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ABSTRACT OF THE DISSERTATION

A Systems Genetics Approach

to the Identification of Causal

Genes in Heart Failure

Using a Large Mouse Panel

By

Christoph Daniel Rau

Doctor of Philosophy in Microbiology, Immunology and Molecular Genetics

University of California, Los Angeles, 2013

Professor Aldons Jake Lusis, Chair

Heart failure (HF) accounts for 1 in 9 deaths in the United States and is the
leading cause of hospitalization for people over the age of 65 and the incidence of HF is

predicted to rise over the coming years. The complexity which underlies common forms



of HF has hindered the study of the disease in humans, and approaches, such as genome-
wide association studies (GWAS), have had only modest success in identifying genes
which are related to this disease. Here we describe the use of a panel of mice to facilitate
the study of this complex disorder, reducing heterogeneity and facilitating systems-level

approaches.

We used the B-adrenergic agonist isoproterenol to induce HF in 105 unique
strains drawn from the Hybrid Mouse Diversity Panel, a novel mouse resource population
for the analysis of complex traits. Our first study reports the results of a GWAS on heart
weights, cardiac fibrosis and other surrogate traits relevant to HF. Among the 32
significant loci, we identified several strong candidates which had previously been shown
to contribute to mendelian forms of cardiomyopathy. We were also able to validate two
novel candidate genes, the orphan transporter Abcc6, and the long noncoding RNA Miat,

using gene targeting, transgenic and in vitro approaches.

As part of our systems genetics approach, we developed a novel gene network
construction algorithm, which improves on prior methods by allowing non-linear
interactions and the ability for genes to operate in multiple modules at once. We were
able to demonstrate using previously published data that our results either matched or
exceeded another well-known network construction algorithm. In a subsequent study, we
applied this method to transcriptomes taken from the HF study. We identified a module

of 41 genes which significantly regulates the response of the heart to isoproterenol and



HF and which contains several genes of interest such as Lgals3, a diagnostic marker for

human HF.

Our results provide a valuable resource toward a better understanding of the

pathways and gene-by-environment interactions influencing heart failure.
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Chapter 1

Introduction



Heart Failure

Heart disease is the primary cause of death in developed countries and will soon
overtake infection as the primary cause of death in the developing world. In 2009, heart
disease accounted for 32.3% of all deaths in the United States, equivalent to a rate of
roughly one death every 40 seconds’. Furthermore, the cost of treating heart disease in
the United States is $312.6 billion per year, 37% higher than the cost of treating the
second most common cause of death, cancer *. Over the past thirty years, however, the
age-adjusted death rate due to heart disease has steadily decreased, from a peak (in men)
of around 900 deaths per hundred thousand people a year to around 350 deaths per
hundred thousand™?. This dramatic decrease has been attributed roughly equally to
changes in public health attitudes, such as the steady decline in cigarette use, and medical
interventions, for example development of statins, beta-blockers and advanced medical

practices for the treatment of heart disease **.

While most forms of heart disease have shown a significant reduction in mortality
and morbidity over the past thirty years, heart failure (HF), which accounts for roughly 1
in 9 deaths in the United States, has resisted this trend'. Between 2000 and 2010, the
number of hospitalizations in the United States for HF remained constant®, and is
currently the leading cause of hospitalization in people over the age of 65*. The
incidence of HF in the population is predicted to rise 25% from its current levels by

2030%.



Heart failure is characterized by the inability of the heart to supply enough blood
to the rest of the body. A significant period of morbidity, in which the ability to perform
normal life tasks is progressively curtailed, is followed by eventual death due to HF. The
symptoms of HF differ depending on which chamber of the heart is failing. Left sided
HF is characterized by shortness of breath, cardiomegaly, confusion and hypoxia, while
right-sided failure has symptoms of severe edema, loss of appetite and impaired liver
function. Common to both left and right-sided HF is a dramatically increased heart rate

and fatigue when performing common tasks.
Factors Underlying Heart Failure

The heart is an incredibly resilient organ which is usually able to adapt to the
stress that it is subjected to on a daily basis. HF, which occurs when the heart is unable
to further compensate for stress and damage, represents the end stage of a slowly
developing disorder that often shows no symptoms until it has reached a severe state >°.
Because the heart is highly resistant to stress and HF is typically diagnosed in old age, it
can be difficult to determine the proximal causes of the disease. The most common risk
factor for HF is hypertension, which forces the heart muscle to pump harder to
compensate for the increased pressure’. This increase in pressure overtaxes the heart,
overwhelms its repair mechanisms and eventually causes it to fail. Closely following
hypertension as a risk factor for HF is an antecedent myocardial infarction®. Ina
myocardial infarction, some portion of the tissue of the heart dies. This death of cardiac

tissue puts additional strain on the remaining cells of the heart. Other less common



causes include heart valve disorders, thyroid disorders, alcohol and other drug abuse,
viral myocarditis and treatments from other diseases’®. Each of these risk factors leads to
an insufficiency in the heart's ability to pump sufficient quantities of blood at a rate which
meets the body's needs. The body compensates for this insufficiency in part through the
activation of the B-adrenergic signaling pathway through the release of catecholamines
from the sympathetic nervous system and the adrenal gland®™**. Catecholamines interact
with adrenergic receptors on the surface of the cardiomyocytes and activate a signaling
pathway within the cell to increase the rate and strength with which the cardiomyocyte
beats as well as promoting the cardiomyocyte to grow in size**. In this manner, when an
initial stressor to the heart leads to decreased flow of blood, the adrenergic signaling
pathway is able to restore the heart to 'normal’ function until the stressor is removed. If
the initial challenge is not removed, the continual catecholamine stimulation leads to
calcium overload, oxidative stress and cardiac cell dysfunction and eventually results in
cardiomyocyte death'®. These cardiomyocytes are replaced by fibroblasts, which form a
collagen scar where the cardiomyocyte once was. These scars exacerbate the initial
challenge both because they are unable to beat on their own and because collagenous
tissue is stiffer than the natural myocardium. This remodeling response necessitates
upregulation of catecholamine stimulation, which, in turn, leads to additional myocyte

toxicity in a powerful positive feedback loop™.

This preliminary stage of HF, in which the heart is able to adapt to increasingly
severe stressors, is called cardiac hypertrophy and is not usually diagnosed or treated

unless specifically screened for. While the person with developing HF continues living a



normal life, the remodeling of the heart continues as the body attempts to compensate for
an increasingly damaged myocardium. Eventually, the damage to the heart becomes too
severe for the heart to compensate, symptoms begin to present themselves, a diagnosis
can be given and treatment can begin. By this point there is significant disregulation of

the heart's normal function and the damage to the heart is generally not reversible'®3%4,

Current strategies for the prevention of HF are focused on the reduction of
environmental risk factors in order to mitigate the chances of an individual developing
the disease. For instance, quitting smoking reduces the risk of developing heart disease
by between 50 to 75% *>. However, not all people are equally at risk of developing HF
even when these environmental factors are controlled for. The existence of a number of

F 781619 termed cardiomyopathies, points to an important role

rare mendelian forms of H
for genetics in the incidence and progression of HF. A number of important pathways
and genes have been identified using standard molecular biology practices, such as
calcineurin, the sarcoglycan family, the beta-adrenergic signaling cascade and
deficiencies in calcium signaling and oxidative stress responses™>??2. Despite these

advances, it is likely that the majority of genes which predispose individuals to

developing the common form of HF remain unknown.
Genome Wide Association Studies of Heart Failure

The sequencing of the human genome in the early 2000s began a new chapter in
the attempt to identify genes which predispose individuals to disease. Researchers at the

time were convinced that the entirety of the genetic architecture underlying the



susceptibility to disease and other complex phenotypes would be uncovered and
explained quickly. David Baltimore stated in the issue of Nature that announced the
sequencing of the genome that " the analysis of [our genome] will provide us with the
power to uncover the genetic basis of our individual capabilities such as mathematical
ability, memory, physical coordination, and even, perhaps, creativity."*® Yet, as further
analysis of the genome was performed and the complexity of the genome was more fully
appreciated, researchers began to develop increasingly sophisticated methods for the

identification of disease-influencing genes.

Genome-wide association studies (GWAS) utilize the natural variation which
exists in a population to identify regions and, through follow-up experiments, individual
genes which influence a phenotype based on whether the variation in the genome
correlates with a corresponding change in phenotype. For example, if there is a mutation
shared by a number of people in a population which results in the premature truncation of
a gene, GWAS asks if people with such a mutation are more (or less) likely to have an
altered phenotype when compared to those with a full-length copy of the gene. GWAS
are performed by the genotyping of individuals' DNA for hundreds of thousands of
polymorphisms, as well as the careful phenotyping of those same individuals for the trait
of interest. As of December 2012, GWAS studies in humans had identified 4,902
significant(P<1e-8) associations between polymorphisms and phenotypes from traits as

diverse as height and weight to blood pressure or anxiety or cannabis dependence?”.



Despite a number of successful GWA studies performed on other diseases,
including several in other cardiovascular diseases such as atherosclerosis, GWAS
performed on HF have had only modest success in elucidating the genetics underlying
this complex disease. Only two heart-failure related loci * have reached accepted levels
of genome-wide significance despite studies involving tens of thousands of patients and
large meta-analyses 2?2, The challenges of performing GWAS on HF in human
populations is complicated by the late onset of the disease, which allows for a number of
environmental confounders to mask polymorphism to phenotype correlations, particularly
if the effect of the environmental confounder is strong and the effect of the individual
gene is weak. For example, smoking increases the risk of developing heart disease by
100-300%™. If a particular polymorphism in a gene increases your risk of developing
heart disease by 3%, then the effect of the polymorphism will be completely
overshadowed by whether or not you smoke, how much you smoke, and/or how long ago
you quit smoking™. Additionally, HF is strongly influenced by a number of underlying
etiologies, such as myocardial infarction, hypertension or metabolic disorders, each of
which are, in and of themselves, complex traits with significant environmental

confounders?.
Animal Models and Heart Failure

In humans, HF occurs late in life and can be caused or influenced by a number of
underlying etiologies and environmental factors. This has made it difficult to analyze HF

in human studies. Animal models provide a means of carefully controlling the specific



cause of a disease as well as eliminating a significant fraction of the environmental
variances through the control and standardization of factors such as housing, diet and age.
Species as diverse as pig®, rat®*, mouse®, zebrafish® and even fly** have been used as a
means to understand the ways in which the heart responds to stress and how individual
genes can have a protective or deleterious role. Animal models have been fruitful for the
identification of many HF-related genes®?+#4323>3" ‘however many of these genes were
discovered by analyzing established pathways known to be involved in HF or through
serendipitous analysis of a spontaneous mutation in an organism. The former is unlikely
to reveal new insights into novel disease pathways, while the latter relies on random

chance to identify new genes and pathways.

Linkage analysis, a method which, like GWAS, links polymorphisms in the
genome to phenotypes has been used in the past in humans and model organisms to
attempt to identify regions of the genome that influence HF*2% Unlike mendelian
traits, where such analyses have led to the identification of hundreds of underlying genes,
complex traits such as HF have proven resistant to linkage analysis. GWAS analysis has
a number of benefits that make it better suited to addressing complex disorders such as
HF. First, the mice used in a linkage study are unique, and therefore each must be
genotyped individually for polymorphic markers. More importantly, each mouse can
only be used once in an experiment, which eliminates the ability to do case/control
studies using identical mice. Furthermore, linkage studies suffer from poor resolution: a
single locus for a trait could potentially span tens to hundreds of Mb, encompassing

hundreds of genes. Despite reducing the complexity of the identification of the causal



gene by an order of magnitude, the work necessary to identify the causal gene within a

single locus remains a major undertaking®**>4!.

The Hybrid Mouse Diversity Panel

To overcome the limitations of linkage analysis in mice and incorporate the
advances of GWAS, we have developed a panel of over a hundred mouse inbred lines
which we term the Hybrid Mouse Diversity Panel (HMDP) which allows us to perform
association analyses in mice. This resource is described in detail in chapter 2. Some of
the major advantages of the HMDP include an approximately 10-fold improvement in
mapping resolution relative to linkage studies and an unlimited pool of genetically
identical mice to study, allowing us to further control environmental noise and perform
case-control studies. Previously published work using the HMDP has shown that the
panel is well-suited to the identification of causal genes in phenotypes such as plasma

lipid levels*, bone mineral density**, obesity** and blood cell traits**, among others.
Heart Failure in the HMDP

The ability to perform case/control studies and carefully control environmental
variables makes the HMDP an excellent resource in which to study HF. The synthetic

catecholamine isoproterenol (1ISO) has been used extensively*®

to cause mice to
develop HF. Although adrenergic overstimulation is rarely a principal cause of HF in
humans, overstimulation of the adrenergic signaling pathway is a common driver of HF

progression after the initial stressor forces the heart to begin to remodel. 1SO offers

advantages over other methods of inducing HF in rodents such as trans-aortic constriction



(TAC) because it is a purely chemical means of inducing HF. TAC and other physical
models require researchers to physically interact with the heart and could lead to the
introduction of experimenter error among the samples. Chapter 3 describes the results of
a GWAS performed on the HMDP using an ISO challenge to develop HF phenotypes in

the panel.
Cardiac Fibrosis in the HMDP

Cardiac fibrosis and scarring is caused by and exacerbates many cardiovascular
disorders, including tissue replacement after myocardial infarction*® and the structural
remodeling which occurs during HF>*®,  Although post-mortem analyses of cardiac
fibrosis in humans have correlated fibrosis to the severity of heart-related conditions, few
systems-wide approaches have addressed cardiac fibrosis>? and no GWAS of this
important factor in HF have been reported to date, likely due to the difficulty in analyzing

this phenotype non-invasively in humans.

Through the use of an animal model such as the HMDP, cardiac fibrosis can be
studied in a controlled environment that reduces environmental variation and provides
easy access to heart tissue. 1SO has previously been demonstrated® to lead to extensive
changes in cardiac fibrosis. Chapter 3 also describes the results of GWAS performed on

the amount of fibrosis present in the hearts of control strains and strains treated with 1SO.

Gene Network Analysis

10



Although GWAS have had success in the identification of genes involved in the
modulation of phenotypes, some®*>* have claimed that GWAS have proven
disappointing, at least compared to the initial promise of what they could offer. Much of
this criticism is based on the fact that while GWAS analysis may have revealed a number
of genes that appear to influence phenotypes, each gene's contribution to the overall
variation of the phenotype is small, typically conferring only a modest increase in risk>*>°
and in total explaining only a small fraction of the overall genetic heritability of the
phenotype. For instance, although it is thought that human height is roughly 80-90%

heritable, GWAS studies have only been able to explain roughly 10% of that

heritability®.

There are several possible explanations for why GWAS do not return strong
candidates with large effect sizes, including the hypothesis that most of the mutations
which lead to a disease state are highly selected against and fall below cutoff thresholds
used in GWAS. Another possible explanation is that the variations in a phenotype that
we observe in a population are based on the interactions of many genes at once, acting
together and in opposition to one another to result in a final phenotype in a manner too
complex to be observed by a method that queries a single polymorphism (and therefore a

single gene) at a time.

A powerful method to analyze genetic data is gene coexpression network analysis,
where gene expression from a tissue across many individuals are compared to one

another. Genes which are expressed in similar ways across either genetic perturbations

11



(eg. different strains) and/or an environmental perturbations (eg. ISO stimulation) are
clustered together to form groups of genes called modules, which can then be related
back to the initial phenotype of interest to identify subsets of genes which together may
influence the phenotype. This method has been used in the past successfully to identify

genes related to HF, autism, bone density, the inflammatory response and more3->>"-€,

Despite these successes, most co-expression methods rely on assumptions which
do not accurately reflect the biological systems they are meant to model. These
assumptions introduce artificiality into the analysis and potentially result in skewed or
altered modules, diminishing the efficacy and usefulness of the method itself. One major
assumption that is frequently made in network algorithms is that genes interact with one
another in a linear fashion. Basic chemistry and biology suggest that this is rarely the
case, and typically should only be assumed in certain situations and certain conditions for
certain molecules. Another assumption made by network analysis methods is that genes
can have only one role, and therefore belong to only a single module, an assumption
which has many known counterexamples in biology®®. Chapter 4 describes a new
network analysis method, Maximal Information Component Analysis (MICA) that
specifically avoids both of these assumptions and allows for non-linear interactions
between genes and for genes to exist in multiple modules. Chapter 5 then describes the
application of MICA to the ISO-treated HMDP panel and the novel pathways that are

revealed by that analysis.

Dissertation Goals and Strategy
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The focus of this dissertation project is the elucidation of genes which underlie
heart failure using a large mouse panel and systems-level genetic techniques. Highlights
include: a GWAS study on mouse hypertrophy which revealed roles in common forms of
HF for many previously identified mendelian cardiomyopathy genes; the first report of a
cardiac fibrosis GWAS; the development of a novel gene network analysis tool; and the
analysis of transcriptomes of the HMDP HF project using this tool and eQTL hotspot

analysis.

This chapter provides an introduction to heart failure and the difficulties in
studying this disease in human populations. It also summarizes the tools developed to
study common diseases in mice. Chapter 2 is a published review article on the HMDP,
the panel of mice which was used to perform the heart failure study. Chapter 3: "Genome
Wide Association Studies of Cardiac Hypertrophy and Cardiac Fibrosis Using a Large
Mouse Panel™ contains a manuscript describing the results of two GWA studies from the
data we generated as a part of this panel. Chapter 4: "Maximal Information Component
Analysis: a Novel Network Analysis Algorithm™ contains a paper which describes the
development of and details of MICA, the network analysis method developed as a part of
the dissertation. Chapter 5: "eQTL Hotspot Analysis and Gene Networks Reveal Key
Drivers of Catecholamine-Induced Heart Failure™ contains a manuscript which describes
the application of systems biology techniques to the transcriptomes of the HMDP HF
study. Chapter 6 provides a synthesis of the findings of this dissertation, and describes
the results in the context of future studies that will expand our knowledge about the way

in which the genes identified during the course of this dissertation lead to heart failure.
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The Hybrid Mouse Diversity Panel
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Introduction

The hybrid mouse diversity panel (HMDP) represents a significant improvement
in the ability for researchers to use mouse genetics for the study of all manner of complex
traits. Its development was essential for the research described in subsequent chapters.
This chapter consists of a reprint of a review article about the HMDP, which describes
the panel in detail. Specifically, it addresses the improved ability to perform GWAS
using the HMDP compared to prior attempts of using mice in association studies. This
improvement is due to the incorporation of recombinant inbred strains and the use of an
algorithm, EMMA, to correct for the extensive population structure in mice. It then
describes some of the studies that have been performed with the HMDP, as well as other

work, including this dissertation, that was ongoing at time of publication.
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using classical inbred strains of mice in which we correct for
population structure, which is very extensive in mice, using an
efficient mixed-model algorithm, Our approach includes inbred
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(in the range of 5 % of total trait variance). Over the last few
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Introduction

The human genome-wide association studies (GWAS) of
the last several years have provided the first unbiased views
of the genetics of common complex diseases, such as
coronary artery disease, diabetes, and cancer. Many of the
loci contain novel genes not previously connected to their
respective disease, indicating that there is great potential to
discover new pathways and new targets for therapeutic
intervention. These GWAS do, however, have some
important limitations, First, human GWAS are not well
powered to study genetic interactions, such as gene-by-gene
or gene-by-environment interactions (Zuk et al. 2012).
Second, it will be difficult to move from locus to a disease
pathway directly in humans (Altshuler et al. 2008). And
third, for most diseases, GWAS have identified only a small
fraction of the total genetic contributions and, thus, there is a
great deal more to be discovered (Altshuler et al. 2008;
Manolio et al. 2009).

To simplify genetic analysis, natural variations relevant
to disease have been studied in mice and rats (Ahlqvist
et al. 2011; Flint and Mackay 2009; Keane et al. 2011).
This has generally involved traditional linkage mapping
methods with crosses between different strains to identify
quantitative trait loci (QTLs). An important problem with
such analysis has been poor mapping resolution because
the QTLs generally contain hundreds of genes, making the
identification of the causal genes difficult.
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To address these limitations, we have developed an
association-based approach using classical inbred strains of
mice (Bennett et al. 2010). We follow previous attempts to
apply association in mice (Cervino et al. 2007; Grupe et al.
2001; Guo et al. 2007; Liao et al. 2004; Liu et al. 2007;
Pletcher et al. 2004) with two differences. First, we correct
for population structure, which is very extensive in mice,
using an efficient mixed-model algorithm (EMMA) (Kang
et al. 2008). Second, to capture loci with effect sizes typical
of complex traits in mice (in the range of 5 % of total trait
variance), we supplemented the population with recombi-
nant inbred (RI) strains.

Over the last few years, we have typed the hybrid mouse
diversity panel (HMDP) strains for a variety of clinical
traits as well as intermediate phenotypes, and have shown
that the HMDP has sufficient power to map genes for
highly complex traits with resolution that is in most cases
less than a megabase. In this essay, we review our expe-
rience with the HMDP, describe various ongoing projects,
and discuss how the HMDP may fit into the larger picture
of common diseases and different approaches.

Overview of the HMDP

The hybrid mouse diversity panel (HMDP) consists of a
population of over 100 inbred mouse strains selected for
usage in systematic genetic analyses of complex traits
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(Table 1). Our goals in selecting the strains were to (1)
increase resolution of genetic mapping, (2) have a renew-
able resource that is available to all investigators world-
wide, and (3) provide a shared data repository that would
allow the integration of data across multiple scales, including
genomic, transcriptomic, metabolomic, proteomic, and
clinical phenotypes. The core of our panel for association
mapping (Bennett et al. 2010; Cervino et al. 2007; Grupe
et al. 2001) consists of 29 classic parental inbred strains
which are a subset of a group of mice commonly called the
mouse diversity panel, We settled on our strains by elimi-
nating closely related strains and removing wild-derived
strains. The decision to remove wild-derived stains is based
on the tradeoff between statistical power and genetic diver-
sity. While we were sacrificing the genetic diversity by
leaving out wild-derived strains, our panel increased the
statistical power (assuming the same number of animals) to
identify genetic variants polymorphic among the classical
inbred strains which affect traits, and these variants account
for a tremendous amount of phenotypic diversity among the
classical inbred strains.

In order to increase power, we included panels of RI
mice, including the BXD, CXB, BXA/AXB, and BXH
panels. Power calculations with the inclusion of these
additional strains indicated that we have 70 % power to
detect SNPs that contribute ~ 10 % of the overall variance
of a complex trait (Bennett et al. 2010). We have recently
shown that power can be further increased by performing
meta-analysis in which data from the HMDP are combined
with data from traditional crosses (Furlotte et al. 2012).
Power can also be increased by typing additional com-
mercially available RI panels, as discussed below.

A key feature of the panel is that genotyping is not
necessary due to the wealth of single nucleotide polymor-
phism (SNP) genotypes known across the mouse strains
(Keane et al. 2011; Kirby et al. 2010). The inbred strains
used for the HMDP were previously genotyped by the
Broad Institute and then combined with genotypes from the
Wellcome Trust Center for Human Genetics (WTCHG)
(Table 2). Genotypes of RI strains at the Broad Institute
were inferred from WTCHG genotypes by interpolating
alleles at polymorphic SNPs among parental strains, calling
ambiguous genotypes missing. Of the 140,000 SNPs
available, 107,145 were informative with an allele fre-
quency >5 % and were used for GWAS in our publications
(Bennett et al. 2010; Farber et al. 2011; Park et al. 2011).
Additional genotyping classifications have been performed
recently (Keane et al. 2011; Kirby et al. 2010), and the
resulting 4 million SNP genotypes are freely available
(Table 2).

In the current HMDP panel consisting of over 100
inbred and RI strains, we used ~ 860,000 SNPs to examine
linkage disequilibrium (LD) blocks. These SNPs have
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greater than 5 % minor allele frequency (mean and median
minor allele frequency of 28 and 31 %) and are polymor-
phic between the strains. Using 0.8 as the # cutoff to define
LD, there are a total of 13,706 LD blocks with the median
size of 42.8 kb per block (mean of 143.3 kb per block)
scattered throughout the genome (Fig. 1). Since LD blocks
are more likely to define the window in which a candidate
gene for a locus resides, the presence of small LD in the
HMDP suggests that the number of causal candidate genes
will be on average fewer than five genes per locus. This is a
considerable improvement over mapping resolution in
traditional linkage studies andfor in outbred stock mice
where, on average, the number of candidate genes for each
locus ranges from 10 to 50. Large blocks (defined as LD
blocks >1 Mb) are also present in the HMDP panel but not
frequently. Only 1.5 % of the LD blocks (211 of 13,706
total) have a large size encompassing 12.5 % of the gen-
ome. The X chromosome is noted to contain multiple large
LD blocks, suggesting that mapping resolution for this
chromosome is reduced as compared to the autosomes.
These large blocks reflect the regions in the genome that
were inherited by all strains from the shared ancestors as
described in (Frazer et al. 2007). The high-resolution
mapping property of the HMDP becomes particularly
important in systems genetics as one common goal is to
identify causal genes that coordinately regulate network
function. Such drivers have been reported in numerous
studies as candidate genes for “QTL hot spots,” but the
true identity of such drivers has been elusive mainly due to
lack of resolution in mapping.

In addition to the excellent resolution, the HMDP has
important advantages for systems genetics and for analysis
of genetic interactions. The progeny from a genetic cross
are unique and as such can be characterized for a limited
number of phenotypes, whereas the inbred strains of the
HMDP can be examined for an unlimited number of phe-
notypes since the data are cumulative. The same concept
applies to interactions. Thus, mice of the same genotype
can be examined under a variety of conditions to identify
gene-by-environment interactions, and epistatic interac-
tions can be tested using targeted perturbations on specific
genetic backgrounds, This is also an important feature of
other replicate mouse genetic systems such as consomic
strains, collaborative cross strains, and wild-derived inbred
strains.

Discoveries using the HMDP
The successful use of the HMDP to identify complex trait
genes was recently highlighted in a study of bone mineral

density (BMD) (Farber et al. 2011). BMD is a polygenic
phenotype that is commonly investigated in human and

@ Springer
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Table 1 The 114 strains typed within the HMDP for metabolic phenotypes

JAX JAX strain name EMMA name JAX URL Type

D
1 691 129X1/Sv] 129X 1/8v] http://jaxmice jax.org/strain/000691.htm1 Classic
2 646 All All http://jaxmice jax.org/strain/000646.html
3 648 AKR/] AKR/J http:/fjaxmice jax.org/strain/00064 8. html
4 651 BALB/cJ BALB/c] http://jaxmice jax,org/strain/00065 1, htm1
5 2282 BTBR T<+> tfi] BTBRT<+>tf/] http://jaxmice.jax.org/strain/002282.html
6 653 BUB/Bn] BUB/Bnl http://jaxmice.jax.org/strain/000653.html
7 659 C3H/Hel C3H/Hel http:/fjaxmice jax.org/strain/000659.htm1
8 664 C57BL/6] C57BL/6] http://jaxmice jax.org/strain/000664.html
9 662 C57BLKS/] C57BLKS/J http:/fjaxmice jax.org/strain/000662.html
10 668 CS7L/I C57L1 http://jaxmice jax,org/strain/000668.html
11 669 C58/1 C58/1 http://jaxmice.jax.org/strain/000669.html
12 656 CBA/Y CBA/I http:/fjaxmice jax.org/strain/000656.htm1
13 657 CEN CE/lJ http://jaxmice jax.org/strain/000657. html
14 671 DBA/2) DBA/2] http://jaxmice jax.org/strain/000671.html
15 1800 FVB/NJ FVB/NJ http://jaxmice jax.org/strain/001800.html1
16 674 I/LnJ I/Ln] http:/fjaxmice jax.org/strain/000674.html
17 2106 KK/H1L) KK/HU http://jaxmice.jax.org/strain/002106.html
18 675 LG/ LG/ http://jaxmice.jax.org/strain/000675.html
19 676 LP/J LP/J http://jaxmice jax.org/strain/000676.html
20 677 MA/MyJ MA/MylJ http://jaxmice jax.org/strain/000677.html
21 1976 NOD/ShiLtJ NOD/LU http://jaxmice.jax.org/strain/001976.html
22 2423 NON/ShiLtJ NON/LU http:/fjaxmice jax.org/strain/002423 . html
23 684 NZB/BINJ NZB/BINJ http://jaxmice jax,org/strain/000684,htm1
24 1058 NZW/Lac] NZW/Lac] http://jaxmice.jax.org/strain/001058.html
25 680 PLA PL/I http://jaxmice jax.org/strain/000680.htm1
26 683 RIS/ RIS/ http://jaxmice.jax.org/strain/000683.html
27 644 SEA/GnJ SEA/GnJ http:/fjaxmice jax.org/strain/000644, html
28 686 SIL/ SILA http://jaxmice jax,org/strain/000686.htm1
29 687 SM/T SM/J http://jaxmice.jax.org/strain/000687. html
30 689 SWR/J SWR/I http://jaxmice.jax.org/strain/000689.html
31 1673 AXBI1/Pgn] AXB-1/Pgn] http://jaxmice jax.org/strain/001673.html AXB/BXA
32 1681 AXB10/Pgn] AXB-10/Pgn] http://jaxmice jax,org/strain/001681,htm1
33 1683 AXB12/Pgn] AXB-12/Pgn] http://jaxmice.jax.org/strain/001683.html
34 1826 AXB13/Pgn] AXB-13/Pgn] http://jaxmice jax.org/strain/001826.html
35 1685 AXBI15/PgnJ AXB-15/PgnJ http://jaxmice.jax.org/strain/001685.html
36 1687 AXB19/Pgn] AXB-19/PgnJ http://jaxmice jax.org/strain/001687.html
37 1686 AXB19a/PgnJ AXB-18/PgnJ] http:/fjaxmice jax.org/strain/001686.html
38 1688 AXB19b/Pgn] AXB-20/Pgn] http://jaxmice jax,org/strain/001688,htm1
39 1674 AXB2/Pgn] AXB-2/Pgn] http://jaxmice jax.org/strain/001674.html
40 1650 AXB23/Pgn] AXB-23/Pgn] http:/fjaxmice jax.org/strain/001690.htm1
41 1691 AXB24/Pgn] AXB-24/Pgnl http://jaxmice jax.org/strain/001691.html
42 1676 AXB4/Pgn] AXB-4/Pgn] http:/fjaxmice jax.org/strain/001676.html
43 1677 AXB5/Pgn] AXB-5/Pgn] http://jaxmice jax,org/strain/001677 html
44 1678 AXB6/Pgn] AXB-6/Pgn] http:/fjaxmice jax,org/strain/001678.html
45 1679 AXB8/Pgn] AXB-8/Pgn] http://jaxmice.jax.org/strain/001679.html
46 1692 BXA1/Pgn] BXA-1/Pgn] http:/fjaxmice jax.org/strain/001692.htm1
47 1699 BXAI11/Pgn] BXA-11/Pgn] http://jaxmice jax.org/strain/001699.html
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Table 1 continued

JAX JAX strain name EMMA name JAX URL Type
D
48 1700 BXAI12/Pgn] BXA-12/Pgn] http://jaxmice jax.org/strain/001700.htm1
49 1701 BXAI13/PgnJ BXA-13/PgnJ http://jaxmice.jax.org/strain/001701.html
50 1702 BXA14/PgnJ BXA-14/Pgn] http:/fjaxmice jax.org/strain/001702. html
51 1703 BXA16/Pgn] BXA-16/Pgn] http://jaxmice.jax.org/strain/001703.html
52 1693 BXA2/Pgn] BXA-2/Pgn] http://jaxmice.jax.org/strain/001693.html
53 1710 BXA24/Pgn] BXA-24/Pgn] http://jaxmice.jax.org/strain/001710.html
54 1711 BXA25/Pgn] BXA-25/Pgn] hitp:/fjaxmice jax.org/strain/001711.html
55 1999 BXA26/Pgnl BXA-26/Pgn] http://jaxmice. jax.org/strain/001999.html
56 1694 BXA4/Pgn] BXA-4/Pgn] http://jaxmice jax.org/strain/001694. html
57 1696 BXAT7/Pgn] BXA-7/Pgn] http:/fjaxmice jax.org/strain/001696.html
58 1697 BXAS8/Pgn] BXA-17/Pgn] http://jaxmice.jax.org/strain/001697. html
59 1697 BXA8/Pgn] BXA-8/Pgn] http:/fjaxmice jax.org/strain/001697.html
60 36 BXDI/Tyl BXD-1/TyJ http://jaxmice jax.org/strain/000036.html BXD
61 12 BXDI11/TyJ BXD-11/Tyl http://jaxmice jax.org/strain/000012.html
62 45 BXDI12/TyJ BXD-12/TyJ http://jaxmice.jax.org/strain/00004 5. html
63 40 BXD13/TyJ BXD-13/Tyl http:/fjaxmice jax.org/strain/000040. html
64 329 BXDI14/TyJ BXD-14/TyJ http://jaxmice.jax.org/strain/000329.html
65 95 BXDI5/TyJ BXD-15/TyJ http://jaxmice.jax.org/strain/000095. html
66 13 BXDI6/Ty] BXD-16/Ty] http://jaxmice jax.org/strain/000013.html
67 15 BXDI18/TyJ BXD-18/TyJ http://jaxmice.jax.org/strain/000015.html
68 10 BXDI19/TyJ BXD-19/TyJ http://jaxmice.jax.org/strain/000010.html
69 75 BXD2/Tyl BXD-2/TyJ http:/fjaxmice jax.org/strain/000075.htm1
70 330 BXD20/TyJ BXD-20/TyJ http://jaxmice jax,org/strain/000330,htm1
71 7 BXD21/TyJ BXD-21/TyJ http://jaxmice.jax.org/strain/00007 7.html
72 43 BXD22/Ty] BXD-22/Ty] http://fjaxmice jax.org/strain/000043.html
73 31 BXD24/TyJ-Cep290<rd16>/] BXD-24/TyJ http://jaxmice.jax.org/strain/00003 1.html
74 41 BXD27/TyJ BXD-27/Ty] http:/fjaxmice jax.org/strain/000041.htm1
75 47 BXD28/TyJ BXD-28/Ty] http://jaxmice jax,org/strain/00004 7, htm1
76 29 BXD29-Tlrd<lps-2J>/J BXD-29/TyJ http://jaxmice.jax.org/strain/000029.html
77 83 BXD31/TyJ BXD-31/TyJ http://jaxmice.jax.org/strain/000083.html
78 78 BXD32/Ty] BXD-32/Ty] http:/fjaxmice jax.org/strain/000078.htm1
79 3222 BXD33/TyJ BXD-33/TyJ http://jaxmice jax,org/strain/003222, htm1
80 3223 BXD34/TyJ BXD-34/TyJ http://jaxmice.jax.org/strain/003223.html
81 3225 BXD36/TyJ BXD-36/Ty] http://jaxmice jax.org/strain/003225.html
82 3227 BXD38/TyJ BXD-38/TyJ http://jaxmice.jax.org/strain/003227 . html
83 3228 BXD39/TyJ BXD-39/TyJ http://jaxmice jax.org/strain/003228.html
84 3229 BXD40/TyJ BXD-40/TyJ] http:/fjaxmice jax.org/strain/003229. html
85 3230 BXD42/Ty) BXD-42/TyJ] http:/fjaxmice jax.org/strain/003230.html
86 37 BXDS5/Tyl BXD-5/TyJ http://jaxmice.jax.org/strain/00003 7. html
87 7 BXD6/Tyl BXD-6/TyJ http:/fjaxmice jax.org/strain/000007 .htm1
88 84 BXDS8/Tyl BXD-8/TyJ http://jaxmice jax.org/strain/000084.html
89 105 BXDY/Tyl] BXD-9/TyJ http:/fjaxmice jax.org/strain/000105. html
90 3787 B6cC3-1/Keel] BXHE1 http:/fjaxmice.jax,org/strain/003787, html BXH
91 32 BXHI10/TyJ BXH-10/TyJ http:/fjaxmice.jax,org/strain/000032, html
92 9 BXHI14/TyJ BXH-14/TyJ http://jaxmice.jax.org/strain/000009.html
93 33 BXHI9/Ty] BXH-19/TyJ http:/fjaxmice jax.org/strain/000033.htm1
94 34 BXH2Tyl] BXH-2/TyJ http://jaxmice jax.org/strain/000034.htm1
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Table 1 continued

JAX JAX strain name EMMA name JAX URL Type
D
95 3784 BXH20/Kcc] BXHALI http://jaxmice.jax.org/strain/003784.htm]
96 3786 BXH22/Kccl BXHB2 http://jaxmice.jax.org/strain/003786.htm]
97 11 BXH4/TyJ BXH-4/TyJ] http://jaxmice jax.org/strain/000011.html
98 38 BXH6/Ty) BXH-6/TyJ http://jaxmice.jax,org/strain/000038.html
99 14 BXH7/Ty] BXH-7/Tyl http://jaxmice.jax.org/strain/000014.htm]
100 76 BXHS8/TyJ BXH-8/Tyl http://jaxmice.jax.org/strain/000076.htm]
101 8 BXH9/Tyl] BXH-9/TyJ] http://jaxmice.jax.org/strain/000008.htm]
102 351 CXB1/Byl CXB-1/Byl http://jaxmice.jax.org/strain/000351.htm] CxB
103 1631 CXB10/HiAJ CXB-10/HiAJ http://jaxmice.jax.org/strain/001631.htm]
104 1632 CXB11/HiAJ CXB-11/HiAJ http://jaxmice jax.org/strain/001632.htm]
105 1633 CXBI12/HiAJ CXB-12/HiAJ http://jaxmice.jax.org/strain/001633.htm]
106 1634 CXBI13/HiAJ CXB-13/HiAJ http://jaxmice.jax.org/strain/001634.htm]
107 352 CXB2/By] CXBE http://jaxmice.jax.org/strain/000352.htm]
108 353 CXB3/Byl CXB-3/Byl http://jaxmice.jax.org/strain/000353.htm]
109 354 CXB4/Byl CXBH http://jaxmice.jax.org/strain/000354.htm]
110 355 CXB5/Byl] CXB-5/Byl http://jaxmice jax.org/strain/000355 htm]
111 356 CXB6/ByJ CXB-6/ByJ http://jaxmice.jax.org/strain/000356.htm]
112 357 CXB7/Byl CXB-7/Byl http://jaxmice.jax.org/strain/000357 htm]
113 1629 CXBR/MHiAJ CXB-8/HiAJ http://jaxmice.jax.org/strain/001629.htm]
114 1630 CXBY/HiAJ CXB-9/HiAJ http://jaxmice.jax.org/strain/001630.htm]

These strains are commercially available from The Jackson Laboratory (JAX) (Bar Harbor, ME). Additional strains will soon be entered into the
HMDP data base (see Table 2). For entry of phenotypic measures into the HMDP database and for calculating associations using EMMA
programming (see Table 2), the JAX strain names need to be converted to the EMMA strain names that we have provided here

Table 2 URL sites useful for the HMDP as well as sites used to develop the HMDP, including sites at The Jackson Laboratory (JAX) (Bar

Harbor, ME)

Name Description URL

EMMA Obtain EMMA in an R package http://mouse.cs.ucla.edu/emma/
EMMA server Input data and obtain analysis http://mouse.cs.ucla.edu/emmaserver/
EMMA power simulator R package allowing statistical power experiment via in http://mouse.cs.ucla.edu/power/

EMMA study design
Webserver

Mouse HapMap

Mouse genome
informatics (JAX)

SGR HMDP database
Genenetwork

Mouse phenome
database (JAX)

Wellcome trust center
for human genetics

Perlegen

Mouse genomes project

silico mapping

Provides power simulations with various background
genetic effects and threshold estimations

Latest genetic maps that are regularly updated

Search tools for gene names and chromosomal positions,
phenotypes, expression, orthology, and other features

Database for HMDP and several F2 studies with cQTL,
eQTL, heatmap and correlation analyses

Study relationships among phenotypes and genotypes

Phenotypes across hundreds of strains contributed by over
200 investigators

Center to understand the genetic foundations of human
variation and disease

Perlegen mouse SNP browser covering 12 classical inbred
strains and 4 wild-derived strains

Nucleotide sequence database for many key mouse strains

hitp://mouse.cs.ucla.edu/emmaserver/
powerSimulation/

http://mouse.cs.ucla.edu/mousehapmap/
http://www.informatics.jax.org/

http://systems.genetics.ucla.edu

http://www.genenetwork.org/webgqtl/
main.py

http://phenome jax,org/

http:/fwww.well,ox.ac.uk/home

http://mouse.cs.ucla.edu/perlegen/

http://sanger.ac.uk/resources/mouse/
genomes/
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Fig. 1 Map of linkage disequilibrium (LD) blocks along the genome
in the hybrid mouse diversity panel (HMDP) population. The LD
blocks were determined using ~ 860,000 SNPs that have >5 % minor
allele frequency (mean and median minor allele frequency of 28 and
31 %) and are polymorphic between the strains, Using 0.8 as the
cutoff to define LD, there are a total of 13,706 LD blocks with a

rodent genetic studies and is the single strongest predictor
of osteoporotic fracture (Cummings et al. 2002; Farber and
Rosen 2010). For this study, total body, spine, and femur
areal BMD data were generated on 16 week-old male mice
from 96 HMDP strains. The whole bone transcriptome was
also profiled using Illumina gene expression microarrays.
The authors used EMMA to perform genome-wide asso-
ciation for the three BMD measures. A total of four gen-
ome-wide significant associations were identified on
Chromosomes (Chrs) 7, 11, 12, and 17, each affecting
BMD at one or more sites. The Chr 12 association for total-
body BMD was chosen for further analysis since the 3 Mb
window surrounding the association contained only 14
candidate genes. Interestingly, the most significant associ-
ation was with a nonsynonymous SNP (rs29131970) in the
additional sex-combs like 2 (Asx/2) gene (Fig. 2). This
polymorphism was predicted to have deleterious effects on
ASXL2 protein function. To gain further support for Asxi2
being the causal gene, existing human genome-wide
association data (generated in ~ 6,000 Icelandic subjects)
was used to evaluate SNPs within the human syntenic
region for association with BMD (Styrkarsdottir et al.
2008). One SNP (rs7563012) was significant after Bon-
ferroni correction and was located in intron 3 of the human
ASXL2 gene (Fig. 2). Together these data suggested that
Asxi2 influenced BMD in both humans and mice. Consis-
tent with this hypothesis, BMD was found to be lower in
AsxI2™'~ knockout mice.

Network analysis in the HMDP is another powerful
approach for investigating complex traits from a systems-
level perspective. Coexpression networks can be used to
annotate genes of unknown function based on the known

28

median size of 42.8 kb per block (mean of 143.3 kb per block)
scattered throughout the genome. Only 1.5 % of the LD blocks (211
of 13,706 total) have a large size encompassing 12.5 % of the
genome. The location of the large blocks in the genome can be
identified by lines that cross the red bar. See text for more details

functions of the genes to which they are most closely
connected. This “guilt by association” approach has been
shown to be a robust gene annotation tool (Wolfe et al.
2005) and was used to determine the mechanism through
which AsxI2 influenced BMD. Weighted Gene Co-expres-
sion Network Analysis (WGNCA) was first used to gen-
erate a coexpression network using the bone microarray
data, which identified Asx/2 as being connected to genes
involved in myeloid cell differentiation. In bone,
osteoclasts are bone-resorbing cells of myeloid origin
(Teitelbaum and Ross 2003). Additionally, in a human
protein-protein interaction network, ASXL2 interacts with
TRAF6, a key component of the major signaling pathway
regulating osteoclastogenesis (Teitelbaum and Ross 2003).
Thus, based on network inferences, Asx/2 was predicted to
be involved in the differentiation of osteoclasts. To test this
prediction, expression of Asxl2 was knocked down in
osteoclast precursors. An ~ 50 % reduction in Asx/2 tran-
script levels inhibited the formation of TRAP+ (a marker
of mature osteoclasts) multinuclear cells. These data sug-
gested that Asx/2 influences BMD, at least in part, through
its regulation of osteoclastogenesis. This work highlights
the ability of using the HMDP and systems genetics to
move from association to gene to mechanism in a single
step.

In another study, (Park et al. 2011) utilized the HMDP
resource to report on gene networks associated with con-
ditional fear. In this study, the authors combined behavioral
phenotypes with gene expression data in two regions of the
brain (striatum and hippocampus) to identify groups of
genes that coordinately regulate the behavior of the ani-
mals. Overall, they observed significant overlap between
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Fig. 2 Variation in Asx/2 in mice and humans is associated with bone
mineral density (BMD). a Genome-wide association in the HMDP for
total BMD identifies an association on chromosome (Chr) 12. b A
nonsynonymous SNP (rs29131970) in Asx/2 that was predicted to
alter protein function was the most significantly associated Chr 12
SNP in the HMDP. ¢ Human SNPs within ASXL2 were also
associated with BMD in ~ 6,000 Icelandic individuals. d Male mice
deficient in Asx/2 (—/—) display significant decreases relative to wild-
type controls (+/+) in total BMD, spine BMD, and femur BMD
residuals after adjustments for age and body weight. Data shown in d
are residual mean £+ SEM, *P < 0.05

the local QTLs and QTL hotspots in the two tissues, as well
as module conservation and preservation of highly con-
nected genes (also known as “hubs™) in the striatum and
hippocampus networks. The authors were also able to
identify tissue-specific network modules between the stri-
atum and the hippocampus, and after performing functional
enrichment analysis of the modules, they arrived at path-
ways likely to contribute to the differences in hippocampus
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and striatum function, Finally, using modules as functional
units, the authors were able to demonstrate correlations
with behavioral traits, thus helping to prioritize candidate
genes and pathways for behavioral traits.

In addition to identifying cellular mechanisms and genes
underlying physiological traits, the HMDP has been used to
investigate the relationships across various biological
scales at the global level (Ghazalpour et al. 2011). For
example, among the intermediate phenotypes that have
been examined in liver are transcript levels (in triplicate,
using the Affymetrix platform) and a set of peptides cor-
responding to about 1,000 proteins (using quantitative mass
spectrometry analysis) (Ghazalpour et al, 2011). The cor-
relation between protein and transcript levels was quite
weak, with a correlation coefficient of less than 0.4 in most
cases, similar to what has been observed in previous studies
with yeast and worms, More surprising was the finding that
transcript levels were much more strongly correlated with
clinical traits (primarily metabolic) than were protein lev-
els. One possible explanation is that transcript levels may
be reactive rather than causal with respect to physiologic
traits (Ghazalpour et al. 2011).

Overall, the HMDP is being used to develop a multi-
scale understanding of a number of complex traits,
including a recent report on elevated heart rate (Smolock
et al. 2012), There are already over 70 traditional clinical
traits reported and there are ongoing studies related to diet-
induced obesity, hearing loss, heart failure, atherosclerosis,
lipoprotein metabolism, bone metabolism, vascular injury,
hematopoietic stem cells, air pollution, gut flora, addictive
behavior, hepatotoxicity, and diabetic complications. In
addition, gene expression microarrays have been used to
quantify mRNA levels in liver, bone, adipose, brain, peri-
toneal macrophages, aorta, and heart, and proteomic and
metabolomic profiling has been performed in liver.

Integration of the HMDP with other resources

The HMDP is just one of several recently proposed
approaches to improve the resolution of mouse genetic
studies. Other approaches include the Collaborative Cross
(CC) (Churchill et al, 2004), outbred designs (Valdar et al.,
2006; Yalcin et al. 2010), and the use of consomic strains
(Gregorova et al. 2008; Singer et al. 2004; Takada et al.
2008). Each approach has advantages and disadvantages
relative to the HMDP. The CC is a recently developed
panel of RI strains that are descendants from eight founder
strains. A key difference between the HMDP and the CC is
that three of the CC founders are wild-derived strains.
Wild-derived strains introduce a significantly larger
amount of genetic variation and corresponding phenotypic
variation compared to the HMDP. For this reason, it is
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likely that more genes in the CC will have effects on traits
than in the HMDP. However, the additional variation may
make it relatively more difficult to map quantitative loci
polymorphic in both panels since the increased variation of
the CC and outbred panels will reduce the relative effect
size of the same variant compared to the HMDP (Kang
et al. 2008). The CC will ultimately contain approximately
300 strains compared to the current 100 strains of the
HMDP. However, the HMDP may be enlarged to 260
strains (see Future directions and conclusions section)
(Collaborative Cross Consortium 2012), Both the CC and
the HMDP use inbred strains so they share the advantage of
accumulation of data on each strain over time as more and
more studies are performed. Utilizing inbred strains also
facilitates performing studies with perturbations because
identical animals can be phenotyped both with and without
a perturbation,

An advantage of outbred designs is that they have higher
resolution than the HMDP (up to 100 kb). On the other
hand, a disadvantage in outbred designs, either utilizing a
specially designed Heterogeneous Stock (Valdar et al.
2006) or commercially available outbred mice (Yalcin
et al. 2010), is that each animal is unique. Overall, several
mapping strategies are, or will be, available to tackle the
genetics of complex diseases.

Consomic strains are also proving valuable for reducing
genetic intervals containing candidate genes (Hoover-Plow
et al. 2006; Prows et al. 2008) and for identifying causal
genes (Burrage et al. 2010). However, consomic strains
have limited uses for initial genomic studies, as only two
alleles are sampled and consomic strains by definition
consist of large areas of LD which were captured from the
donor strain during breeding. Nonetheless, consomic
strains have enriched the ability to test for epistasis and to
reduce genetic intervals by the generation of congenic
strains.

Resources for design and analysis of HMDP

UCLA maintains several resources for the design and
analysis of HMDP studies (Table 2). The two most rele-
vant to investigators are the EMMA association webserver
and EMMA design webserver. Investigators utilizing the
HMDP can upload their collected phenotypes to the asso-
ciation webserver which will perform association mapping
using EMMA and return population structure-corrected
P values for each SNP. The analysis is performed on a
high-performance computing infrastructure at UCLA,
eliminating the need for investigators applying the HMDP
to invest in computational resources to perform the anal-
ysis. The EMMA design webserver allows an investigator
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to estimate the power of a proposed study design through
simulations (Kirby et al. 2010) that can help guide an
investigator in the design of HMDP studies. In addition,
curated genotypes of the HMDP strains are also available.

A systems genetics database

Because the HMDP mice are inbred, with fixed genotypes,
the data generated from their study are cumulative. To
facilitate the integration and analysis of such data, we also
developed a database called the Systems Genetics Resource
(SGR). The database comprises mouse genomic, transcrip-
tomic, metabolomic, proteomic, and clinical trait data from
the HMDP as well as selected traditional mouse crosses and
several human studies. The data are accompanied by detailed
descriptions of how the data were acquired, with protocols
and links to related published papers. A summary of current
data sets contained in the database is presented in Table 3.

We developed a web-based interface where data can be
queried for information on specific gene and trait correla-
tions, gene expression in various tissues, or quantitative
trait loci, as well as be downloaded for other types of
analyses. Such information can be used, for example, to
prioritize candidate genes in genetic studies and frans-
acting loci can be used to generate hypotheses about reg-
ulatory pathways (Fig. 3). The intermediate phenotypes
can also be used to model gene networks and causal
interactions. The power of the SGR is expected to expand
as more data are added. Some of the data is also available
in the Genenetwork and the Mouse Genome Informatics
databases (Table 2).

The SGR is a resource that can be used to answer specific
questions and to understand the relationships among differ-
ent genes. For example, data generated from primary mac-
rophages of the HMDP helped us to determine that a gene of
interest, the interferon inducible helicase 1 (Ifikl), shows
gene-by-environment interactions and that it is under the
control of the inflammatory stimulus bacterial lipopolysac-
charide (LPS) (Fig. 3a). Using eQTL, we also found that the
expression of Ifik1 is controlled by three loci on Chrs 5, 8, and
13 (Fig. 3b). We can also compare the expression patterns of
Ifih]l among the different tissues available on the database,
which include adipose, aorta, heart, liver, and macrophages
treated in three different conditions (Fig. 3c). Similarly, we
found that the three trans-eQTL on Chrs 5, 8, and 13 are
specific to macrophages treated with LPS, but there is also a
strong cis-eQTL in the liver and other regulatory loci in Chr
2. Such information can allow us to identify candidate reg-
ulators, to examine gene-by-environment interactions and
tissue specificities, and to prioritize candidate genes for
clinical QTL.
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Table 3 Data sets currently on line on the systems genetics resource
(SGR) database

(A) Hybrid mouse diversity panel: original panel analysis: chow fed,
males, 16 weeks

(B) Hybrid mouse diversity panel: chow fed, males, 16 weeks: second
set

(C) Hybrid mouse diversity panel: isoproterenol-induced hypertrophy
and heart failure

(D) Hybrid mouse diversity panel: Akita Diabetes Study, pilot

(E) Hybrid mouse diversity panel: diet-induced obesity

(F) Hybrid mouse diversity panel: human ApoB100 transgenics

(G) Hybrid mouse diversity panel: peritoneal macrophages,
inflammatory responses

(H) Hybrid mouse diversity panel: atherosclerosis using ApoE
Leiden, CETP transgenics

(I) Hybrid mouse diversity panel: hearing phenotypes

(J) Hybrid mouse diversity panel: mandible morphology

(K) Hybrid mouse diversity panel: attention-related behavioral traits

(L) Hybrid mouse diversity panel: parental strain survey

(M) Hybrid mouse diversity panel: vascular injury response

(N) Hybrid mouse diversity panel: F1 hybrids

(0) Metabolic synd im) study

(P) Human aortic endothelial cells (EC) culture

(Q) Human aortic smooth muscle cell (SMC) culture

(R) (BALB/cBy.Ldlr = x C57BL/6JLdlr ") F2

(S) (C57BL/6] x DBA/2J)F2 on db/db background

(T) (CeH/HeJ.Apoe ™'~ x CSTBL/6JApoe ™) F2

(U) (C3H/He] x C57BL/6J) F2

(V) (C57BL/6J x CAST/Ei) F2

(W) Genome tagged mice, global congenic strains: DBA/2J on
C57BL/6J background and CAST/Ei on C57BL/6J background

X)R bi inbred ic strains, Demant, C3H x C57BL/6

(Y) (C57BL/6J x DBA/2J) F2

in men (M

This resource is updated regularly with submissions from the HMDP
user groups

Future directions and conclusions

While the resolution of the HMDP is excellent at most loci,
the power is marginal. As judged by QTL studies, few loci
contributing to complex clinical traits have effect sizes as
large as 10 % and most are below 5 % (Flint and Mott
2008). Thus, using the panel of 100 strains (Bennett et al.
2010), only a subset of the loci contributing to complex
traits are likely to be identified. As mentioned above, the
power can be enhanced by integrating the results from
traditional crosses or by expanding the number of inbred
and recombinant inbred strains. Recently, two panels of
advanced intercross RI lines have become available from
The Jackson Laboratory: The LXS RI panel includes 62
strains and 50 more BXD strains have recently been
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Fig. 3 Database plots for interferon-inducible helicase 1 (Ifihl).
Sample plots for a given gene of interest that can be obtained from
our online database. a Lipopolysaccharide (LPS) response of Ifihl in
macrophages of the HMDP. b Genome-wide association for the
expression of Ifihl in LPS-treated macrophages. ¢ Relative expression
levels among mouse strains of the HMDP in adipose, aorta, heart, and
liver, and for macrophages treated with control, LPS or oxidation
products of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine
(OXPAPC) media. Robust microarray average (RMA) refers to an
algorithm for gene expression microarray background corrections.
We used the Affymetrix GCOS RMA algorithm

developed. Also available from The Jackson Laboratory
are several sets of cryopreserved strains: 19 strains from
the AKXD RI panel, 13 from the AKXL panel, and 15
from the NXSM panel. Thus, it is possible to increase the
size of the HMDP to over 260 strains. Recombinant Inbred
Congenic Lines, Chromosome Substitution Strains, and
Genome Tagged Mice (Peters et al. 2007) could also be
employed to increase both power and resolution. A par-
ticularly useful complement to the HMDP will be the CC
strain set now being generated (Casci 2012; Threadgill and
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Churchill 2012). Preliminary analyses of the partially
inbred CC lines have been promising and substantial
resources for their characterization, including complete
genomic sequencing, have been planned (Collaborative
Cross Consortium 2012).

As discussed above, human genetic studies of complex
traits are limited in several respects, and the HMDP provides
a partial solution to some of these limitations. First, human
studies are poorly powered to identify genetic interactions,
and these can be addressed more effectively in mice. As
mentioned above, the HMDP is very convenient for genetic
analysis of environmental interactions because mice of the
same genotype can be examined under different conditions.
Also, epistasis is likely to complicate studies of diseases
such as diabetic complications and atherosclerosis, where
one set of genes contributes to a predisposing factor (dia-
betes and elevated cholesterol, respectively), and another set
of genes affects the response to these factors. In the HMDP,
sensitizing genes can be introduced by breeding dominant
mutations onto each of the HMDP strains and examining the
F1 progeny. For example, we have bred a dominant hyper-
lipidemia-inducing gene, APOE-Leiden, onto a number of
the HMDP strains and find atherosclerosis to be concordant
with previous studies in which recessive mutations were
transferred onto different backgrounds (B. Bennett and
A, J. Lusis unpublished). Second, it will be difficult to
identify, directly in humans, the pathways perturbed by
novel GWAS genes. For example, the striking relationship
between an allele of APOE and Alzheimer’s has been known
for nearly 20 years and yet the mechanism remains uncer-
tain. Clearly, studies in mice, where access to tissues and
environmental conditions can be standardized, will simplify
such analyses. Moreover, studying the genes in the context of
natural variation, as opposed to transgenic or gene-targeted
mice, may well offer important advantages. Third, for most
common disease traits, human GWAS have been able to
identify only a small fraction of the total heritability. There
are undoubtedly many explanations but, clearly, much
remains to be discovered. Studies in mice will most likely
identify different, although overlapping, gene sets and per-
haps different pathways. Traits that are substantially influ-
enced by environmental factors will be addressed with
greater power in mice because such factors can be controlled.

The HMDP panel should be useful as a tool for inves-
tigation of basic biological processes as well as complex
clinical traits. An example is the study by (Ghazalpour
et al. 2011) that examines the relationship between tran-
script levels, protein levels, and metabolic traits. By pro-
viding many thousands of genetic perturbations in various
combinations, the HMDP enables global dissection of the
relationships between biological scales such as DNA
methylation, transcription factor binding, histone modifi-
cation, and transcription.
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Chapter 3

Genome Wide Association Studies of
Cardiac Hypertrophy and
Cardiac Fibrosis

Using a Large Mouse Panel
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Introduction

This chapter contains a copy of a manuscript currently in submission regarding
the major findings of the hybrid mouse diversity panel (HMDP) heart failure (HF) project
with regards to organ weights and cardiac fibrosis. It describes the observation of
significant diversity within the HMDP both before and after treatment with isoproterenol
with regards to organ weights and fibrosis, as well as differences in the degree of effect
that isoproterenol had on these phenotypes. It further describes the identification of 30
genome-wide significant loci using GWAS, as well as describing likely candidate genes
within these loci. Several of our loci overlap with genes that have previously been well-
characterized as being involved in HF, including calcineurin A and B and
phospholamban. The manuscript also demonstrates using both knockout and transgenic
lines of mice that Abcc6 has a significant effect on cardiac fibrosis in the presence of
ISO. Additionally, it describes preliminary analysis of a novel noncoding RNA, Miat,

which may regulate cardiac hypertrophy.
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Summary

The complexity underlying common forms of heart failure (HF) has hindered genetic

approaches such as genome-wide association studies (GWAS) in human populations.

We addressed this by performing a GWAS in a novel mouse resource population, the
Hybrid Mouse Diversity Panel, following exposure to the f-adrenergic agonist
isoproterenol. Our analyses revealed 32 significant loci, each containing between 1 and
30 genes (average 14) affecting cardiac hypertrophy, fibrosis and other surrogate traits
relevant to HF. We also performed global transcriptome analysis of heart tissues from
the mouse strains to prioritize candidate genes. Several loci contained very strong
candidates which had previously been shown to contribute to Mendelian forms of HF in
humans or implicated in HF in transgenic mouse models. We also validated two novel
genes, one for fibrosis and one for cardiac hypertrophy, using gene targeting, transgenic
and in vitro approaches. The former, Abcc6, is an orphan transporter previously known
to contribute to calcification but not fibrosis. The second, Miat, is a long noncoding
RNA that is induced by ISO treatment. Our data provide a rich resource for identifying

genes and interactions contributing to polygenic forms of HF.
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Introduction
Heart failure (HF) is a common cause of death in developed countries *. In

contrast to many other common disorders, genome-wide association studies (GWAS) of
HF have had modest success in elucidating the genetics underlying this complex disease.
Only two heart-failure related loci 2 have reached accepted levels of genome-wide
significance, despite studies involving tens of thousands of patients and large meta-
analyses *°. The challenges of performing GWA in HF is likely due to the very complex
nature of the disease, which can arise as a result of multiple underlying etiologies, such as
myocardial infarction, hypertension or diabetes, each of which are, in and of themselves,

complex traits with significant environmental confounders *.

Fibrous tissue accumulation and scarring in the myocardium is a fundamental
component of many cardiac disorders, including remodeling in both myocardial
infarction® and heart failure "®. This important phenotype has proven difficult to study in
humans at the level of a GWAS or other population-based study. Although recent reports
have suggested that cardiac fibrosis may be roughly monitored through the use of plasma
biomarkers® or MRI imaging™®, these methods are not considered as accurate as
traditional analysis, which requires physical examination and sectioning of heart tissue.
The invasive and lengthy procedures necessary to quantify cardiac fibrosis in humans has

limited studies.

Animal models such as the mouse, in which the disease onset and environmental
effects can be controlled, have provided a useful means for the genetic dissection of heart

failure and cardiac fibrosis™**. However, although a number of loci for heart failure
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traits have been mapped in mice and rats, only in a few instances have the underlying
genes been identified. The primary problem has been the poor mapping resolution in
traditional linkage analyses. We have recently reported the development of a resource,
the Hybrid Mouse Diversity Panel (HMDP), for genome-wide association mapping in
mice, providing at least an order of magnitude of improved resolution when compared to

traditional linkage analysis *°.

We now report a genetic analysis of isoproterenol-induced heart failure and
cardiac fibrosis in the HMDP. Although rarely an initial impetus for HF, B-adrenergic
stimulation characterizes the HF state especially in later stages and is considered a
driving force behind ongoing hypertrophy and progressive cardiac failure *°.
Isoproterenol (1SO), a synthetic non-selective B-adrenergic agonist, provides a means to
activate the B-adrenergic receptors without the need to cause an initial insult to the heart
17720 - additionally, it has been reported that the pressure overload response of the heart
results in extensive changes to cardiac fibrosis?*. We now report the identification of
about thirty genome-wide significant loci for hypertrophy and fibrosis. To complement
the GWAS we have carried out transcriptional profiling of ventricles from the entire
panel, before and after treatment with 1SO. This has enabled improved prioritization of
candidates at GWAS loci as well as pathway analyses. Several of the loci contained well-
studied HF-associated genes such as Ppp3ca and Sgcd, as well as others involved in other
forms of cardiac dysfunction. We have also identified a number of novel genetic loci
significantly associated with cardiac hypertrophy and fibrosis, several containing only a

few genes. We selected two promising novel candidates for validation studies. One of
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these is Miat, a non-coding RNA previously implicated in myocardial infarction risk?.
Miat was upregulated in diseased hearts and had significant effects on the progression of
cardiomyocyte hypertrophy in response to catecholamine-induced stress in cultured
myocytes. The second is Abcc6, an orphan transporter previously shown to contribute to
tissue calcification in the disorder pseudoxanthoma elasticum®. We now demonstrate
using gene targeted and transgenic mice that variations in Abcc6 expression contribute to
ISO-induced fibrosis. Our data constitute a freely available resource linking genomic
variations, gene expression, and HF traits in an 1SO-induced HF mouse model

(http://systems.genetics.ucla.edu/data).

Results
Phenotypic characterization of HMDP mice following ISO treatment

Our preliminary studies have revealed that inbred strains of mice exhibit dramatic
and highly reproducible differences in cardiac hypertrophy in response to ISO treatment.
In order to identify the genetic contributions to common forms of HF, 748 mice from 105
different strains of the HMDP were divided into control (average 2.2 per strain) and
treated (average 4.1 per strain) cohorts, details of which are available in our database.
Treated mice were implanted with an Alzet micropump and given 20 mg/kg/day of ISO
for three weeks, at which point all mice were sacrificed. Cardiac hypertrophy was
quantified by left- and right- ventricular weights, while left and right-atria weights were
measured as an indication of cardiac function. Liver and lung weights, as a reflection of

fluid retention, were also used as indicators of congestive heart failure.
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Cardiac fibrosis was measured by quantifying fibrotic tissue as a percentage of all
tissue in left ventricular sections stained with Masson Trichrome. Quantification was
performed using the NIS Elements AR program. To confirm our results, we examined a
subset of the strains using Sirius Red, another fibrosis-marking stain, and observed very
high concordance between our samples (R=0.75, P=0.00014, data not shown). As
expected®?, we observe strong correlations between cardiac fibrosis and total heart
weight (P=1.1E-07). Our results also compare favorably to prior quantifications of

fibrosis in a limited number of strains?>.

We observed that of the 470 mice assigned to the treatment cohort, 139 (29.6%)
died prior to the end of the protocol, most (127) within the first 48 hours of treatment. By
contrast, all of the control cohort survived to the end of the protocol. Survival to the end
of the protocol clearly exhibited a genetic component with many strains (42) showing no
premature death susceptibility to ISO challenge, while a small number of strains (9)
displayed 100% lethality (Fig 3.1a).

Association analysis was performed using roughly 132,000 SNPs across the
genome with the EMMA algorithm ?° to correct for population structure. In addition to
the absolute weight measurements, analyses were performed on the ratios of each treated
weight to its corresponding control weight as a measure of responsiveness to ISO
treatment. Previous work performed using the HMDP and EMMA has reported that a
genome-wide significance threshold for the HMDP is 4.1E-06 *°. Utilizing this cutoff
and a minimum minor allele frequency (MAF) of 7.5%, 32 significant loci were

discovered from our analysis (Table 3.1). While linkage analysis in mice typically
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exhibits a resolution of tens of Mb, the loci identified in this study averaged 2 Mb in size,

based on linkage disequilibrium with the majority being less than 1 Mb.

To help identify candidate genes at the loci, global transcriptome analysis was
performed on left ventricular tissue of mice from both control and ISO-treated groups.
Local (presumably cis-acting) and trans-acting loci controlling transcript levels in control
and 1SO-treated mouse hearts were mapped using EMMA, similar to the phenotypic
traits. Additionally, the Wellcome Trust Mouse Genomes Project sequencing database %,
which has the full genomic sequence of 10 strains in our panel, was utilized to examine
genomic variations, such as missense, nonsense or splicing variations, in each locus.
Together, these two approaches provided a powerful and systematic method for the

identification of causal genes within each locus.

The right and left ventricular weight (RVW, LVW) variations mirrored each other
closely, with associations being somewhat stronger for RVW (Fig 3.1c). In total we
observed eight loci corresponding to treated RVW (Fig 3.3a), two loci for the ratio of

treated to untreated RVW (Fig 3.3b) and a single locus for the ratio of right atrial weight.

Similar to the heart weights, we observed marked variation of liver and lung
weights following 1SO treatment across the HMDP (Fig 3.1d, 3.1e). Lung weight in
particular showed a robust increase in weight with ISO treatment, with over half of
treated strains reporting a 20% or higher increase in weight. We observed five loci
corresponding to ISO-treated lung weights (Fig 3.3c), and two loci corresponding to I1SO-

treated liver weights (Fig 3.3d), including one which replicated an RV peak.
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Cardiac fibrosis also varied significantly both in baseline and treated mice, with
the extent of fibrosis being much greater in treated mice (Fig 3.1f). We observed a total
of seven loci for cardiac fibrosis in untreated animals (Fig 3.3e), and six in treated

animals (Fig 3.3f). Of these loci, two occurred in both treated and untreated analyses.

Overall, we observed nineteen loci (Table 3.1) associated with ISO-induced
cardiac hypertrophy and heart failure and eleven loci associated with cardiac fibrosis.
Loci typically ranged between 500kb to 2 Mb in size and contained from one to twenty
genes within the linkage disequilibrium (LD) block containing the peak SNP. Our results
represent an improvement of more than an order of magnitude compared to traditional
linkage analysis, which has a reported resolution of 10 to 20 Mb 2?8, All significant and
suggestive loci as well as gene expression data are available in our resource for public

query and analysis.
Overlap with previously reported GWAS and linkage loci

In human studies, only two loci have been reported which exceed the accepted
threshold of 1E-8 2, while in mice broad linkage peaks have complicated efforts to
identify single causal genes ?°. We explored whether the loci we identified overlap with
human GWAS results by examining the top twelve previously identified significant and
suggestive human loci *>?. The human loci were mapped onto the mouse genome using
the NCBI Homologene resource and compared to the suggestive (P<1E-05, MAF>5%)
loci identified in the weight portion of our study. We observe six of twelve human loci,
including one of the genome-wide significant loci near USP3, replicating in our study

(Table 3.4) at a statistical significance of P=3.5E-4.
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Sixteen loci for HF-related traits have previously been identified via linkage in
mice for CHF-related traits. We observed that seven of these sixteen QTLs overlap with
weight loci identified in this study (P=0.0012) (Table 3.5). It should be noted that some
of the linkage studies utilized different hypertrophy-inducing stressors, which would be
expected to implicate different genetic loci as compared to ISO stimulation. For
example, several previous QTLs were observed after sensitization using a calsequestrin
transgene 2. We observe a modest downregulation of calsequestrin after 1SO treatment

instead of the upregulation observed in the calsequestrin transgenic model. (Figure 3.8).
Gene Expression Analysis

To help identify candidate genes at our loci, we carried out global expression
analysis of left ventricular heart tissue from both control and 1SO treated mice from 92
strains. The loci controlling gene expression levels were mapped using EMMA, and are
referred to as expression quantitative trait loci (eQTL). eQTLs are termed 'cis' if the
locus maps within 1Mb of the gene and otherwise are termed ‘trans’. Overall, we
observed 2985 cis and 5912 trans eQTL in control animals and 3093 cis and 4842 trans

eQTL in treated animals (cis threshold P<3.6E-3, trans threshold P<4.22 E-6).

Total heart weight and cardiac fibrosis with and without ISO treatment was
correlated with global gene expression (top 50 genes for each phenotype shown in Table
3.2). We observed many genes which are known to play important roles in HF are highly
correlated with heart weight. For instance, Fstl1 (R=0.57, P=6.65E-17) has been reported
to attenuate cardiac hypertrophy in mice **. We also observe known HF biomarkers such

as Timpl (R=0.61,P=2.18E-20) and Lgals3 (R=0.53,P=1.18E-14) correlated strongly to
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cardiac hypertrophy®. In addition, several known biomarkers for cardiac fibrosis®** such
as Lgals3 (R=0.46,P=6.2E-11) as well as several collagen species(Collal,
R=0.43,P=1.45E-9; Col3al, R=0.39, P=2.2E-8) were correlated with measured levels of
cardiac fibrosis. DAVID *% analysis of all significantly correlated genes (P<1.23E-07)
revealed strong enrichment for eighteen GO categories for heart weight (Table 3.3),
including: signaling molecules (P=5.23E-16), the extracellular matrix (P=4.96E-13), cell
adhesion (P=2.83E-4) and calcium binding (P=0.0058). We also observed (Table 3.3)
enrichment of ten GO categories for cardiac fibrosis, including genes involved in
signaling(P=3.9E-7) and the proteinaceous extracellular matrix (P=4.88E-5) All gene

expression, as well as eQTLs, can be found on our online database.

Identification of hypertrophy, cardiomyopathy and cardiac fibrosis genes using the

HMDP HF resource.

Our resource provides researchers with access to tabular or graphical results of
GWAS peaks (Fig 3.3), eQTLs (Fig 3.2b), gene expression (Fig 3.2a) and collected
phenotypes (Fig 3.1). The combination of these four types of data provide a powerful
tool for the identification of important and novel candidate genes in HF. For example,
the data can be queried to identify genes, which show a consistent up- or down-regulation
in response to ISO stimulus (Fig 3.2a), or to determine which genes at a locus show cis
regulation (Fig 3.2b), as well as which genes of interest show strong correlations to HF-
related phenotypes (Fig 3.2c). Using our database, we analyzed several of the GWA

peaks contribution to HF traits and demonstrated strong evidence that the candidates

46



within them were genes previously demonstrated to contribute to HF in humans or

transgenic mouse models. Some of these results are discussed below.

We observed a genome-wide significant SNP (p = 1.9E-6) on chromosome 3 for
the trait treated-to-untreated right RVW ratio that lies between the second and third exons
of Ppp3ca, encoding the alpha isozyme of calcineurin A. Calcineurin A is a known
target of B-adrenergic signaling, with a well-described role in ISO-induced
hypertrophy?®343¢. Calcineurin A is the only gene in LD with the peak SNP and has
suggestive cis-eQTLs in both control (P=0.029) and treated (P=0.046) animals as well as
a significant (P=1.3E-3) cis-eQTL for the ratio of treated to control calcineurin A
expression (Figure 3.4a,b). We also observed a modest correlation between the ratio of
Ppp3ca expression and the ratio of heart weights in control and 1ISO-treated animals
(P=0.01). We further observed Ppp3cb, the beta isozyme of calcineurin A, in a locus on
chromosome 14 (p=3.3E-6) for the trait treated lung weight. Ppp3cb has a highly
suggestive cis-eQTL (4.7E-3) as well as an insertion in a splice site in several strains of
the HMDP.

On chromosome 10, we observed a treated RVW locus (P-value=2.8E-07)
containing the gene for phospholamban (PIn) in an LD block with 17 genes. Pln is

another well-studied gene involved in heart failure>* ¢,

PlIn expression is regulated in
cis in ISO-treated (p = 1.45E-05) mice and is modestly correlated with RVW (R = -0.145,
P =0.03). The same locus also had a significant impact on a post-treatment liver weight

locus (P=3.48E-06) in the same LD block, and suggested PIn as the candidate gene for

that locus as well.
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Another RVW locus was observed on chromosome 11, with the peak SNP (P =
2.15E-06) lying between the 2nd and 3rd exons of sarcoglycan delta (Sgcd). Sgcd has
previously been implicated in familial dilated cardiomyopathy in humans. The role of
Sgcd in cardiomyopathy and muscular dystrophy is well-studied in a knockout mouse

model***?,

Several other loci contained candidates highly suggestive of functional roles in
cardiac hypertrophy. Our most significant locus for RVW (P=3.49E-10) lies on
chromosome 5 and contains 11 genes within LD. Two attractive candidates lie within the
region based on results from our study. Knockout of one of these candidates, Mospd3,
resulted in significant right-ventricle-specific dilation and thinning in neonatal mice,
leading to 50% neonatal lethality, although heterozygotes showed no phenotypic changes
. Mospd3 has a non-synonymous SNP among the HMDP strains and was correlated to
overall heart weight (R=0.29, P=6.2E-5). Another candidate at this locus, Pcolce, was
upregulated in the failing heart and plays an important role in the regulation of cardiac

fibrosis in mouse models of HF **. It is also correlated with RVW (R=0.35, P=5.85E-7).

We observed several interesting candidates for cardiac fibrosis. For instance, on
chromosome 7 we identified a locus (P=1.4E-6) containing Snrpn and Ube3a which
overlaps with a previously identified suggestive heart failure locus in humans®. On
Chromosome 17, a shared locus in both treated (P=2.5E-6) and untreated (P=1.4E-6)
hearts contains 4 genes within LD(Table 3.1). Fert2, a gene within this locus, is a known
regulator of fibroblast migration®® and plays a vital role in cadherin/beta-catenin

association*®, a pathway which has been shown to be important for fibrogenesis*’*®, We

48



observed a strong cis-eQTL for this gene (P=1E-5), which has a non-synonymous
mutation within several strains and note that it falls within a heart weight QTL in rats*.
We also identified a collagen species Col22al as a candidate on a locus on chromosome
16(P=9.6E-7) and TII1, a metalloprotease which interacts with collagen® as a candidate
within a locus on chromosome 8 (P=1.43E-6). Finally, a locus of interest for RVW
on chromosome 5 (p = 1.23E-06) contains Prkag2, which is under strong cis regulation in
both untreated (p =7.44E-26) and treated (p=2.8E-19) mice and contains two non-
synonymous SNPs among the strains of the HMDP (Figure 3.5a,b). Human families with
mutations in Prkag2 have a dominant form of glycogen storage disease, primarily
involving the heart, giving rise to heart wall thickening and eventual heart failure **2,
Mice containing a transgene of Prkag2 with a T400N point mutation also display
glycogen storage-mediated cardiomyopathy cardiac wall thickening and dysfunction *.

Mutations in Prkag2 have also been linked to premature activation of the NF-kB and Akt

signaling pathway, a known mediator of cardiac hypertrophy *.

Our resource facilitates the identification of novel genes involved in cardiac
hypertrophy through the integration of GWA loci, eQTL peaks, gene expression and
phenotype correlations. For example, we have identified the DNA repair gene Mgmt as a
strong candidate for the change in right atrial size (P=1.41E-6) on chromosome 7 in a
locus containing 15 genes. Mgmt removes the O°-alkyl-guanine DNA mutation that is
the major carcinogenic lesion introduced by alkylating mutagens **. It has previously

55-57

been studied in the contexts of oncogenesis and chemotherapy efficacy >*, but has

not been implicated in heart disease. We observe a strong cis-eQTL (P=4.8E-5) linking

49



the expression of the gene to the same SNPs which regulate the phenotype. Additionally,
Mgmt shows a strong correlation with many phenotypes, most notably total heart weight

(R=-0.46, P=3.4E-11).

In vitro validation of Miat as a novel regulator of cardiac hypertrophy

We identified Miat, a multi-exonic long non-coding RNA previously associated
with an increased risk of myocardial infarction?®, as a novel HF candidate in a
chromosome 5 locus (P=1.3E-06), containing 22 genes, for treated lung weight. In
addition, we observed that the Miat locus overlapped with a suggestive locus for both
RVW (P=2E-4) and LVW(P=7.8E-3). We tested whether Miat expression directly
modulates cardiomyocyte function, using a neonatal rat ventricular cardiomyocyte
(NRVM) model. These cardiomyocytes respond in vitro to B-adrenergic agonist
phenylephrine (PE) by undergoing hypertrophy (Figure 3.9b), as characterized by
increased cell size and expression of molecular markers including natriuretic peptide A
and B (Anp and Bnp) (Fig. 3.9c). The induction of Miat expression by PE treatment was
significantly abrogated by siRNA knockdown (Fig. 3.9b). Miat siRNA knockdown
reduced the PE-induced cardiomyocyte hypertrophy from 29.0% to 17.0% (Fig 3.9b), and
this was accompanied by decreased expressions of the Anp and Bnp as well as Myh7, a

marker of hypertrophic cardiomyopathy (Fig. 3.9¢).

To understand how Miat contributes to hypertrophy, we examined several key
regulators of cardiomyocyte differentiation and proliferation. The data showed that Miat

SiRNA selectively downregulated mRNA levels of NK2 homeobox 5 (Nkx2.5) and
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GATA binding protein (Gata4) and NFkB in NRVMs compared to control siRNA after
PE treatment (Fig. 3.9d), suggesting that Miat modulates cardiac hypertrophy via targeted

regulation of key transcription factors in cardiomyocytes.

In vivo validation of Abcc6 as a novel regulator of cardiac fibrosis

One of the I1SO dependent fibrosis loci, on chromosome 7 (Table 3.1,
P=7.1E-7) at 53 Mb, contains 28 genes within LD (Figure 3.6A). One of these genes,
Abcc6, has a splice site variation resulting in a premature stop codon that is found in a
number of strains in the HMDP>®*°, We selected Abcc6 as a candidate based on the fact
that mutations of the gene in the disorder Pseudoxanthoma elasticum (PXE) are known to
contribute to systemic vascular calcification, including the skin, eyes and heart. Abcc6 is
thought to mediate calcification by influencing the secretion into the circulation of a
substance that remains to be identified®. Since Abcc6 is expressed at highest levels in
the liver and kidney it has been assumed to function in these tissues. However, we
observed nominally significant cis-eQTLs for Abcc6 in the heart (P=0.01 in treated
animals, P=0.03 in control) suggesting that Abcc6 is also expressed in heart and may
function there as well. Recent evidence has shown that Abccé is localized in the
mitochondrial associated membrane, and that deficiency of Abcc6 influences
mitochondrial morphology®. Moreover, deficiency of Abcc6 leads to increased infarct

size in a cardiac ischemia-reperfusion model?*,

To examine the role of Abcc6 in cardiac fibrosis we studied C57BL/6J mice
carrying a targeted mutation of Abcc6 (KO mice) as well as control mice (strain

C57BL/6J do not have the splicing mutation discussed above)?. We observed that
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neither the wild type nor the KO mice exhibited significant calcification in the absence of
ISO treatment as judged by Alizarin Red staining. This is consistent with previous
studies indicating that the calcification is age dependent and occurs only in older mice®.
After ISO treatment there was a very modest increase in staining (P=0.06) (Fig. 3.6B).
Neither wild type nor KO mice exhibited significant fibrosis at baseline as judged by
Masson Trichrome staining (Fig. 3.6D, E) or Alizarin Red staining (data not shown).
Notably, C57BL/6J mice are among the most resistant strains to fibrosis in the HMDP
(Fig. 3.1). However, after ISO treatment the KO mice but not the wildtype mice
exhibited significantly increased amounts of fibrosis, but did not display significant
increases in calcification (Fig 3.6D). Thus, these results are consistent with the fact that

the fibrosis locus is 1ISO-dependent.

To complement these studies we examined an Abcc6 bacterial artificial
chromosome (BAC) transgenic mouse on a fibrosis-susceptible C3H/HeJ background.
Strain C3H/HeJ mice carry the splicing variation that results in a deficiency of Abcc6®
In the absence of ISO neither C3H/HeJ mice nor C3H/HeJ mice carrying the transgene
exhibited significant calcification or fibrosis, whereas after ISO treatment the C3H/Hegj
mice but not the transgenic mice exhibited substantial fibrosis and calcification (Fig
3.6E). This suggests that while Abccé6 is sufficient to cause significant changes to cardiac

fibrosis after ISO stimulation, a potential modifier locus affects calcification.

To examine pathways by which Abcc6é may contribute to fibrosis, we identified

569 genes that were significantly correlated with Abcc6 transcript levels in hearts of
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HMDP mice in treated animals (Table 3.6). Using DAVID*** we observed that these
genes were highly enriched for mitochondrial functions (P=4.65 E-15), transit
peptides(P=2.7E-7) and acetylation(P=4.5E-4) (Table 3.7). These findings are consistent

with the localization of Abcc6 in the mitochondrial associated membrane.

Discussion
Heart failure is the leading cause of hospitalization in developed countries and

new therapeutic and diagnostic approaches are urgently required. However, efforts to
identify genes contributing to common forms of the disease have been only modestly
successful, presumably because of the extremely complex etiology of the disease®>.
There has been considerable success in identifying genes contributing to Mendelian
forms of cardiac hypertrophy, but it is not yet clear if common variants in these genes
contribute to non-Mendelian forms of cardiac dysfunction in the general population.
Linkage studies in mice have mapped a number of loci contributing to heart failure in
various models, but very few genes have been positionally cloned due to the poor
mapping resolution of QTL analysis in mice. We have used a novel strategy involving
GWA studies in mice to perform fine mapping of loci contributing to heart failure traits
in a ISO-treated mouse population. We have combined this strategy with global gene
expression analysis in the heart to help identify candidate genes and pathways. A number
of the loci identified in our study contain genes known to be involved in cardiomyopathy
based on previous biochemical or genetic studies, validating our findings. We have also
partially characterized two novel candidates, one at a hypertrophic locus and the other at

a fibrosis locus. Our results indicate that the Abcc6 transporter can markedly contribute
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to fibrosis in an 1SO-dependent manner. They also provide strong suggestive evidence

for a role of Miat, a non coding RNA, in hypertrophy. These points are discussed below.

Previous work on HF using rodent models have successfully identified several
candidate genes for the disease. Rats have provided key insights into the genetics of HF,
identifying candidates such as Endog ** and others ®2®%, Research done on mouse models

11-13 to

has typically focused on the use of sensitizers such as calsequestrin transgenics
identify additional modifier mutations which either exacerbate or protect against the
original sensitizing mutation. Using these approaches, researchers have been able to

identify a number of strong candidates such as Tnni3k ** and others *2.

By using association rather than linkage, we were able to significantly improve
the resolution of our mapping data over prior rodent studies, in some cases approaching
the level of human GWAS with 1-5 genes in a given locus. However, unlike the tens of
thousands of individuals studied in human GWAS, we were able to identify many more
significant loci while using approximately 750 animals. We attribute the success of our
study to an increase in power due to a carefully controlled and shared environment in our
vivarium, which is not possible in human studies. Our results have suggested a number
of new potential loci for heart failure, as well as implicated several genes previously
associated with Mendelian forms of cardiomyopathy as being involved in polygenic
forms of HF as well. Additionally, our loci provide additional evidence in support of
some suggestive GWAS hits in human studies, as we observed a 50% overlap between

the published suggestive human GWAS hits and our peaks (Table 3.2).
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HF in humans has a heritability of 28% ® with clear evidence for a strong
environmental influence on the disease. Our experimental design included a specific HF
inducer (1SO) administered at a specific dose and for a specific time period (3 weeks).
Our ability to carefully control the type, severity and length of treatment allows us to
explore specific gene-by-environment interactions, which may be expanded to other
disease models (e.g. angiotensin Il, trans-aortic-constriction, myocardial infarction and
others) or treatments (e.g. beta-blockers) to explore the ways in which genetics interacts
with different disease models and treatments. Our results, obtained through careful
analysis of each locus for genes which correlated with heart phenotypes, had cis-eQTL
regulation and/or nonsynonymous mutations(Table 3.1), suggest that a number of
genetic factors lead to catecholamine-mediated HF susceptibility. Genes involved in the
beta-adrenergic stimulation pathway (Ppp3ca, Ppp3cb and PIn), in heart development
(Mospd3), in cellular integrity (Sgcd) and energy and calcium homeostasis (Prkag2 and
Calm3) all appear to play roles in the development of HF in our mouse model. Similarly,
a number of different pathways interact to lead to cardiac fibrosis. We identified several
genes (Fert2*, TII1*°, Tjp1%®) which have previously been shown to interact with known
fibrogenesis pathways or collagen itself and several others (Cntln®, Fert2®” Srpx®®) which

play roles in the regulation of known drivers of heart stress or damage.

We implicated a novel long non-coding RNA, Miat, in ISO-dependent
hypertrophy. Previous work has shown that Miat RNA is localized to the nucleus®® "
and that it interacts with splicing factor 1 through tandem UACUAAC repeats’*

influencing global cell splicing”™. Miat has previously been described as a susceptibility
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gene for myocardial infarction? and there is also suggestive evidence for its involvement
in schizophrenia’ and p53-negative cancer®™. Our in vitro studies with cultured
cardiomyocytes show that Miat is upregulated following treatment with catecholamines,
and that knockdown of Miat affects the hypertrophic response. Further, we provided
evidence that Miat expression influences a number of transcription factors known to
influence cardiac hypertrophy. Our results suggest that Miat acts as a splicing regulator in
the heart as well, and that its upregulation after catecholamine treatment effects a change

in MRNA splicing leading to an upregulation of the hypertrophic response.

Our results have revealed a novel role for Abcc6 in a stress-specific cardiac
fibrosis. Abcc6 was originally identified through positional cloning as the cause of the
Mendelian disorder PXE, characterized by calcified skin lesions, angioid streaks in the
eye and leg pain, and also angina and myocardial infarction in older individuals’®.
Studies of Abcc6 KO mice and of a naturally occurring splice variant of Abcc6 in certain
strains of mice have revealed a phenotype similar to human PXE, namely, the occurrence
of tissue calcification in older mice?®®, Cardiac fibrosis has not been observed in Abcc6
KO mice, even at 24 weeks of age’®. Our studies were performed on relatively young
mice, which exhibited negligible evidence of calcification. We observed that on a
C57BL/6J genetic background, which is highly resistant to fibrosis, the Abcc6 KO allele
results in marked fibrosis in ISO treated mice. We also expressed, as a transgene, the
normal Abcc6 allele on the background of strain C3H/HeJ, which carries the naturally
occurring splice mutant. In that study, the transgene markedly protected against 1SO-

dependent fibrosis. It is important to note that the effect of Abcc6 on fibrosis was
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dependent on ISO treatment, and thus Abcc6 can be considered a modifier of the ISO

stress.

Precisely how Abcc6 acts to protect against fibrosis is unknown. The substance
transported by the protein has not been identified despite intensive efforts by several
groups. Based on parabiosis and other studies® it appears that a deficiency of Abcc6 has
a systemic effect due to the absence of a substance normally present in the circulation.
Because Abccb is expressed at highest levels in liver and kidney, it has been speculated
that its primary function is in these tissues, but our results clearly show genetically
regulated expression in the heart as well. We recently showed that a deficiency of Abcc6
results in the activation of bone morphogenic protein signaling in heart, and that in the
absence of Abcc6 infarct size is increased in an ischemia-reperfusion model®®. A
potential mechanism by which Abcc6 deficiency could lead to increased fibrosis is
increased necrosis or apoptosis. It is noteworthy that in the ischemia-reperfusion studies,
Abccb led to an increase in the number of apoptotic cells?. Our results also suggest that
Abccb6 deficiency affects mitochondrial function, as expression of the gene in the heart
was strikingly associated with changes in the expression of mitochondrial genes. This is
consistent with a recent report indicating that the protein is located in the mitochondrial
associated membrane®’. Proper mitochondrial function is very important for the proper
functioning of the heart’®, and disruptions to the normal functioning of mitochondria are
associated with cardiomyocyte death and heart failure**"®>. The human heart requires a
daily synthesis of approximately 30kg of ATP, which is mostly produced through the

mitochondria’®, and chronic (but not acute’®) catecholamine stimulation leads to
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mitochondrial damage, energy deficits and HF*""". Additionally, the mitochondria are
important regulators of cell death and apoptosis’*’>. The importance of the mitochondria
to HF and the localization of Abcc6 to the mitochondria associated membrane and its
correlation to mitochondrial gene expression further suggest a role for Abcc6 in HF.

An important benefit of our approach using the HMDP is that the data
gathered in this model system are cumulative (since the strains of mice are inbred and
permanent), allowing the integration of our data collected in this study with prior and
future studies. The power and usefulness of our resource will only increase as additional
experiments are performed. Future experiments on the same panel, examining the effects
of an alpha-adrenergic receptor agonist such as angiotensin or a physical intervention
such as trans-aortic constriction, will help elucidate the pathways and genes that are
common between models and those which are unique to each model system of HF. In
this study, we focused exclusively on the effects of chronic catecholamine stimulation on
the weights of the total heart, individual heart chambers, organ weights that are markers
of heart failure severity and the global transcription profile in control and treated left
ventricles. It will be of interest to examine other metrics of HF such as
echocardiographic traits, metabolite levels and to generate transcriptomic analyses of
other potentially relevant tissues such as the adrenal gland and hypothalamus in the
future. In particular, the application of systems genetics approaches, such as network
modeling, to common variations contributing to HF in mice has the potential to

complement traditional molecular biology approaches.

Experimental Procedures
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Online database

All results and data can be accessed at http://systems.genetics.ucla.edu/data

Mice and isoproterenol treatment

The following mouse strains were obtained from The Jackson Laboratory and then
bred in our colony: 30 common inbred strains (129X1/SvJ, A/J, AKR/J, BALB/cJ,
BALB/cByJ, BTBR T+ tf/J, BuB/BnJ, C3H/HeJ, C57BL/6J, C57BLKS/J, C57L/J, C58/J,
CBA/J, CE/J, DBA/2], FVBI/NJ, KK/HIJ, LG/J, LP/J, MA/MyJ, NOD/ShiLtJ,
NONY/ShiLt], NZB/BINJ, NZW/LacJ, PL/J, RI1IS/J, SEA/GnJ, SJL/J, SM/J, SWR/J) and
76 R1 lines [RI (number of strains) - BXD (44), AXB(9), BXA(10), BXH(5), CxB(7)].
All animal experiments were conducted following guidelines established and approved
by the University of California, Los Angeles Institutional Animal Care and Use
Committee. All mice have been previously genotyped at over 130,000 locations.

Isoproterenol (20 mg per kg body weight per day) was administered for 21 d in 8-
to 10-week-old female mice using ALZET osmotic minipumps, which were surgically

implanted intra-peritoneally.

Abcc6 KO and transgenic mice®®!

underwent the same protocol as described above,
although both male and female mice were used in the analysis. No significant difference
between genders was observed as a result of 1ISO treatment in these KO and transgenic

animals.
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Heart Weights

At day 21, mice were sacrificed after body weight was recorded. The heart was
removed and weighed, then separated into its four component chambers, each of which
was individually weighed as well. Each chamber of the heart was immediately frozen in
liquid nitrogen for any future analysis. Lung and liver were removed and weighed.
Additionally, the adrenal glands were removed, weighed and frozen in liquid nitrogen.

All frozen tissues were immediately transferred to a —80 freezer.

Fibrosis and Calcification

A portion of the left ventricle was placed in formalin for at least 48hrs for
preservation of ultrastructure. These samples were then washed with distilled water and
sent to UCLA Department of Pathology and Laboratory Medicine for paraffin embedding
and staining using Masson's Trichrome. Sections were analyzed using a Nikon Eclipse,
TE2000-U microscope at 2-100x magnifications and images captured of the entire cross-
section of the heart. Fibrosis was quantified using the Nikon Imagine System Elements
AR program by comparing the amount of tissue stained blue (for collagen) to the total
tissue area to obtain a quantification of percent fibrosis. Staining for Sirius and Alizarin

Red used a similar protocol, instead quantifying red-stained collagen to the total area.

Efficient Mixed Model Association.

We performed association analysis using EMMA (Efficient Mixed Model
Association), which uses a linear mixed model to estimate and correct for the effects of

population structure between the mice of the HMDP prior to determining association p-
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values. We closely followed the method described in Kang et al °. In brief, a kinship
matrix between the strains were calculated to weight the pair-wise relationships between
the strains. Values will increase when unrelated strains share a phenotypic effect at a
SNP, while values will decrease if the opposite is true. Simulation of a causal locus was
used to determine an adjusted genome-wide significance threshold for the EMMA
algorithm on the HMDP. Due to linkage disequilibrium, the simulation shows that a

cutoff of 1E-5 represents an accurate correction for multiple comparisons in the HMDP

26

Microarray and eQTL analysis

Following homogenization of left ventricular tissue samples in QlAzol, RNA was
extracted using the Qiagen miRNAeasy extraction kit, and verified as having a RIN>7
by Agilent Bioanalyzer. Two RNA samples were pooled for each strain/experimental
condition, whenever possible, and arrayed on Illumina Mouse Reference 8 version 2.0
chips. Analysis was conducted using the Neqc algorithm included in the limma R
package ® and batch effects addressed through the use of COMbat *°. eQTLs were then
calculated using EMMA, as described above. Significance thresholds were calculated as
in Parks et al., 2013%. Briefly, cis-eQTLs were calculated using a FDR of 5% for all
SNPs that lay within 1 Mb of any probe, while trans-eQTLs were calculated using the

overall HMDP cutoff as determined in Kang et al?®.
Miat Studies

NRVM isolation and culture were performed as reported previously 8% Briefly, 2-
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to 4-day-old rats of a mixed population were killed by decapitation and rinsed in ethanol.
Hearts were excised and atria and excess fat were trimmed from the ventricles, then
minced in a buffer solution and transferred into a tube. The buffer solution was
evacuated and replaced with a collagenase-pancreatin solution in which the ventricles
were incubated at 37°C for 30 min with moderate agitation, followed by replacement of
the collagenase-pancreatin solution and incubation for an additional 20 min. Newborn
calf serum was then added to the dissociated cells in the protease solution to constitute a
suspension with 20% serum, which was centrifuged and resuspended in buffer solution.
Myocytes and fibroblasts were separated with a Percoll density gradient, of which the
former was transferred to a plating medium consisting of Dulbecco’s modification of
Eagle’s/Ham’s F12 medium (DMEM) with 10% newborn calf serum and 1%
antibiotic/antimycotic. All culture media and additives were purchased from Sigma-
Aldrich (MO). NRVMs were plated at a density of 5.0 —7.5*10* cells/cm?, with an
average plating viability of 85%, as determined by trypan blue exclusion. Cultures were
maintained in a humidified incubator at 37°C and 5% carbon dioxide, with media

changed daily.

Lipofectamine 2000 (Invitrogen, Life sciences) was used to transfect Miat SIRNA

(Qiagen) into NRVMs following the manufacturer’s instruction.

The following primers were used for quantitative PCR reactions: Miat sense:
TAACAGGTCTCACACCCCTCT, Miat antisense: CAGACCGGTCACGTGTCTACT;

Anp sense: ATACAGTGCGGTGTCCAACA, Anp antisense:
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AGCCCTCAGTTTGCTTTTCA. Bnp sense: CAGCTCTCAAAGGACCAAGG, Bnp

antisense: GCAGCTTGAACTATGTGCCA. Gata4 sense:

CTCCTACTCCAGCCCCTACC, Gata4 antisense: GTGATAGAGGCCACAGGCAT
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Tables

Table 3.1. Significant HF trait loci identified in HMDP GWA. For each locus, the estimated LD block surrounding the peak

is reported as well as any candidate genes in the locus. Bold entries represent genes which contain nonsynonymous mutations
within the HMDP as reported by the Wellcome Trust Mouse Genome Project®’, while underlined entries contain significant cis

eQTLs. See Table 3.8 for additional details.

Number of
Chromo Peak P- | Genesin Candidate
Phenotype Peak SNP -some LD Block (Mb) value Locus Genes
Hypertrophic Loci
Treated right mm37-1- 5.75E-
ventricle weight | 134467906 1| 133.78-134.53 07 14
Treated right mm37-5- 3.49E-
ventricle weight | 137934905 51 137.93-138.15 10 11 | Mospd3
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Treated right mm37-5- 1.23E-

ventricle weight | 23873494 5123.82-24.47 06 20 | Prkag2

Treated right mm37-9- 8.41E-

ventricle weight | 40202022 9| 39.77-40.52 08 15 | Scn3b

Treated right mm37-10- 2.80E-

ventricle weight | 49818583 10 | 48.19-54.24 07 22 | PIn

Treated right mm37-11- 2.15E-

ventricle weight | 47181489 11| 46.18-49.3 06 41 | Sgcd

Ratio of right mm37-3- 7.83E-

ventricle weights | 136305887 3| 136.04-136.79 07 1 | Ppp3ca

Ratio of right mm37-9- 2.94E-

ventricle weights | 80542295 9 | 80.00-80.99 07 2 | Myo6

Ratio of right mm37-7- 1.41E-

atrial weights 142011844 7 | 141.50-144.81 06 15 | Mgmt
Fluid Retention and Heart Failure Loci

Treated liver mm37-7- 1.93E-

weight 15251391 7 | 15.13-18.75 07 57 | Calm3




L

Treated liver mm37-10- 3.48E-
weight 49468021 10 | 48.19-54.24 06 22 | PIn
Treated Lung mm37-5- 1.28E-
weight 111867706 51110.87-112.87 06 22 | Miat
Treated Lung mm37-6- 2.90E-
weight 53975816 6 | 53.88-55.57 07 17 | Agp1
Furin
Treated Lung mm37-7- 3.88E-
weight 81841621 7 | 79.8-82.2 06 4 | Iqgap1
Treated Lung mm37-14- 3.34E-
weight 14941056 14 | 8.5-21.5 06 50 | Ppp3ch
Treated Lung mm37-19- 2.01E-
weight 27061190 19 | 26.68-27.43 06 1| Vidir
Baseline Fibrosis Loci

Baseline Fibrosis 2 | 13.7-14.0 2.51E-

06 6 | Jagl
Baseline Fibrosis 4 | 84-85 2.20E-

06 2 | Cntin
Baseline Fibrosis 7 | 72.3-74.3 1.31E-

06 7 | Tjp1
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Baseline Fibrosis 8 | 63-66 1.43E-
06 12 | Tl1
Baseline Fibrosis 16 | 82.5-84.25 2.52E-
06 0
Baseline Fibrosis 17 | 64.2-65.8 1.43E-
06 4 | Fert2
Baseline Fibrosis 18 | 47.2-48.2 1.87E-
06 3
Treated Fibrosis Loci
Treated Fibrosis 52.85-53.42 7.11E- Abcc6
7 07 28
Treated Fibrosis 60.5-69.5 1.40E- Snrpn
7 06 18
Treated Fibrosis 72.3-74.3 1.40E- Tip1
7 06 7
Treated Fibrosis 68.4-71.4 9.60E- Col22a1
15 07 3
Treated Fibrosis 64.2-65.8 2.47E- Fert2
17 06 4
Treated Fibrosis 10-12.5 4.17E- Srpx
X 07 12
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Table 3.2. Top 50 genes associated with change in heart weight and fibrosis after ISO

stimulation

Gene Correlation P-value
Heart Weight

Polydom 0.617596 9.85E-21
Timp1 0.613233 2.18E-20
Col14a1 0.611989 2.73E-20
Pqlc3 0.608349 5.22E-20
Cysltrl 0.60517 9.14E-20
Ms4a7 0.601412 1.76E-19
Collal 0.598886 2.72E-19
Fbin1 0.597058 3.72E-19
Adamts2 0.596923 3.81E-19
Srpx2 0.593703 6.57E-19
Itgbl1 0.577932 8.72E-18
Arl11 0.575703 1.24E-17
Arhgdig 0.574618 1.48E-17
Tnfrsf22 0.574097 1.60E-17
Akr1b8 0.573019 1.90E-17
Clec4n 0.572797 1.97E-17
Mfap5 0.569964 3.06E-17
Serpina3n 0.569745 3.17E-17
Fstl1 0.564921 6.65E-17
Enppl 0.563422 8.36E-17
Tnc 0.560378 1.32E-16
2610001E17Rik 0.559099 1.60E-16
Tspo 0.556363 2.41E-16
Lox 0.548158 8.02E-16
Tir13 0.547795 8.45E-16
BC020188 0.545962 1.10E-15
Clecsf8 0.545292 1.21E-15
Mrcl 0.54384 1.49E-15
Lepl 0.535766 4.63E-15
Lhfpl2 0.535412 4.86E-15
Sfrp2 0.533209 6.58E-15
Lyzs 0.532612 7.15E-15
Ceecam1 0.530104 1.01E-14
Sod3 0.529277 1.13E-14
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Lgals3 0.528909 1.18E-14
Al593442 0.526939 1.54E-14
Ctsk 0.525117 1.97E-14
Rab15 0.523403 2.48E-14
Sparc 0.521834 3.05E-14
Nkd2 0.519423 4.20E-14
Pdgfrl 0.517852 5.15E-14
Coll6a1 0.516872 5.86E-14
Fbn1 0.515796 6.74E-14
Tyms 0.513343 9.25E-14
Panx1 0.50964 1.49E-13
Pak3 0.509256 1.56E-13
Cds4 0.507879 1.86E-13
Ptn 0.504475 2.85E-13
Thbs2 0.503324 3.29E-13
lgfbp6 0.5029 3.47E-13
Fibrosis
Cd84 0.534179617 | 5.76E-15
4833426J09Rik | -0.504187457 | 2.95E-13
Trem2 0.501584387 | 4.08E-13
Lhfpl2 0.492466394 | 1.24E-12
Pira3 0.477522167 | 7.19E-12
Fbin1 0.475128456 | 9.44E-12
Tir13 0.475071603 | 9.50E-12
Dpep2 0.472414904 | 1.28E-11
Lpxn 0.469994676 | 1.68E-11
Spp1 0.468330459 | 2.03E-11
Nkd2 0.466066577 | 2.61E-11
Slc15a3 0.465737638 | 2.70E-11
Hk3 0.465622455 | 2.74E-11
Cd68 0.463499051 | 3.46E-11
Ms4a7 0.463092647 | 3.61E-11
Timp1 0.460680936 | 4.70E-11
Lgals3 0.45815764 | 6.17E-11
Serpina3n 0.457110571 | 6.91E-11
Lyzs 0.45648218 | 7.39E-11
Ctsk 0.455264318 | 8.42E-11
Gpr137b 0.452550428 | 1.12E-10
D130016K21Rik | -0.447442414 | 1.92E-10
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Gp38 0.447207702 | 1.96E-10
0610039P13Rik | 0.443718264 | 2.82E-10
Pirall 0.44189737 | 3.39E-10
Tyrobp 0.439826344 | 4.19E-10
Arl11 0.434154212 | 7.41E-10
Rragb -0.431144226 | 9.98E-10
Lox 0.430011606 | 1.12E-09
Collal 0.427348939 | 1.45E-09
Polydom 0.426614942 | 1.56E-09
Gusb 0.424636321 | 1.88E-09
Sh3bp2 0.424455578 | 1.92E-09
Olfmi1 0.419376011 | 3.12E-09
Igf1 0.419125275 | 3.19E-09
Mfap4 0.416523477 | 4.08E-09
Lepl 0.413469105 | 5.43E-09
Enpp1 0.412453067 | 5.96E-09
Cotl1 0.412414232 | 5.99E-09
Pdgfrl 0.410965452 | 6.84E-09
Rab3ill 0.406262198 | 1.05E-08
Clecsf8 0.405770469 | 1.10E-08
Dusp22 -0.405705789 | 1.11E-08
Whscrs 0.405578072 | 1.12E-08
Rhobtb2 -0.405307804 | 1.15E-08
Sfrp2 0.405274921 | 1.15E-08
Tmod4 -0.40358668 | 1.34E-08
Hemp1 0.403176105 | 1.39E-08
Rbp1 0.402200027 | 1.52E-08
Anpep 0.401731327 | 1.58E-08
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Table 3.3. DAVID enrichment of all genes significantly correlated to a change in heart weight or fibrosis post-1SO.

Total Genes in Fold Benjamini-
Term Count| % Category Enrichment | corrected P-value
Heart Weight

Signal 86| 40.9 2970 2.584923 5.23E-16
Secreted 55| 26.1 1420 3.457641 6.02E-14
glycoprotein 91| 43.3 3600 2.256547 9.03E-14
Proteinaceous extracellular matrix 27| 12.8 297 6.973787 4.95E-13
disulfide bond 71| 33.8 2469 2.5671 1.35E-12
glycosylation site:N-linked
(GIcNAc...) 84 40 3444 1.963598 2.49E-08
short sequence motif: Cell
attachment site 12 5.7 76 12.71172 4.35E-07
ECM-receptor interaction 9 4.2 83 9.017287 2.59E-04
Focal adhesion 13 6.1 198 5.459962 2.83E-04
hydroxylation 8 3.8 64 11.15875 3.15E-04
collagen 8 3.8 84 8.501905 0.001631507
calcium binding 6 2.8 47 11.39617 0.005795532
inflammatory response 7 3.3 78 8.01141 0.007037039
cell adhesion 14 6.6 561 3.288895 0.00946431
domain: TSP N-terminal 5 2.3 1602 21.18619 0.011852841
egf-like domain 10 4.7 91 4.021171 0.02154191
microfibril 3 1.4 4 57.53374 0.026390381
Laminin G, thrombospondin-type,
N-terminal 5 2.3 21 21.14643 0.037640676
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Fibrosis

glycoprotein 34 5.1 3600 | 2.76428051 2.05E-07
signal 31 4.7 2970 | 3.054998068 3.86E-07
extracellular region 23 3.5 213 | 3.423714286 5.81E-06
short sequence motif:Cell

attachment site 7 1.1 76 | 24.59364035 3.57E-05
proteinaceous extracellular matrix 10 1.5 78 | 8.42020202 4.88E-05
disulfide bond 21 3.5 2379 | 2.726543566 2.52E-04
protein complex binding 5 0.8 78 | 18.51727982 0.017972598
sequence variant 8 1.2 362 | 5.90092081 0.021688753
collagen 3 0.5 21 | 39.48631579 0.03118142
Iytic vacuole 5 0.8 179 | 6.98547486 0.049030232




Table 3.4. Significant overlap of HMDP and human GWAS loci for HF traits. Human
loci were considered to overlap with mouse loci if they fell within 5 MB of a mouse locus
peak. Overall, six of the twelve currently reported loci are matched in the HMDP studly.

Loci shared between Human Studies and the HMDP Study
Human | Human Human | Syntenic | HMDP HMD | HMDP
Study Phenotype Signific | Location | Phenotype |P P- Location
-ance value
Ellinor | Dilated LOD: Chr 1: RV Weight | 1.56E- | Chr 1:
et al. Cardiomyopathy | 8.2 ~187-193 10 186.73MB
MB
&
] Chrl:~18
Parsaet | Cardiac 1E-07 | 97MmB
al. Hypertrophy
Heart 1.08E- | Chr 1:
Weight 06 186.73MB
Parsaet | Cardiac 1E-07 | Chr 4: Changein | 8.99E- | Chr 4:
al. Hypertrophy ~120 MB | Right 07 122.0 MB
Ventricle
Weight
Parsaet | Cardiac 2E-07 | Chr7: Changein | 9.57E- | Chr7:
al. Hypertrophy ~66.5 Right 07 64.06 MB
MB Atrial
Weight
Smith et | Heart failure 1E-08 | Chr9: Change in | 4.93E- | Chr 9:
al. ~66.25 Right 06 66.33 MB
MB Atrial
Weight
Morriso | Mortality among | 3E-07 | Chr9:~11 | Changein | 9.97E- | Chr9:
netal. HF patients 4.5 MB Right 06 116.8 MB
Atrial
Weight
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Table 3.5. Significant overlap of HF GWAS loci in HMDP with QTL from previous
mouse linkage analyses. Overall, 7 of the 16 reported QTLs relating to heart failure in
mice are duplicated in the study.

Loci shared between other Mouse Studies and the HMDP Study

QTL QTL Phenotype | Location | HMDP HMDP P- HMDP
Designation Phenotype | value Location
Hrg3 Heart Rate Chr 1: Initial Left | 8.47E-06 Chr 1: 154.47
90.5-170 | Ventricle MB
MB Weight
Hrtql Heart Weight Chr Final Heart | 6.45E-06 Chr2:79.63
2:64.5- Weight MB
141.8 MB
Hrgl Heart Rate Chr 2: Final Heart | 6.45E-06 Chr2:79.63
64.6- Weight MB
159.4 MB
Cmnl Dilated Chro: Change in | 9.97E-06 Chr9: 116.8
Cardiomyopathy | 110.4- Right MB
118.2 MB | Atrial
Weight
Hrtg3 Heart Weight Chr 10: Initial 1.85E-06 Chr 10: 41.11
26-88.5 Ventricle MB
MB Weight
Hrtfm6 Heart Failure Chr 13: Initial 6.75E-07 Chr 13:
108.1- Right 117.73 MB
134.2 Atrial
MB Weight
Hrtfm4 Heart Failure Chr 18: Change in | 2.46E-07 Chr 18: 47.78
29.6-65.3 | Atrial MB
MB Weight
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Table 3.6. Top 50 genes correlated with Abcc6 expression in treated hearts

Gene Correlation

Pdk3 -0.39923
Hnf4da 0.389375
1117rd -0.35226
Ppp2r5c -0.34849
Fthfd 0.340877
Prcc 0.334707
9130427A09Rik -0.32961
Rafl 0.327894
Pdlim3 -0.32716
Spata6 -0.3261
Khk 0.325041
Satl -0.32466
Skd3 0.323688
Yifla 0.322354
Lsm7 0.321032
Ndrgl -0.31614
Rad52b 0.311824
Schd 0.3113
Pcbd?2 0.310854
Tarbp?2 0.309935
Tp53ill 0.309146
Usp3 -0.30538
Msh3 -0.30449
Tm6sf2 0.304208
Ao0x3 0.303498
Shcl -0.3033
C030002N13Rik -0.30094
Pcx 0.300781
Acate3 -0.30068
0610012D14Rik 0.30068
Dcn -0.29921
Dos 0.298249
BC012016 -0.29746
Cd34 -0.29663
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Tes -0.29622
Rhoj -0.29548
Eifla -0.29524
Scube?2 0.295225
Mrpl34 0.29516

Slc25a15 0.294806
BC017612 0.294683
1110007CO05Rik 0.294225
Ndn -0.29361
Actr3b 0.293373
Fadd -0.29336
Spag7 0.29336

Mthfd1l 0.292604
Gnmt 0.292274
Cugbpl -0.29128
Armcx2 -0.29006
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Table 3.7. DAVID enrichment of all genes significantly correlated Abcc6 expression in treated animals.

Total Benjamini-
Genes in Fold corrected P-
Term Count % Category Enrichment value
Abcct
mitochondrion 97 18.30189 1322 2.466302 4.65E-15
transit peptide 40 7.54717 457 3.112975 1.36E-07
acetylation 104 19.62264 2325 1.590897 1.51E-04
transferase 65 12.26415 1385 1.66915 0.004939
mitochondrial envelope 27 5.09434 391 2.321096 0.005577
ribosome 16 3.018868 192 2.801075 0.01712
coenzyme metabolic
process 16 3.018868 143 3.969545 0.022271
cytoplasm 114 21.50943 3029 1.338559 0.041307




Table 3.8. Expanded details on each locus

87

Minor
LD Allele
Peak Chrom | Block | Peak Frequenc
Phenotype [ SNP osome (Mb) P-value | y Genes in Locus
Treated mm37- 133.78- | 5.75E- 0.077 | Adiporl
right 1- 134.53 07
ventricle 1344679 Adoral
weight 06 Btg2
Chi3l1
Chitl
Cyb5r1
Fmod
Kihl12
Mybph
Myog
Optc
Ppfiad
Prelp
Rabif
Treated mm37- 137.93- | 3.49E- 0.078 | Actl6b
right 5- 138.15 10
ventricle | 1379349 Agfg2
weight 05 Fbxo24
Gigyfl
Gnb2
Irs3
Lrch4
Mospd3
Pcolce
Pop7
Trfr2
Treated mm37- 23.82- 1.23E- 0.088 | Abchs
right 5- 24.47 06
ventricle | 2387349 Abcf2
weight 4 Accn3
Agap3




Asb10
Atg9b
Cdk5
Chpf2
Crygn
Fastk
Gbx1
Kcnh2
Nos3
Nubl
Prkag2
Rheb
Slc4a2
Smarcd3
Tmubl
Wdr86

Treated
right
ventricle
weight

mm37-
O-
4020202
2

39.77-
40.52

8.41E-
08

0.08

1700001J11Rik
AK007162
Gramdlb
OIfr978
OIfr979
OIfr980
Olfrogl
OlIfr982
OlIfr983
Olfr984
OIfro85
OIfro86
Scn3b
Tmem225
Zfp202

Treated
right
ventricle

mm37-
10-
4981858

10

48.19-
54.24

2.80E-
07

0.077

88

AKO005653
Ascc3
Asfla




weight

Dchbld1
Fam162b
Fam184a
Gopc
Gp49a
Gprcba
Grik2
Lilrb4
Manla
Mcm9
Nepn
Nusl

Pln

Rfx6
Ros1
Siml
Slc35f1
Vgli2

Zfa

Treated
right
ventricle
weight

mm37-
11-
4718148
9

11

46.18-
49.3

2.15E-
06

0.11

89

9930111J21Rik2
AK029860
BC053393
Btnl9
Dppal
Fam71b
Gm12169
Gm12171
Gm12185
Gm4926
Gmb5431
Gnb2l1
Havcrl
Havcr2
Ifi47




Irgml

Itk

Med7
Mgatl
OlIfr10
Olfr1386
Olfr1387
Olfr1388
OlIfr1389
OlIfr1390
Olfr1391
Olfr1392
OlIfr1393
Olfr1394
Olfr1395
Olfr1396
Olfr56
Sgcd
Snord95
Snord96a
Tgtp2
Timd2
Timd4
Trim41
Trim7
Zfp62

Ratio of
right
ventricle
weights

mm37-
3-
1363058
87

136.04-
136.79

7.83E-
07

0.271

Ppp3ca

Ratio of
right
ventricle
weights

mm37-
O-
8054229
5

80.00-
80.99

2.94E-
07

0.099

Impgl
Myo6

Ratio of
right atrial

mm37-
7-

142.00-
144.81

1.41E-
06

0.078

90

Clrn3
Dockl




weights

1420118
44

EDbf3
Fam196a
Foxi2
Glrx3
Mgmt
Mki67
Nps
Ptpre

Treated liver
weight

mm37-
7-
1525139
1

15.13-
18.75

1.93E-
07

0.209

91

Ap2sl
Bbc3
Cbharl
Calm3
Ccdc8
Ccdc9
Ceacamll
Ceacaml2
Ceacam13
Ceacaml4
Ceacam15
Ceacam5
Ceacam9
Ceacam-psl
Crx
Crxosl
Dact3
Dhx34
Egaml
Egam-1c
Ehd2

Fkrp
Gltscrl
Gltscr2
Gm4745
Gng8




Gpr77
Grifl
Hif3a
Kptn
Meis3
Napa
Npasl
Obox1
Obox2
Obox3
Oboxb
Obox6
Pnmall
Pnmal2
Ppp5c
Prkd2
Prr24
Psgl6
Psg29
Psg-psl
Ptgir
Sael
Sepwl
Slclab
Slc8a2
Snord23
Strn4
Tmem160
Vmnlr90
Zc3h4
Zfp541

Treated liver
weight

mm37-
10-
4946802

10

48.19-
54.24

3.48E-
06

0.135

92

AKO005653
Ascc3
Asfla




Dchbld1
Fam162b
Fam184a
Gopc
Gp49a
Gprcba
Grik2
Lilrb4
Manla
Mcm9
Nepn
Nusl

Pln

Rfx6
Ros1
Siml
Slc35f1
Vgli2

Zfa

Treated
Lung weight

mm37-
5_
1118677
06

110.87-
112.87

1.28E-
06

0.258

93

Asphd2
Chek2
Cryba4
Crybbl
Ddx51
Ep400
Fbrsll
Galnt9
Hps4
Hscb
Miat
Mir701
Mn1l
Noc4l
Pitpnb




Pusl
Sez6l
Srrd
Tfipll
Tpst2
Ttc28
Ulkl

Treated
Lung weight

mm37-
6-
5397581
6

53.88-
55.57

2.90E-
07

0.233

Adcyaplrl
Agpl
Chn2
Cpvl
Crhr2
Fam188b
Fkbp14
Gars
Ggct
Ghrhr
Inmt
Nod1
Plekha8
Prrl5
Scrnl
Wipf3
Znrf2

Treated
Lung weight

mma37-
7-
8184162
1

79.8-
82.2

3.88E-
06

0.244

%94

2610034B18Rik
2900076 A07Rik
3110040N11Rik
AB349811
AKO006397
AKO017243
Alpk3

Anpep

Ap3b2

Ap3s2
BC048679




95

Blm

Bncl
Btbdl
Cibl
Cpebl
Crtc3
D330012F22Rik
Fam103al
Fes

Fsd2
Furin
Gm15880
Hddc3
Hdgfrp3
Homer2
Idh2
Iqgapl
LOC100859962
LOC434205
Man2a2
Mesp2
Mir1839
Mir1965
Ngrn
Nmb
Pde8a
Prcl
Rcedl
Rps17
Seclla
Semadb
Slc28al
Tmé6sfl
Ttll13
Unc45a
Vps33b




Wdr73
Whamm
Zfp592
Zfp710
Zscan2

Treated
Lung weight

mm37-
14-
1494105
6

14

8.5-
21.5

3.34E-
06

0.173

96

Abhd6
Acox2
Anxa’
Atxn7
Cadps
Dnajc9
Dnasell3
Ecd
Fezf2
Fhit
Finb
Gng2
113ra
Kcnk16
Kcnk5
Kctd6
Lrrc3b
Mrps16
Myozl
Nek10
Nglyl
Nid2
NKkirasl
Nrld2
Nudt13
Oitl
Olfr31
Olfr720
Oxsm
Pdhb




Ppp3cb
Psmd6
Ptprg
Pxk
Rarb
Rpl15
Rppl4
Sec24c
Slcda7
Sntn
Synpo2I
Synpr
Thoc7
Thrb
Top2b
Ttcl8
Ube2el
Ube2e2
Usp54
Zmynd17

Treated
Lung weight

mm37-
19-
2706119
0

19

26.68-
27.43

2.01E-
06

0.205

VidIr

Baseline
Fibrosis

mm37-
2-
1391634
25

13.7-
14.0

2.51E-
06

0.0625

AK014986

Jagl
Ptpla
St8siab
Stam

Baseline
Fibrosis

mm37-
4-
8442005
8

84-85

2.20E-
06

0.10417

Bnc2
Cntln
Sh3gl2
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Baseline mm37- |7 72.3- 1.31E- | 0.10638
Fibrosis 7- 74.3 06
2336504 AK007376
7 BC046251
Chsyl
H47
Lrrkl
Pcsk6
Snrpal
Tarsl2
Tjpl
Tm2d3
Baseline mm37- |8 63-66.5 | 1.43E- | 0.0625
Fibrosis 8- 06 2700029MO9Rik
6438269
2 Aadat
AK005580
AK015772
AK084432
AK205379
Anxal0O
Cbra
Clcn3
Ddx60
Mfap3l
Nekl
Palld
Sharfl
Spock3
TII1
Baseline mm37- | 16 82.5- 2.52E- | 0.06522
Fibrosis 16- 84.25 06
8368244
0 NO GENES
Baseline mm37- | 17 64.2- 1.43E- | 0.0625
Fibrosis 17- 65.8 06 AU016765
6437673 AK019598
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5 AK050349
Fert2
Man2al
Pja2
Tmem232

Baseline mm37- | 18 47.2- 1.87E- | 0.0625
Fibrosis 18- 48.2 06 9130209A04Rik
3778651 AK090337
AK148393
Commd10
Gm5095

Semaba

Treated mm37- 7 52.85- | 7.11E- | 0.17021
Fibrosis 7- 53.42 07 Abcch

5294633
1 Abcc8

AK049852
AK085337
AK133391
Bcat2
Carll
Ccdcl14
Cyth2

Dbp

Emp3
Fam83e
Fgf21
Futl

Fut2
Grin2d
Grwdl
Hsd17b14
Izumol
Kcnjll
Kcnjl14
Kdelrl

99




Lmtk3
Mamstr
Nomol
Ntn5
Plekha4
Rasipl
Rpl18
Secl
Spaca4
Sphk2
Sult2bl
Syngr4d
Tmem143

Treated
Fibrosis

mma37-
7-
6859322
3

60.5-
69.5

1.40E-
06

0.10638

100

A230056P14Rik
A230057D06Rik
A230073K19Rik
A330076H08Rik
AK009067
AK045535
AK081140
AK086712
Atp10a
C230091D08Rik
Cyfipl
D7Ertd715e
DOKist4
Gabrab

Gabrb3

Gabrg3
Gm9962

Herc2

Ipw

Luzp2

Ndn




Nipal
Nipa2
Oca2
Shyc
Siglech
Snord116
Snord64
Snrpn
Snurf
Tubgcp5
U80893
Ube3a

Treated
Fibrosis

mm37-
7-
7225556
4

72.3-
74.3

1.40E-
06

0.11364

AKO007376
BC046251
Chsyl
H47
Lrrkl
Pcsk6
Snrpal
Tarsl2
Tjpl
Tm2d3

Treated
Fibrosis

mm37-
15-
6990705
6

15

68.4-
71.4

9.60E-
07

0.2766

Col22al
Fam135b
Khdrbs3
Mir30b
Mir30d
Zfat

Treated
Fibrosis

mm37-
17-
6437673
5

17

64.2-
65.8

2.47E-
06

0.0625

101

AU016765
AK019598
AK050349
Fert2




Man2al

Pja2
Tmem?232
Treated mm37- | X 10-12.5 | 4.17E- | 0.17021
Fibrosis X- 07 Akap4
é027702 AU022751

1700012L04Rik
1700054013Rik
1810030007Rik
2900002K06Rik
4930403L05Rik
4930524 23Rik
4930557A04Rik
4930578C19Rik
AK008545
AK010638
AK017500
AK036020
AK075658
AK136006
AK139591
AK156771
AK170409
Atpbap2
B630019K06Rik
BC058988

Bcor

Bmpl5

Cacnalf

Cask

Ccdc120
Ccdc22

Ccnb3

cip7

Clenb

102
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Cybb
Cypt7
Cypt8
Ddx3x
Dgkk
Dusp21
Dynlt3
Ebp
Efhc2
Eras
Foxp3
Fthil7
Ftsjl
Fundcl
Gatal
Glod5
Gm14374
Gm14458
Gm14459
Gm14483
Gm14484
Gm14501
Gm14511
Gm4906
Gm4984
Gmb5132
Gmb5382
Gmb5634
Gm5635
Gm6592
Gm6787
Gpkow
Gpr34
Gpr82




Gripapl
Hdac6
Kcndl
Kdm6a
Lancl3
LOC100270707
Magix
Maoa
Maob
Med14
Midlipl
Mirl188
Mir362
Mir500
Mir501
Mir532
Mir684-1
Mporc-b
Mycs
Ndp
Nudt10
Nudtl1l
Nyx

Otc
Otud5
Pcskln
Pdzx
Pim2
Plp2
Porcn
Ppplr3f
Pgbpl
Praf2
Prickle3
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Rbm3
Rpgr
Shroom4
Slc35a2
Slc38a5
Srpx
Ssx9
Ssxbl
Ssxb10
Ssxb2
Ssxb3
Ssxb5
Ssxb8
Ssxb9
Suv3ohl
Syp
Sytl5
Thc1d25
Tcfe3
Tfe3
Timm17b
Tspan7
Usp27x
Usp9x
Was
Wdr13
Wdr45
Xk
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Table 3.9. List of all strains used in the study

Strain

Untreated
Mice

Treated

Mice

Early
Death

129X1/SvJ
A/J

AKR/J
AXB-10/PgnJ
AXB-12/PgnJ
AXB-13/PgnJ
AXB-18/PgnJ
AXB-19/PgnJ
AXB-20/PgnJ
AXB-4/PgnJ
AXB-6/PgnJ
AXB-8/PgnJ
BALB/cByJ
BALB/cJ
BTBRT<+>tf/J
BUB/BnJ
BXA-1/PgnJ
BXA-11/PgnJ
BXA-12/PgnJ
BXA-14/PgnJ
BXA-16/PgnJ
BXA-2/PgnJ
BXA-24/PgnJ
BXA-4/PgnJ
BXA-7/PgnJ
BXA-8/PgnJ
BXD-1/TyJ
BXD-11/TyJ
BXD-12/TyJ
BXD-14/TyJ
BXD-15/TyJ
BXD-19/TyJ
BXD-20/TyJ
BXD-21/TyJ
BXD-22/TyJ
BXD-24/TyJ
BXD-27/TyJ
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BXD-31/TyJ
BXD-32/TyJ
BXD-33/TyJ
BXD-34/TyJ
BXD-38/TyJ
BXD-39/TyJ
BXD-40/TyJ
BXD43
BXD44
BXD45
BXD48
BXD49
BXD-5/TyJ
BXD50
BXD55
BXD56
BXD-6/TyJ
BXD61
BXD62
BXD64
BXD66
BXD68
BXD69
BXD70
BXD71
BXD73
BXD74
BXD75
BXD79
BXD-8/TyJ
BXD84
BXD85
BXD86
BXD87
BXH-19/TyJ
BXH-6/TyJ
BXH-9/TyJ
BXHAL
BXHB2
C3H/Hel

w o o1 - 01

1
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C57BL/6J
C57BLKS/J
C57L1
C58/J
CBA/J

CE/N

CXB-11/HiAJ
CXB-12/HiAJ
CXB-13/HiAJ

CXB-3/ByJ
CXB-6/ByJ
CXB-7/ByJ
CXBH
DBA/2]
FVB/NJ
KK/HIJ
LG/J

LP/J
MA/MyJ
NOD/LtJ
NON/LtJ
NZB/BINJ
NZW/Lacl]
PL/J
RIS/
SEA/GnJ
SJL/J

SM/J
SWR/J
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Introduction

Gene network analysis represents an additional means of analyzing data which is
returned from a study on the hybrid mouse diversity panel (HMDP). A number of
methods to predict, partition and analyze gene function have been proposed, however
many of them make assumptions that do not have biological justifications. This chapter
contains a reprint of a paper describing a new network construction algorithm, Maximal
Information Component Analysis, or MICA. MICA avoids a number of dangerous
assumptions made by other methods. We compare MICA to a commonly used network
analysis algorithm, WGCNA, and demonstrate that we observe either comparable, or, in
the case of case/control studies, improved results with regards to a number of network

construction parameters.
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INTRODUCTION

Background: Network construction and analysis algorithms provide scientists with the
ability to sift through high-throughput biclogical outputs, such as transcription microarrays,
for small groups of genes {(modules) that are relevant for further research. Most of these
algorithms ignore the important role of non-linear interactions in the data, and the ability
for genes to operate in multiple functional groups at once, despite clear evidence for both
of these phenomena in observed biological systems.

Results: We have created a novel co-expression network analysis algorithm that
incorporates both of these principles by combining the information-theoretic association
measure of the maximal information coefficient (MIC) with an Interaction Component
Model. We evaluate the performance of this approach on two datasets collected from
a large panel of mice, one from macrophages and the other from liver by comparing
the two measures based on a measure of module entropy, Gene Ontology (GO)
enrichment, and scale-free topology (SFT) fit. Our algorithm outperforms a widely
used co-expression analysis method, weighted gene co-expression network analysis
(WGCNA), in the macrophage data, while returning comparable results in the liver
dataset when using these criteria. We demonstrate that the macrophage data has
more non-lingar interactions than the liver dataset, which may explain the increased
performance of our method, termed Maximal Information Component Analysis (MICA) in
that case.

Conclusions: In making our network algorithm more accurately reflect known biological
principles, we are able to generate modules with improved relevance, particularly in
networks with confounding factors such as gene by environment interactions.

Keywords: gene expression, ICMg, scale-free topology, MINE, GxE interactions

clusters or modules, consisting of genes having strong associa-

High throughput biological technologies, such as transcriptome
microarrays, have enabled researchers to query biological net-
works that underlie cellular processes and pathways involved in
diseases. Examination of these pathways has led to the discov-
ery of novel biological targets (Gargalovic et al., 2006; Horvath
etal., 2006; Dewey et al., 2011; Park et al., 2011). A common form
of biological network is the co-expression network, constructed
by analyzing the pairwise relationships between RNA transcripts
across a set of perturbations (Stuart et al., 2003; Zhang and
Horvath, 2005; Keller et al., 2008; Langfelder and Horvath, 2008;
Barabdsi et al., 20115 Park et al., 2011). In these networks, genes
whose expression patterns are related to one another form the
links or edges of the graph, while the genes themselves form the
nodes or vertices. A common means of analyzing co-expression
networks relies on algorithms that partition the network into

tions with each other. These modules assist researchers in the
identification of key genes and interactions in a biological process
by dramatically reducing the overall complexity of the data from
thousands of individual genes to a small number of functional

components.
Many computational methods (Steffen et al., 2002; Schiifer
and Strimmer, 2005; Berger et al., 2007; Langfelder and Horvath,

2008; Parkkinen and Kaski, 2010; Weng et al., 2011) for the analy-
sis of transcriptomes have been developed. A basic assumption
made by many of these co-expression methods is that rela-
tionships in a biological network can be accurately described
using linear dependence measures such as Pearson correlation
or a monotonic dependence measure such as Spearman’s cor-
relation. However, linear or monotonic relationships approxi-
mate only a fraction of the true relationship types observed in
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a biological system (Figure 1). By limiting subsequent analysis
to the linear fraction of the relationships in the biological net-
work, researchers limit their ability to accurately recreate the
network and identify the proper gene modules. One means of
circumventing this problem has been through the use of Mutual
Information (MI), which is capable of identifying non-linear
connections in the data, and has been used in several previ-
ously described algorithms (Butte et al., 2000; Daub et al., 2004;
Margolin et al., 2006; Meyer et al.,, 2007). A drawback of MI,
which has proven difficult to address in some cases, has been
its sensitivity to bin size and number as well as an unsatisfying
[0-Infinity] range (Reshef et al., 2011). Recently, a modifica-
tion to MI termed Maximal Information-based Non-parametric
Exploration (MINE) has been described that eliminates these two
limitations of MI by identifying the ideal bin size and renormal-
izing the MI measure into a [0,1] state space (Reshef et al., 2011).
We utilize MINE in Maximal Information Component Analysis
(MICA) to construct networks that are based on a more accurate
set of relationships.

Another common assumption made by many module con-
struction algorithms involves the method by which genes are
clustered into modules after the underlying network structure has
been identified. Many methods adopt a strict clustering approach,
where genes are partitioned uniquely into a single module per
gene. In some cases, this is done out of necessity (hierarchical
tree-based methods), but in many cases it is done purely for

computational efficiency. Although convenient and fast, cluster-
ing methods that force genes to uniquely exist in a single module
result in incomplete modules, missing key genes that link the
modules to one another (Parkkinen and Kaski, 2010). An alter-
nate approach assigns “fuzzy” module membership (MM), in
which genes can exist in multiple modules simultaneously (Yang,
1993; Daub et al., 2004; Yang et al., 2004; Parkkinen and Kaski,
2010). In MICA, we apply interaction component modeling for
genes (ICMg), an iterative module identification method that
assigns “fuzzy” MM based on the empirical results of the Latent
Dirichlet Allocation algorithm (Parkkinen and Kaski, 2010). By
not relying on traditional one to one gene-module approaches,
we allow for a more accurate reconstruction of module dynamics
and relationships to clinical traits of interest to the researcher.

In this paper, we describe a novel module identification
method, MICA, which avoids some of the above unlikely assump-
tions made by other network algorithms. We then demonstrate
its functionality over prior methods by analyzing two large gene
expression datasets collected from macrophages and liver from
about 100 inbred strains of mice.

RESULTS

We developed MICA as a means to address what we viewed as
problematic assumptions made by many other network analysis
algorithms. The method relies on the combination of two previ-
ously described methods, each of which addresses a one of our
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primary concerns with current methods. In order to account for
the many non-linear interactions which we have observed in our
data, we utilized a recently described algorithm, MINE, which
can identify and measure both linear and non-linear interactions.
We paired this with the ICMg algorithm, which utilizes the data
generated by MINE to place genes into multiple modules, which
accounts for the multiple interactions in different pathways that
genes may have,

For this paper, we utilize two datasets, one on control and
treated macrophages and the other from livers, Both datasets
were taken from the Hybrid Mouse Diversity Panel (HMDP), a
large mouse panel of over 100 strains of mice (Ghazalpour et al.,
2012). Millions of SNPs and other genetic perturbations exist
between the strains of mice in the HMDP while confounding fac-
tors such as environmental variation are minimized, making these
datasets ideal for network biology and module identification.
Both datasets were verified to have large enough sample sizes to
reliably address issues of non-linearity. We first describe the com-
ponents which make up the MICA algorithm, then compare the
results of MICA to the well-regarded weighted gene co-expression
network analysis (WGCNA) method (Langfelder and Horvath,
2008) on each dataset.

MICA ALLOWS GENES TO EXIST WITHIN MULTIPLE MODULES
Gene modules attempt to represent groups of genes that act
together in a concerted manner. The degree to which a gene
belongs to a particular module, a measure known as MM, is a
powerful tool for determining the relative importance of individ-
ual genes in a given module. In the context of WGCNA, the MM
is defined as the correlation of a gene with the module representa-
tive (eigengene), and is sometimes also referred to as the module
eigengene-based connectivity (kME) (Horvath and Dong, 2008).
While many genes perform only a single role, and would be
expected to reside in a single module (have high MM for one
module, very low MM for all others), there are other genes that
may play roles in multiple pathways. For instance, a transcrip-
tion factor can activate multiple different pathways; Cytochrome
C, which usually is responsible for energy metabolism, also
plays an impertant role in the activation of apoptosis. These
genes would have high MM in several modules corresponding to
their important roles in each. Therefore, a critical step of net-
work analysis is the calculation of the MM measure. However,
by definition the MM measure in WGCNA and other meth-
ods are defined on already determined modules. As a result,
this approach often produces confusing results. Genes that are
placed in other modules will sometimes have higher MMs than
many genes within a module. The genes with low MM within a
module are counted fully, while those outside are ignored when
summarizing the module in question (Figure 2A). MICA calcu-
lates MMs prior to actual module assignment, which allows all
genes with high MM for a module to affect the module, while
limiting the effects of genes with low MM. Figure 2B shows a
sample set of 20 genes taken from our macrophage dataset after
analysis with MICA. Several distinct patterns of gene expression
can be observed, with most genes showing strong membership
in a single module, while others appear to act across two or
more modules, including several which do not appear to belong

predominantly in any module. By using a weighted PCA algo-
rithm, it is possible to fully incorporate the contributions of
each gene to each module, regardless of the magnitude of that
contribution.

MICA REPRODUCES SCALE-FREE TOPOLOGY

Work by Barabiési and others has suggested that the underly-
ing topology of biological networks is approximately “scale-free”
(Langfelder and Horvath, 2008; Barabdsi et al,, 2011; Dewey
et al., 2011). In other words, the distribution of node con-
nectivities approximates a power law distribution. Approximate
scale-free topology (SFT) has been empirically observed in studies
performed on metabolite networks and protein—protein interac-
tion networks (Barabdsi et al., 2011). Several popular module
construction algorithms, including WGCNA, evaluate the fit of
their preliminary co-expression network against a SFT. These
approaches then systematically modify their co-expression net-
works in order to maximize the goodness-of-fit to the a priori
scale-free assumption prior to module partitioning. In the case of
WGCNA, Zhang and Horvath (2005) observed that the scale-free
fit of a correlation network is highly dependent on the signifi-
cance threshold used for thresholding the correlation coefficient,
They proposed the SFT criterion, which functions by raising
each element of the correlation table to a series of powers and
comparing the resulting correlation distributions to an ideal-
ized SFT distribution. Users are recommended to choose the
smallest exponent that allows the scale-free goodness-of-fit cri-
terion to surpass a given threshold (usually an R? of 0.9). Raising
the correlation matrix to a user-defined power in this way is a
significant and severe modification to the original network rela-
tionships, with higher powers increasingly distorting the data
to favor only the strongest possible connections while devaluing
weaker connections.

When Pearson correlation is used for constructing a correla-
tion network, the SFT criterion typically requires one to choose a
relatively high power (6 or greater). Using Pearson correlation, we
observed that for the macrophage dataset, SFT was only achieved
after raising the correlation matrix to the power of 7 (Figure 3A).
Likewise, the liver dataset requires a power of 16 (Figure 3C). Ata
power of 1 (the original correlation table without medification),
the SFT score is negative for the macrophage data and very close
to zero for the liver data, indicating a profound disagreement
between the raw output of Pearson correlation and an acceptable
SFT fit.

In comparison, Maximal Information is a modified version
of MI that accurately identifies both linear and non-linear rela-
tionships. Strikingly, we find that very low powers are needed
to achieve SFT when MINE is used both for the macrophage
(Figure 3B) and liver (Figure 3D) data. We observe that MINE
gives a nearly ideal fit to a scale-free network at a power of 2
for macrophage and already passes the recommended threshold
at a power of 1 (unmodified) for the liver data. Without mod-
ification, the macrophage dataset nearly passes the threshold as
well. This suggests that the MINE algorithm naturally captures
the hypothesized approximate SFT of biological networks, and
eliminates the need to explicitly soft threshold the data with a
power function.
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PRINCIPLE COMPONENT ANALYSIS IS CONSERVED ACROSS A WIDE
RANGE OF POTENTIAL MM CUTOFFS

Two common goals of module construction algorithms are the
identification of enriched pathways, domains, and molecular
functions within modules, and the discovery of modules which
are strongly correlated with disease severity or other phenotypes
of interest (Sharma et al., 2005; Weng et al., 2011). Gene-set
enrichment algorithms calculate the overabundance of a partic-
ular category of genes within a group when compared to that cat-
egory’s presence in the entire dataset (Huang et al., 2009a,b). To
calculate overrepresentation, these methods require strict binary
categorization of genes as either being present or absent from a
given module, Using MICA, any MM cutoff could theoretically
be selected to perform this categorization; however, proper MM
cutoffs should preserve the overall action of the MICA-identified
module. In order to determine the stability of the network at
various MM cutoffs, we calculated the first principle compo-
nent [called an eigengene (Park et al., 2011)] of each module in
our MICA-derived macrophage network at seventeen MM cut-
offs (5% intervals from 10% to 90% MM). We then calculated
the average correlation of eigengenes to one another and to the
weighted PCA which represents the true activity of the module
as a whole without partitioning. This stability measurement was
high across the panel of MM cutoffs, with a significant loss occur-
ring only when MM cutoffs were greater than 70% or less than
20%. Between 35% and 55% MM cutoffs, eigengene correlations

to one another and to the weighted PCA were greater than 0,99
(Figure 4). This near perfect correlation implies that within this
range of cutoffs, any binary partitioning of the modules is equally
capable of describing the action of the network as a whole.

STABILITY OF EIGENGENES ALLOWS FOR SELECTION OF OPTIMAL
MODULES IN TERMS OF SIZE AND GENE-SET ENRICHMENT

Ideally, network analysis and module construction should prior-
itize specific pathways and genes for further analysis by targeted
approaches. To achieve that goal, ideal modules should be both
highly enriched for specific gene categories, and also small enough
to reasonably examine all the genes in the module for interest-
ing candidates and drivers without eliminating large numbers
of genes from consideration. In MICA, average module size is
inversely correlated with MM cutoff, but the relationship between
MM cutoff and gene-set enrichment is significantly more com-
plex. We observe near perfect correlation (greater than 0.99) in
the MICA modules for cutoffs that lie between 35% and 55%.
This implies that we may select any cutoff within this range for
gene enrichment analysis and remain confident that the mod-
ules selected accurately represent the entire network as a whole.
To determine this ideal cutoff and identify the optimal modules
for further analysis, we calculated DAVID enrichment scores for
each set of modules (Dennis et al., 2003; Huang et al., 2009b).
We then applied a metric that incorporates both module sizes
and enrichment significances while penalizing the network for
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the number of genes not included in the overall network in order
to determine the optimal MM cutoff to use for further analysis
(Figure 5A). For example, in the macrophage dataset, the optimal
MM cutoff is 35% a point where the binary partitioned model
represents the network as a whole and possesses several small but
highly enriched modules.

COMPARISON OF MICA TO WGCNA

WGCNA is an extensively used module identification and net-
work analysis method (Zhang and Horvath, 2005; Langfelder and
Horvath, 2008; Dewey et al., 2011; Park et al., 2011). We com-
pared the MICA method to WGCNA using two recently described
gene expression microarray datasets from a large mouse panel,
one from control and OxPAPC-treated macrophages (Orozco
etal.,2012) and another from liver (Bennett et al., 2010). We con-
structed modules in WGCNA using the standard methodology
described in Langfelder et al. (2008). WGCNA infers the number
of modules in a co-expression network automatically based on

dynamic branch cutting of a hierarchical cluster tree (Langfelder
etal., 2008). Additional modules can create bias due to additional
degrees of freedom. In order to prevent bias, we fixed the number
of modules for MICA to the same number that was inferred
through WGCNA.

In comparing WGCNA to MICA, we rely on several measures
of network fitness. The first measure of network fitness is the
SFT criterion defined by comparing the observed distribution
of edge connections across the inferred network to the power-
law distribution of an ideal scale-free system. WGNCA suggests
raising the correlation matrix to a power in order to reach an
appropriate approximation to SFT. We use this method when
comparing MICA to WGCNA, observing at which power each
method reaches an appropriate approximation to a scale-free
system. A method that better captures the SFT of the under-
lying network is the one that reaches this scale-free criterion
threshold at the power closest to unity. The next comparison
metric is perplexity, a measure of the entropy of a system,
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FIGURE 5 | MICA displays equal or higher “usefulness” than WGCNA.
“Usefulness” score of data for the (A) macrophage and (B) liver datasets.
The blue bar is the score received by WGCNA, while the yellow bar is the
score returned for MICA at the optimal MM cutoff. A higher score indicates

a more desirable result. We observe an improvement in the macrophage
and conservation in the liver datasets.

datasets which only vary due to biological variability to determine
Gene Ontology (GO) categories for further study (Gargalovic
et al., 2006; Horvath et al., 2006; Dewey et al., 2011; Yee et al.,
2011; Xiao et al,, 2012), We utilized differences in GO enrich-
ments as one measure of network fitness, but felt that a strict
comparison of GO enrichment values only captured part of the
overall “usefulness” of the constructed modules. To address this
issue, the final measure of network fitness compares modules
identified through MICA and WGCNA by their “usefulness” as
determined by a combination of DAVID gene-set enrichment,
module size and number of genes unplaced in modules (Huang
et al., 2009b). Ideally, as many modules as possible in a network
should be highly enriched and reasonably small to assist in further
study.

MACROPHAGE DATASET

We examined a dataset consisting of the 5070 most variably
expressed genes in a panel of macrophages isolated from inbred
mouse strains before and after treatment with OxPAPC, an oxi-
dized phospholipid. MICA strongly captures the SFT in the

and equivalent to a misclassification rate (Brown et al., 1992;
Parkkinen and Kaski, 2010). We constructed standard gene classes
as described in Shiga et al. (2007) and calculated the ability of
either WGCNA or MICA to recapture these classes in their mod-
ules. Network analysis methods are often used, particularly in

ystem, crossing the recommended threshold at a power of 2 and
attaining a nearly perfect fit to an ideal scale-free system with an
R? of 0.97 (Figure 2B). At a power of 1 (the raw relationship val-
ues), the scale-free fit is very high at 0.84. By comparison, the
Pearson correlation used by WGCNA does not reach the scale-
free threshold until a power of 6 (Figure 2A). At the power of 1,
it is clear that the Pearson correlation is not an accurate means by
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which one may capture the SFT of this system, as the signed R?
value of the degree distributions is less than 0.

The perplexity of the MICA-derived modules varied signifi-
cantly based on the MM cutoff selected. In comparing WGCNA
and MICA, we chose to compare WGCNA to the ideal MM cut-
off selected by our “usefulness” measure, which combines gene
enrichment and module sizes. WGCNA returned a perplexity
score of 193.44 based on 256 standard GO categories included in
the analysis (Figure 6A). The ideal MM cutoff for the macrophage
dataset is 35%. At that cutoff, the MICA modules have a per-
plexity score of 171.77, a 11.2% improvement over WGCNA. We
also calculated perplexities at 5% intervals across the stable range
of MICA (35-60%) (Figure 6A). In terms of our module “use-
fulness” measure, we saw improvement (3.43 vs. 3.20) between
the 35% MM cutoff MICA modules and the WGCNA modules.
Comparable improvement was observed at 40%, while equiva-
lent enrichment was observed at 50%. (Figure 5A). Also observed
were increases in average GO enrichment at 35 and 40% cutoffs
compared to WGCNA (5.457 and 5.384 vs. 5.264, Figure 7A).

Orozco et al. (2012) describe a set of genes and GO terms
which are involved in the OxPAPC response. In order to deter-
mine the ability of MICA and WGCNA to return relevant mod-
ules, we examined each set of modules and compared them to
the results of Orozco et al. Terms of interest included regulation
of kinase activity, cytokine production, genes containing a SH2
domain, glutathione biosynthesis, and oxidative stress response.
We compiled lists of all enriched GO terms in both WGCNA
and MICA modules. We observed that the MICA-analyzed net-
work contained more modules that were significantly enriched
for these GO terms, with six modules being enriched for one
or more term of interest as opposed to four in WGCNA. Both
methods were able to identify modules involved in oxidative

A Macrophage Perplexity
250
200

150

2 100
B HE =
o

WGCNA 035 04 045 05 055 06 065

MM Cutoff

B Liver Perplexity
200
150

g
& 100
50
[
0.45 0. 06 065 WGCNA
MM Culuﬂ

dul.

ent in er

FIGURE 6 | MICA returns a small i
WGCNA. Perplexity measures for (A} macrophage and (B) liver. The blue
bar is the score received by WGCNA, while the yellow bar is the score
returned for MICA at the optimal MM cutoff. As perplexity is a measure

of entropy, a lower score is more desirable. In both cases, a small
improvement in perplexity is observed in the optimal MICA modules vs. the
WGCNA modules.

response, regulation of kinase activity and cytokine production,
while WGCNA identified an additional module involved in glu-
tathione metabolism and MICA identified two modules associ-
ated with SH2 domain and an additional module for regulation
of kinase activity. We also observed that MICA segregated all
identified OxPAPC-related genes (Hmox1, Ifi205, and Il1a) into
a single module, while WGCNA split these genes into multi-
ple modules. The identification of a core “OxPAPC response”
module, as defined as the module which contains all the OxPAPC-
related genes, represents a significant improvement for MICA
over WGCNA, which was unable to find such a module.

LIVER DATASET

We also examined a dataset consisting of 7000 highly expressed
genes from livers taken from a large panel of mouse strains. In
these data we observed MICA strongly capturing the SFT of the
network, reaching an R? fit of 0.93 without any modification
and an R? greater than 0.99 at a power of 2 (Figure3D). By
comparison, Pearson correlation did not reach the recommended
cutoff of R> = 0.9 until a power of 16, representing a substan-
tial modification of the co-expression data in order to fit the
underlying hypothesis (Figure 3C). As in the macrophage data,
the unmodified Pearson correlation data showed no relationship
to a scale-free network, with an R? close to 0.

Unlike the macrophage dataset, we do not observe the same
level of conservation of eigengenes across MM cutoffs in the
liver dataset. We selected for further analysis a set of MM cutoffs
(35-65%) in which eigengene correlations were over 0.9
(Figure A1). We also observe that the GO enrichment terms gen-
erally improve rather than decrease over the range of conserved
MM cutoffs, and our ideal MM cutoff occurs at 65%. At 65%,
MICA returns a perplexity score of 105.38, while WGCNA returns
a perplexity score of 121.02 (Figure 6B). MICA shows a 12.9%
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optimal MM cutoff. A higher score is more desirable, and we observe
improved average GO enrichment for MICA in the macrophage data, and
improved average GO enrichment for WGCNA in the liver data.
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improvement over WGCNA in terms of perplexity for the liver
dataset.

WGNCA was unable to place 66.5% of genes into mod-
ules, which affected its “usefulness” score compared to MICA,
which was unable to place 10.9%. However, WGCNA returned
higher average GO enrichments (3.67 vs. 3.51, Figure 7B) when
compared to MICA. Modules were indistinguishable from one
another in terms of overall module usefulness (—1.10201 vs,
—1.10213, Figure 5B).

MODULE STABILITY

In order to determine the overall stability of the modules observed
in both WGCNA and MICA, we randomly partitioned the
macrophage dataset into two equal parts and ran both MICA and
WGCNA on each half. No universally accepted means of compar-
ing two sets of modules to one another exists, particularly in the
case of modules with non-binary gene-module occurrence. We
adopt a method previously used to compare modules created by
WGCNA (Langfelder and Horvath, 2008) to compare the MICA
and WGCNA modules to one another. We note that this method
was designed for network methods which place genes into single
modules, and that forcing our MICA results to conform to this
requirement will inevitably weaken the network stability observed
via MICA.

We observed that when run through the soft thresholding
function, both MICA runs return a power of 3, while the two runs
of WGCNA differ, with one returning 4 and the other 6. This sug-
gests that MICA is capturing similar levels of SFT for each portion
of the data while WGCNA is unable to do so. The hard threshold-
ing criteria for both MICA runs is also identical at a cutoff 0f 0,45,
We further observe that WGCNA returns differing numbers of
modules (13 vs. 14) for the two halves of the macrophage dataset.

‘We observe broadly similar levels of stability in both WGCNA-
and MICA-derived modules (Figure8), with the majority of
modules in both methods showing strong preservation between
the halves of the macrophage dataset. A notable exception is the
salmon module from part 1 of the WGCNA data (Figure 8A),
which is not preserved at all in the part 2 WGCNA network. The
salmon module of part 2 of WGCNA also shows relatively weak
preservation as well,

EFFECTS OF DATASET ON MICA
We find that MICA appears to show an overall improvement
in module construction when compared to WGCNA in the
macrophage dataset, but is comparable to WGCNA in the liver
dataset. To evaluate whether underlying differences in the net-
work architecture between the two datasets led to the differences
in improvement, we returned to the original data to look for
differences in the number of non-linear interactions captured
by MINE vs. Pearson correlation, If there are more non-linear
interactions in a dataset, then MICA should perform better than
WGCNA, which does not take into account the non-linear inter-
actions in the data. On the other hand, if a network has very few
non-linear interactions, then both MINE and Pearson correlation
should return comparable results to one another.

In order to determine whether we were seeing more non-
linear interactions in the macrophage dataset, we selected all

relationships from both the macrophage and liver datasets that
had a high (greater than 0.9) maximal information coefficient
(MIC) score. Our first observation was that the macrophage
dataset had significantly more strong MIC scores than the liver
dataset (1274 vs. 360 interactions). We then examined the dis-
tribution of the Pearson correlation values measured for these
strong MIC interactions, after sampling the macrophage dataset
such that it had an equal number of observations as the liver
data (Pigure 9A). Compared to the liver data, the macrophage
data showed enrichment for both very high (greater than 0.9)
and low (less than 0.6) Pearson correlations. This suggests that
the macrophage dataset both contains more non-linear interac-
tions, and also a greater fraction of interactions that are very close
to perfectly linear. While the linear interactions will be picked
up by Pearson correlation, the increased number of non-linear
interactions can only be detected appropriately through MINE.

There are two possible explanations for the differences
between the two datasets. The first is that the macrophage dataset
is an in vitro system containing a single cell type, while the
liver samples contain multiple cell types. The second possible
explanation is that the improvement comes because we ana-
lyzed both treated and untreated data together, rather than sepa-
rately. Accordingly, we separated the control and OxPAPC-treated
macrophages and compared each separately to the liver dataset
(Figures 9B,C). We observed slightly increased numbers of strong
MIC interactions for the control (448) and treated (549) data
compared to the liver data (360). However, although we con-
tinued to observe enrichment of very high correlations in both
the control and treated OxPAPC datasets compared to the liver
data, and we no longer observed enrichment of low correla-
tions in either data (with the exception of a single interaction
in the OxPAPC-treated dataset). This is an example of gene by
environment interactions where a treatment or environmental
perturbation interacts with underlying genetic variation to result
in different relationships between genes in different environmen-
tal conditions. These observations suggest that the improvement
observed when using MICA on the macrophage dataset is a
result of MICA's ability to capture gene by environment interac-
tions between the treated and control samples. It further suggests
that Pearson correlation and WGCNA are less successful in the
macrophage dataset because they are incapable of using these
interactions.

DISCUSSION
We report a novel network analysis method, MICA, which com-
bines two previously published methods: MINE, a modification
of MI which accounts for non-linear interactions in datasets with-
out many of the shortcomings of the canonical methods, and
ICMg, which relies on an iterative process to assign distributed
MMs as opposed to a rigid in-or-out dichotomy. Together, this
combination is less restrictive than module construction algo-
rithms that include linear but exclude non-linear co-expression
relationships and allow only single-MM. Thus, MICA has the
advantage that it embraces concepts that are better rooted in
actual biological observations.

To validate the MICA approach, we analyzed datasets from
macrophages treated with OxPAPC and from livers, which in
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one case revealed distinct advantages of MICA over WGNCA, a
benchmark correlation network approach, and yielded compara-
ble results in the other case. Specifically, MICA may be partic-
ularly well suited for the analysis of networks in which gene by
environment interactions are expected to occur, which traditional
module construction methods are ill-equipped to detect. In the

case of macrophages treated with OxPAPC, analysis with MICA
resulted in modules that are more highly enriched in pathways
of interest, and better able to place genes with similar functions
into the same modules compared to other methods. In both
macrophage and liver datasets, there is a dramatic improvement
in the ability for MICA to detect an overall network structure
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that better approximates the hypothesized topology underlying
the biological network.

We have further observed that in contrast to MICA, which
utilizes MINE and ICMg, no significant improvements were
achieved when WGCNA was modified by using ICMg on Pearson
correlations, or topological overlap and hierarchical clustering on

Maximal Information scores (Figure 10). Thus, both MINE and
ICMg each provide partial solutions that are synergistic when
combined.

As an attempt to incorporate known biological principles such
as feedback loops and multi-functional proteins into a transcrip-
tome co-expression network analysis method, MICA shows initial
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FIGURE 10 | MINE or ICMg used separately do not improve network
analysis. Module “usefulness” measure for macrophage data when using
either MINE plus hierarchical clustering, Pearson correlation plus ICMg,
WGCNA, or MICA. Higher usefulness is more desirable, and we observe
significantly reduced usefulness scores when either MINE or ICMg are
used separately from one another.

promise, but will undoubtedly benefit from further refinement.
A major drawback is that MICA lacks the ability to indepen-
dently determine the number of modules in a network; ie., an
arbitrary number of modules must be specified. Additionally, it
is not straightforward to calculate p-values (significance) for the
MICA measure, in contrast to the many approaches that have
been developed (e.g., regression models) to calculate p-values
for correlation measures. Finally, MICA is significantly more
computationally intensive than correlation-based methods such
as WGCNA. Such improvements may allow MICA to identify
smaller, more enriched and more relevant modules for further
analysis and discovery of novel genes with roles in important
phenotypes.

In conclusion, MICA is an attractive network analysis method
because (1)} it does not discard non-linear interactions; (2) it
removes the need for soft thresholding; (3) employs a fuzzy
clustering algorithm for module detection; and (4) shows
improvements over correlation algorithms in certain cases, par-
ticularly those involving gene by environment interactions.

METHODS

MAXIMAL INFORMATION NON-PARAMETRIC EXPLORATION (MINE)
We utilize the recently described MINE algorithm to determine
a normalized relationship matrix which incorporates non-linear
interactions (Reshef et al., 2011), MINE relies on a modified
version of MI called the MIC. MIC calculates normalized MI
values for all partitions of a finite set of ordered pairs with the
x-values going into x bins and the y-values partitioned into y
bins, such that x x y < n®®, as recommended by the authors and
where n is the number of arrays. The algorithm then normalizes
across partitions with the same number of bins, but different bin
sizes, by dividing the data by log(min{x, ¥}), which is the max-
imum possible score for any MI query with x horizontal and y
vertical bins. The MIC of an interaction is then defined as the

maximum normalized value across the set of partitions. MINE
is implemented in a Java environment. MIC scores are calcu-
lated for all pairs of expression data and compiled into a matrix
format.

SCALE-FREE TOPOLOGY

The soft thresholding SFT function of the WGCNA R package
(Langfelder and Horvath, 2008) was used to determine the fit of
all datasets and relationship generating methods (either Pearson
correlation or MIC) to an idealized SFT. Briefly, the function acts
by calculating the sum of the link strengths for each gene in the
data, and finds an R? between the distribution of total node link
strengths and a power-law distribution. It then repeats this pro-
cess, raising the original relationships to a power of n =1 — 20.
The ideal soft thresholding criterion is defined as the first power
which passes the recommended R? threshold of 0.9.

ICMg
ICMg (Parkkinen and Kaski, 2010) relies on an iterative com-
ponent model to calculate MMs. As ICMg does not allow for
weighted edges, network edges were trimmed using the hard
thresholding function of the WGCNA R package, which calcu-
lates an R? fit between the degree of node connectivity in a
dataset based on a thresholding function at increasing intervals
of 0.05 and a power-law distribution. The ideal hard threshold-
ing criterion is the lowest cutoff which passes a recommended R*
threshold of 0.9. ICMg allows users to select an arbitrary num-
ber of modules. As WGCNA automatically selects the number of
modules it will return, we selected a number of modules equal to
that observed with WGNCA for ICMg in order to avoid biasing
the results toward the method with more modules and therefore
more degrees of freedom, Module assignments were then initially
assigned to the network using a Dirichlet distribution.

ICMg is an iterative process. In each iteration, each edge is
independently interrogated utilizing Gibbs sampling with the
following equation:

o @iy + By, +B)
N +Ca . (n, +1+MB)(2r, + MP)

Plaolfz), (LY. @ B)

where {L}' is the set of all links excluding the one being interro-
gated, {z}’ is the set of module assignments for the links excluding
the link being interrogated, n, is the count of links assigned to
component z, i, and j represent the genes linked by edge z and
gz counts the module-node co-occurrences between module z
and node i. C is the total number of modules, and M is the total
number of nodes. o and B are control parameters which mod-
ify the overall distribution of module sizes and the average MM
per gene per module, however, these were not moedified and the
default values (@ = 10, B = 0.1) found in (Parkkinen and Kaski,
2010) were used. 40,000 burn-in rounds were performed to elim-
inate any dependence on initial conditions and to allow values of
q/M to reach steady-state values at which point MM of each node
was sampled every 10 iterations for another 10,000 iterations of
the network to determine proportional MM in each module for
each gene.
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DETERMINING THE ABILITY OF MICA TO ADDRESS NON-LINEARITY

IN DATASETS

In order to determine whether the sample sizes of the macrophage
and liver datasets were large enough to reliably address
non-linearity, we utilized pre-computed bootstrapped tables of
p-values for arrays of varying sample sizes from MINE avail-
able at http://www.exploredata,net/Downloads/P- Value-Tables.
We observe that at our hard thresholding cutoff of 0.45, this
means that for all edges in the liver MICA network, p-values are
less than 2.72E-6, while for the macrophage dataset, all edges have
p-values less than 2.74E-7, far over the nominal significance value
of 0.05 or the Bonferroni corrected values of 7.1E-6 and 9.8E-6.

CALCULATING “EIGENGENES” VIA WEIGHTED PRINCIPLE
COMPONENT ANALYSIS

We borrow the concept of the eigengene from WGCNA
(Langfelder and Horvath, 2008) to describe the overall behavior
of a set of genes. As in WGCNA, we define an eigengene of a mod-
ule to be the first principal component of the transcript levels of
the genes contained within the module, however, we utilize the
dudi.pca function of the ade4 R package to implement a weighted
PCA which utilizes the MMs from ICMg to weight the contri-
bution of each gene to the eigengene (Chessel et al., 2004), We
also calculate the unweighted eigengene for each module at 5%
intervals across the genome in which genes whose MM for that
module passes the current threshold are included in the eigengene
calculation,

OPTIMAL MM CUTOFF SELECTION

While there are methods to compare networks to one another
(Langfelder et al., 2011), these typically are concerned with deter-
mining preservation of modules and comparing individual genes
to one another and not asking which module is objectively “bet-
ter” In order to compare MICA networks to one another and to
WGCNA-derived networks, we define a parameter “usefulness”
(U), which incorporates both GO enrichment scores, the number
of genes present in a given module and the number of genes not
placed in any module. We define “usefulness” as follows:

1,0un DAVTD,‘
‘o i ( log, Ni ) 1oBioM:
where DAVID; is the maximum DAVID (Dennis et al., 2003;
Huang et al., 2009b) enrichment score for module i (equivalently,
the negative log of a GO enrichment score could be used), N;j is
the number of genes in module 4, and M is the number of genes
not included in any module for the current method.

WGCNA

We followed the network analysis methods described in
Langfelder et al. (Langfelder and Horvath, 2008) and the param-
eters found in the online WGCNA tutorials at http://labs.genetics.
ucla.edu/horvath/htdocs/CoexpressionNetwork/Rpackages/WGC
NA/Tutorials/. Pearson correlations were determined for each
pair of genes, and after performing a soft thresholding SFT
fit, the correlations were raised to the recommended power.
Adjusted correlations are then converted into Topological

Overlap measures by the following equation:

> Ay} + Ay
TOMy = =22 W Y
OM; = itk k) +1— Ay

where i and j are the pair of genes to be analyzed, u is the set of
all other genes, A is the adjusted correlation matrix, and k is the
degree of the node. TOM scores are then converted to DistTOM
scores by subtracting TOM from 1. The DistTOM array under-
goes hierarchical clustering, and modules are determined using
the dynamic tree cut algorithm and eigengenes are determined
from the first principle component of the genes in each module,
Modules whose eigengenes have a Pearson correlation of greater
than 0.8 are merged.

The WGCNA method is implemented in the freely avail-
able WGCNA R package (Langfelder and Horvath, 2008). Here
we used many of the R functions from this package (e.g., for
evaluating SFT and the creation of Figures 4, Al).

STANDARD GENE CLASSES

The GO database is organized into three distinct directed acyclic
graphs. We derived standard gene classes for our data in a method
similar to Shiga et al. (2007). Starting at the root of the Biological
Process GO graph, we proceeded from parent node to child nodes,
checking the number of genes in that GO category that also
appear in any module in our gene networks. As we progress away
from the root, the number of genes in each category decreases and
the number of categories increases. We used the parameters uti-
lized in Shiga et al. for our analysis. When a GO category contains
less than 30 genes present in our network, we stop progressing
down that branch and add its parent GO category to the standard
gene-set, unless there are more than 300 included genes in that
category, in which case it was omitted as being too broad for log-
ical compartmentalization into a single module. In this way, we
generate a set of reasonably sized functionally-related gene-sets
with which to explore the accuracy of the module construction
method using perplexity.

PERPLEXITY

Perplexity represents a measure of the entropy in a system, and
has been used extensively in fields as diverse as natural lan-
guage processing (Brown et al., 1992) to previous clustering
algorithms (Parkkinen and Kaski, 2010). In this case perplexity
represents the ability of a module creation algorithm to accurately
recover underlying functional gene categories as determined by
our standard gene classes, We applied perplexity to the confusion
matrix formed of the frequency of co-occurrence between stan-
dard classes on the columns (c) and the modules as the rows (r).
From this confusion matrix, perplexity is defined as

. _ L logPieip
perplexity = 2

where N is the total number of non-zero samples, 7 is an indexing
variable for all such entries in the confusion matrix, and the prob-
abilities p are empirically determined by normalizing the rows of
the confusion matrix, Perplexity is proportional to the size of the
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FIGURE A1 | MICA shows strong preservation of eigengenes in the liver dataset. Eigengene correlations at 5% cutoffs from 10% to 90% MM and also
the weighted eigengene for the liver dataset. The black box indicates the region of preserved module eigengenes.
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overall dataset. To compare perplexities between network meth-
ods, we normalize the data by multiplying each perplexity value
by the proportion of genes initially included in the dataset and
the genes actually placed by each method. A lower perplex-
ity score represents a more accurate capture of the functional
categories.

MODULE STABILITY

Module stability was calculated using the method described
by (Langfelder and Horvath, 2008) and documented at http://
labs. genetics. ucla. edu/horvath / htdocs/ CoexpressionNetwork/
Rpackages/WGCNA/Tutorials/Consensus-RelateToFemMods.pdf.
Briefly, the macrophage dataset was randomly divided into two
halves, Each half was independently processed using MICA and
WGCNA. MICA genes were forced into the module in which it
had the highest MM to allow for the use of the method, In order
to determine module preservation, each half was compared to
one another by creating a table of gene-overlaps between genes in
modules of the first half and genes in modules of the first half. A
Fisher’s exact test was applied to each overlap to calculate a signif-
icance of preservation for each module-module pairing. Overall
module preservation was then visually determined based on the
significance of preservation for each module in the other half of
the dataset.

MICA
Code for MICA is available from systems.genetics.ucla.edu

DATASETS

The macrophage dataset was obtained from Orozco et al, which
isolated primary macrophages from a large panel of inbred mouse
strains (Orozco et al., 2012), The macrophage dataset includes
80 strains of control macrophages and macrophages treated
with 50 ug/ml oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-
3-phosphatidylcholine (OxPAPC) for 4 h.

The liver dataset was taken from Bennett et al. and includes
livers taken from 97 strains of mice (Bennett et al,, 2010).
Transcriptome data was obtained using the Affymetrix HT MOE-
430A microarray platform, and normalized using the robust
multichip average (RMA) method.

A major limitation of MICA is the time involved in the
generation of the MIC scores using MINE, which has a large
O(n?) computation time, In order to run MICA in a reasonable
amount of time, it is important to limit the genes selected to the
smallest informative set, As such, we selected for genes which were
expressed in the dataset and which showed variation across the
dataset (as genes which do not vary are generally uninformative
for network analysis). We calculated average signal intensity and
coefficient of variation (CV) for each probeset. We then reduced
our dataset to relevant genes by first selecting probes with above
average intensity, and then selecting probes with greater than 5%
CV, resulting in 5070 genes for the Macrophage dataset. For the
liver dataset, we selected the 7000 most highly expressed genes for
analysis,

Both datasets are available at http://systems.genetics.ucla.edu/
data/
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Chapter 5

eQTL Hotspot Analysis and

Gene Networks Reveal Key Drivers

of Catecholamine-Induced Heart Failure
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Introduction

This chapter contains a manuscript describing the application of MICA from
chapter 4 to the data generated from the HMDP HF study. In it, we identify a module of
~40 genes which is highly correlated with a number of cardiac phenotypes. Using
additional network-based algorithms, we identify potential regulators of this module,
including a gene Magi2, that is not expressed in the heart, but appears to play a role in the
control of the heart's response to ISO. We also perform a transcriptome-wide analysis of
genes expressed in the heart, and identify several regions of the genome that strongly
regulate overall gene expression in the panel. We use SNPs and expression data to
identify possible candidate genes for the master controllers of gene expression in the

heart under background conditions and during ISO-induced heart failure.
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Abstract

We recently reported a Genome Wide Association Study (GWAS) on heart failure
(HF) and cardiac fibrosis. We used the B-adrenergic agonist isoproterenol (ISO) to
induce HF-associated phenotypes in the Hybrid Mouse Diversity Panel (HMDP), a novel
mouse resource population. Here we report the results of analyses performed on
transcriptomes taken from 92 matched strains of the HMDP both with and without ISO
treatment. We performed eQTL hotspot analysis to identify master regulators of gene
expression in treated and untreated hearts, and identified three loci which significantly
regulate over 10% of all expressed genes in the heart. One of these loci contains the
miRNA-processing gene Drosha, and we identify a nonsynonymous SNP in Drosha
which is significantly correlated with heart weight. Additionally, we utilized a recently
described gene network construction algorithm, Maximal Information Component
Analysis (MICA), to identify genes and pathways involved in the response to chronic
ISO exposure. We observed six modules which show significant correlation to HF-
related phenotypes, including a module of 41 genes which contained several genes of
interest, including Lgals3, a diagnostic marker for HF. Utilizing eQTL hotspot analysis,
a locus containing Magi2, a gene which helps to control the turnover of the B-adrenergic
receptor in the brain, but is not expressed in the heart, was shown to be involved in the

regulation of this module.
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Introduction

Heart failure (HF) is the leading cause of death in developed countries*?. In
contrast to many other disorders, genome-wide association studies (GWAS) to identify
novel genes and pathways which regulate HF have had only modest success in human
studies®®. The complex nature of the disease suggests that a more successful approach
would be to examine the failing heart using systems-level techniques in a controllable
model that lacks the differing etiologies and environmental confounders that frustrate
human studies.

Animal models allow researchers to monitor and control the environmental
factors that contribute to the disease, and provide a possible means for genomic analysis
of HF. We have recently published an article describing a successful GWAS of HF and
cardiac fibrosis phenotypes in a novel mouse resource, the Hybrid Mouse Diversity Panel
(HMDP) exposed to chronic -adrenergic stimulation. We demonstrated that due to the
improved resolution compared to traditional linkage studies®’, the ability to perform
case/control studies and the reduction of environmental variation , that it was possible to
identify a number of loci which contribute to HF.

Previous research using the HMDP has suggested that our resource is well suited
to other systems genetics approaches, such as eQTL hotspot analysis and transcriptome
network analysis’** for the identification of genes which contribute to phenotypes of
interest. We now report an analysis of transcriptomes taken from treated and untreated
mice of the HMDP HF study using both trans-eQTL hotspot analysis and co-expression

network analysis to identify genes and pathways which contribute to HF.

138



Although rarely an initial cause of HF, B-adrenergic stimulation is commonly
seen in HF patients and is considered a driver of ongoing hypertrophy and eventual
cardiac failure'?. Isoproterenol, a synthetic p-adrenergic agonist and a well-studied

model in mice!* 16

, provides a means to induce HF-related phenotypes without relying on
a more error-prone initial insult to the heart. Trans-eQTL hotspot analysis reveals seven
significant hotspots where a single locus significantly regulates over 5% of the genes
expressed in the heart, three of which control the expression of 10% of the expressed
genes within the heart. Within these loci we have identified as candidates genes with
known roles in cardiac growth and the response to adrenergic stimulation, including the
Drosha miRNA-processing gene and Akap5. We also identified the Serpina3n gene,
whose gene expression is very highly correlated to changes in heart weight and fibrosis in
our panel, as being a strong candidate within one of our trans-eQTL loci.

Additionally, we utilized a recently described co-expression network analysis
method, Maximal Information Component Analysis (MICA) *’, to form modules of
functionally-related genes from our transcriptome data. MICA has several advantages
over other co-expression analysis methods, including the ability to analyze both linear
and non-linear relationships between genes and to allow genes to proportionally exist
within multiple modules at a time. We have demonstrated’’ that MICA is particularly
well suited to studying case/control studies such as the HF HMDP. MICA identifies six
modules which show significant correlations to HF-related phenotypes. One module of
41 genes was examined in detail, and contained a number of genes previously implicated

in HF such as Lgals3, a plasma biomarker of HF'® and Timp1, an extracellular matrix

139



regulator'®®. We also observe a number of genes previously unimplicated in HF in the
module, including the eQTL hotspot gene Serpina3n. An eQTL hotspot analysis of this
module specifically identifies a single locus on chromosome 5 which significantly
regulates a quarter of the genes in the module. This locus contains a single gene, Magi2,

which regulates the turnover of the B-adrenergic receptors in the brain.

Results

eQTL hotspot analysis identifies key regulators of gene expression

Left ventricular tissue from untreated and treated (3 weeks of 1ISO at 20 mg/kg
body weight/day) mice were dissected from 92 matched strains of the HMDP and
processed using Illumina Mouse Ref 8 2.0 gene expression arrays. Genes were first
filtered for those significantly expressed in the heart in at least 25% of either control or
treated strains. In addition to the control and treated data sets (~13,000 genes), an
additional set was calculated for the difference in gene expression in all genes whose
expression varied between 1SO and control animals by a coefficient of variation of at
least 5% (~8000 genes). Using the EMMA algorithm % and ~130,000 SNPs, we
identified loci, which we term expression quantitative trait loci (eQTL), which regulate

gene expression at an FDR of 1% (P=6.1E-5).

eQTL hotspot analysis tests for loci which significantly regulate a significant
number of genes in the tissue or condition of interest. Prior research?® has shown that

these hotspots are capable of identifying important regulators of tissue development,
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cellular processes and/or the response to environmental stressors. To facilitate the
identification of hotspots, we partitioned the genome into 4,691 500kb windows. For
each gene, we selected the SNP with the lowest P-value to represent the entire window
for further analysis. Significant eQTL hotspots were determined by summing the number
of genes per window which exceeded the FDR cutoff and comparing that number to a
bootstrapped distribution of enrichments in order to determine a final significance
threshold (3.85E-7 for untreated and treated mice, 6.23E-7 for delta, Figure 5.6). We
observe 445 significant windows for untreated strains, 177 for treated strains and 172 for
the difference in gene expression between ISO and control mice (Figure 5.1, Table 5.3).
A full list of these windows is presented in- Table S1. We will focus only on 'master
regulator' loci which regulate over 5% of the genes expressed in the heart (Table 1). We
observe three loci which regulate at least 5% of baseline gene expression, and four loci
which regulate at least 5% of the change in gene expression between control and treated
mice. We do not, however, observe any loci for treated animals which affect at least 5%
of expressed genes (maximum: 2.2%). We hypothesize that the absence of master
regulators in treated animals (Figure 5.1B, Table 5.1) results from the systems-wide
effects of 1SO stimulation, which results in few loci which regulate large numbers of

genes in the heart specifically.

To help identify potential master regulators at these loci, we correlated gene
expression with the heart weights of the HMDP HF study which are available along with
a number of other phenotypes on our public database

(http://systems.genetics.ucla.edu/data). Additionally, we used the Wellcome Trust
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Mouse Genomes Project sequencing database®*, which has the full genomic sequence of
ten strains contained in our panel, to examine genetic variations present within each
locus. Together, these approaches provide a powerful and systematic method for the

identification of causal genes within these eQTL hotspot loci.

Our most significant locus for untreated gene expression spans 6 Mb (12-18Mb)
on chromosome 15, and regulates 11.3% of all expressed transcripts (Figure 5.2A).
Drosha, the initiator of miRNA processing, lies near the center of the locus, and is the
only gene within the locus to be expressed at significant levels in the heart, although its
expression does not correlate with heart weight. We identified a nonsynonymous
mutation within exon 5 of Drosha in the C57BL/6J strain which is significantly
correlated to untreated heart weights (P=0.034, Figure 5.2B). miRNA signaling plays a
vital role in cardiac development and disease”2’. We propose that this nonsynonymous
variation results in subtle changes to the way in which miRNAs are processed in the

heart, leading to observable differences in heart development and gene expression.

Our most significant locus is associated with the change in gene expression
between treated and untreated strains and spans 1 Mb (77.5-78.5) on chromosome 12. It
regulates 11.4% of all expressed and varying transcripts (Figure 5.2C). Akap5, an
anchoring protein which localizes protein kinase A to particular regions of the cell as well
287301 is

as binding to calcineurin, a known regulator of the 3-adrenergic signaling pathway

a strong candidate within this locus. We observe a strong correlation between heart
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weight and Akap5 gene expression(R=0.35, P=6E-7, Figure 5.2D), which further supports

a role for Akap5 in the regulation of the cellular response to ISO stimulation.

Another locus of interest regulating the change in gene expression of 9.7% of all
transcripts expressed in the heart was also located on chromosome 12(Figure 5.2E).
Although this locus contains Dicerl, which, along with Drosha, regulates miRNA

processing®>?’

, We see no evidence that it is the causal gene at this locus, as its gene
expression does not vary significantly across the panel, nor does it have any
nonsynonymous SNPs in the founder strains of the HMDP. Instead, we propose the
serpin peptidase inhibitor Serpina3n as a likely candidate gene at this locus. Serpina3n
has one of the highest correlations to heart weights of any gene in the genome (R=0.57,
P=3E-17, Figure 5.2F). The function of Serpina3n beyond the most general level of
‘protein inhibition' is currently unknown, although its family of Serpina3s has been linked

31,32

in several studies to aneurisms®““ and has been shown to be disregulated in dilated

cardiomyopathy™.

Gene Network Analysis using Maximal Information Component Analysis

Previous research using the HMDP has shown the benefit of using systems-level
transcriptomics to generate co-expression networks to better understand the genes and
pathways underlying phenotypes of interest®®%** Here we apply MICA"’, a unbiased
gene network construction method that captures both linear and nonlinear interactions
within the data, and allows genes to be spread proportionally across multiple modules, to

generate a network analysis of the HMDP HF transcriptomes.
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Prior research®® has suggested that inclusion of non-expressed transcripts or
invariant genes across strain/treatment differences in network construction algorithms can
potentially lead to inaccurate results due to the addition of significant noise to the
analysis, as well as dramatically increasing the time it takes to run the algorithm. We
chose to use the set of ~8000 genes previously identified as being expressed in the heart

and showing a high coefficient of variation as the basis of our network.

We observe that out of 8,126 genes, 1,392 are not placed into modules because
they did not display sufficiently strong relationships to other genes to be included in the
module detection step. We used the Database for Annotation, Visualization and
Integrated Discovery (DAVID)***" to query whether these unincluded genes were
enriched for particular Gene Ontology (GO) categories when compared to the dataset as a
whole, however no GO term was enriched for these genes (most significant enrichment p-
value: alternative splicing, P=0.12). This result for our excluded genes matches those
observed in other module construction algorithms *® which leave out a subset of poorly

connected genes, and suggests that these genes were properly excluded.

MICA allows genes to reside in multiple modules, with each gene theoretically
influencing every module, although most genes will exist primarily in one or two
modules’. The first principle component of a module, sometimes called an eigengene,
has been used in the past to combine groups of genes into a single '‘pseudogene’ which
can be correlated to phenotypes of interest.”**° Weighted principle components, taking

into account the proportional contribution of each gene to each module, were calculated

144



and correlated to HF-related phenotypes gathered during the HMDP HF project (Figure
5.3). Six modules (3,5,6,8,11,19) were observed to contain at least one significant (P
<1.7E-4) correlation to a HF-related trait. In particular, module 5 showed very strong
correlation to a number of traits, including total heart weight (R=.66, P=4e-24), left
ventricular internal dimension at diastole (LVID;d, R=0.55, P=1e-16) and cardiac fibrosis

(R=.45, P=1e-10).

A goal of network analysis is the identification of a core set of genes (hubs)
within one or multiple pathways which drives the module as a whole. DAVID was used
to search for enriched pathways within each module. As DAVID is unable to process the
proportional gene memberships returned by MICA, modules were thresholded based on

the weight of each genes' membership in that module (%6MM).

Choosing the best %MM cutoff involved balancing the desire for small modules
(which occur at high %MM cutoffs) and preservation of the eigengenes returned by
MICA (which are highest at low %MM cutoffs). We selected several %MM thresholds
and selected the highest %MM cutoff for which the correlation between the eigengenes at
that cutoff and the weighted eigengenes were over 90% (Table 5.4). This cutoff was

50%.

Module 5 is highly correlated to HF traits and contains numerous genes relevant to
HF
At a 50%MM cutoff, module 5 (red in Figure 5.4) contains 41 genes (Table 5.2).

Module 5 is enriched for glycoproteins(P=2.1E-9), signaling molecules(P=2.6E-10), and
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ECM (P=2.9E-6) GO terms (Table 5.5). Strikingly, out of the 41 genes in the module,
fourteen (34.1%) have previously been described as involved in heart hypertrophy or
cardiac remodeling based on transgenic studies in animal models or mendelian forms of
HF (Table 5.2). These genes include Lgals3, a recently-described diagnostic marker of
heart failure™®, Timp1, an extracellular matrix regulator'®?°, Pde4e, knockout of which

induces a progressive cardiomyopathy*®**

as well as several collagens. Serendipitously,
we observe that Serpina3n, the peptidase inhibitor previously identified as a candidate

gene in a trans-eQTL hotspot is also a member of module 5.

Using genetic markers as anchors to determine reactive versus causal relationships

within module 5

Most co-expression network analysis methods, including MICA, return a non-
directed network, where links between genes are reported, but cause-effect relationships
between genes within a network are unknown. Additionally, it is unknown whether a
module which is highly correlated with a clinical trait of interest is driving the phenotype,
or acting in response to it. To determine these relationships, the NEO algorithm*?, which
uses SNPs as anchors to infer directionality between two measured traits was applied to
module 5. 28 genes (68.3%) had significant directionality as determined by NEO (Figure
5.5). Adamts2, a metalloproteinase, has the largest number of directed links, with 11
causal and one reactive relationship with Pdgfrl, a growth-factor receptor which does not
react to any other gene in module 5. The most reactive gene is Lgals3, which is affected

by 10 other genes but affects no other genes in turn. NEO was also used to determine
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relationship between genes in the module and phenotypes (Table S4). This analysis
showed that some genes within the module appeared to drive the phenotypes, such as Dct
and 2610028H24Rik, however others, notably Col14A1, a collagen family member was
downstream from the HF traits, suggesting that its expression was driven by changes in

cardiac mass, and not the other way around.

The trans eQTL hotspot of module 5 reveals a potential regulator of HF

To further elucidate the means by which module 5 genes are influencing HF
phenotypes, we used our transcriptome data, tied with the genotypes of the HMDP, to
perform eQTL hotspot analysis for the 41 genes within module 5 (Figure 5.7). We
observe that 13 of the 42 genes in module 5(30.9%) are regulated by a single locus on
chromosome 5. This region contains only a single gene: membrane-associated guanylate
kinase inverted 2 (Magi2). Magi2 is primarily expressed in the hormone excreting glands
of the brain®, where it has been demonstrated to interact with beta-1 adrenergic receptors
and regulate their endocytosis after stimulation by adrenergic agonists such as 1SO .
Expression in the heart is low or absent. Knockout of Magi2 results in neonatal lethality
within 24 hours of birth with abnormal spine morphology and improper brain
development*. No reports of variations in this gene have previously been described as

influencing heart-related phenotypes.

Discussion
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Heart failure is the primary cause of hospitalization in people over the age of 65
in developed countries*. Complicating the understanding of HF from a genetic level are
decades of unobserved cardiac stressors such as hypertension, atherosclerosis and
diabetes that can contribute to the disease * and which differ between each patient. As a
result, efforts to identify genes contributing to non-mendelian forms of HF using
systems-level approaches have only been modestly successful**®*”. We attempted to
identify genes and pathways which are implicated in HF using the HDMP, a large inbred
mouse panel®, using both trans-eQTL hotspot analysis and gene module detection using
MICA' through the chronic stimulation of the p-adrenergic pathway, which is known to
be upregulated in most heart failure patients**>°. We observe several loci through eQTL
hotspot analysis which appear to regulate large fractions of the expressed genes in the
heart, and have identified six modules of genes which are highly correlated with HF
phenotypes. We further analyzed one of these modules and identified the underlying
causal relationship network in the module as well as Magi2, a master regulator for the
module as a whole that is primarily expressed in the brain. These points are discussed in

turn below.

eQTL hotspots reveal loci which act as 'master regulators' of gene expression in a
particular tissue”. In applying this method of analysis to our data, we identified seven
loci, each of which significantly regulated more than 5% of the expressed genes in the
heart. One of these loci contains Drosha, a major regulator of miRNA processing.
Drosha contains a nonsynonymous SNP which is significantly associated (P=0.035) with

26,51,52

heart weight. miRNAs play an important role in the heart and it follows that a
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mutation to one of the miRNA processing enzymes would lead to dramatic variations in
gene expression in the heart. We also identified a peptidase inhibitor, Serpina3n, which
is very highly correlated to HF-related traits and has previously been implicated in

cardiac remodeling in CVB3 myocarditis®.

We also examined the transcriptomes of both treated and untreated mice of the
HMDP using a recently-developed network analysis tool MICA'. We observed strong
correlations between the eigengenes of our identified modules and relevant clinical traits
observed in our mice. The module most strongly associated with changes in hypertrophy
and heart function is Module 5, which contains 41 genes. We observed that many of the
genes within the module (~33%) had previously been described as being implicated in
hypertrophy, cardiac remodeling or fibrosis. Interestingly, one such gene is Serpina3n,
one of the candidate genes from the trans-eQTL hotspot analysis. Several additional
genes in module 5 have been implicated in other aspects of cardiac functioning. For
instance, JAG2 has been reported as upregulated in the resident cardiac progenitor cell
niche in adult mouse hearts® and ACOT1 has been shown as specifically induced in heart
and skeletal muscle by a high-fat diet>. The remaining genes in module 5 should be

carefully examined with the goal of finding additional modifiers of cardiac remodeling.

Further analysis of module 5 revealed a possible mechanism for its regulation.
NEO*, a tool for providing directionality to undirected gene networks, was used to
uncover the ways in which the genes in module 5 interacted with one another. This

analysis showed that Adamts2 plays a central role in the regulation of module 5, and is
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regulated itself by Pdgfrl, a poorly described receptor molecule®. Trans eQTL hotspot
analysis of module 5 revealed Magi2 as a likely driver of module 5. Magi2 is involved in
the regulation of the response to adrenergic stimulation in the brain, specifically in
hormone-excreting regions**. We hypothesize that these regions, which are exposed to
ISO during our protocol, secrete a factor into the plasma which then interacts with Pdgfrl,
activates Adamts2 and drives the phenotypic effects of module 5. NEO analysis is not
definitive, therefore it is possible that gene feedback loops and complex genetic
relationships may complicate the analysis and reduce the validity of these
conclusions®**2. Further research should be performed on Magi2, Pdgfrl and Adamts2 to
validate the results of NEO and determine potential regulatory functions of each of these

genes.

One of the benefits of using an inbred mouse panel such as the HMDP is that the
data gathered are cumulative, which allows for the integration of data collected in this
study with studies performed in the future on additional mice or alternate treatment
conditions. The power and usefulness of these data will only increase as future
experiments are performed to ascertain whether the results observed from this study are
conserved across different conditions. Future experiments, such as examining the
networks created under the effects of an a-adrenergic receptor agonist like angiotensin or
a physical challenge such as trans-aortic constriction will reveal whether all of these
etiologies that lead to HF are perturbing the same genes/modules and identify which

genes/pathways are unique to each model system. By combining these data with one
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another, common genes may be identified that will lead to improved levels of care for

patients with HF in the future.

Materials and Methods

Online database

All results and data can be accessed at http://systems.genetics.ucla.edu/data

Mice and isoproterenol treatment

The following mouse strains were obtained from The Jackson Laboratory and then
bred in our colony: 29 common inbred strains (129X1/SvJ, A/J, AKR/J, BALBI/cJ,
BALB/cByJ, BTBR T+ tf/J, BuB/BnJ, C3H/HeJ, C57BL/6J, C57BLKS/J, C58/J, CBA/J,
CE/J, DBA/2J, FVB/NJ, KK/HIJ, LG/J, LP/J, MA/MyJ, NOD/ShiLtJ, NON/ShiLtJ,
NZB/BINJ, NZW/LacJ, PL/J, RINIS/J, SEA/GnJ, SIL/J, SM/J, SWR/J) and 69 RI lines
[RI (number of strains) - BXD (40), AXB(8), BXA(10), BXH(5), CxB(6)]. All animal
experiments were conducted following guidelines established and approved by the
University of California, Los Angeles Institutional Animal Care and Use Committee. All
mice have been previously genotyped at over 130,000 locations. Isoproterenol (20
mg per kg body weight per day) was administered for 21 d in 8- to 10-week-old female
mice using ALZET osmotic minipumps, which were surgically implanted intra-

peritoneally.

Microarray and eQTL analysis

Following homogenization of left ventricular tissue samples in QlIAzol, RNA was

extracted using the Qiagen miRNAeasy extraction kit, and verified as having a RIN>7
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by Agilent Bioanalyzer. Two RNA samples were pooled for each strain/experimental
condition, whenever possible, and arrayed on lllumina Mouse Reference 8 version 2.0
chips. Analysis was conducted using the Neqc algorithm included in the limma R
package >’ and batch effects addressed through the use of COMbat *°. eQTLs were
calculated EMMAZ, closely following the methods described in that paper. In brief, a
kinship matrix between the strains were calculated to weight the pair-wise relationships
between the strains. Values will increase when unrelated strains share a phenotypic
effect at a SNP, while values will decrease if the opposite is true. Significance thresholds

were calculated as in Parks et al., 2013 using an FDR of 1%.
eQTL hotspot analysis

The genome was binned into windows of 500kb. For each gene, the lowest P-value
within a window was used to represent the total number of SNPs within that window as a
whole. eQTL hotspots were determined by summing up the number of genes within each
window whose lowest p-value in that window was less than the 6.1E-5 significance
threshold. Window significance was determined by randomly sampling 5,000,000
windows, and determining the enrichment of each window, while the significance

threshold was determined by correcting for the total number of SNPs.

A similar process was used to determine the hotspot of module 5; however, in this

case only the 41 genes contained in module 5 were used.

MICA
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Maximal Information Component Analysis was performed on the combined set of
untreated and treated arrays on 8126 genes which were both expressed in at least 25% of
either the untreated or treated data, and whose coefficient of variation was greater than
5%. Analysis was performed as described in Rau et al.*”. Briefly, transcriptomes were
processed using the MINE algorithm® to determine relationships between each gene in
the dataset. The resulting relationship matrix was trimmed using the hard thresholding
function (threshold=0.45) of the WGCNA R package®® and inputted into the ICMg
algorithm®®. The ICMg algorithm determined the proportional module membership for
each gene. Weighted principle components (‘Eigengenes’) of each module were
determined through the use of the dudi.pca function from the ade4 R package® and
compared to HF-related phenotypes using the heatmap function of WGCNA?®, For all

control variables, the standard values were used.

NEO

Gene expression data for the genes in module 5 along with any eQTLs for those
genes whose p-value exceeded a threshold of 1E-6 were selected as inputs for the
Network Edge Orienting (NEO) software package®. Standard protocol for NEO was
used, and we selected marker, gene and phenotype combinations that yielded a LEO,
NB.AtoB or BtoA score >0.75 and mlogp.M.AtoB or BtoA score <.05 for further

analysis.
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Ratio of control to treated.
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Figure 5.3 Six Modules correlate significantly with at least one HFE-related phenotype. Module-trait correlations are
displayed where color indicates the strength of the correlation (red = positive, green = negative) and the number within the box
is the P-value for statistical significance of the relationship. Left Ventricular Internal Dimension (LVID), Peritoneal Wall
(PW), at Diastole (;d), at Systole (;s)
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Figure 5.4 Gene modules are enriched for a number of GO terms. A network plot showing genes as nodes, relationships
between those genes as edges, and using colors to represent modules. GO terms for each module are displayed around the
image in the color of its corresponding module. Modules which lack significant GO enrichments are removed for visibility.
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Figure 5.5 Near Edge Orientation reveals underlying directionality in module 5. The NEO algorithm was used to
determine the directionality of each edge in module 5. Undirected edges and genes which did not have any directed edges are
removed for visibility. Genes are color coded as either drivers (green, having no other genes within module 5 as inputs),
receivers (red, having no outputs to other genes in module 5) or intermediates (yellow, having both inputs and outputs within

module 5.




Table 5.1. eQTL hotspots which requlate at least 5% of the expressed cells in the heart.

Bold genes are significantly correlated with heart weights, while underlined genes
contain non-synonymous mutations.

Percent of
eQTLs Expressed Candidate
Start of End of Regulated Genes Gene(s) at
Chromosome Window  Window  at Locus Regulated Locus
Control Mice
17500000 18500000 846 6.431015 Cav2
112000000 121000000 1437 10.9236  Tgfbr2
Cmtm/
15 12000000 18000000 1490 11.32649  Drosha
Treated Mice
No Hotspots Found
Ratio of Treated to Untreated Expression
3 79500000 88500000 430 5.291656 Tgfb3
11 110000000 117000000 410 5.045533 Sox9
Slc39all
12 77500000 78500000 925 11.38321  Akap5
12 104000000 106000000 790 9.72188 Serpina3n
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Table 5.2. Fourteen genes in Module 5 are associated with Cardiovascular Disease and play a role in key GO processes

Implicated in Cardiovascular Not Yet Implicated in Cardiovascular
Disease Disease
Adamts2 GpnmB Sppl Acotl Ctsk Lman1l Rfx2 2610028H24Rik
Col3al Lgals3  Serpina3n | Arhgdig Dct  LOC100048556 Rpp25
Coll4al Timpl Ch25h  Dmkn LOC626152 Srpx2
Coll6al Pak3 Clecdd Enppl Mfap2 Sulfl
Emrl Pde4d Clec4n  Fcgr2b Pdgfrl TIr13
Enppl Slcla2 Comp Jag2 Rab32 Tmem82
Signaling Glycoproteins Extracellular Matrix Other/Unknown
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Figure 5.6. Thresholds for eQTL hotspot significance P-values were drawn at random to form 5,000,000 windows and the
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Table 5.3. All Significant eQTL Hotspots

# of
Significant
Start of End of eQTLsin
Chromosome Window Window Locus P-value
Control
15 1.50E+07 15500000 1490 <1E-7
9 114500000 1.15E+08 1437 <1E-7
15 13500000 1.40E+07 1367 <1E-7
15 15500000 1.60E+07 1192 <1E-7
15 1.40E+07 14500000 1088 <1E-7
15 16500000 1.70E+07 1041 <1E-7
15 1.30E+07 13500000 1009 <1E-7
6 17500000 1.80E+07 846 <1E-7
15 2.30E+07 23500000 780 <1E-7
15 1.60E+07 16500000 708 <1E-7
15 1.80E+07 18500000 703 <1E-7
15 2.50E+07 25500000 692 <1E-7
9 1.19E+08 119500000 580 <1E-7
6 1.30E+07 13500000 543 <1E-7
15 12500000 1.30E+07 542 <1E-7
9 1.15E+08 115500000 514 <1E-7
11 1.14E+08 114500000 514 <1E-7
11 113500000 1.14E+08 487 <1E-7
9 1.16E+08 116500000 475 <1E-7
15 2.40E+07 24500000 473 <1E-7
15 25500000 2.60E+07 470 <1E-7
11 112500000 1.13E+08 469 <1E-7
9 1.14E+08 114500000 468 <1E-7
15 1.70E+07 17500000 445 <1E-7
15 17500000 1.80E+07 440 <1E-7
15 23500000 2.40E+07 440 <1E-7
9 115500000 1.16E+08 436 <1E-7
9 1.17E+08 117500000 428 <1E-7
11 1.12E+08 112500000 421 <1E-7
11 115500000 1.16E+08 405 <1E-7
11 1.13E+08 113500000 388 <1E-7
11 111500000 1.12E+08 341 <1E-7
15 26500000 2.70E+07 339 <1E-7
9 117500000 1.18E+08 330 <1E-7
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5.00E+06
5.50E+07
6.40E+07
8.60E+07
5.60E+07
10500000
1.16E+08
122500000
73500000
149500000
41500000
1.90E+07
81500000
1.06E+08
85500000
122500000
99500000
1.00E+08
35500000
46500000
69500000
84500000
7.30E+07
48500000
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69
69
69
69
69
69
69
69
69
68
68
68
68
68
68
68
68
68
68
68
68
68
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67
67

1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07
2.00E-07



19 21500000 2.20E+07 67 2.00E-07
Treated
3 28000000 28500000 289 <1E-7
9 67000000 67500000 240 <1E-7
9 67500000 68000000 188 <1E-7
9 66500000 67000000 180 <1E-7
9 65500000 66000000 173 <1E-7
3 29500000 30000000 161 <1E-7
2 94500000 95000000 156 <1E-7
3 28500000 29000000 152 <1E-7
9 65000000 65500000 145 <1E-7
2 129000000 129500000 144 <1E-7
9 68000000 68500000 142 <1E-7
9 29000000 29500000 139 <1E-7
3 29000000 29500000 138 <1E-7
3 30000000 30500000 135 <1E-7
2 77000000 77500000 129 <1E-7
2 119500000 120000000 128 <1E-7
9 116500000 117000000 128 <1E-7
7 53500000 54000000 127 <1E-7
6 80500000 81000000 122 <1E-7
12 73000000 73500000 119 <1E-7
6 77000000 77500000 117 <1E-7
11 116500000 117000000 117 <1E-7
11 4500000 5000000 116 <1E-7
2 120000000 120500000 114 <1E-7
9 107500000 108000000 112 <1E-7
9 114500000 115000000 109 <1E-7
9 68500000 69000000 108 <1E-7
3 152500000 153000000 107 <1E-7
2 114000000 114500000 104 <1E-7
17 41000000 41500000 102 <1E-7
19 40000000 40500000 100 <1E-7
2 123500000 124000000 99 <I1E-7
2 129500000 130000000 99 <1E-7
6 78500000 79000000 99 <1E-7
19 26500000 27000000 99 <1E-7
2 127500000 128000000 97 <1E-7
4 141000000 141500000 95 <1E-7
9 66000000 66500000 95 <1E-7
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91000000
115000000
187000000

52500000
106500000

35500000

92000000

48500000
106000000
119000000

37000000

45000000

92500000

78000000

87000000

44500000

93500000

98500000
118500000

73500000

45500000
104000000
117500000

7000000

70000000

82000000
100000000
133000000

90500000

73000000

44500000
120500000
130000000
142500000

47500000
105000000
103000000
128000000
141500000
110500000

91500000
115500000
187500000

53000000
107000000

36000000

92500000

49000000
106500000
119500000

37500000

45500000

93000000

78500000

87500000

45000000

94000000

995000000
119000000

74000000

46000000
104500000
118000000

7500000

70500000

82500000
100500000
133500000

91000000

73500000

45000000
121000000
130500000
143000000

48000000
105500000
103500000
128500000
142000000
111000000
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<1E-7
<1E-7
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<1E-7
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<1E-7
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13
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17
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15500000
9000000
22000000
38500000
124500000
7500000
117000000
50500000
111000000
44000000
3000000
111500000
154000000
127000000
103500000
128500000
116000000
74000000
100500000
123000000
63500000
117000000
138500000
37500000
52500000
108500000
100500000
81000000
76500000
125500000
153500000
51500000
105500000
71000000
11500000
12000000
26000000
142000000
49500000
75500000

16000000
9500000
22500000
39000000
125000000
8000000
117500000
51000000
111500000
44500000
3500000
112000000
154500000
127500000
104000000
129000000
116500000
74500000
101000000
123500000
64000000
117500000
139000000
38000000
53000000
109000000
101000000
81500000
77000000
126000000
154000000
52000000
106000000
71500000
12000000
12500000
26500000
142500000
50000000
76000000
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83
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82
81
81
81
80
80
80
80
80
80
80
80
80
79
79
78
78
78
77
77
77
77
76
76
76
76
76
76
76
76
76
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75

<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
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<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
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<1E-7
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68500000
109000000
107000000
108000000
125500000

65000000

78000000
122000000
101500000

49500000
106500000

92500000

37500000

95000000

80500000

63000000

85000000
143000000

91500000

8000000

31000000

78500000

12000000

64500000

51000000
111000000
131000000

53000000

44500000

3500000

37000000
129500000
103500000

94500000

86500000

7500000

23000000
128500000
106500000

69000000

69000000
109500000
107500000
108500000
126000000

65500000

78500000
122500000
102000000

50000000
107000000

93000000

38000000

95500000

81000000

63500000

85500000
143500000

92000000

8500000

31500000

79000000

12500000

65000000

51500000
111500000
131500000

53500000

45000000

4000000

37500000
130000000
104000000

95000000

87000000

8000000

23500000
129000000
107000000

69500000
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75
74
74
74
74
74
73
73
73
73
73
73
73
73
73
72
72
72
72
72
72
72
72
72
71
71
71
71
71
71
71
70
70
70
70
70
70
69
69
69

<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07
1.00E-07



13 6500000 7000000 69 1.00E-07
18 30000000 30500000 69 1.00E-07
1 190500000 191000000 68 2.00E-07
2 113500000 114000000 68 2.00E-07
3 150500000 151000000 68 2.00E-07
4 129500000 130000000 68 2.00E-07
6 126500000 127000000 68 2.00E-07
7 104500000 105000000 68 2.00E-07
7 107500000 108000000 68 2.00E-07
9 50000000 50500000 68 2.00E-07
11 45000000 45500000 68 2.00E-07
11 64500000 65000000 68 2.00E-07
11 70500000 71000000 68 2.00E-07
11 71000000 71500000 68 2.00E-07
13 4500000 5000000 68 2.00E-07
13 108500000 109000000 68 2.00E-07
17 43500000 44000000 68 2.00E-07
17 49000000 49500000 68 2.00E-07
19 25000000 25500000 68 2.00E-07
Ratio of Treated to Untreated Expression
12 77500000 7.80E+07 925 <1E-7
12 103500000 1.04E+08 790 <1E-7
3 8.50E+07 85500000 430 <1E-7
12 8.10E+07 81500000 427 <1E-7
11 110500000 1.11E+08 410 <1E-7
11 112500000 1.13E+08 393 <1E-7
2 1.44E+08 144500000 369 <1E-7
2 143500000 1.44E+08 368 <1E-7
2 144500000 1.45E+08 366 <1E-7
2 152500000 1.53E+08 361 <1E-7
4 1.26E+08 126500000 342 <1E-7
3 8.20E+07 82500000 340 <1E-7
14 4.60E+07 46500000 337 <1E-7
14 35500000 3.60E+07 335 <1E-7
2 6.10E+07 61500000 330 <1E-7
11 1.12E+08 112500000 330 <1E-7
13 9.30E+07 93500000 320 <1E-7
15 1.50E+07 15500000 307 <1E-7
12 81500000 8.20E+07 303 <1E-7
4 125500000 1.26E+08 300 <1E-7
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13
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12
12
13
13
13

2.10E+07
8.30E+07
1.30E+07
113500000
111500000
1.13E+08
81500000
20500000
7.80E+07
16500000
1.53E+08
1.14E+08
92500000
11500000
8.40E+07
13500000
5.40E+07
85500000
83500000
90500000
1.52E+08
1.40E+07
86500000
158500000
98500000
116500000
3.80E+07
1.10E+08
15500000
17500000
89500000
108500000
1.05E+08
1.43E+08
1.09E+08
7.50E+07
9.40E+07
86500000
8.90E+07
157500000

21500000
83500000
13500000
1.14E+08
1.12E+08
113500000
8.20E+07
2.10E+07
78500000
1.70E+07
153500000
114500000
9.30E+07
1.20E+07
84500000
1.40E+07
54500000
8.60E+07
8.40E+07
9.10E+07
152500000
14500000
8.70E+07
1.59E+08
9.90E+07
1.17E+08
38500000
110500000
1.60E+07
1.80E+07
9.00E+07
1.09E+08
105500000
143500000
109500000
75500000
94500000
8.70E+07
89500000
1.58E+08
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293
290
290
286
279
275
273
271
267
267
261
260
256
256
251
250
248
246
244
243
242
237
234
230
229
228
224
217
216
214
211
210
209
204
202
195
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192
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<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
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105500000
8.70E+07
58500000
1.23E+08
6.00E+07
1.42E+08
12500000
63500000
9.00E+07
1.57E+08
5.80E+07
141500000
142500000
57500000
2.30E+07
59500000
9.50E+07
1.58E+08
72500000
8.60E+07
6.70E+07
84500000
90500000
56500000
95500000
8.80E+07
88500000
1.10E+07
93500000
1.30E+07
1.00E+07
1.25E+08
25500000
6.10E+07
1.04E+08
83500000
6.20E+07
79500000
39500000
104500000

1.06E+08
87500000
5.90E+07
123500000
60500000
142500000
1.30E+07
6.40E+07
90500000
157500000
58500000
1.42E+08
1.43E+08
5.80E+07
23500000
6.00E+07
95500000
158500000
7.30E+07
86500000
67500000
8.50E+07
9.10E+07
5.70E+07
9.60E+07
88500000
8.90E+07
11500000
9.40E+07
13500000
10500000
125500000
2.60E+07
61500000
104500000
8.40E+07
62500000
8.00E+07
4.00E+07
1.05E+08
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190
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178
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176
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1.51E+08
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147500000
18500000
97500000
6.40E+07
6.60E+07
3.70E+07
7.30E+07
2.00E+07
153500000
115500000
94500000
7.70E+07
9.50E+07
2.80E+07
85500000
20500000
5.90E+07
7.80E+07
3.00E+07
82500000
9.00E+06
4.40E+07
2.80E+07
91500000
84500000
127500000
9.30E+07
64500000
3.50E+07
1.53E+08
5.70E+07
6.00E+06
8.70E+07
87500000
8500000
1.27E+08

91500000
2.30E+07
151500000
7.30E+07
1.48E+08
1.90E+07
9.80E+07
64500000
66500000
37500000
73500000
20500000
1.54E+08
1.16E+08
9.50E+07
77500000
95500000
28500000
8.60E+07
2.10E+07
59500000
78500000
30500000
8.30E+07
9500000
44500000
28500000
9.20E+07
8.50E+07
1.28E+08
93500000
6.50E+07
35500000
153500000
57500000
6500000
87500000
8.80E+07
9.00E+06
127500000

182

126
123
120
119
116
114
110
109
109
108
107
106
104
104
104
100
100
100
98
97
97
96
94
94
93
92
92
92
91
91
89
88
88
87
86
86
86
85
85
84

<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7
<1E-7



15
15

15
12

12
15
15
16
12
17

13

12
18

15
16

12
14
15
15

11
12

6.50E+07
65500000
60500000
8.80E+07
66500000
3.30E+07
124500000
7.40E+07
1.60E+07
5.30E+07
9.80E+07
59500000
5.00E+06
5.00E+06
8.20E+07
179500000
73500000
6.50E+07
35500000
72500000
35500000
1.26E+08
74500000
28500000
1.20E+07
1.80E+07
92500000
92500000
119500000
126500000
1.16E+08
8.70E+07

65500000
6.60E+07
6.10E+07

88500000
6.70E+07

33500000
1.25E+08

74500000

16500000

53500000

98500000
6.00E+07

5500000
5500000

82500000
1.80E+08
7.40E+07

65500000
3.60E+07
7.30E+07
3.60E+07

126500000
7.50E+07
2.90E+07

12500000
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1.27E+08
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Table 5.4. Weighted Eigengenes show high correlation to eigengenes at various hard
thresholds

Correlation to

Eigengene at Weighted
% Cutoff Eigengene
10 0.99565614

15 0.99622204

20 0.991846504

25 0.98249414

30 0.977296708

35 0.968713871

40 0.959325472

45 0.948212019

50 0.926094597

55 0.87246181

60 0.838856973

65 0.81198492

70 0.776717497

75 0.786895364

80 0.739061392

85 0.867267286

90 0.861934555
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Table 5.5. GO Enrichments for Module 5.

% of

# of genes Benjamini-

genesin in Genesin Fold corrected P-
Term module module Category Enrichment value
glycoprotein 24 64.86 3600 3.400762 2.92E-07
signal 21 56.75 2970 3.606869 1.76E-06
extracellular matrix 8 21.62 213 19.15922 4.72E-06
short sequence
motif:Cell attachment
site 6 16.21 76 36.13759 3.78E-05
disulfide bond 17 45.94 2469 3.51233 8.76E-05
Secreted 13 35.13 1420 4.67006 1.43E-04
proteinaceous
extracellular matrix 8 21.62 297 10.52525 1.43E-04
disulfide bond 16 43.24 2379 3.078556 0.002175
protein complex binding 4 10.81 78 21.9818 0.041418
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Table 5.6. Significant Near Edge Orientation (NEO) values linking genes in module 5 to HF-related Phenotypes. A Leo.AtoB
or BtoA score of greater than 0.75 and a p-value of less than <0.05 are considered significant.

Model leo.nb.AtoB leo.nb.BtoA mlogp.M.AtoB mlogp.M.BtoA
Causal Genes
SNP51771 to Dct to Right Ventricle 1.21 -5.92 0.0069 5.93
SNP28253 to Dct to Left Ventricle 1.33 -6.57 0.00741 6.58
SNP508278 to Dct to Total Heart 0.862 -2.8 0.0223 2.83
SNP3161235 to 2610028H24Rik to Left Ventricle 0.812 -3.42 0.0421 3.46
SNP3436153 to Dct to Right Ventricle 0.968 -3.96 0.045 4.01
SNP3436325 to Dct to Right Ventricle 0.968 -3.96 0.045 4.01
SNP3589676 to Dct to Left Ventricle 1.11 -4.68 0.0452 4.72
SNP552781 to Dct to Right Ventricle 0.776 -2.89 0.046 2.94
Reactive Genes
SNP3110538 to Col14al to Right Ventricle -4.57 0.753 4.57 0.00193
SNP3110537 to Col14al to Right Ventricle -4.57 0.753 4.57 0.00193
SNP2693574 to Coll14al to Total Heart -2.64 0.843 2.66 0.0175
SNP2693574 to Col14al to Left Ventricle -2.55 0.831 2.58 0.0302
SNP2693574 to Clecsf8 to Right Ventricle -4.63 0.765 4.68 0.0426

SNP2693574 to Col14al to Right Ventricle -4.59 0.814 4.64 0.0471
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| have always been interested in solving complex, open-ended problems. My first
exposure to a systems-level biology problem occurred during my undergraduate
education when my summer mentor handed me the first microarrays she, or anyone else
at my college, had ever performed and told me to figure out how to analyze it and tell her
what it meant. That summer experience and other experiences after it ignited a passion
for the fields of genetics and genomics and how mathematics and computer science can
help researchers determine what regulates any number of biological processes. My
dissertation research has focused on genome wide association studies (GWAS) and
network biology, both exciting advances in genome research which leverage the notion
that simply by observing phenotypes, genotypes and gene expression over a large number
of individuals it is possible to specifically identify the genes which may underlie any
number of conditions. As I quickly came to realize, however, the process of actually
determining what phenotypes to query and how to identify the relevant genes or

variations underlying a GWAS locus was not nearly so simple.

Advances in the past decade have allowed researchers unprecedented insight into
the genetic mechanisms that underlie complex phenotypes such as heart failure(HF).
Despite these advances and the identification of causal genes for hundreds of different
disease traits', human studies have been stymied by ethical and technical issues,
particularly in the study of diseases of the elderly such as HF. This has resulted in very
few novel genes®° relevant to HF being identified using GWAS or network biology in
human studies. These results prompted our lab to look to model organisms as a potential

means of analyzing HF without the limitations associated with human research.
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The Hybrid Mouse Diversity Panel

In Chapter 2, | described the resource that our lab has developed for the study of
complex traits in mice: the Hybrid Mouse Diversity Panel (HMDP). The HMDP offers
several major advantages over other means of performing systems-level studies. In
contrast with human studies, the HMDP consists of model organisms, and we are able to
carefully control the environment, induce responses with physical and pharmacological
interventions, collect tissues and perform invasive analyses which would not be feasible
in human populations. Compared to other systems-level methods in mice, a major
advantage of the HMDP is that it uses inbred lines of mice as opposed to F2 mice. This
allows researchers to examine a phenotype in multiple mice of a given strain, further
reducing the noise introduced by environmental confounders. It also offers researchers
the ability to do true case/control studies where the treated and untreated animals are
genetically identical to one another, an experiment which is impossible in non-inbred
resources. Another advantage over previous systems is the high resolution we observe in
the HMDP, which is often an order of magnitude improved compared to prior QTL
studies in mice®” We have previously shown that the HMDP can be used to study a
number of clinical traits relevant to humans including atherosclerosis’, diet-induced
obesity®, bone mineral density®, and others. We now add heart failure to this list, using a
case-control model that would be incredibly challenging to perform without the HMDP

resource.

Genome Wide Association Studies for Heart Failure in Mice
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Chapter 3 describes the results of a GWAS performed on the HMDP to identify
genes involved in HF. Unlike a number of other common disorders, GWAS analyses in
humans for HF have resulted in only modest success, returning only two loci which
reached the genome-wide significance threshold of 1E-8 despite studies involving tens of
thousands of individuals®. We set out to examine whether we could identify candidate
genes for HF using the HMDP. We stimulated the beta adrenergic pathway with
isoproterenol (ISO), a synthetic non-specific f-adrenergic agonist for three weeks.
Similarly to previous studies using the HMDP, we observed significant variation in the
phenotypes we collected. Furthermore, we noted that some strains appeared to show a
much greater response to ISO than others. After surveying over 700 mice from 105
strains, we identified 19 genome-wide significant loci for cardiac hypertrophy or
surrogate measures of HF. Several of these loci corresponded to well-studied genes
known to be involved in HF, including Ppp3ca™, Sgcd** and PIn***3, although our study
represents the first time any of these genes have been identified in a HF GWAS.
Additional genes identified in our study have previously been described as implicated in
rare mendelian forms of cardiomyopathy™**°, but natural variation in the expression of
these genes have not been linked to common forms of HF. Still other genes identified by
our study have never been implicated in HF. One of these genes, the long non-coding
RNA Miat, was examined in vitro. We observe in isolated cardiomyocytes that
knockdown of this gene using siRNA attenuates the hypertrophic response of the

cardiomyocytes to catecholamine stimulation.
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The identification of loci for HF using the HMDP represents only the beginning
of the analysis necessary to identify the underlying genetics within each locus. Although
we have putatively identified candidate genes at each locus based on a combination of
literature searches, cis-eQTLs, correlations of gene expression to phenotypes and
identification of non-synonymous SNPs present within the locus, there were often several
genes which met at least one of these criteria. Future research should focus on each of
these loci in turn, systematically progressing through candidates until one (or more)
genes which influence a HF-related phenotype are indentified in each. We have currently
begun this process for several loci, beginning with in vitro analyses similar to that
performed on Miat. We have also begun to generate knockout and transgenic lines in
mice and/or morpholino knockouts in zebrafish to further confirm a role for these genes
in HF. Eventually, research will focus on the mechanisms by which each HF-related
gene identified in this study drives its related HF trait, leading to greater understanding of

the disease and possible treatment options.
Genome Wide Association of Cardiac Fibrosis

Chapter 3 also describes a GWAS on cardiac fibrosis that was carried out in
parallel with the work on cardiac hypertrophy. Cardiac fibrosis is an incredibly difficult
phenotype to analyze in humans and is usually only examined post-mortem, making an
animal model such as the HF HMDP the preferred resource for studying this trait on a
population-based level. To our surprise, no QTL studies for cardiac fibrosis have been

reported in either mouse or rat'®, making our study the first to report GWAS loci for
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cardiac fibrosis. Several of our loci contain interesting candidate genes, including Snrpn,
a gene which resides within the Praeder-Willi imprinting locus and which demonstrates
altered allele-specific expression in non-ischemic heart failure'’. We also identified a
novel role in 1ISO-induced fibrosis for Abcc6, a gene which causes the human disorder
pseudoxanthoma elasticum®®*® We observed in vivo using both Abccé knockouts and
transgenics that knockout or rescue of the gene has a direct effect on cardiac fibrosis after

catecholamine stimulation, proving that it is a causal gene at its locus.

Similar to the work that is necessary for the HF phenotypes, additional focus on
the candidate genes within the fibrosis loci are necessary using in vitro models such as
cardiomyocyte cell culture as well as in vivo models such as morpholino zebrafish or
knockout/transgenic mice. In addition to further analyzing the cardiac fibrosis loci, there
are a number of other HF-related phenotypes in the HMDP HF study which have not yet
been carefully analyzed. These include traits relating to changes in lipid levels in the
panel after ISO stimulation, changes to cardiomyocyte cell size and changes to the weight
of the adrenal glands. Perhaps our most intriguing trait for further research is an 1SO-
induced, strain-specific sudden-death response for which we have identified a single

significant locus and identified a possible candidate gene, Zfp277.
MICA: A Novel Method for Network Analysis

In chapter 4, 1 describe a new method for examining gene networks called
Maximal Information Component Analysis (MICA). MICA attempts to address two

erroneous assumptions made by many commonly used network analysis methods. The
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first improvement it offers over other methods is that it will consider nonlinear
interactions between genes through the use of maximal information rather than Pearson's
correlation. Even a simple two-gene system where the genes act to repress one another in
a negative feedback loop results in a nonlinear relationship between these two genes.
This nonlinearity cannot be recovered using Pearson's correlation, but is observable with
maximal information. The addition of additional genes to the system, not to mention
experimental and technical noise, would only add to this nonlinearity. Using a measure
that can incorporate noise and nonlinearity into the system makes the resulting edges of
the network graph more accurate reflect the true underlying genetic network. MICA's
second improvement is the use of component modeling to allow genes to belong to more
than a single module. There are many examples of genes, such as Akt, which play
multiple roles in the cell®® 2. By forcing genes to belong to a single module, other
methods distort the modules and any summary statistics based on which genes belong to
which module by not allowing all genes to belong to all modules with which they
interact. We have demonstrated on several datasets from the HMDP that MICA either
matches or outperforms WGCNA, a well-regarded network analysis method. We
observe improvements specifically in the case of case/control studies, such as the HF

HMDP?%,

Despite these advances over other network construction algorithms, there are
several aspects of MICA which could benefit from continued development. One possible
improvement would be to incorporate the strength of the interaction between two genes

into the analysis to better inform the module detection process. This incorporation of
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interaction strength or edge weight has been demonstrated to improve the results of other
methods**, leading us to hypothesize that the development of a weighted version of
MICA might do the same and lead to more accurate analysis of gene networks.
Furthermore, it is important to develop MICA from a set of 'add-on' functions to
WGCNA, a common and well-regarded analysis method, into a standalone R Package.

This will improve the usefulness of the method to the scientific community as a whole.
MICA Applied to the HF HMDP Study

Chapter 5 describes the application of MICA, developed in chapter 4, to the HF
HMDP study described in chapter 3. It also describes several overall features of the
transcriptome data from the project using eQTL hotspot analysis. Understanding the
underlying architecture of the genetic machinery that leads some individuals to be
predisposed to HF and others to be resistant is particularly important to future studies of
the disease. We first looked at genome-wide regulation of gene expression by using
eQTLs to identify 'hotspots' where a single locus controls the expression of a significant
fraction of expressed genes. We observed several trans-eQTL hotspots in control mice,
including three loci, each significantly regulating over 10% of the expressed genes in the
heart. We observed few eQTL hotspots in the ISO-treated gene expression arrays,
possibly due to the substantial disruption that ISO represents to normal heart signaling.
We did observe several large eQTL hotspots when analyzing the change of gene
expression, suggesting that the changes to gene expression after ISO are regulated by a

few key regions of the genome. Our data implicates the miRNA editing pathway as
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being very important to the overall regulation of gene expression in the heart, and
suggests as well that Serpina3n plays an important role in the response of the heart to 1ISO
stimulation. Application of MICA to the HF transcriptomes revealed several modules
which are highly correlated with HF-relevant phenotypes, including one module of about
40 genes. Using mathematical modeling techniques and eQTL analysis, we have
developed a proposed model for the underlying structure of this module. Our model
suggests that Adamts2 and Serpina3n play important roles in the overall functionality of
the module, and presumably play a role in the cardiac remodeling response to ISO
stimulation as well. eQTL hotspot analysis on module 5 has revealed Magi2, a gene
which regulates the turnover of the betal adrenergic receptor in the brain®, appears to be

a master regulator of module 5, acting perhaps through Pdgfrl.

Like a GWAS, the identification of a gene module which is related to a given
phenotype is only the first step in a process that culminates in the validation and analysis
of individual genes which influence that phenotype. Gene modules must be validated,
regulators confirmed and analysis of the effects of altering those regulators examined.
For the analysis of module 5, we are interested in using in vitro systems to first query the
role of in-module regulators such as Adamts2 and Serpina3n in the module. If we
knockdown gene expression of these two regulators, will we disrupt the entire module
structure, and possibly abrogate the 1SO response? We will then explore in vivo the role
of these genes and Magi2, which is not expressed in myocytes. We have also identified

other modules which show significant correlation to HF-related phenotypes in the
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network that have not been analyzed in detail. These should be carefully examined in the

same manner as the module containing the genes described above.

Concluding Remarks

Heart failure is a complex disorder that is difficult to treat in humans, in part due
to the large number of etiologies which can give rise to the syndrome. Attempts to
identify genome-wide significant regulators of HF using systems-level analyses are easily
confounded when there is a lack of understanding as to the origins and exacerbating
factors of each patient's HF. Preliminary analysis of some of our candidate genes and
pathways in mice with HF induced through other methods, such as angiotensin
stimulation, which activates the alpha-adrenergic receptors or trans-aortic constriction,
which is a purely physical inhibition of blood flow suggest that while gross
morphological parameters such as change in heart weight (hypertrophy) after treatment
remain similar between these models, some of the genes implicated in ISO mice are
influenced in a very different manner by angiotensin or TAC challenge. In addition to
underlying changes in the genes leading to HF, human studies are further complicated by
additional variations between individuals in terms of diet, exercise, climate and other
personal choices made over the course of a subject's life. The combination of the
activation of different gene pathways for different etiologies of the disease, and the strong
influence of environmental factors on HF phenotypes means that HF proves to be a

difficult disease to examine in humans.
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In this dissertation, | have demonstrated that it is possible to examine HF in mice
using the HMDP by carefully controlling the means by which HF is induced and
controlling the environment in which the animals live. This study resulted in the
identification of nearly twenty loci for HF and cardiac hypertrophy, including several
novel genes that appear to regulate HF in vitro. | was also able to perform, to our
knowledge, the first ever GWAS analysis of cardiac fibrosis in humans, mice or rats.
This study identified over a dozen candidates for the control of cardiac fibrosis, including
Abcc6, a gene whose role in ISO-induced fibrosis was confirmed using in vivo models.
Additionally, through the use of a novel network analysis method, | was able to identify a
small module of ~40 genes which appears to play an important role in the control of HF
phenotypes as well as identify possible regulators of both that module as well as the

cardiac response to ISO stimulation as a whole.

Future research on the results of this dissertation will focus on the confirmation of
the work already performed, but will also seek to examine additional phenotypes of this
disorder using the HMDP and increasingly sophisticated analysis methods. One of the
great benefits of the HMDP is its ability to allow comparisons between different levels of
regulation in the organism through repeated querying of mice from the same strains. In
this study we have examined the genome (DNA), transcriptome (MRNA) and portions of
the phenome (phenotypes) as well as the interaction between these three levels using

GWAS and network analysis. There are many additional " ‘omes " to be analyzed,
including the spliceosome (RNA), miRNAome (miRNA), proteome (proteins),

interactome (proteins) and metabolome (circulating factors in the blood). By further
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analysis using these additional 'omes and the interactions between them, HF studies using
the HMDP will yield additional insights into the disease and will lead to large

improvements in the treatment of this deadly syndrome.
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