σw

√
∆tω2, (A.2)

where Xt and Yt are the noise terms of the price and wind models respectively, B1
t and B2

t are
independent standard Brownian motion processes, θλ and θw represent the average trends
of the price and wind noise respectively, the variance terms σλ and σw capture the effect of
random shocks, κλ and κw model the rate at which the processes return to their mean value
and ρ is a correlation coefficient that couples the evolution of the two processes.

In our study we employ a discrete model that approximates the model of Equations (A.1),
(A.2). The model is presented in Deng and Oren [28]. The dynamics of the process are given
by:
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Xj
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3
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√
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Y j
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√
3ρ+

√
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Yt − σw
√
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2

√
∆t, j = 2

Yt − (
√

3ρ−
√

1− ρ2)σw

√
∆t
2
, j = 3.

(A.3)

where Xj
t and Y j

t are the noise terms of the discrete price and wind models respectively and
∆t is the discretization interval. Each state j is visited with a probability pj that depends
on the current state. The transition probabilities are defined in [28]. In order to describe
the transition probabilities, denote

A1 = (
κλ(θλ −Xt)√

6σλ
+
κw(θw − Yt)

2
√

6σw
)
√

∆t

A2 =
κw(θw − Yt)√

6σw

√
∆t

A3 = (
κλ(θλ −Xt)√

6σl = λ
− κs(θw − Yt)

2
√

6σw
)
√

∆t

The transition probabilities are then given by the following 7 cases:
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The state space of the trinomial lattice can be derived from Equation (A.3) [27]:

Λn = ∪ni=0{(Xi,j, Yi,j) : Xi,j = X0 − (i− 2j)∆X,

Yi,j = Y0 − (
2n− 3i√

2

√
1− ρ2 +

(i− 2j)
√

3√
2

ρ)∆Y,

j = 0, 1, · · · , i}

where ∆X = σλ

√
3
2

√
∆t and ∆Y = σw

√
∆t.

It is therefore clear that the lattice grows as O(n2), which enables us to control the
growth rate and therefore the running time of the dynamic programming algorithm. In
Figure A.1 we present a one-dimensional and two-dimensional lattice evolving in time and
the cross-section of a two-dimensional lattice for a given time period. Arrows denote state
transitions that are permissible from one time period to the next. Note that states in a
given time period can transition to the same state in the next time period. As a result, the
two-dimensional lattice grows within a two-dimensional cone, where the number of states at
evolves as a quadratic function of time.
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cross-section

t=0

t=1
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Figure A.1: From left to right: a one-dimensional recombinant lattice, a two-dimensional
recombinant lattice and a cross-section of a two-dimensional recombinant lattice for a given
time period.
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