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ABSTRACT OF THE DISSERTATION

An Empirical Analysis on Threat Intelligence: Data Characteristics and Real-World Uses

by

Guo Li

Doctor of Philosophy in Computer Science

University of California San Diego, 2020

Professor Kirill Levchenko, Co-Chair
Professor Stefan Savage, Co-Chair

Threat Intelligence, both as a concept and a product, has been increasingly gaining

prominence in the security industry. At a high-level, it is the “knowledge” that helps organizations

understand and mitigate cyber-attacks. Most commonly, it refers to the collection of threat

indicators—IP addresses, domain names, file hashes, etc. known to be associated with attacks.

By compiling and distributing this information, it is believed that recipients will be able to better

defend their systems from future attacks. Thus, there are now hundreds of vendors offering their

threat intelligence solutions as a mix of public and commercial products.

However, our understanding of this data, its characterization, and the extent to which it

xiv



can meaningfully support its intended uses, is still quite limited. Furthermore, how the data is

being used by organizations, how popular it is, and what impact it could have on the Internet are

also not clear to our community. We lack an empirical assessment of real-world threat intelligence,

both in terms of the data itself and its usage, and it is important to first understand the current

status of threat intelligence, then can we reasonably discuss how to make improvements.

In this dissertation, I take an empirical approach to study threat intelligence and try

to address these gaps. In particular, I explore this topic from two perspectives: 1) Studying

the characteristics of threat intelligence data itself and 2) Exploring how they are used in the

real-world. In particular, I formally defined a set of metrics for analyzing threat intelligence data

feeds and use these measures to systematically evaluate a broad range of public and commercial

feeds. Further, I ground my quantitative assessments using external measurements to investigate

issues of coverage and accuracy. Finally, I designed a method using the IP ID side channel to test

if a remote host is blocking traffic from a given IP address. Using this technique, I measured

over 220K U.S. hosts and tested whether they consistently block connections with IPs identified

on popular IP blacklists. Beyond these blacklists, I also demonstrate the evidence for more

widespread use of security related traffic blocking. Together, my work provides an in-depth look

into the current picture of threat intelligence and augments the knowledge of our community on

this topic.
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Chapter 1

Introduction

Computer security is an inherently adversarial discipline in which each “side” seeks to

exploit the assumptions and limitations of the other. Attackers rely on exploiting knowledge of

vulnerabilities, configuration errors or operational lapses in order to penetrate targeted systems,

while defenders in turn seek to improve their resistance to such attacks by better understanding

the nature of contemporary threats and the technical fingerprints left by attacker’s craft. Invariably,

this means that attackers are driven to innovate and diversify while defenders, in response, must

continually monitor for such changes and update their operational security practices accordingly.

This dynamic is present in virtually every aspect of the operational security landscape, from

anti-virus signatures to the configuration of firewalls and intrusion detection systems to incident

response and triage. Common to all such reifications, however, is the process of monitoring

for new data on attacker behavior and using that data to update defenses and security practices.

Indeed, the extent to which a defender is able to gather and analyze such data effectively defines

a de facto window of vulnerability—the time during which an organization is less effective in

addressing attacks due to ignorance of current attacker behaviors.

This abstract problem has given rise to a concrete demand for contemporary threat data

sources that are frequently collectively referred to as threat intelligence. Threat intelligence is the

knowledge that allows organizations to understand and mitigate cyber-attacks. This “knowledge”

involves a wide variety of things. It can be vulnerability reports, where system and network
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administrators can learn the vulnerabilities and the potential impact on their systems. It can also

be IP or domain blacklists, which report the sources where attacks originate from, so people

can take precautions against these indicators. It can even be an online discussion thread in an

underground forum, so security experts can track what malicious actors are discussing. All of

this knowledge captures contemporary information about potential threats, and therefore helps

organizations better defend against them.

By far the most common form of threat intelligence are so-called indicators of compro-

mise: simple observable behaviors that signal that a host or network may be compromised. These

indicators are in general straightforward forensic data that are directly associated with attacks.

The most notable examples are:

v IP Addresses: IPs known to launch certain attacks, including port scanning, vulnerability

probing, brute-force login, etc.

v Domains: Domains known to host malware Command-and-Control servers or sending

spam emails, etc.

v URLs: Compromised websites or phish URLs, etc.

v File Hashes: Indicating a file or executable known to be associated with a particular variety

of malware, etc.

The presence of such indicators in a system or network is a symptom that alerts an

organization to a problem. For example, if one machine in an organization communicated with

a domain known to be associated with malware Command-and-Control servers, it is a strong

indication that this machine is probably infected with the corresponding malware. Part of an

organization’s defenses should reasonably include monitoring its assets for such indicators to

detect and mitigate potential compromises as they occur. And these indicators are simple enough

that they can be easily integrated into defense or monitoring systems, like network firewalls or

malware scanners.

While each organization naturally collects a certain amount of threat intelligence data
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on its own (e.g., the attacks they repel, the e-mail spam they filter, etc.), any single entity has a

limited footprint and few are instrumented to carefully segregate crisp signals of attacks from

the range of ambiguity found in normal production network and system logs. Thus, it is now

commonly accepted that threat intelligence data procurement is a specialized activity whereby

third-party firms, and/or collections of public groups, employ a range of monitoring techniques

to aggregate, filter and curate quality information about current threats. Indeed, the promised

operational value of threat intelligence has created a thriving (multi-billion dollar) market [125].

Most established security firms, such as Cisco Security [28], Palo Alto Networks [92],

Fortinet [51], and many specialized companies, including CrowdStrike [35], Anomali Threat-

Stream [10], Recorded Future [102], are all offering threat intelligence solutions. Public threat

intelligence providers like Spamhaus, Abuse.ch are also getting more and more attention. The

global threat intelligence market is predicated to surpass $13 Billion in 2025 [126]. With the

industry thriving, there is also a rapid increase in the related research works [127], covering

topics from data characterizing, effectiveness evaluation to designing better sharing systems.

From a high level, there are two major aspects of threat intelligence: Data and Usage.

Data represents the content of threat intelligence—the actual information provided in different

threat intelligence products. Usage, on the other hand, represents different ways people can

use threat intelligence to help. Therefore, all research surrounding threat intelligence can be

categorized into these two areas: research related to threat intelligence data itself, and studies on

different ways to use the data. They are the two sides of the same coin.

When looking at these two general aspects, one can further take two different research ap-

proaches: Empirical Study and Algorithm Exploration. Empirical study focuses on understanding

the current threat intelligence: analyzing patterns in existing data, measuring different use cases,

discover shortcomings in current data format design, etc. This approach emphasizes measuring

existing solutions, uncovering patterns and limitations, so the community can gain valuable

insights. Algorithm exploration, on the other hand, focuses on designing new algorithms and

new tools to improve current solutions, such as new threat hunting algorithms to improve threat
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Figure 1.1. Threat Intelligence research overview and example research topics in each direction.

intelligence data quality, or better ways to utilize these data during operation. This approach em-

phasizes designing new tools, techniques and approaches to help the community better generate,

share, and use threat intelligence data.

Therefore, threat intelligence research can be divided into four different directions (as

illustrated in Figure 1.1). These are:

v Empirical analysis of threat intelligence data:

Characterizing and understanding threat intelligence data, profiling the systems and tech-

niques used to generate such data, measuring different threat sharing strategies and their

effectiveness, etc.

v Algorithm exploration related to threat intelligence data:

Designing algorithms for threat hunting (threat intelligence generation), defining specifica-

tion for data description and protocols for data sharing, etc.

v Empirical analysis of threat intelligence usage:

Measuring how organizations use threat intelligence, and understanding the impact such

uses on the Internet, etc.

v Algorithm exploration related to threat intelligence usage:

Designing better methods to use threat intelligence during system and network defense (e.g.

increasing coverage, reducing false positives), exploring new ways to use threat intelligence
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data, such as for machine learning training data, etc.

There have been many previous research works covering various topics in these four di-

rections. Most of the works focus on threat intelligence generation techniques (all threat detection

techniques, such as malware detection, phish detection, causality analysis.) and threat sharing

methods (data formats, sharing protocols and sharing platforms, etc.). However, few works have

taken the empirical approach and systematically evaluate the existing threat intelligence, both in

terms of the data itself and its usage. Our community lacks a concrete understanding of threat

intelligence in the real-world

There are two major challenges when trying to address this problem. First, organizations

in general do not disclose their security settings, because these settings are considered sensitive.

As a result, it is very difficult to learn what threat intelligence products people are using, and

how these products perform in real systems. Second, it is very difficult, and sometimes even

impossible, to get the “ground-truth” of underlying threat. Without ground-truth, one can not

precisely measure threat intelligence features such as false positive rates.

In this dissertation, I will take the empirical approach and explore both the Data and

Usage aspects of the threat intelligence domain. I will demonstrate in my studies that, although

there is no clear way to precisely measure some features during threat intelligence study, one can

give a close approximation by: i) carefully designing a set of evaluation metrics and calculation

methods, ii) associating threat intelligence data with external data sources, and iii) utilizing

indirect inferring techniques.

In exploring threat intelligence data (described in Chapter 3), I conduct a comparative

analysis on existing threat intelligence products. In particular, I design formal metrics for

evaluating threat intelligence data and I used these tools to evaluate 47 distinct IP address IoC

feeds and 8 distinct malware IoC feeds. Through this chapter, I reveal the limitation of existing

threat intelligence data and discuss potential improvements based on my findings. In exploring

threat intelligence operations (described in Chapter 4), I measure how threat intelligence data is
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being used on a large scale. I design a method using IP ID side channel to infer the connectivity

between two Internet hosts from a third point. Using this method, I conduct a large scale Internet

measurement over 220K U.S. hosts and establish their use of 9 popular public IP blacklists. I

further investigate a broader use of blacklists among the hosts, and discovered over 73K hosts

have shown blacklist related blocking behavior. Together, my work provides an in-depth look

into the threat intelligence in the real-world and augments the knowledge of our community on

this topic.
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Chapter 2

Background

In this chapter, I will go through background knowledge and related work in all four

research directions defined in Chapter 1. More specifically, I first introduce several threat

intelligence generation techniques in section 2.1, covering different algorithms researchers have

proposed for each threat category. I then discuss threat intelligence sharing and its core challenges

in Section 2.2. The research works discussed in these two sections belong to the algorithmic

exploration on threat intelligence data. In Section 2.3, I discuss previous measurement studies

on existing threat intelligence feeds. These works fall into the direction of empirical analysis

on the data, although they are severely limited in terms of scale and lack formal methodologies.

Finally, I talk about the usage of threat intelligence in Section 2.4, and also go through previous

algorithmic exploration and empirical surveys on the data usage.

2.1 Threat Intelligence Collection
Threat Intelligence Collection is the process of generating threat intelligence data. Cyber-

attacks are happening everyday on the Internet. With vantage points, data providers can effectively

capture these attacks and generate indicators of compromise. These vantage points can be

specially deployed infrastructure, including honeypots and Internet telescopes; Data providers

can also directly collect data from from end-users, such as anti-virus vendors collecting potential

malicious executable from their customers.
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However, as one can imagine, the raw data usually contains a lot of noise and can hardly

serve as meaningful “intelligence”. Threat intelligence collection aims to use domain knowledge

and specialized algorithms to detect threats and identify attackers from the raw data, providing

real valuable information about different attacks. By definition, threat detection techniques on

all threat categories can be used during threat intelligence collecting. In this chapter, I will

go through previous research works on several representative threat categories and discuss the

techniques to detect these threats. These works fall into the algorithmic direction on threat

intelligence data, base on the definition in Chapter 1.

2.1.1 Intrusion Detection

One direct way to capture threat information is to identify the attacker when a system

in use is under attack, so we can capture the attacker in action. These systems can be specially

deployed systems just for luring attackers, such as honeypots. They can also be real systems with

real users, where people deploy detection systems and capture attacks when they are happening.

The technique we use here is also the technique to protect the system in the first place: Intrusion

Detection.

Intrusion detection aims to detect attacks in networks or systems on the fly. The techniques

involved can generally be classified into two categories: misuse-based detection and anomaly-

based detection. Misuse-based approaches utilize pre-defined patterns and signatures of malicious

behaviors, and dynamically compare the behavior of the system against these patterns to spot

potential intrusion. On the other hand, anomaly-based detection construct a model for the normal

behavior of a system, then check if the current behavior is deviating from the “normal” behavior.

The performance of misuse-based detection methods depends on the quality of the pre-

defined attack patterns (or detect policies), and these patterns are usually provided manually

by security experts. Since different attack vectors vary a lot on their approaches and system

component they touch, the patterns provided by the detection system must be able to cover

a diverse set of behavior, also to be extendable, as new attacking methods are keep showing
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up. Therefore, early work on this technique, such as Bro [96], Snort [105], P-BEST [78],

and STAT [130] all emphasize on providing a powerful threat modeling language, which can

express a broad set of threats, also easy to program to include new patterns. Recent work by

Bugiel et al. [20] moves to new system environments (e.g. mobile system like Android), but still

focuses on providing an expressive modeling language to build detect policies. These misuse-

based detection methods generally have high accuracy, since the pre-defined attack patterns are

usually well defined by security experts. The main disadvantage of this technique is that it can

only detect modeled attacks. For new types of attacks where there are no patterns written, a

misuse-based system will miss them completely.

As complementary, anomaly-based detection methods try to detect if the behavior of an

application or system is different from its benign behaviors. This technique relies on modeling the

normal behavior of a system in question, and since there are so many possible things a program

can do, we need to simplify the “behavior” to precisely reason about it. Forrest et al. [50] first

proposed to use the syscall sequence of a program as its behavior, since a program can only

affect the operating system with syscalls, and from the security perspective, these would be the

only behaviors that matter. Follow up works [74, 134, 87] explored different data models to

better distinguish abnormal sequences from benign ones, using methods including data mining,

Bayesian network and neural network. Recent work from Du et al. [39] also tries to utilize

more data sources and experiment with more advanced machine learning algorithm for the

detection. The advantage of these approaches is that they can capture previously unknown

attacks. However, they tend to suffer more false positives, since even a normal program can show

abnormal behaviors once in a while, and it is very hard to capture these cases when we first build

the “normal” behavior set for a program. We can only run the programs in question for a limited

amount of time and it is hard to comprehensively cover all possible states.
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2.1.2 Causality Analysis

Intrusion detection techniques described above detect threats when abnormal behavior

is observed. But for many advanced attacks, especially advanced persistent threats (APTs),

it is not always obvious to trace from the malicious behavior, e.g. a running malware, to the

source of the attacks, e.g. a phish URL that distributes the malware. This is mainly because

sophisticated attackers often take precautions to hide their traces by deleting system or application

logs, they can also prolong the attacks, creating a large window from the time they break into

victims’ machines until the time they carry out actual malicious activities. All of these can create

difficulties for administrators to diagnose the intrusion and trace the source. In the context of

Threat Intelligence, it is important to uncover the source of an attack, so we can provide valuable

indicators of compromise for the community to defend against the same attack in an early stage.

The analysis, which tracks causal relationships between files and processes to diagnose

attack provenance, is called Attack Causality Analysis. It is a critical technique during threat

intelligence hunting. The pioneering work in this field is done by King and Chen [67]. They first

defined the event dependency graph, where the nodes represent processes and files and edges

represent the events between process and files, for example, a process spawns another process,

or a process read or write to a file. Given a detection point, such as a suspicious file being written

to the disk, or a running process initiated a suspicious network connection, the system builds a

dependency graph from this point by processing event logs, then using the timestamp of each

event and their causal relationship, we can trace back to the source and identify the original

intrusion point.

A simple idea as it seems, it captured the fundamental logic behind causality analysis:

information flow tracking. However, this simple solution quickly runs into a problem in a complex

system: dependence explosion [54], where there are so many processes and files involved in this

dependency graph, together with a large number of inter-relations, that it is very hard to identify

the real attack from the haystack. The case becomes even more true when there are long-running
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programs, such as a server program. The dependency associated with these programs will grow

enormously over time [72], making the dependency graph even more complicated.

Many works have tried to tackle this problem. Some heuristics have been proposed to

prune the graph, for example, King et al. [68] utilized the fact that worms try to exploit from

host to host, so the traffic from a host who already has an IDS alert is more likely associated

with worm attacks. Liu et al. [79] use the rareness of events as a metric to prioritize searching on

dependency graphs. Other works try to break the entities on the graph into smaller granularity,

so we can pinpoint the causal relationship between objects. For example, Goel et al. [54] use

separate sockets reads to partition the execution of a program into different segments, so the

monitoring system can figure out which action of that program corresponds with which exact

network request. Lee et al. [72] use the prevalence of event-loops in programs to partition the

execution of the program based on each loop iteration, and then associates events with specific

loop iterations. Binary taint tracking has also been utilized to provide richer semantic information,

as demonstrated by Ma et al. [82]. This topic is still an active topic today and researcher are

trying to solve this from different angles.

2.1.3 Malware Analysis

Malicious software, often called malware, is always a pressing threat on the Internet. It

has been used by attackers to steal sensitive user data, control victim machines to launch spam

campaigns or DDoS campaigns, or encrypt valuable data to demand ransom, etc. Symantec

has reported over 200 Million new malware variants just in 2018 alone [119]. Therefore, it is

crucial for threat intelligence products to cover recent malware comprehensively. Malware threat

intelligence data usually comes as two forms: file hashes, like MD5, that represent malware

variants themselves, and IPs or domains that host Command-and-Control servers for the malware.

Both forms of data is critical for organizations, as the presence of either form indicates a strong

possibility of compromise, and immediate actions need to be taken. To generate these data,

security companies rely on analyzing unknown binaries, collected from the Internet or uploaded
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by customers, to determine if they are malicious.

To identify if an unknown binary is malware, one straightforward yet effective way is to

check if the binary is a variant of known malware. Since it is nontrivial to develop a sophisticated

malware program, attackers tend to just modify existing malware to generate new unseen variants.

Some typical ways include code transformation (e.g. replace “mov eax, 0” with “xor eax, eax”),

obfuscation, or encrypting the original binary and stores the result as data in a new executable

(with a packer program). These simple techniques enable attackers to quickly generate a large

number of variants from a single malware instance, and significantly increase the overhead for

security experts to analyze them.

To compare a new malware sample with existing ones, we need to define a suitable

representation of malware samples, from which we can calculate the similarity between them.

There are two approaches to construct this representation: Content-based and Behavior-based.

The content-based approach abstracts a program based on its code content, and calculates the

similarity between programs by comparing their code. Early work by M. Gheorghescu et al. [53]

propose to break the malware program into basic blocks and compare the similarity between

those blocks. Dullien et al. [40] extract control flow graphs from malware programs and use

graph similarity as the similarity between programs. These content-based approaches rely on

analyzing program code itself, so they still suffer the problem of advanced code obfuscation,

which can modify the code dramatically while maintaining the same functionality. This leads to

the behavior- based approach, where we extract the actual behavior of malware and use that as

the signature for comparison. Lee et al. [73] propose to use system call sequence as the signature

to classify different malware samples. Bailey et al. [14] use the non-transient state changes

malware causes on a system (files written, processes created) as the behavior signature, and do

the comparison based on these behaviors. Holz et al. [103] further developed this behavior-based

method, and use the actions of malware as machine learning features, and use a supervised

machine learning model to conduct the comparison and classification. Bayer et al. [15] used taint

tracking to capture a finer granularity of malware’s behavior, and use this information for more
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precise identification. The behavior-based approaches usually capture the behavior of malware

through dynamically executing the malware samples, so it won’t be affected by malware code

itself, but executing the code for every variant in question impose nontrivial overhead.

When there is no existing malware to compare with, or the program in question does not

match any known malware, an analysis system will need to decide if the program is malicious

just based on the behavior of the program itself. Like the intrusion detection methods described

in the previous section, the logic here also relies on having “specifications” that cover potential

malware behaviors, and check if the analyzed program exhibits those behaviors. One common

heuristic is to check if the program makes any changes to the system registry. GateKeeper [132],

for example, detects spyware by monitoring if the program registers as an OS auto-start extension,

such as an NT service, a tray icon in Windows, or a Unix daemon/cron job. Other tools also

check different detection points, such as VICE [21], which checks for the existence of various

hooks used by rootkits. More advanced systems tend to further monitor the detailed behavior

of the program. For example, Kirda et al. [69] try to detect a popular type of spyware that uses

Internet Explorer’s Browser Helper Object (BHO) and toolbar interfaces to monitor a user’s

browsing behavior. The system uses dynamic analysis to track if the program monitors users’

actions and sends out its findings to an external entity. Panorama [137], similarly, uses dynamic

taint tracking to construct the information flow of an unknown program, and then use pre-defined

policies(specifications) to determine if the program is malicious or not.

2.1.4 Spam Detection

Spam email, also called unsolicited bulk email or junk mail, is Internet mail that is sent to

a group of recipients who have no intention to receive it. They are particularly harmful, as these

emails jam users’ mailboxes, engulf important personal mail, waste network bandwidth and can

even crash mail-servers. Spam emails also serve as an important way of advertising products

in the underground market, such as prescription drugs, illegal porn, replica of other brands, etc.

It is an old yet still popular threat on the Internet. Threat intelligence spam data contains email
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address used by the spammers, domains and IP addresses where spammers’ mail servers are

located. Organizations, and even ISPs, tend to use these data to block the incoming mail traffic.

Email providers, ISPs or anti-spam organizations usually set up Spamtraps to capture

spam emails. Spamtraps are the email addresses that are created not for communication, but

rather to lure spam. These email addresses do not belong to any person and will not involve in

any kind of communication. These addresses will not be publicly announced, so only unsolicited

spammers, who tend to collect target email addresses by crawling the Internet, or go through all

possible lexical combinations for email names, will hit these addresses. The Spamtrap here serve

as a bait to capture spammers. People also recycle long out-of-date email addresses as Spamtrap

addresses.

However, simply regarding all emails received in Spamtrap as spam emails will create

a substantial amount of false positives, since legitimate senders with poor data hygiene or

acquisition practices can hit the traps as well. To further distinguish spam emails and consequently

identify the senders, one needs to look at the content of emails themselves. Numerous statistical

algorithms have been proposed by researchers to filter spam emails from legitimate ones. At its

core, spam filtering can be viewed as a text categorization task: given the full text content of an

email, decide whether it is spam email or benign email. A variety of supervised machine learning

techniques have been tested for spam filtering. Including the naive Bayes classifier [8, 106, 108],

RIPPER rule induction algorithm [33], Support Vector Machine [38], memory-based learning

[9], AdaBoost [22], and maximum entropy model [139]. These algorithms all convert email

headers and body into features for the machine learning model, the “bag-of-words” approach,

and different feature reduction and weight assignment strategy have been explored. These models

can all achieve decent accuracy, and have been tested and deployed in the real-world.

Email providers also get help from the customers to identify spam emails. Since customers

can mark an email as spam manually, having a large customer base enables the email provider to

collect a large number of spam emails with high accuracy, and therefore track down the domains

and IP addresses used by the spammers.
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2.1.5 Phishing Detection

Phishing attacks are a type of social engineering attack, where attackers disguise as

trusted entities and lure victims to click on malicious links, download attachments, or provide

sensitive information like credit card numbers or online credentials. These attacks can have

devastating results. For individuals, this includes unauthorized access to their online accounts,

the stealing of money in their bank, or identity theft for illegal activities. Moreover, phishing is

often used to gain a foothold in corporate or governmental networks as a part of a larger attack,

such as an advanced persistent threat (APT) event. This could result in significant financial losses,

leakage of user data, and protected technologies. Hence, phishing related data is an important part

of threat intelligence. These data include phishing domains and URLs, as well as IP addresses

that host these websites.

Phishing attacks are often launched through phish emails, so researchers have looked into

different methods to identify these phish emails. Phish emails are quite different spam emails.

Spam emails are usually easy to identify, since they just try to advertise certain goods and don’t

try to conceal their identities. Phish emails, however, can be hard to distinguish by everyday

people, since these emails deliberately pretend they are from legitimate sources, and they use

multiple tactics to lure recipients to click on the link. For example, attackers exploit HTML emails

and provide an HREF where the actual link is different from what is being displayed, such as

<a href="badsite.com">paypal.com</a>. Therefore, when analyzing if an email is a phish

email, researchers use text content of the email (same as spam email detection) together with

phishing-specific features, like the one listed above, to build machine learning models [48, 1, 27].

Since phishing attacks mostly require victims to click on a link, the URLs and the

corresponding webpages also provide us clues from which we can determine whether it is phish

related. For example, in the early days, many phish URL will have IP address in it, for example,

http://135.12.44.20/index.php. This feature is extremely rare for legitimate websites.

Another characteristic is that phish domains tend to relatively long, containing multiple segments.
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For example, 9794.myonlineaccounts2.abbeynational.co.uk.syrialand.com. The idea is that a

very long domain can confuse people and sometimes people only read the beginning of a domain

and think it is legitimate [136]. Whittaker et al. from Google has experimented with multiple

URL related features and implemented them in their machine learning algorithm [135]. They

also used other URL metadata such as PageRank to assist the detection. Another source to look

at is the phishing webpage. Phishing attacks usually try to mimic other trusted websites and

make people think they are visiting the original legitimate websites. They also frequently ask

people to type their credentials or provide payment information, since the goal of the attackers is

to steal this information. Researchers have used the content of the webpages as the feature to

further enhance their algorithms. Zhang et al. [140] has used the word frequency on the webpage

(TF-IDF) to classify the webpages. Wardman et al. [133] compared the content on the target

webpage with other popular webpages to see if the webpages in question are trying to mimic

those legitimate ones. All these resources provide additional confidence to people when deciding

if a URL is a phish URL.

2.2 Threat Intelligence Sharing
How much threat one can capture is largely depending on the scope of vantage points

one has on the Internet. Organizations with a larger scope of observation, like bigger Internet

telescopes or a larger number of customers, tend to capture more threats. However, no entity has

the capability to monitor the entire Internet, and each individual entity is only able to monitor a

tiny fraction of what is happening.

This encouraged threat intelligence sharing, where different entities collect threat infor-

mation individually and share the data with each other, so every one will get a higher coverage

of potential threat. Many threat intelligence providers are offering the platform for threat intelli-

gence sharing, including IBM X-Force Exchange [56], AlienVault Open Threat Exchange [6],

Facebook ThreatExchange [45], etc. These platforms enable companies (not necessarily security

companies), organizations or individual security researchers to contribute threat intelligence they
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collected. Companies are also forming alliances and exchange their intelligence data within the

group, like Cyber Threat Alliance [34].

One problem during threat intelligence sharing is data specification. Since different

entities could collect data in different ways and also record the data in different formats. Without

a clear unified data format, the data being shared will provide little benefit to the recipients,

since they will not be able to understand and utilize the data. This is a nontrivial task, since this

unified data format has to indicate clearly what does the data “mean”. If one entity just shares a

list IPs and claims these IPs are malicious IPs, it does not help much since it is crucial for the

recipient to know exactly why they are malicious, e.g, because they are massively scanning the

Internet, trying to brute-force log in to SSH servers, or they serve as C2 servers for malware.

Since companies have different security hygiene, they will use the data differently based on its

meanings. So it is critical to specify clearly the meaning of the data during sharing. Because of

this, standard threat intelligence formats have been proposed and developed, notably IODEF [59],

CybOX [36] and STIX [117], that try to standardize the threat intelligence presentation and

sharing.

2.3 Threat Intelligence Data Study
Previous sections cover the techniques people had proposed to generate threat intelligence

data and sharing them. With these techniques in place, what does the real-world threat intelligence

data look like, however, is another interesting direction to study. Although individual threat

detection techniques tend to promise high accuracy and coverage on target threats, after being

deployed in real-world for a long time, the final data product might be far different from

what people originally expected. Empirically studying the patterns and performance of threat

intelligence data is an important approach to understand the current limitations, and thus provides

insights for future innovations.

Several studies have examined the effectiveness of blacklist-based threat intelligence [71,

100, 101, 111, 113]. Ramachandran et al. [101] showed that spam blacklists are both incomplete
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(missing 35% of the source IPs of spam emails captured in two spam traps), and slow in

responding (20% of the spammers remain unlisted after 30 days). Sinha et al. [113] further

confirmed this result by showing that four major spam blacklists have very high false negative

rates, and analyzed the possible causes of the low coverage. Sheng et al. [111] studied the

effectiveness of phishing blacklists, showing the lists are slow in reacting to highly transient

phishing campaigns.

Other studies have analyzed the general attributes of threat intelligence data. Pitsil-

lidis et al. [98] studied spam domain feeds, showing different perspectives of spam feeds, and

demonstrated that different feeds are suitable for answering different questions. Thomas et al. [124]

constructed their own threat intelligence by aggregating the abuse traffic received from six Google

services, showing a lack of intersection and correlation among these different sources.

The limitations of previous measurement works are that these studies tend to only focus

on specific types of threat intelligence sources, like spam or phish blacklists, and they only

evaluated one aspect of the data—the operational performance, rather than generalizing the

measurement and define threat intelligence metrics that can be extended beyond the work.

Little work before had defines a general measurement methodology to examine threat

intelligence across a broad set of types and categories. Metcalf et al. [86] collected and measured

IP and domain blacklists from multiple sources, but again only focused on volume and intersec-

tion analysis. One missing piece in these works is that they did not approach the problem from

the perspective of consumers of threat intelligence. After all, it is the consumers that will support

this industry, and research communities should look more into their needs. This is one major

motivation of my work, which will be discussed in Chapter 3.

2.4 Threat Intelligence Uses
Threat intelligence data, at a high-level, promises that by compiling up-to-date infor-

mation about known threats (i.e., IP addresses, domain names, file hashes, etc.), recipients of

the data will be able to better defend their systems from future attacks. Therefore, a primary
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use case of threat intelligence is network defense. Intrusion detection systems or firewalls can

directly put the data in the system and block the corresponding IP or DNS traffic. Popular open

source projects such as Snort [114], Zeek [138] all provide these functionalities. Commercial

products, including Palo Alto Network firewall [93], Fortinet firewall [52], Cisco firewall [29]

also incorporate threat intelligence data in their defense systems.

Besides directly taking action, threat intelligence can also be used in security monitoring

and post forensic analysis. In these cases, the system raises alarms when there are matches

between network activities and threat intelligence data. Threat intelligence data usually come

with confidence and severity level for each individual data item. When investigating these alarms,

administrators can prioritize the investigation based on the severity level. The system that in

charge of collecting and organization security alarms are called Security Information and Event

Management system, or SIEM system. Popular SIEM systems include Splunk [115], Sumo

Logic [118] and LogRhythm NextGen SIEM [81] etc.

In academic research, threat intelligence data is usually used as extra source data to

assist their study, or to evaluate the performance of their systems or algorithms. For example,

Hao et al. [55] explored using the patterns during domain registration to detect potential malicious

domains. In the study, the authors use the Spamhaus domain blacklist and URIBL to check the

accuracy of their prediction. Singh et al. [112] studied the prevalence of Tor exit blocking in the

wild, and use public and private threat intelligence sources to see how much of Tor exit IPs are

listed on these sources. These are experimental use cases researchers have explored with threat

intelligence data.

One question that has not been investigated is how threat intelligence products are actually

being used by organizations currently in the industry. Understanding the real-world use cases

gives us ideas about the adoption of threat intelligence data, which is essential information to

know in the threat intelligence ecosystem. More importantly, the usage of different products

offers us insight into the potential impact they could have on the Internet. As discussed in

Chapter 3, false positives are relatively common in threat intelligence feeds. If an organization is
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using one threat intelligence IP feed in its firewall for IP-based traffic blocking, and there is a

false positive (a benign IP address) in this feed, then all the users in that organization will be

affected. From another side, if one online host is added to an IP feed mistakenly, then this host

will lose access to all the organizations that use this feed as a blocking ruleset. Therefore, the

actual usage of the data in industry is a crucial topic that should get more attention from the

security community.

But this problem is also a very challenging problem. The primary challenge is that there

are many ways people can use these data. It can be directly used to block network traffic, or just

raise an alarm in their Security Information and Event Management(SIEM) systems. Some use

cases do not even have a well-defined behavior that we can quantitatively measure. The actions

derived from threat intelligence data can also happen at different network layers. For example, an

organization can deny access on network layer; it can also deny access on application layer, like

HTTP 403 Forbidden. This diverse possibility of use cases makes it hard to assess this problem

as a whole.

Little work has been done to try and understand how threat intelligence data is being used

on a large scale. The only work that tries to look at threat intelligence data from this perspective

are industrial surveys – wherein organizations fill out questionnaires. One such survey conducted

by the Ponemon Institute [80], surveyed 1,200 IT and IT security practitioners, asking if they

use threat intelligence products, and if they do what tools do they use that utilize the threat

intelligence data. The survey also asked their user experience. SANS Institute did a similar

study [109] where they surveyed 600 participants from a diverse industry background and asked

questions about their threat intelligence usage. These works are limited in terms of scale, and

their results are all at a very high-level. Although they offered some useful insight, they can not

provide us a concrete understanding of threat intelligence uses on a large scale. My measurement,

which will be discussed in Chapter 4, is the first work that systematically looks at the problem of

inferring threat intelligence uses and explore its implications.
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Chapter 3

Threat Intelligence Data Study

As described in the Introduction chapter, there is a surge of threat intelligence products in

the recent years, and they all have eye-catching promises like high accuracy and good coverage.

However, it is unclear whether the existing products on the market can actually live up to the

promises, and there has been little empirical assessment of threat intelligence data or even a

consensus about what such an evaluation would entail.

A thorough data characteristics analysis is critical for the community to understand

the patterns and limitations of the existing threat intelligence products. After all, one needs to

understand the current situation before discussing how to improve it. Another issue is that since

there is little empirical analysis of the data before, security community does not even have a set

of well-defined metrics for measuring and comparing different threat intelligence products. Thus,

consumers of threat intelligence products have limited means to compare offerings or to factor

the cost of such products into any model of the benefit to operational security.

These problems motivate my study to try to provide a grounded, empirical footing for

addressing such questions. In this chapter, I will talk about my work on data characteristics study

on threat intelligence. In particular, this chapter includes the following key points:

v Introduced a set of basic threat intelligence metrics and describe a methodology for measur-

ing them, notably: Volume, Differential Contribution, Exclusive Contribution, Latency,

Coverage and Accuracy.

21



v Analyze 47 distinct IP address threat intelligence sources covering six categories of threats

and 8 distinct malware file hash threat intelligence sources, and report their metrics.

v Demonstrated techniques to evaluate the accuracy and coverage of certain categories of

threat intelligence sources.

v I conduct the analyses in two different time periods two years apart, and demonstrate the

strong consistency between the findings.

From the analysis, I find that while a few threat intelligence data sources show significant

overlap, most do not. This result is consistent with the hypothesis advanced by [124] that different

kinds of monitoring infrastructure will capture different kinds of attacks, but I demonstrated it

in a much broader context. This also revealed that underlying this issue are broader limitations

of threat intelligence sources in terms of coverage (most indicators are unique) and accuracy

(false positives may limit how such data can be used operationally). Finally, I will present a

longitudinal analysis suggesting that these findings are consistent over time.

3.1 Overview
The threat intelligence data collected for this study was obtained by subscribing to and

pulling from numerous public and private intelligence sources. These sources ranged from simple

blacklists of bad IPs/domains and file hashes, to rich threat intelligence exchanges with well

labeled and structured data. I refer each item (e.g., IP address or file hash) an indicator (after

indicator of compromise, the industry term for such data items).

In this section, I enumerate the threat intelligence sources, describe each source’s structure

and how I collected it, and then define our measurement metrics for empirically measuring these

sources. When the source of the data is public, or when I have an explicit agreement to identify

the provider, I have done so. However, in other cases, the data was provided on the condition of

anonymity and I restrict myself to only describe the nature of the provider, but not their identity.

All of the private data providers were appraised of the nature of my research, its goals and the
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methodology that I planned to employ.

3.1.1 Data Set and Collection

I use several sources of threat intelligence data for my analysis:

• Facebook ThreatExchange (FB) [44]. This is a closed-community platform that allows

hundreds of companies and organizations to share and interact with various types of labeled

threat data. As part of an agreement with Facebook, I collected all its data that it shared

broadly. In subsequent analyses, sources with prefix “FB” indicate a unique contributor on

the Facebook ThreatExchange.

• Paid Feed Aggregator (PA). This is a commercial paid threat intelligence data aggregation

platform. It contains data collected from over a hundred other threat intelligence sources,

public or private, together with its own threat data. In subsequent analyses all data sources

with prefix “PA” are from unique data sources originating from this aggregator.

• Paid IP Reputation Service. This commercial service provides an hourly-updated black-

list of known bad IP addresses across different attack categories.

• Public Blacklists and Reputation Feeds. I collected indicators from public blacklists and

reputation data sources, including well-known sources such as AlienVault [5], Badips [13],

Abuse.ch [2] and Packetmail [91].

Threat Intelligence indicators include different types of data, such as IP address, malicious

file hash, Domain, URL, etc. In this chapter, I focus the analysis on sources that provide IP

addresses and file hashes, as they are the most prevalent data types in my collection.

I collect data from all sources on an hourly basis. However, both the Facebook Threa-

tExchange and the Paid Feed Aggregator change their members and contributions over time,

creating irregular collection periods for several of the sub-data sources. Similarly, public threat

feeds had varying degrees of reliability, resulting in collection gaps. In this chapter, I use the time
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window from December 1, 2017 to July 20, 2018 for most of the analyses, as I have the largest

number of active sources during this period. I eliminated duplicates sources (e.g., sources we

collected individually and also found in the Paid Aggregator) and sub-sources (a source that is a

branch of another source). I further break IP sources into separate categories and treat them as

individual feeds, as shown in Section 3.2. This filtering leaves us with 47 IP feeds and 8 malware

file hash feeds.

The ways each threat intelligence source collects data varies, and in some cases the

methodology is unknown. For example, Packetmail IPs and Paid IP Reputation collect threat data

themselves via honeypots, analyzing malware, etc. Other sources, such as Badips or the Facebook

ThreatExchange, collect their indicators from general users or organizations—e.g., entities may

be attacked and submit the indicators to these threat intelligence services. These services then

aggregate the data and report it to their subscribers. Through this level of aggregation the precise

collection methodologies and data providence can be lost.

3.1.2 Data Source Structure

threat intelligence sources in my corpus structure and present data in different ways. Part

of the challenge in producing cross-dataset metrics is normalizing both the structure of the data

as well as its meaning. A major structural difference that influences my analysis occurs between

data sources that provide data in snapshots and data sources that provide events.

Snapshot. Snapshot feeds provide periodic snapshots of a set of indicators. More for-

mally, a snapshot is a set of indicators that is a function of time. It defines, for a given point in

time, the set of indicators that are members of the data source. Snapshot feeds imply state: at any

given time, there is a set of indicators that are in the feed. A typical snapshot source is a published

list of IPs periodically updated by its maintainer. For example, a list of command-and-control IP

addresses for a botnet may be published as a snapshot feed subject to periodic updates.

All feeds of file hashes are snapshots and are monotonic in the sense that indicators are

only added, not removed, from the feed. Hashes are a proxy for the file content, which does not
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change (malicious file content will not change to benign in the future).

Event. In contrast, event feeds report newly discovered indicators. More formally, an

event source is a set of indicators that is a function of a time interval. For a given time interval, the

source provides a set of indicators that were seen or discovered in that time interval. Subscribers

of these feeds query data by asking for new indicators added in a recent time window. For

example, a user might, once a day, request the set of indicators that appeared in the last 24 hours.

This structural difference is a major challenge when evaluating feeds comparatively. I

need to normalize the difference to make a fair comparison, especially for IP feeds. From a

threat intelligence consumer’s perspective, an event feed does not indicate when an indicator will

expire, so it is up to the consumer to act on the age of indicators. Put another way, the expiration

dates of indicators are decided by how users query the feed: if a user asks for the indicators seen

in the last 30 days when quering data, then there is an implicit 30-day valid time window for

these indicators.

In this chapter, I choose a 30-day valid period for all the indicators I collected from event

feeds—the same valid period used in several snapshot feeds, and also a common query window

option offered by event feeds. I then convert these event feeds into snapshot feeds and evaluate

all of them in a unified fashion.

3.1.3 Threat Intelligence Metrics

The aim of this work is to develop threat intelligence metrics that allow a threat intel-

ligence consumer to compare threat intelligence sources and reason about their fitness for a

particular purpose. To this end, I propose six concrete metrics: Volume, Differential contribution,

Exclusive contribution, Latency, Accuracy and Coverage.

G Volume. I define the volume of a feed to be the total number of indicators appearing

in a feed over the measurement interval. Volume is the simplest threat intelligence metric and

has an established history in prior work [64, 71, 76, 98, 111, 113, 124]. It is also useful to study

the daily rate of a feed, which quantifies the amount of data appearing in a feed on a daily basis.
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Rationale: To a first approximation, volume captures how much information a feed

provides to the consumer. For a feed without false positives (see accuracy below), and if every

indicator has equal value to the consumer, one would prefer a feed of greater volume to a feed

of lesser volume. Of course, indicators do not all have the same value to consumers: knowing

the IP address of a host probing the entire Internet for decades-old vulnerabilities is less useful

than the address of a scanner targeting organizations in your sector looking to exploit zero-day

vulnerabilities.

G Differential contribution. The differential contribution of one feed with respect

to another is the number of indicators in the first that are not in the second during the same

measurement period. We define differential contribution relative to the size of the first feed,

so that the differential contribution of feed A with respect to feed B is DiffA,B = |A \B|/|A|.

Thus, DiffA,B = 1 indicates that the two feeds have no elements in common, and DiffA,B = 0

indicates that every indicator in A also appears in B. It is sometimes useful to consider the

complement of differential contribution, namely the normalized intersection of A in B, given by

IntA,B = |A∩B|/|A|= 1−DiffA,B.

Rationale: For a consumer, it is often useful to know how many additional indicators

a feed offers relative to one or more feeds that the consumer has already. Thus, if a consumer

already has feed A and is considering paying for feed B, then DiffA,B indicates how many new

indicators feed A will provide.

G Exclusive contribution. The exclusive contribution of a feed with respect to a set of

other feeds is the proportion of indicators unique to a feed, that is, the proportion of indicators

that occur in the feed but no others. Formally, the exclusive contribution of feed A is defined as

UniqA,B = |A\
⋃

B6=A B|/|A|. Thus, UniqA,B = 0 means that every element of feed A appears in

some other feeds, while UniqA,B = 1 means no element of A appears in any other feed.

Rationale: Like differential contribution, exclusive contribution tells a threat intelligence

consumer how much of a feed is different. However, exclusive contribution compares a feed

to all other feeds available for comparison, while differential contribution compares a feed to
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just another feed. From a threat intelligence consumer’s perspective, exclusive contribution is a

general measure of a feed’s unique value.

G Latency. For an indicator that occurs in two or more feeds, its latency in a feed is the

elapsed time between its first appearance in any feed and its appearance in the feed in question.

In the feed where an indicator first appeared, its latency is zero. For all other feeds, the latency

indicates how much later the same indicators appears in those feeds. Taster’s Choice [98] referred

to latency as relative first appearance time. (I find the term latency to be more succinct without

loss of clarity.) Since latency is defined for one indicator, for a feed it makes sense to consider

statistics of the distribution of indicator latencies, such as the median indicator latency.

Rationale: Latency characterizes how quickly a feed includes new threats: the sooner

a feed includes a threat, the more effective it is at helping consumers protect their systems.

Indeed, several studies report on the impact of feed latency on its effectiveness at thwarting

spam [26, 101].

The metrics above are defined without regard for the meaning of the indicators in a feed.

One can calculate the volume of a single feed or the differential contribution of one feed with

respect to another regardless of what the feed purports to contain. While these metrics are easy

to compute, they do little to tell us about the fitness of a feed for a particular purpose. For this, I

need to consider the meaning or purpose of the feed data, as advertised by the feed provider. I

define the following two metrics.

G Accuracy. The accuracy of a feed is the proportion of indicators in a feed that are

correctly included in the feed. Feed accuracy is analogous to precision in Information Retrieval.

This metric presumes that the description of the feed is well-defined and describes a set of

elements that should be in the feed given perfect knowledge. In practice, researchers have

neither perfect knowledge nor a perfect description of what a feed should contain. In some cases,

however, I can construct a set A− of elements that should definitely not be in a feed A. Then

AccA ≤ |A\A−|/|A|.

Rationale: The accuracy metric tells a threat intelligence consumer how many false
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positives to expect when using a feed, and, therefore, dictates how a feed can be used. For

example, if a consumer automatically blocks all traffic to IP addresses appearing in a feed, then

false positives may cause disruption in an enterprise by blocking traffic to legitimate sites. On the

other hand, consumers may tolerate some false positives if a feed is only used to gain additional

insight during an investigation.

G Coverage. The coverage of a feed is the proportion of the intended indicators con-

tained in a feed. Feed coverage is analogous to recall in Information Retrieval. Like accuracy,

coverage presumes that the description of the feed is sufficient to determine which elements

should be in a feed, given perfect knowledge. In some cases, it is possible to construct a set A+

of elements that should be in a feed. I can then upper-bound the coverage CovA ≤ |A|/|A+|.

Rationale: For a feed consumer who aims to obtain complete protection from a specific

kind of threat, coverage is a measure of how much protection a feed will provide. For example,

an organization that wants to protect itself from a particular botnet will want to maximize its

coverage of that botnet’s command-and-control servers or infection vectors.

In the following two sections, I use these metrics to evaluate two types of threat intelli-

gence: IP address feeds and file hash feeds.

3.2 IP Threat Intelligence
One of the most common forms of threat intelligence are feeds of IP addresses considered

malicious, suspicious, or otherwise untrustworthy. This type of threat intelligence dates back at

least to the early spam and intrusion detection blacklists, many of which are still active today

such as SpamhausSBL [122], CBL [23] and SORBS [121]. Here, I apply the metrics described

above to quantify the differences between 47 different IP address threat intelligence feeds.

3.2.1 Feed Categorization

IP address threat intelligence feeds have different meanings, and, therefore, purposes. To

meaningfully compare feeds to each other, I first group feeds into categories of feeds whose
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indicators have the same intended meaning. Unfortunately, there is no standard or widely accepted

taxonomy of IP threat intelligence feeds. To group feeds into semantic categories, I use metadata

associated with the feed as well as descriptions of the feed provided by the producer, as described

below.

Metadata. Some feeds provide category information with each indicator as metadata.

More specifically, all of the Paid Aggregator feeds, Alienvault IP Reputation and Paid IP

Reputation include this category metadata. In this case, I use its pre-assigned category in the

feed. Facebook ThreatExchange feeds do not include category information in the metadata, but

instead provide a descriptive phrase with each indicator. I then derive its category based on the

description.

Feed description. For feeds without metadata, I rely on online descriptions of each feed,

where available, to determine its semantic category. For example, the website of feed Nothink

SSH [89] describes that the feed reports brute-force login attempts on its corresponding honeypot,

which indicates the feed belongs to brute-force category.

I grouped the IP feeds into categories derived from the information above. In this work, I

analyze six of the most prominent categories:

◦ Scan: Hosts doing port or vulnerability scans.

◦ Brute-force: Hosts making brute force login attempts.

◦ Malware: Malware C&C and distribution servers.

◦ Exploit: Hosts trying to remotely exploit vulnerabilities.

◦ Botnet: Compromised hosts belonging to a botnet.

◦ Spam: Hosts that sent spam or should not originate email.

Table 3.1 lists the feeds, grouped by category, used in the rest of this section. The symbols # and

4 before the feed name indicate whether the feed is a snapshot feed or an event feed, respectively

(see Section 3.1.2). All data was collected during my measurement period, December 1st, 2017

to July 20th, 2018. Note that a few feeds, like Paid IP Reputation, appear in multiple categories.

29



In these feeds, indicators are associated with different categories via attached metadata. I split

these feeds into multiple virtual feeds each containing indicators belonging to the same category.

3.2.2 Volume

Volume is one of the oldest and simplest threat intelligence metrics representing how

informative each data source is. Table 3.1 and Table 3.2 shows the total number of unique IP

addresses collected from each feed during the measurement period, under column Volume. A

# denotes a snapshot feed and 4 indicates an event feed (Section 3.1.2). Volume is the total

number of IPs collected during my measurement period. Exclusive is the exclusive contribution

of each feed (Section 3.2.4). Avg. Rate is the number of average daily new IPs added in the feed

(Section 3.2.6), and Avg. Size is the average working set size of each feed (Section 3.2.2). Feeds

are listed in order of decreasing volume, grouped by category. The numbers I show are after the

removal of invalid entries identified by the sources themselves. Column Avg. Rate shows the

average number of new IPs I received per day, and Avg. Size lists the average daily working set

size of each feed, that is, the average size of the snapshot.

F Finding: Feeds vary dramatically in volume. Within every category, big feeds can

contain orders of magnitude more data than small feeds. For example, in the scan category, I saw

over 361,004 unique IP addresses in DShield IPs but only 1,572 unique addresses in PA Analyst

in the same time period. Clearly, volume is a major differentiator for feeds.

Average daily rate represents the amount of new indicators collected from a feed each day.

Some feeds may have large volume but low daily rates, like Feodo IP Blacklist in the malware

category. This means most indicators one can get from that feed are old data present in the feed

before our measurement started. On the other hand, the average rate of a feed could be greater

than the volume would suggest, like Nothink SSH in the brute-force category. This is due to the

fact that indicators can be added and removed multiple times in a feed. In general, IP indicators

tend to be added in a feed only once: 37 among 47 IP feeds have over 80% of their indicators

appearing only once, and 30 of them have this rate over 90%. One reason is that some snapshot
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Table 3.1. IP threat intelligence feeds used in the study (Part I)

Feed Volume Exclusive Avg. Rate Avg. Size

Scan Feeds
# PA AlienVault IPs1 425,967 48.6% 1,359 128,821
4 DShield IPs 361,004 31.1% 1,556 69,526
# PA Packetmail ramnode 258,719 62.0% 870 78,974
4 Packetmail IPs 246,920 48.6% 942 29,751
# Paid IP Reputation 204,491 75.6% 1,362 8,756
# PA Lab Scan 169,078 63.1% 869 9,775
# PA Snort BlockList 19,085 96.3% 56 4,000
4 FB Aggregator1 6,066 71.3% 24 693
# PA Analyst 1,572 34.5% 6.3 462
Botnet Feeds
# PA Analyst 180,034 99.0% 697 54,800
# PA CI Army 103,281 97.1% 332 30,388
# Paid IP Reputation 77,600 99.9% 567 4,278
# PA Botscout IPs 23,805 93.8% 81 7,180
# PA VoIP Blacklist 10,712 88.0% 40 3,633
# PA Compromised IPs 7,679 87.0% 21 2,392
# PA Blocklist Bots 4,179 80.7% 16 1,160
# PA Project Honeypot 2,600 86.5% 8.5 812
Brute-force Feeds
4 Badips SSH 542,167 84.1% 2,379 86,677
4 Badips Badbots 91,553 70.8% 559 17,577
# Paid IP Reputation 89,671 52.8% 483 3,705
# PA Brute-Force 41,394 92.1% 138 14,540
4 Badips Username Notfound 37,198 54.2% 179 3662.8
4 Haley SSH 31,115 43.6% 40 1,224
4 FB Aggregator2 22,398 77.3% 74 2,086
4 Nothink SSH 20,325 62.7% 224 12,577
4 Dangerrulez Brute 10,142 4.88% 37 1,102
Malware Feeds
# Paid IP Reputation 234,470 99.1% 1,113 22,569
4 FB Malicious IPs 30,728 99.9% 129 3,873
# Feodo IP Blacklist 1,440 47.7% 1.3 1,159
# PA Lab Malware 1,184 84.6% 3.5 366
4Malc0de IP Blacklist 865 61.0% 2.9 86.6
# PA Bambenek C2 IPs 785 92.1% 3.4 97.9
# PA SSL Malware IPs 676 53.9% 2.9 84.0
# PA Analyst 492 79.8% 2.1 149
# PA Abuse.ch Ransomware 256 7.03% 1.6 117
# PA Mal-Traffic-Anal 251 60.5% 0.9 72
# Zeus IP Blacklist 185 49.1% 0.5 101
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Table 3.2. IP threat intelligence feeds used in the study (Part II)

Feed Volume Exclusive Avg. Rate Avg. Size

Exploit Feeds
4 Badips HTTP 305,020 97.6% 1,592 22,644
4 Badips FTP 285,329 97.5% 1,313 27,601
4 Badips DNS 46,813 99.3% 231 4,758
4 Badips RFI 3,642 91.4% 16 104
4 Badips SQL 737 79.5% 4.4 99.2
Spam Feeds
# Paid IP Reputation 543,583 99.9% 3,280 6,551
4 Badips Postfix 328,258 90.5% 842 27,951
4 Badips Spam 302,105 89.3% 1,454 30,197
# PA Botscout IPs 14,514 89.3% 49 4,390
# Alienvault IP Reputation 11,292 96.6% 48 1,328

feeds maintain a valid period for each indicator, as I found in all PA feeds where the expiration

date of each indicator is explicitly recorded. When the same indicator is discovered again by a

feed before its expiration time, the feed will just extend its expiration date, so this occurrence

will not be captured if I simply subtract the old data from the newly collected data to derive what

is added on a day. For event feeds and snapshot feeds in PA where I can precisely track every

occurrence of each indicator, I further examed data occurrence frequency and still found that the

vast majority of IPs in feeds only occurred once—an observation that relates to the dynamics of

cyber threats themselves.

Nothink SSH, as I mentioned above, is a notable exception. It has over 64% of its

indicators appearing 7 times in my data set. After investigating, we found that this feed posts all

its previous data at the end of every month, behavior very likely due to the feed provider instead

of the underlying threats.

The working set size defines the daily average amount of indicators users need to store

in their system to use a feed (the storage cost of using a feed). The average working set size is

largely decided by the valid period length of the indicators, controlled either by the feed (snapshot

feeds) or the user (event feeds). The longer the valid period is, the larger the working set will be.

Different snapshoot feeds have different choices for this valid period: PA AlienVault IPs in the
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scan category sets a 90-day valid period for every indicator added to the feed, while PA Abuse.ch

Ransomware uses a 30-day period. Although one would not know the data expiration mechanism

used by snapshot feeds other than PA feeds, as there is no related information recorded, I can

still roughly estimate this by checking the durations of their indicators—the time between an

indicator being added and being removed. Four Paid IP Reputation feeds have more than 85%

of durations shorter than 10 days, while the one in the malware category has more than 40%

that span longer than 20 days. Feodo IP Blacklist has over 99% of its indicators valid for my

entire measurement period, while over 70% of durations in the Zeus IP Blacklist are less than 6

days. I did not observe a clear pattern regarding how each snapshot feed handles the expiration

of indicators.

3.2.3 Differential Contribution and Intersection

The differential contribution metric measures the number of indicators in one feed that

are not in another. Equivalently, one can consider the intersection of two feeds, which is the

number of elements in one feed that are present in the other, normalized by the size of the

first: |A∩B|/|A|. Figure 3.1 shows the intersection relationship of all feeds in the study. Each

cell in the matrix represents the number of elements in both feeds, normalized by the size of

the feed spanning the rows on the table. That is, A, in the expression above, ranges over rows,

and B over columns of the matrix. Darker (more saturated) colors indicate greater intersection.

Comparisons of feeds within a category are shaded red and comparisons of feeds between

different categories are shaded blue. Note that the matrix is asymmetric, because, in general,

|A∩B|/|A| 6= |A∩B|/|B|. Elements of the matrix are in the same order as in Table 3.1.

F Finding: Feeds in scan and brute-force categories have higher pairwise intersections:

Half of the pairwise intersection rates in two categories are greater than 5%. The scan category

has 29 out of 72 pairs (excluding self comparisons) with an intersection rate larger than 10%,

and the same case occurred in 19 out of 72 pairs in the brute-force category.

On the other side, feeds in the botnet, exploit, malware and spam category do not share
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Figure 3.1. Feed intersection for all IP feeds. Each row/column represents a feed, shown in the
same order as Table 3.1. Darker (more saturated) colors indicate greater intersection.

much data between each other: all 4 categories have more than three-quarters of pairwise

intersection rates less than 1%. A few big feeds in these categories can share a significant amount

of data with some small feeds in the same category—a characteristic that appears as a dark

vertical line within its category in Figure 3.1. Paid IP Reputation in the malware category, for

example, shares over 30% of 6 other malware feeds. But the intersections among the vast majority

of feeds in these 4 categories are low. This finding is consistent with prior work [86, 124], but I

provide a more comprehensive view regarding different categories.
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Figure 3.1 also shows the relation between feeds across different categories. One can

clearly see a relation between scan and brute-force feeds: multiple scan feeds have non-trivial

intersection with feeds in the brute-force category. In fact, 23.1% of all 760,263 brute-force IPs I

collected are also included by scan feeds in my dataset. There are also three botnet feeds—PA

CI Army, PA VoIP Blacklist and PA Compromised IPs—that have over 10% of its data shared

with multiple feeds in the scan category.

3.2.4 Exclusive Contribution

Exclusive contribution represents the number of indicators in a feed that are in no other

feeds. I calculate each feed’s exclusive contribution among all the feeds in the same category,

emphasizing their uniqueness regarding the scope of data they claim to report. Each feed’s

exclusive contribution is presented in Table 3.1 in column Exclusive, calculated based on its

volume.

F Finding: As I already observed in Section 3.2.3, botnet, exploit and spam feeds have

relatively low pairwise intersections. Consequently, the feeds in these four categories have high

exclusive contribution rates in general: the median exclusive contribution rates of these four

categories are 90.9%, 97.5% and 90.5%, respectively. The malware category has a low median

exclusive rate, since multiple small feeds have non-trivial intersection with the largest feed Paid

IP Reputation, but the two largest feeds in malware both have a exclusive rate over 99%. Scan

and brute-force feeds have more intersection within its category, and their exclusive rates are

lower: 62.0% median rate in scan and 62.7% in brute-force, and the top two largest feeds in both

categories have an exclusive rate below 85%.

If one assumes a process where a feed is more likely to have popular elements, then

smaller feeds would be subsumed by larger feeds. Yet, for some small feeds like Malc0de IP

Blacklist in the malware and PA Project Honeypot in the botnet categories, even though they

are several orders of magnitude smaller than the largest feeds in their categories, a significant

proportion of their indicators is still unique to the feed. When I aggregate the data in each
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category, 73% of all scan feed indicators are unique to a single feed and 88% of brute force feed

indicators are unique to one feed. For other categories, over 97% of elements in the category are

unique to a single feed. This result agrees with previous work that most data in threat intelligence

feeds is unique [86, 124].

3.2.5 Latency

Feed latency measures how quickly a feed reports new threat indicators. The sooner a

feed can report potential threats, the more valuable it is for consumers. The absolute latency of

an indicator in a feed is the time from the beginning of the corresponding event until when the

indicator shows up in the feed. However, it is difficult to know the actual time when an event

begins from the threat intelligence data. Instead, I measure the relative latency, which is the

delay of an indicator in one feed to be the time between its appearance in that feed and the first

seen among all the feeds.

Relative latency can only be calculated for indicators that occur in at least two feeds. As

discussed in Section 3.2.4, the number of common indicators in the botnet, malware, exploit

and spam feeds is very low (fewer than 3% of elements occur in more than one feed). Relative

latency calculated for these feeds is less meaningful. For this analysis, therefore, I focus on scan

and brute-force feeds.

Another issue is the time sensitivity of IP threats. An event that originated from an IP

address, like scanning activity or a brute-force attack, will not last forever. If one scan feed

reports an IP address today and another feed reports the same IP three months later, it would

make little sense to consider them as one scanning event and label the second occurrence as

being three months late. Unfortunately, there is no easy way I can clearly distinguish events from

each other. Here I use a one-month window to restrict an event, assuming that the same attack

from one source will not last for more than 30 days; although arbitrary, it provides a reasonably

conservative threshold, and experimenting with other thresholds produced similar overall results.

More specifically, I calculate relative latency by tracking the first occurrence of IPs in all feeds
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Figure 3.2. Distribution of indicators’ latency in scan and brute-force feeds.

in a category, then recording the latency of the following occurrences while excluding ones

that occur after 30 days. By just using the first appearance of each IP as the base, I avoid the

uncertainty caused by multiple occurrence of indicators and different valid periods used among

feeds.

Figures 3.2a and 3.2b show the relative latency distribution among feeds in the scan and

brute-force categories, in hours. Each box shows the latency distribution of shared IPs in the

feed calculated in hours from 25 percentile to 75 percentile, with the middle line indicating
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the median. (“Badips Username*” here is the abbreviation for feed name Badips Username

Notfound; “PA Packetmail Ram*” for PA Packetmail Ramnode) I focus on just those feeds that

have over 10% of their data shared with others to ensure the analysis can represent the latency

distribution of the overall feed. There is one feed in each category (PA Snort BlockList in scan

and PA Brute-Force in brute-force) that is excluded from the figure.

F Finding: From the distribution boxes one can see that Paid IP Reputation in scan and

Badips SSH in brute-force are the fastest feeds in their category, as they have the lowest median

and 75th percentile latencies. On the other hand, PA Analyst in scan and Badips Badbots in

brute-force are the slowest feeds. Figure 3.2a shows that all scan feeds except one have their

25th percentile latency equal to 0, indicating these feeds, across different sizes, all reported

a significant portion of their shared data first. A similar case also happens in the brute-force

category.

One may reasonably ask whether large feeds report data sooner than small feeds. The

result shows that this is not always the case. FB Aggregator1 is the second smallest feed in the

scan category, yet it is no slower than several other feeds which have over 10 times of its daily

rate. Badips Badbots, on the other hand, has the second largest rate in brute-force category, but it

is slower than all the other feeds in the brute-force category. Feeds that are small in volume can

still report a lot of their data first.

Another factor that could affect latency is whether feeds copy data from each other. For

example, 93% of Dangerrulez Brute also appears in Badips SSH. If this is the case, I expect

Dangerrulez Brute will be faster than Badips SSH on reporting their shared data. However, I

compared the relative latency between just two feeds and found Badips SSH reported 88% of

their shared indicators first. I further conducted this pairwise latency comparison between all

feeds in scan, brute-force and malware (since Paid IP Reputation shares non-trivial amount of

data with a few small feeds in the malware category), and did not see a clear latency advantage

between any two feeds. Note that this observation does not prove there is no data copying, since

the shared data between two feeds might partially come from copying and partially from the
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feeds’ own data collection. Furthermore, my latency analysis is at a one-hour granularity.

3.2.6 Accuracy

Accuracy measures the rate of false positives in a feed. A false positive is an indicator

that data is labeled with a category to which it does not belong. For example, an IP address

found in a scan feed that has not conducted any Internet scanning is one such false positive. As

well, even if a given IP is in fact associated with malicious activity, if it is not unambiguously

actionable (e.g., Google’s DNS at 8.8.8.8 is used by malicious and benign software alike) then

for many use cases it must also be treated as a false positive. False positives are problematic for

a variety of reasons, but particularly because they can have adverse operational consequences.

For example, one might reasonably desire to block all new network connections to and from IP

addresses reported as hosting malicious activity (indeed, this use is one of the promises of threat

intelligence). False positives in such feeds, though, could lead to blocking legitimate connections

as well. Thus, the degree of accuracy for a feed may preclude certain use cases.

Unfortunately, determining which IPs belong in a feed and which do not can be extremely

challenging. In fact, at any reasonable scale, I am unaware of any method for unambiguously and

comprehensively establishing “ground truth” on this matter. Instead, in this section I report on a

proxy for accuracy that provides a conservative assessment of this question. To wit, I assemble

a whitelist of IP addresses that either should not reasonably be included in a feed, or that, if

included, would cause significant disruption. The presence of such IPs in a feed are clearly

false positives and thus define an upper bound on a feed’s accuracy. I populate my list from

three sources: unroutable IPs, IPs associated with top Alexa domains, and IPs of major content

distribution networks (CDNs). The detail result for the accuracy analysis is presented in Table 3.3

and Table 3.4. Unrt is fraction of unroutable addresses in each feed (Section 3.2.6). Alexa Top is

the number of IPs intersected with top Alexa domain IP addresses, and CDNs is the number of

IPs intersected with top CDN provider IP addresses. I will explain more about each column in

below.
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Table 3.3. IP threat intelligence feeds accuracy overview (Part I)

Feed Added Unrt Alexa CDNs

Scan Feeds
PA AlienVault IPs 313,175 0.0% 1 0
DShield IPs 339,805 0.03% 68 62
PA Packetmail ramnode 200,568 <0.01% 0 0
Packetmail IPs 211,081 0.0% 0 0
Paid IP Reputation 200,915 1.65% 6 21
PA Lab Scan 169,037 <0.01% 0 0
PA Snort BlockList 12,957 0.42% 1 0
FB Aggregator1 5,601 0.0% 0 0
PA Analyst 1,451 0.41% 0 0
Botnet Feeds
PA Analyst 180,034 <0.01% 0 0
PA CI Army 76,125 <0.01% 0 0
Paid IP Reputation 73,710 1.66% 6 74
PA Botscout IPs 18,638 0.09% 1 0
PA VoIP Blacklist 9,290 0.32% 0 0
PA Compromised IPs 4,883 0.0% 0 0
PA Blocklist Bots 3,594 0.0% 0 0
PA Project Honeypot 1,947 0.0% 0 0
Brute-force Feeds
Badips SSH 456,605 0.19% 217 1
Badips Badbots 91,553 1.04% 46 1,251
Paid IP Reputation 87,524 0.03% 0 10
PA Brute-Force 31,555 0.0% 0 0
Badips Username Notfound 37,198 0.53% 4 0
Haley SSH 8,784 0.03% 0 0
FB Aggregator2 17,779 0.0% 0 0
Nothink SSH 20,325 1.51% 2 0
Dangerrulez Brute 8,247 0.0% 0 0
Malware Feeds
Paid IP Reputation 217,073 0.13% 291 3,489
FB Malicious IPs 29,840 2.14% 2 0
Feodo IP Blacklist 296 0.0% 0 0
PA Lab Malware 806 2.85% 0 0
Malc0de IP Blacklist 668 0.0% 8 11
PA Bambenek C2 IPs 777 9.13% 0 0
PA SSL Malware IPs 674 0.0% 0 0
PA Analyst 486 0.0% 0 0
PA Abuse.ch Ransomware 256 3.12% 0 0
PA Mal-Traffic-Anal 193 0.51% 0 0
Zeus IP Blacklist 67 0.0% 1 0
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Table 3.4. IP threat intelligence feeds accuracy overview (Part II)

Feed Added Unrt Alexa CDNs

Exploit Feeds
Badips HTTP 305,020 0.67% 16 2,590
Badips FTP 285,329 1.33% 14 2
Badips DNS 46,813 0.50% 119 244
Badips RFI 3,642 2.22% 0 0
Badips SQL 737 1.89% 0 1
Spam Feeds
Paid IP Reputation 543,546 78.7% 1 0
Badips Spam 302,105 0.02% 19 0
Badips Postfix 193,674 1.29% 18 1
PA Botscout IPs 11,358 0.06% 0 0
Alienvault IP Reputation 10,414 0.07% 63 1,040

Unroutable IPs. Unroutable IPs are IP addresses that were not BGP-routable when they

first appeared in a feed, as established by contemporaneous data in the RouteViews service [128].

While such IPs could have appeared in the source address field of a packet (i.e., due to address

spoofing), it would not be possible to complete a TCP handshake. Feeds that imply that such

an interaction took place should not include such IPs. For example, feeds in the Brute-force

category imply that the IPs they contain were involved in brute-force login attempts, but this

could not have taken place if the IPs are not routable. While including unroutable addresses in

a feed is not, in itself, a problem, their inclusion suggests a quality control issue with the feed,

casting shade on the validity of other indicators in the feed.

To allow for some delays in the feed, I check if an IP was routable at any time in the

seven days prior to its first appearance in a feed, and if it had, I do not count it as unroutable.

Table 3.3, column Unrt, shows the fraction of IP indicators that were not routable at any time in

the seven days prior to appearing in the feed. This analysis is only conducted for the IPs that are

added after my measurement started. The number of such IPs is shown in column Added, and the

unroutable fraction shown in Unrt is with respect to this number.

Alexa. Blocking access to popular Internet sites or triggering alarms any time such sites

are accessed would be disruptive to an enterprise. For my analysis, I periodically collected
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the Alexa top 25 thousand domains (3–4 times a month) over the course of the measurement

period [4]. To address the challenge that such lists can have significant churn [107], we restrict

my whitelist to hold the intersection of all these top 25K lists (i.e., domains that were in the

top 25K every time we polled Alexa over the 8-month measurement period), which left us with

12,009 domains. I then queried DNS for the A records, NS records and MX records of each

domain, and collected the corresponding IP addresses. In total, I collected 42,436 IP addresses

associated with these domains. I compute the intersection of these IPs with threat intelligence

feeds and show the results in column Alexa in Table 3.3.

CDNs. CDN providers serve hundreds of thousands of sites. Although these CDN

services can (and are) abused to conduct malicious activities [24], their IP addresses are not

actionable. Because these are fundamentally shared services, blocking such IP addresses will

also disrupt access to benign sites served by these IPs. I collected the IP ranges used by 5

popular CDN providers: AWS CloudFron [32], Cloudflare [31], Fastly [46], EdgeCast [42] and

MaxCDN [83]. I then check how many IPs in threat intelligence feeds fall into these ranges.

Column CDNs in Table 3.3 shows the result.

F Finding: Among the 47 feeds in the table, 33 feeds have at least one unroutable IP,

and for 13 of them, over 1% of the addresses they contain are unrouteable. Notably, the Paid

IP Reputation feed in the spam category has an unroutable rate over 78%. Although it is not

documented, a likely explanation is that this feed may include unroutable IPs intentionally, as

this is a known practice among certain spam feeds. For example, the Spamhaus DROP List [123]

includes IP address ranges known to be owned or operated by malicious actors, whether currently

advertised or not. Thus, for feeds that explicitly do include unroutable IPs, their presence in the

feeds should not necessarily be interpreted as a problem with quality control.

I further checked feeds for the presence of any “reserved IPs” which, as documented

in RFC 8190, are not globally routable (e.g., private address ranges, test networks, loopback

and multicast). Indeed, 12 feeds reported at least one reserved IP, including four of the Paid IP

Reputation feeds (excepting the spam category), six of the Badips feeds, and the FB Malicious
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IPs and DShield IPs feeds. Worse, the Paid IP Reputation feeds together reported over 100

reserved IPs. Since such addresses should never appear on a public network, reporting such IPs

indicates that a feed provider fails to incorporate some basic sanity checks on its data.

There are 21 feeds that include IPs from top Alexa domains, as shown in column Alexa

in Table 3.3. Among these IPs there are 533 A records, 333 IPs of MX records and 63 IPs of NS

records. The overlapped IPs include multiple instances from notable domains. For example, the

IP addresses of www.github.com are included by Malc0de IP Blacklist. Paid IP Reputation in

the malware category contains the IP address for www.dropbox.com. Alienvault IP Reputation

contains the MX record of groupon.com, and Badips SSH also contains the IP addresses of

popular websites such as www.bing.com.

Most of the feeds I evaluated do not contain IPs in CDN ranges, yet there are a few

(including multiple Paid IP Reputation feeds, Badips feeds and Alienvault IP Reputation) that

have significant intersection with CDN IPs. Alienvault IP Reputation and Badips feeds primarily

intersect with Cloudflare CDN, while most of the overlap in the Paid IP Reputation malware

category overlaps with AWS CloudFront.

Overall, the rate of false positives in a feed is not strongly correlated with its volume.

Moreover, certain classes of false positives (e.g., the presence of Top Alex IPs or CDN IPs) seem

to be byproducts of how distinct feeds are collected (e.g., Badips feeds tend to contain such IPs,

irrespective of volume). Unsurprisingly, I also could find not correlation between a feed’s latency

and its accuracy.

3.2.7 Coverage

The coverage metric provides a quantitative measure of how well a feed captures the

intended threat. A feed with perfect coverage would include all indicators that belong in a

category. Unfortunately, as discussed above, there is no systematic way for evaluating the exact

accuracy or coverage of a feed since it is unrealistic to obtain ground truth of all threat activities

on the Internet.
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However, there are some large-scale threat activities that are well-collected and well-

studied. One example is Internet scanning. Researchers have long been using “Internet telescopes”

to observe and measure network scanning activities [18, 41, 94]. With a large telescope and well-

defined scan filtering logic, one can obtain a comprehensive view of global scanning activities

on the Internet.

To this end, I collected three months of traffic (from January 1st to March 31st 2018) using

the UCSD network telescope [120], which monitors a largely quiescent /8 network comprising

over 16 million IP addresses. I then used the default parameters of the Bro IDS [19] to identify

likely scanning traffic, namely flows in which the same source IP address is used to contact 25

unique destination IP addresses on the same destination port/protocol within 5 minutes. Given

the large number of addressed being monitored, any indiscriminate scanner observed by threat

intelligence feeds will likely also be seen in my data. Indeed, by intersecting against this telescope

data we are able to partially quantify the coverage of each threat intelligence scanning feed.

The scanners I collected from the telescope consist of 20,674,149 IP addresses. The

total number of IPs in all the scan feeds during this period is 425,286, which covers only 1.7%

(363,799 shared IPs) of all the telescope scan IPs. On the other hand, telescope scanners intersect

with 85% of all IPs in scan feeds. When looking at each feed, PA AlienVault IPs, DShield

IPs Packetmail IPs, PA Lab Scan and PA Packetmail ramnode all have over 85% of their data

intersected with telescope scanners; the other four, though, have less than 65% of their data

shared (and the rate for PA Snort BlockList is only 8%).

To further understand how well each scan feed detects scanning activities, I measure

how different sizes of scanners in the telescope are covered by each feed. Here, scanner size

means how many IPs a scanner has scanned in the telescope within a day. Figure 3.3 shows the

coverage rate of each feed over different sizes of scanners, ranging from 1,000 to 1 million. Y

axis is the proportion of scanners of a given size or larger that are covered by each feed. (There

are 7,212,218 scanners from the telescope whose sizes are over 1K, 271,888 that are over 100K

and 17,579 are over 1 million.)
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Figure 3.3. The coverage of each feed on different sizes of scanners.

F Finding: The union of all the scan IPs in the feeds covers less than 2% of the scanners

collected by the telescope. Even if I only look at the scanners with sizes larger than 10,000, the

overall coverage is still around 10%, suggesting the coverage capability of scan feeds is very

limited. The graph shows that, as the scanner size increases, the coverage of each feed over the

datasets also increases, and large feeds cover more percent of telescope scanners than small feeds.

This trend aligns with the intuition that scan feeds tend to capture more extensive scanners.

It is surprising that the small scan feeds in my collection have a smaller percentage

of their IPs shared with telescope scanners. This contradicts the idea that small feeds would

contain a larger percentage of extensive scanners (that would most likely also be observed by the

telescope).

3.3 File Hash Threat Intelligence
File hashes in a threat intelligence feed are indicators for malicious files. It is one of

the most lightweight ways to mark files as suspicious. One can incorporate this data to block

malicious downloads, malicious email attachments, and malware. Likewise, file hashes can

be used to whitelist applications and these feeds can be used to ensure malicious files do not
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appear in a customer’s whitelist. In this section, I present the analysis on eight file hash feeds,

also collected from December 1st, 2017 to July 20th, 2018. I use the same metrics defined in

Section 3.1.3.

The file hash feeds I collected use a range of different hash functions to specify malicious

files, including MD5, SHA1, SHA256 and SHA512 (and some feeds provided values for multiple

different hash functions to support interoperability). Since most indicators in our dataset are

MD5s, I have normalized to this representation by using other feeds and the VirusTotal service

to identify hash aliases for known malicious files (i.e., which MD5 corresponds to a particualr

SHA256 value).

I showed the detail result of the hash feeds analysis in Table 3.5 and Table 3.6. The

second column group presents feed volume, average daily rate, the number of converted MD5s

(Section 3.3.2) and exclusive proportion. Not in VT is fraction of hashes that are not found in

VirusTotal, Not det. the fraction of hashes that are found in VirusTotal but are not labeled as

malicious by any products, and Detected the fraction that are found in VirusTotal and are labeled

malicious by at least one product. Column Not in SD shows the fraction of hashes in a feed

that are not in Shadowserver Bin Check. In NSRL and In AppInfo show the absolute number

of hashes found in Shadowserver (Section 3.3.3). Exclusive is based on the MD5-normalized

hashes counted under Converted. All the other percentages in the table are based on Volume. I

will explain about these result in detail in the followin sections.

Table 3.5. File hash feeds overview (Part I)

Feed Volume Avg. Rate Converted Exclusive

FB Malware 944,257 4,070 944,257 >99.99%
PA Malware Indicators 39,702 171 39,702 98.73%
PA Analyst 38,586 166 37,665 97.97%
PA Twitter Emotet 1,031 4.44 960 77.29%
PA OSINT 829 3.57 783 71.65%
PA Sandbox 298 1.28 115 95.65%
PA Abuse.ch 267 1.15 3 100%
PA Zeus Tracker 17 0.07 17 100%
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Table 3.6. File hash feeds overview (Part II)

Feed Not in VT Not det. Detected Not in SD In NSRL In AppInfo

FB Malware 37.41% 50.50% 12.09% 99.89% 442 706
PA Malware Indicators 0.02% 0.04% 99.94% >99.99% 2 0
PA Analyst 4.26% 2.82% 92.92% 99.95% 8 19
PA Twitter Emotet 11.74% 0.78% 87.49% 99.81% 0 2
PA OSINT 19.06% 0.84% 80.10% 99.88% 1 0
PA Sandbox 72.81% 0.34% 26.85% 100% 0 0
PA Abuse.ch 98.88% 0.75% 0.37% 100% 0 0
PA Zeus Tracker 88.24% 5.88% 5.88% 100% 0 0

3.3.1 Volume

File hashes, unlike IP threat data, are not transient—a file does not change from malicious

to benign—and thus a far simpler volume analysis is appropriate. I report volume as the number

of new hashes that are added to each feed during the measurement period.

As seen in Table 3.5, I examine each feed’s volume and average daily rate. Like IP feeds,

file hash feeds also vary dramatically in volume. The majority of the hashes are concentrated in

three feeds: FB Malware, PA Malware Indicators, and PA Analyst, which also exhibit the highest

daily rates. The other feeds are multiple order of magnitude smaller comparatively.

3.3.2 Intersection and Exclusive Contribution

As I mentioned earlier, to conduct intersection and exclusive analysis of file hash feeds, I

need to convert indicators into the same hash type. Here I convert non-MD5 hashes into MD5s,

using either metadata in the indicator itself (i.e., if it reports values for multiple hash functions)

or by querying the source hash from VirusTotal [131] which reports the full suite of hashes for

all files in its dataset. However, for a small fraction of hashes I am unable to find aliases to

conver them to the MD5 representation and must exclude them from the analysis in this section.

This filtering is reflected in Table 3.5, in which the Volume column represents the number of

unique hashes found in each feed and the Converted column is the subset that I have been able to

normalize to a MD5 representation.
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F Finding: The intersections between hash feeds are minimal, even among the feeds

that have multiple orders of magnitude differences in size. Across all feeds, only PA Analyst

has relatively high intersections: PA Analyst shares 27% of PA OSINT’s MD5s and 13% of PA

Twitter Emotet’s MD5s. PA Malware Indicators has a small intersection also with these two feeds.

All other intersections are around or less than 1%. Consequently, the vast majority of MD5s

are unique to one feed, as recorded in column Exclusive in Table 3.5. The “lowest” exclusivity

belongs to PA Twitter Emotet and PA OSINT (still 77.29% and 71.65%, respectively). All other

feeds showcase an over 95% exclusive percentage, demonstrating that most file hash feeds are

distinct from each other.

Due to the different sources of malware between feeds, a low intersection is to be expected

in some cases. For example, PA Twitter Emotet and PA Zeus Tracker should have no intersection,

since they are tracking different malware strains. The other, more general feeds could expect

some overlap, but mostly exhibit little to no intersection. Considering the sheer volume of the

FB Malware feed, one might expect it would encapsulate many of the smaller feeds or at least

parts of them. This is not the case, however, as FB Malware has a negligible intersection with all

other feeds.

Due to the lack of intersection among the feeds, I omit the latency analysis of the hash

feeds, as there is simply not enough intersecting data to conclude which feeds perform better

with regards to latency.

3.3.3 Accuracy

Assessing the accuracy of file hash feeds presents a problem: there is no universal ground

truth to determine if a file is malicious or benign. Thus, to gauge the accuracy of the feeds, I use

two metrics: a check for malicious hashes against VirusTotal, and a check for benign hashes

against Shadowserver’s Bin Check service. Note that all the percentages discussed below are

based on the Volume of each feed.

VirusTotal is a service that is often used when analyzing malware to get a base of
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information about a suspected file. Anyone can upload a file to be scanned. Upon submission,

these files will be scanned by more than 70 antivirus scanners, which creates a report on how

many antivirus scanners mark it malicious, among other information. In this analysis, I query

VirusTotal for the hashes in each file hash feed and then inspect the percent of hashes that are

marked as malicious and how many AV scanners have recorded them. Due to the high volume of

the FB Malware feed and the query rate limit of VirusTotal, I randomly sampled 80,000 hashes

from the feed for this analysis.

Table 3.6 shows a breakdown of the base detection rates for each feed from VirusTotal. As

the PA feeds decrease in volume, the rates at which they are found in VirusTotal also decreases.

The larger PA feeds have a much higher detection rate than their smaller counterparts. On the

other hand, FB Malware only has 37% of its data detected by antivirus scanners and 50% in

VirusTotal with no detection despite being the largest feed. This could indicate that FB Malware

focuses on threats that specifically target Facebook and that are not as relevant to most VirusTotal

users, such as malicious browser extensions [37, 63, 65]. This might undermine the limited

coverage of VirusTotal as an oracle to detect targeted threats that are not of broader interest.

To further understand how the scanners in VirusTotal report the feed’s data, I plot a graph

of what percentage of hashes in each feed are detected by how many VirusTotal scanners. As

seen in Figure 3.4, each point means the proportion of indicators (Y value) in a feed that is

detected by over X number of AV scanners in VirusTotal. Four feeds have more than 50% of

their samples detected by over 20 scanners. PA Malware Indicators and PA Twitter Emotet did

not experience a large detection drop before 35 scanners, indicating that most indicators in the

two feeds are popular malicious files recognized by many AV vendors. While PA Sandbox has a

large percent of its hashes not presented in VirusTotal, over 70% of its samples that are detected

are marked by over 20 AV scanners, showcasing a high confidence detection.

To more fully gauge the accuracy of the file hash feeds, I also examined how each feed

measured against Shadowserver’s Bin Check Service [110]. The service checks file hashes

against NIST’s National Software Registry List (NSRL) in addition to Shadowserver’s own

49



0 10 20 30 40 50 60

Number of VirusTotal Scanner

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P
e
rc

e
n
t 

o
f 

H
a
sh

e
s

PA Analyst

PA Zeus Tracker

PA Twitter Emotet

FB Malware

PA Malware Indicators

PA OSINT

PA Sandbox

PA Abuse.ch

Figure 3.4. VirusTotal detection distribution.

repository of known software. Table 3.6 details how each feed compares with Shadowserver’s

Bin Check service.

It might be expected that there would be no hash found with Shadowserver’s Bin Check

service, but it is not the case. Some of the samples from the feeds that appear in Shadowserver

are well known binaries such as versions of Microsoft Office products, Window’s Service Packs,

calc.exe, etc. In the event malware injects itself into a running process, it remains plausible that

some of these well-known binaries find their way into threat intelligence feeds from users wrongly

attributing maliciousness. While FB Malware has over one thousand hashes in Shadowserver, this

is not a widespread issue, as all feeds have <1% of their hashes contained within Shadowserver’s

Bin Check service. This showcases that while there are a few exceptions, the feeds mostly do not

contain well-known, benign files.

F Finding: Each PA feed has a negligible rate of occurrence within Shadowserver

regardless of their VirusTotal detection, showing they do not contain generic false positives.

Larger feeds exhibit high VirusTotal detection rates except for FB Malware, while small feeds

have relatively low detection rates. This suggests that small hash feeds might focus more on
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specific malicious files that are not widely known. FB Malware has a low VirusTotal occurrence

despite its size and has over one thousand hashes in Shadowserver, but its overall low percentage

of hashes within Shadowserver indicates that it does not contain many known files and might

have threats not typically recognized by VirusTotal’s scanners.

3.4 Longitudinal Comparison
In addition to the measurement period considered so far (December 1, 2017 to July 20,

2018), I also analyzed data from the same IP feeds from January 1, 2016 to August 31, 2016.

These two measurement periods, 23 months apart, allow us to measure how these IP feeds have

changed in two years. Table 3.7 and Table 3.8 summarizes the differences between these two

measurement periods. Avg. Rate shows the percentage of daily rate changed over the old feeds.

The two columns under Unrt show the unroutable rates of feeds in 2016 and 2018 separately.

The two columns under CDN present the number of IPs fall in CDN IP ranges in old and new

data. In the table, 2018 represents the current measurement period and 2016 the period January

1, 2016 to August 31, 2016.

Volume. As shown in Table 3.7 and 3.8, feed volume has definitely changed after two

years. Among 43 IP feeds that overlap both time periods, 21 have a higher daily rate compared

with 2 years ago, 15 feeds have a lower rate, and 7 feeds do not change substantially (the

difference is below 20%). Volume can change dramatically over time, such as PA AlienVault

IPs in the scan category which is 13 times larger than before. On the other hand, a feed like PA

Blocklist Bots is now over 90% smaller.

Intersection and Exclusive Contribution. Despite the volume differences, the inter-

section statistics between feeds are largely the same across two years, with feeds in scan and

brute-force having high pairwise intersections and feeds in other categories being mostly unique.

Certain specific pairwise relations also did not change. For example, Badips SSH still shared

over 90% of data in Dangerrulez Brute back in 2016, and Paid IP Reputation in malware was still

the only feed that has a non-trivial intersection with multiple small feeds. Again, most data was
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Table 3.7. Data changes in IP feeds compared against the ones in 2016 (Part I)

Unroutable CDN

Feed Avg. Rate 2016 2018 2016 2018

Scan Feeds
PA AlienVault IPs +1,347% 0.0% 0.0% 0 0
PA Packetmail ram* +733% <0.01% <0.01% 0 0
Packetmail IPs +135% 0.0% 0.0% 0 0
Paid IP Reputation −57% 8.73% 1.65% 910 21
PA Lab Scan −1% 0.0% <0.01% 0 0
PA Snort BlockList −97% <0.01% 0.42% 1 0
FB Aggregator1 +332% 0.0% 0.0% 6 0
PA Analyst −44% 0.0% 0.41% 0 0
Botnet Feeds
PA CI Army +114% <0.01% <0.01% 0 0
Paid IP Reputation −39% 0.63% 1.66% 15 74
PA Botscout IPs +1% 0.01% 0.09% 1 0
PA VoIP Blacklist +252% 0.0% 0.32% 0 0
PA Compromised IPs −36% 0.10% 0.0% 0 0
PA Blocklist Bots −95% 0.0% 0.0% 0 0
PA Project Honeypot +63% 0.0% 0.0% 0 0
Brute-force Feeds
Badips SSH +30% 0.07% 0.19% 0 1
Badips Badbots +1,732% 0.0% 1.04% 187 1,251
Paid IP Reputation −62% 6.55% 0.03% 335 10
PA Brute-Force −72% 0.0% 0.0% 0 0
Badips Username* +3,040% 0.0% 0.53% 0 0
Haley SSH +428% 0.04% 0.03% 0 0
FB Aggregator2 +387% 0.12% 0.0% 0 0
Nothink SSH +886% 0.56% 1.51% 0 0
Dangerrulez Brute +0% 0.0% 0.0% 1 0
Malware Feeds
Paid IP Reputation −36% 0.18% 0.13% 15265 3,489
FB Malicious IPs −77% 6.81% 2.14% 264 0
Feodo IP Blacklist +0% 0.0% 0.0% 0 0
Malc0de IP Blacklist −9% 0.0% 0.0% 132 11
PA Bambenek C2 IPs +79% 0.0% 9.13% 0 0
PA SSL Malware IPs −34% 0.0% 0.0% 0 0
PA Analyst −93% 0.34% 0.0% 0 0
PA Abuse.ch* −99% 0.49% 3.12% 0 0
PA Mal-Traffic-Anal −53% 0.0% 0.51% 0 0
Zeus IP Blacklist −66% 0.0% 0.0% 6 0
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Table 3.8. Data changes in IP feeds compared against the ones in 2016 (Part II)

Unroutable CDN

Feed Avg. Rate 2016 2018 2016 2018

Exploit Feeds
Badips HTTP +326% 0.30% 0.67% 436 2,590
Badips FTP +556% 0.01% 1.33% 0 2
Badips DNS +9,525% 0.17% 0.50% 7 244
Badips RFI +226% 0.0% 2.22% 0 0
Spam Feeds
Paid IP Reputation +133% 59.3% 78.7% 0 0
Badips Spam +12,767% 0.0% 0.02% 0 0
Badips Postfix −53% <0.01% 1.29% 0 1
PA Botscout IPs +18% 0.0% 0.06% 0 0
AlienVault IP Rep +8% 0.57% 0.07% 479 1,040

exclusive to each feed two years ago: Across all six categories more than 90% of the indicators

are not shared between feeds.

Latency. The latency relationship between feeds was also similar: timely feeds today

were also timely two years ago, and the same with tardy feeds.

Accuracy. Feeds have more unroutable IPs now than before as shown in Table 3.7

and 3.8: In 2016, 22 of the 43 IP feeds had at least 1 unroutable IP; four feeds had unroutable

rates over 1%. When checking the intersection with popular CDNs, the feeds that contain IPs in

CDN ranges two years ago are also the ones that have these IPs today.

Shared indicators 2016–2018. I compared the data I collected from each feed in the two

time periods, and found that 30 out of 43 feeds in 2018 intersect with their data from two years

ago, and 9 feeds have an intersection rate over 10%. Three feeds in malware category, namely

Feodo IP Blacklist, PA Abuse.ch Ransomware and Zeus IP Blacklist, have over 40% of their

data shared with the past feed, meaning a large percent of C&C indicators two years ago are still

identified by the feeds as threats today. Feeds in the botnet category, however, are very distinct

from the past, with all feeds having no intersection with the past except Paid IP Reputation.

53



3.5 Absolute Latency
I defined the latency metric in this chapter as relative latency between threat intelligence

sources, since it is easy to compute and allows consumers to compare feeds to each other on this

aspect. However, it is also critical to know about the absolute latency distribution of indicators.

Absolute latency represents how fast a feed can actually report a threat, which directly decides the

effectiveness of the data when used in a pro-active way. As I already discussed in Section 3.2.5,

absolute latency is hard to measure, as I do not have ground truth of the underlying threat.

In Section 3.2.7, I used an Internet telescope as the approximation for ground truth to

measure the coverage of scan feeds. In Section 3.3.3, I used VirusTotal as an oracle to measure

the accuracy of file hash feeds. Although these sources are not real ground truth and it is unclear

how far away they are, these large and well-managed sources can help us, to a certain extent,

profile the performance of threat intelligence feeds. In this section, I use these two sources again

to approximate the absolute latency of indicators in scan IP feeds and malicious file hash feeds.

More specifically, I measure the latency of IPs in scan feeds relative to the first occurrence

time of the same IP in the scanners collected from the telescope. Considering the massive size of

the telescope, it should presumably detect scanners much sooner after the scanning event actually

happened. I measure latency of file hashes relative to the first_seen timestamps queried

from VirusTotal. The first_seen timestamp represents the time when the corresponding file

is first uploaded to VirusTotal. VirusTotal is a very popular service and it is a convention for

many security experts to upload new malware samples to VirusTotal once they discovered them.

Therefore, this timestamp roughly entails when the security community first noticed the malicious

file and can be a good approximation for absolute latency.

Figure 3.5 show the latency distribution of each feed, using the same plotting convention

as in Section 3.2.5. Some feeds are not shown in the figure as there are too little data points in

those feeds to reason about distribution.

F Finding: Comparing Figure 3.5a to Figure 3.2a, I can see that the median latency of
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Figure 3.5. Distribution of indicators’ latency in scan and file hash feeds. The scan feeds’
distribution are calculated in hour granularity while the file hash feeds’ distribution are

calculated in day granularity.

feeds are all larger. This is consistent with my assumption that a large sensor tends to receive

indiscriminate scanners sooner. Scan feeds’ median lantecy are one to three days relative to the

Internet telescope, except PA Analyst, whose median latency is almost nine days. The order

of median latency between feeds changed compared with Figure 3.2a, but since the original

relative median latencies among scan feeds are very close, the new order here is more likely to

be statistics variances. Also, note that although the PA AlienVault IPs seems much slower than it

is in Figure 3.2a, its 75 percentile latency is still the second smallest one.
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On the other hand, the latency distributions of hash feeds vary more dramatically. PA

Malware Indicators, PA Sandbox and PA Twitter Emotet are almost as fast as VirusTotal: all

three feeds have 25 percentile and median latency equal to zero. PA OSINT and PA Analyst are

comparatively much slower, and PA OSINT even has a 75 percentile latency of 1680 days. This

might be because of the heterogeneous nature of malware feeds. The figure also shows that feed

volumes do not imply their latency, as PA Analyst and FB Malware are much slower than the

small hash feeds.

Figure 3.5 demonstrates that the Internet telescope and VirusTotal are indeed good

approximations for absolute latency measurement, as most indicators in threat intelligence feeds

are observed relatively later. However, every scan feed has over 2% of its indicators detected

earlier than the telescope did. FB Aggregator1 and DShield IPs even have over 10% of their

indicators observed earlier. There is also a similar case in file hash feeds. This aligns with my

observation in Section 3.2.5 that small feeds can still report a non-trivial amount of their data first.

Another interesting observation is that both Facebook feeds, FB Aggregator1 and FB Malware,

have a large percent of their data observed earlier than the telescope or VirusTotal. This again

suggests that Facebook (and its threat intelligence partners) might face more targeted threats, so

those threats will be first observed by Facebook.

3.6 Discussion

3.6.1 Metrics Usage

Threat intelligence has many different potential uses. For example, analysts may consume

threat data interactively during manual incident investigations, or may use it to automate the de-

tection of suspicious activity and/or blacklisting. When not itself determinative, such information

may also be used to enrich other data sources, informing investigations or aiding in automatic

algorithmic interventions. I have introduced a set of basic threat intelligence metrics—volume,

intersection, unique contribution, latency, coverage and accuracy—that can inform and quantify
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each of those uses. Depending on a number of factors, such as the intended use case and the cost

of false positives and negatives, some of these metrics will become more or less important when

evaluating a threat intelligence source. For example, a feed with poor accuracy but high coverage

might be ideal when an analyst is using a threat intelligence source interactively during manually

incident investigations (since in this case, the analyst, as a domain expert, can provide additional

filtering of false positives). Similarly, latency might not be a critical metric in a retrospective

use case (e.g., post-discovery breach investigation). However, if an organization is looking for a

threat intelligence source where the IPs are intended to be added to a firewall’s blacklist then

accuracy and latency should likely be weighted over coverage, assuming that blocking benign

activity is more costly.

Another common real-world scenario is that a company has a limited budget to purchase

threat intelligence sources and has a specific set of threats (i.e., botnet, brute-force) they are

focused on mitigating. In such cases, the metrics I have described can be used directly in

evaluating threat intelligence options, biasing twoards sources that maximize coverage of the

most relevant threats while limiting intersection.

3.6.2 Data Labeling

Threat intelligence IP data carries different meanings. To properly use this data, it is

critical to know what the indicators actually mean: whether they are Internet scanners, members

of a botnet or malicious actors who had attacked other places before. I have attempted to group

feeds by their intended meaning in my analysis.

However, this category information, which primarily comes from threat intelligence

sources themselves, is not always available. Feeds such as Alienvault IP Reputation and Facebook

Threat Exchange sources contain a significant number of indicators labeled “Malicious” or

“Suspicious.” The meanings of these indicators are unclear, making it difficult for consumers to

decide how to use the data and the possible consequences.

For feeds that provide category information, it is sometimes too broad to be meaningful.
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For example, multiple feeds in my collection simply label their indicators as “Scanner.” Network

scanning can represent port scanning (by sending SYN packets), or a vulnerability scan (by

probing host for known vulnerabilities). The ambiguity here, as a result of ad-hoc data labeling,

again poses challenges for security experts when using threat intelligence data.

Recently, standard threat intelligence formats have been proposed and developed, no-

tably IODEF [59], CybOX [36] and STIX [117], that try to standardize the threat intelligence

presentation and sharing. But these standards focus largely on the data format. There is room to

improve these standards by designing a standard semantics for threat intelligence data.

3.6.3 Limitations

There are several questions that this study does not address. I attempted to collect

data from a diverse set of sources, including public feeds, commercial feeds and industrial

exchange feeds, but it is inherently not comprehensive. There are some prohibitively expensive

or publication-restricted data sources that are not available to us. More specialized measurement

work should be done in the future to further analyze the performance of these expensive and

exclusive data sources.

A second limitation is my visibility into how different companies use threat intelligence

operationally. For a company, perhaps the most useful kind of metric measures how a threat

intelligence source affects its main performance indicators as well as its exposure to risk. Such

metrics would require a deep integration into security workflows at enterprises to measure

the operation effect of decisions made using threat intelligence. This would allow CIOs and

CSOs to better understand exactly what a particular threat intelligence product contributes to a

company. As a researcher, I do not use threat intelligence operationally. A better understanding

of operational needs would help refine my metrics to maximize their utility for operations-driven

consumers.

The third limitation is the lack of ground truth, a limitation shared by all the similar

measurement work. It is simply very difficult to obtain the full picture of a certain category
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of threat, making it very challenging to precisely determine accuracy and coverage of feeds.

In this study, I used data from an Internet telescope and VirusTotal as a close approximation.

There are also a handful of cases where a security incident has been comprehensively studied

by researchers, such as the Mirai study [11], and such efforts can be used to evaluate certain

types of threat intelligence data. But such studies are few in number. One alternative is to try

to establish the ground truth for a specific network. For example, a company can record all the

network traffic going in and out of its own network, and identify security incidents either through

its IDS system or manual forensic analysis. Then it can evaluate the accuracy and coverage of

a threat intelligence feed under the context of its own network. This can provide a customized

view of threat intelligence feeds.
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Chapter 4

Threat Intelligence Uses

In the previous chapter, I talked about the data characteristics of existing threat intel-

ligence products and their limitations. Given the current status of threat intelligence, another

side of the coin is how people are actually using the data currently. This question belongs to the

empirical study of data usage, as I listed in the introduction chapter.

As one can see, threat intelligence data can be used in a number of different ways. It can

be used forensically during incident response (i.e., to better understand and attribute a threat

after it has gained access to a network), it can be used reactively to generate alerts of suspicious

activity in a SIEM system (i.e., to raise awareness of a potential threat that is currently active),

or it can be used proactively to block traffic (and hence block the associated threats). This last

category of action, traditionally called “blacklisting”, is uniquely attractive to a defender since,

if effective, it can foreclose certain threats without requiring individualized attention from a

human analyst. Indeed, it is common to see such precise scenarios highlighted in the marketing

materials for virtually all threat intelligence offerings.

However, despite all the promises, it is far from clear how people actually adopt threat

intelligence data, especially for proactive traffic blocking. Proactively blocking traffic based on

threat intelligence data is a strong action, and as I showed in last chapter, threat intelligence feeds

can be far from comprehensive and may include significant numbers of false positives. This

could cause an organization to inadvertently block benign Internet sites. Moreover, on a broader
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scale, a mistakenly added IP in a threat intelligence feed can effectively be denied service from

all organizations using that feed to block traffic. Given this, it is important to understand the

extent to which network administrators are willing to use such third-party data to block network

traffic.

In this chapter, I will take the first step towards understanding this question. In particular,

this study seeks to better understand the extent to which network administrators make use of

threat intelligence IP feeds (more commonly known as IP blacklists) to proactively block network

traffic and, if they do, which kinds of data sources they are using for that purpose.

The principal challenge in pursuing this question is that such decisions are largely

invisible: a network choosing to block IP address x, is externally indistinguishable from one that

does not, except to the owner of IP address x. Moreover, for operational security reasons, few

organizations are willing to publicly document the details of their network defenses. Thus, there

is no simple mechanism to determine if a network blocks certain traffic, let alone a means to

determine the data source driving such a decision.

In this chapter, I explore this question via a combination of inference and careful testing,

resulting in three primary contributions. First, building on prior work designed to detect censor-

ship [43, 97], I develop, test and validate an inference technique using the IP ID side-channel to

detect network-layer blacklisting. Second, by using this technique with a carefully chosen set of

IP addresses, I am able to attribute blocking actions to the use of particular blacklists. Finally,

I conduct a large-scale pilot study covering over 220K U.S. hosts to explore the diversity in

blacklisting behaviors. Together, this work uncovers the use of 9 popular public IP blacklists

among the hosts I surveyed, and demonstrate relations between these hosts and their update

pattern on blacklists. I further investigate a broader use of blacklists among the hosts, and

discovered over 73K hosts has shown blacklist related blocking behavior.
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4.1 Related Work

4.1.1 Internet Connection Blocking

In this study, I focus on one specific way of how organizations use threat intelligence data:

use threat intelligence IP feeds as direct rule-set to block network traffic. This behavior is very

similar to other forms of Internet connection blocking, notably Internet censorship, geo-blocking

and Tor blocking.

Previous works have studied Internet censorship [12, 95, 7, 141, 30], geo-blocking [58,

85, 3], and Tor blocking [112, 66]. However, these measurement studies all rely on having

vantage points in the target regions, so the researchers can directly measure the network effects

and acquire the results. There are several public projects that facility such studies by providing

access points around the global, like RIPE Atlas [104], OONI [90] and ICLab [57]. For Tor

blocking, it is also not hard for the researchers to get access to a Tor exit node [66], then

conduct the following measurement from that node. But these studies are restrained by the

vantage points they could get, as it is hard to get these vantage points in large quantities, and

these points are also heavily biased towards certain networks. For country-wide censorship or

geo-blocking measurement, this is not a big issue. But in this case, since I want to conduct large

scale measurements over a broad set of online hosts, it is very difficult to acquire vantage points

that can meet my requirements.

Recent work by Ensafi et al. [43] and Pearce et al. [97] demonstrated the method to use

IP ID side channel to measure Internet connectivity. This is an indirect method that allows an

observer to measure the connectivity between two hosts without having access to either of the

hosts. In this study, since I do not have access to either the hosts on blacklists, this method is

an ideal method for this measurement. But I need to modify the original method to better suit

this experiment, and I also need to take extra effort to eliminate the interfering signals. I will

establish on the methodology in more detail in Section 4.2.
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4.1.2 IP ID Side Channel

The Identification (ID) field of an IPv4 packet is a 16-bit value in the IP packet header. It

is designed primarily to support IP packet fragmentation and reassembly. If a large IP packet is

fragmented when sent through the network, the receiving end will use this field to identify the

fragments from the same IP packet and re-assemble them. This requires the 16-bit value to be

unique for every datagram of a given source address, destination address, and protocol, such that

it does not repeat within the maximum datagram lifetime [99].

One easy way to implement the IP ID field for networking is to use a global counter. In

this case, a system uses one 16-bit variable to set the IP ID value for all the IP packets it sends

out, and increments the variable by 1 after every packet. This simple solution ensures the IP

ID value of all packets are unique, and it is how many early systems implemented their IP ID

mechanisms [70].

This implementation create a side channel that allows anyone without access to a host to

observe the traffic volume from that host. An observer, by probing the host twice separated by

some time interval and checking the corresponding IP ID increase, can learn about the number

of packets the host sent out during this period. This side channel can be used to observe many

different network effects, like host alias detection [116], where observers can detect if two online

hosts actually correspond to one physical machine by monitoring their IP ID changes, and NATed

host counting [17], where observers can identify the number of machines behind a NAT by

tracking the number of IP ID sequences from the packets comming out of the network.

In order to eliminate this side channel, new systems implement the IP ID generation

by using different counters for different traffic, so different observers will see a different IP

ID sequences from the same host. However, there are still a significant number of hosts on the

Internet that still use the global counter implementation. For example, Windows 8 and older still

use this implementation [70]. These hosts give us sizable amount of candidates to conduct this

measurement.

63



4.2 Methodology
In this chapter, I use the IP ID side channel (Section 4.1.2) to determine whether a

particular online host blocks traffic using one or more known blacklists. In brief, I begin by

identifying hosts that are suitable for this technique. I refer to such hosts as reflectors. Then I

randomly sample a set of IP addresses from IP blacklists that could be used to block traffic. Such

IP addresses will be refered as blacklist IPs. Then I measure if each reflector blocks packets

whose source addresses are blacklist IPs. If one reflector blocks all IP addresses I sampled from

one particular blacklist, then it is probably using that blacklist.

In this section, I first describe how the technique works at a high-level (Section 4.2.1).

Then I detail the method for identifying proper reflectors for the measurement (Section 4.2.3),

how to choose target blacklists to test (Section 4.2.4), and how to sample IP addresses from each

blacklist (Section 4.2.5). In Section 4.2.6, I explain the experiment design in detail and how it

works in real world scenarios. Section 4.2.7 further describes the steps I take for sanity check,

and in Section 4.2.8 I discuss the ethical considerations of the methodology.

4.2.1 Technique Overview

To measure if one reflector is blocking one particular IP from a blacklist, I send a train

of packets (here I use SYN-ACK packets) from the measurement machine to the reflector. The

packet train consists of packets whose source address is the blacklist IP (spoofed), bracketed

by packets whose source address is the measurement machine, as illustrated in Figure 4.1. If

a firewall in the reflector’s network blocks packets from the blacklist IP, the reflector will not

receive packets with the blacklisted source address. In this case, it will only receive packets with

the measurement machine’s source address. On the other hand, if there is no firewall blocking

such packets, the reflector will receive the entire packet train.

In an ideal world, where there is no packet loss during transmission and no extra traffic on

the reflector, one would see a clear difference in the IP IDs from the responses between the two

different scenarios. In particular, I expect the reflector to send a RST response for each SYN-ACK
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Figure 4.1. The basic method to detect network blocking using the IP ID side channel.

packet I send, and I will receive the responses for the SYN-ACK with the measurement machine’s

source address. The IP IDs of these received RST packets will reflect the number of packets

sent by the reflector. If the reflector did not receive the SYN-ACK packets with the blacklist IP

as source addresses(because they were blocked by a firewall), the IP ID sequence in the RST

responses will be an increasing sequence without gaps (the “Blocking” case in Figure 4.1). On

the other hand, if the reflector did receive the SYN-ACK packets with the blacklist IP, it would

have sent a RST packet in response to each such packet, incrementing the IP ID counter each

time. While I will not see the RST packets sent to the blacklist IP, I will observe the increments

in the IP ID sequence. More specifically, one would see a gap in the IP ID sequence of packets

received by the measurement machine (the “No Blocking” case in Figure 4.1). These two cases,

illustrated in Figure 4.1, allow us to determine whether a particular blacklist IP is blocked by

some network device, such as a firewall, somewhere between the measurement host and the

65



reflector. When there is no blocking in place (left), the measurement machine will see an IP ID

gap in two RST responses: the second IP ID will increase by two. Whereas if there is network

blocking (right), then the two IP IDs will not have a gap: the second IP ID will only increase by

one.

This measurement technique is inspired by the method proposed in previous work [43, 97].

However, to make it work for my objective I need to handle a few more important issues, as I

will see in the rest of this section.

4.2.2 Comparison with Previous Method

At a high level, the objective of the measurement is to determine, from a third point,

if a reflector blocks a blacklist IP. The blocking behavior that we want to measure is inbound

blocking – that is the incoming traffic is blocked and as a result traffic does not reach the intended

host. A typical example is a network firewall, where it can stop certain network packets from

reaching hosts behind the firewall. Here I abstract the reflector as HostA, blacklist IP as HostB,

and the problem is to detect the connectivity between two hosts on the Internet.

In previous works [97, 43], to measure the connectivity between two hosts from a third

party, they send spoofed packets to impersonate one of the hosts. This methodology – one I refer

to as the triangle measurement takes advantage of the TCP 3-way handshake protocol, as shown

in Figure 4.2.

The measurement machine first sends a probe to the HostA, in this case a TCP SYN-ACK

packet. HostA responds with a RST packet since it received a SYN-ACK without the preceding

SYN packet. Thus, the measurement machine gets the first IP ID IP-ID1 from the RST packet

(corresponds to Step 1 in the figure). Next, the measurement machine sends a spoofed TCP SYN

packet to HostB, with source IP address set to the IP address of HostA (Step 2). HostB then sends

a responding SYN-ACK packet to HostA, which causes HostA to respond with a RST packet

(Step 3), and increment its IP ID counter by 1. Finally, the measurement machine probe HostA

again and get the second IP ID IP-ID2 (Step 4).
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Figure 4.2. Measurement method used in previous work.

Now I can infer whether HostA is inbound blocking traffic from HostB by observing the

difference between IP-ID1 and IP-ID2. Assuming there is no packet loss, and that HostA does

not have any extra traffic besides my measurement traffic, then IP-ID2 = IP-ID1 + 2 implies

there is no inbound blocking, since it indicates that HostA received both packets in step 3 and

step 4, while IP-ID2 = IP-ID1 +1 means there is blocking.

Previous work chose this “triangle measurement” because it ensures that in step 3, the

packets from HostB will go through the same routes as the traffic originated from HostB. So

from HostA’s perspective, it can not identify that the traffic from HostB are spoofed. However, in

this schema, one hard requirement is that HostB needs to be active and responding to TCP SYN

probe. This is not an issue for censorship measurement, as HostB in this case are popular sites

(Google, Facebook, Twitter etc.) that guaranteed will respond to SYN probe.

However, in this case, I need to measure whether HostA is blocking traffic from a blacklist

IP(HostB). But there is no guarantee that these IP addresses are active and thus may not respond

to the SYN probe. In fact, we found that the percentage of responding IPs in a blacklist can be as
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low as less than 20%. This dramatically reduces the candidate IPs I can sample from a blacklist

to test, especially for small blacklists that only have a few hundred IPs. Furthermore, there are

many other additional constraints when shortlisting IPs for measurement from a blacklist. The

requirement that blacklist IPs respond to SYN probe does not work for this use case.

In order to get around this limitation I adjust the measurement methodology. In this new

methodology, the measurement machine directly sends spoofed packets to the target host, as

shown in Figure 4.3. In this case, the measurement machine first probes HostA to get the first IP

ID IP-ID1, then it sends a spoofed packet, with source IP set to HostB(Blacklist IP), directly to

HostA. Finally, it sends a second probe to HostA and get the second IP ID IP-ID2. Now I can use

the same logic as before to infer whether HostA is inbound blocking HostB. In this approach, I

do not require HostB to be actively responding SYN packets, any IP address can be used here to

conduct the test. The drawback is that the spoofed packets now at times go through a different

route versus the packets originated from HostB. Some network that implement spoofed packet

detection [47] could drop the spoofed packets, giving us a false signal of inbound blocking.

Therefore, when selecting hosts, I conduct extensive tests to weed out hosts that have such

detection logic in place. We find that not a lot of target hosts have such detection logic. I will talk

in detail about host selection in the follow sections.

The disadvantage of this approach is that we cannot detect outbound blocking — wherein

the spoofed packet reaches the reflectors but the responses are blocked when going out of the

network [97]. Based on our experience talking with several security companies, most customers

deploy inbound blocking or bi-directional traffic blocking, so we do not think missing outbound

blocking is a major concern.

4.2.3 Finding Suitable Reflectors

At a high level, my methodology relies on being able to infer blocking using the IP ID

side channel. Keeping that in mind, listed below is the criteria I look for when scanning the

Internet to search for suitable reflectors.
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Figure 4.3. Measurement method used in this work.

• RST packet generation: The reflectors must reply with a RST packet to a TCP SYN-ACK

packet without an established connection. Some hosts drop incoming SYN-ACK packets

if there is no corresponding SYN packet. These hosts are not suitable for my measurement

methodology. I choose SYN-ACK packets instead of SYN because it does not create an

intermediate state on the reflectors and connection is terminated in one go.

• Shared monotonic increasing IP ID counter: The IP ID counter in the reflector needs to

be globally shared, so all network traffic generated from the host will use the same counter

for IP ID assigning. It also needs to be monotonically increasing, so I can observe the

number of packets generated by the host between two measurements using the difference

of IP IDs.

• Low traffic: The technique requires the host to have low traffic volumes in general, since

the technique depends on the fact that I can observe a clear difference in IP ID increases

when sending spoofed packets. If there are always many other packets coming to the host,

it would be infeasible to observe the IP ID changes triggered by the measurement packets.

• No ingress filtering: I send spoofed packets to reflectors to infer traffic blocking. However,

some network providers utilize ingress filtering techniques and drop packets once they

detect the packets are not from the networks they claimed to originate. This would cause

the spoofed packets being dropped and give us a false signal of traffic blocking.
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• No stateful firewall blocking: Some networks deploy a stateful firewall that blocks access

from a source IP after receiving too many repetitive packets. One example is to defend

against SYN floods [75]. While I try to keep the number of the measurement packets as

low as possible, if the spoofed packets trigger such firewall rules and then I are blocked by

the firewall, I will incorrectly conclude that the reflector uses a blacklist to block that IP.

I try to uncover how online hosts are using IP blacklists to block traffic. But when looking

at the problem on a global scale, there are many policy related reasons why a host blocks network

traffic, such as censorship. These alternate sources of blocking could disrupt the measurement,

making it hard to distinguish the type of security-related blocking I target. To simplify the

problem, in this chapter I focus on the hosts in United States.

I find reflectors in the United States with open ports using a snapshot of Censys [25]

scanning data from November 8, 2019. Then I scan these 40 million hosts to identify the ones

with the IP ID side channel. I send multiple probes to each host targeting an open port from

different source addresses, and then check IP IDs in the responses. In the case where hosts have

multiple open ports, I randomly select a port to send the probe.

To identify stateful firewalls, I send SYN-ACK packets to each reflector in two different

patterns: 1 second per packet with 24 packets, and 5 packets per second with 60 packets, which

corresponds to the speed I probe reflectors during actually experiments (see the following section).

I repeat each experiment 6 times and discard the hosts that block us after the experiment. To

find the hosts with low extra traffic, I send 24 probes to each host, 1 per second, and repeat the

experiment 5 times at different times of the day. I then collect the result and only select the hosts

where more than 30% of their IP ID increases are equal to 1 per second — that is, the host did

not receive any extra traffic besides my probes, and all of the increases were smaller than 10

within a second.

Finally, I try to identify hosts experiencing ingress filtering. To account for differences in

ingress filtering that may possibly occur on different network paths to the reflectors, I acquired 7
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Table 4.1. The number of reflectors (IP addresses) identified in the United States, and the
corresponding count of /24 prefixes and Autonomous Systems.

Category Count

IP Addresses 222,782
/24 Count 128,712
Autonomous Systems 3,371

vantage points around the world to exercise different paths. These vantage points are from the

US west coast, east coast and midwest, and places in Asia, Europe, Australia and South America.

I then send spoofed packets from my measurement machine to the reflectors with spoofed

source addresses corresponding to the 7 vantage points, and later collect responses at each

vantage point. I only select the reflectors that send responses to all 7 vantage points, meaning

they did not drop spoofed packets on these network paths.

Eventually, I identified 222,782 IP addresses in US that meet the requirements.1 For the

purpose of this chapter, here I treat each individual IP address as a distinct reflector. Detailed

numbers are presented in Table 4.1.

By construction, the set of reflectors we use will necessarily have certain biases. To

understand what fraction of networks of potential interest to others this might cover, we queried

the Alexa top 100K domains as of Dec. 17th, 2019 for their A records and MX records and

obtained their corresponding IP addresses. Of these, we identified a total of 94,846 IPs that are

located in the US, covering 34,083 /24s. While no attempt was made to find reflectors of these

networks a priori, our selection methodology identified at least one reflector in 16.9% of these

/24s. When only looking at the top 10K domains, our data set covers 13.2% of US /24s.

We also checked the WHOIS record of each reflector and identified all hosts associated

with education institutions. In total, our data set includes 4,370 education IPs, ranging across 181

different institutions, and covers 40 out of the top 100 US universities based on the US News

ranking [129]. Thus, while there may be networks without a suitable reflector for one reason or

1I initially discovered more than 300K reflectors, but during my experiments some hosts became inactive. The
number reported here is the final number after I finished all the experiments.
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Table 4.2. Top 9 popular public IP blacklists.

Blacklist Average Number of IPs

Spamhaus DROP ∼ 20,000,000
Spamhaus Don’t Route Or Peer Lists
Spamhaus EDROP ∼ 900,000
An extension of the Spamhaus DROP list
DShield Top Blacklist 5,120
DShield.org recommended top 20 /24s to block
ET Compromised ∼ 400
EmergingThreats.net recorded compromised hosts
Snort IP Filter List ∼ 1,500
labs.snort.org supplied IP blacklist
BDS IP Ban List ∼ 6,000
Binary Defense System ban list
Feodo IP Blacklist ∼ 700
Abuse.ch Feodo tracking list
Blocklist De Blacklist ∼ 30,000
Blocklist.de blacklist IPs
Tor IP Blacklist ∼ 6,000
IPs that belong to Tor network (not just exits node)

another, our technique is applicable to a large number of existing networks.

4.2.4 Choosing the Blacklists

I choose candidate blacklists from public IP blacklists since I do not have access to

commercial blacklists. In this work, I use the FireHOL IP blacklist collection [49] which

aggregates over 100 public IP blacklists. However, I cannot reasonably test against all the

blacklists and so, for the purposes of this chapter, I would like to select the most popular public

IP blacklists and then do a more detailed measurement of them.

For each of the public IP blacklists, I sample five IPs (using the criteria in Section 4.2.5)

from each list and test how many reflectors block all sampled blacklist IPs in each blacklist (using

the method in Section 4.2.6). With this experiment, I generate a list of the most popular blacklists.

Of course, five sample points from one list is not a strong enough indicator to conclude whether

a host is using that blacklist or not. That said, the goal of this measurement is not to identify the
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exact hosts that use each blacklist. Rather, it is estimate how widely used these blacklists might

be so that I can use them for more detailed measurements. I repeat the measurement twice and

select the top 9 popular blacklists,2 as listed in Table 4.2.

Note, the Tor IP Blacklist is the combination of three Tor blacklists, as they mostly have

the same content. This is primarily done since the huge overlap between the three lists means

that I have very few blacklist IPs that meet my exclusive criteria (see Section 4.2.5). The Tor

IP Blacklist essentially includes IPs for all nodes in the Tor network, including entry nodes, so

the reflectors who block IPs on this list can neither be accessed from Tor nor use Tor services

themselves.

4.2.5 Sampling Blacklist IPs

For determining if a reflector uses a particular IP blacklist, I use a sample of IPs from the

blacklist to test since it is infeasible for us to test all blacklist IPs. Further, to obtain a definitive

signal from my measurement, I adhere to the following constraints when sampling blacklist IPs:

• Exclusive: A blacklist can share part of its contents with other blacklists. To reasonably

infer whether a reflector is using a specific blacklist, I need to test with the IPs that are

unique to that blacklist — IPs that are only in this blacklist, but no others.

• Stable: The IPs on a blacklist change over time. To reliably measure if a reflector blocks

IPs from a certain blacklist, I need the sampled IPs to stay in the blacklist throughout the

measurement. I discard any measurements where the blacklist IP does not remain on the

blacklist for the duration of the measurement.

• Routable: IP blacklists can contain unroutable IPs [77]. Sending packets with an un-

routable source address results in a large portion of packets being dropped (which could

potentially happen at the end ISP or the transient link). Packet drops due to unroutable IPs

2I initially selected 10 blacklists. However, one blacklist, abuse.ch Ransomware List, was discontinued by the
provider during my experiments, and so I removed that blacklist from consideration.
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would create noise in the measurement. Therefore, when sampling IPs from blacklists I

ensure that the IPs are routable.

• Geo-location diversified: Besides blacklisting, another common reason for a host to block

certain traffic is geo-blocking, where a host blocks all traffic coming from a certain country

or a certain region. To minimize the effect of geo-blocking, I prioritize IPs that are from the

United States when sampling IPs. The assumption is that a host in the US will not block

traffic from its own country. For IPs from other countries, I try to increase the diversity of

IP locations, making sure these IP are not concentrated in a few countries when possible.

• Not from the hosts’ network (AS disjoint): I observed many networks drop spoofed

packets when the spoofed source addresses are within their own network. So when selecting

IPs, I make sure that these IPs are not from the same ASes as one of the reflectors.

To obtain “exclusive” IPs from a blacklist, I would potentially need an “oracle” that

includes all IP blacklists, which is impractical. In this work, I use the public IP blacklists collected

by FireHOL, as mentioned earlier, to calculate the exclusive part of each target blacklist. For

“stable” IPs, I collect all the target blacklists hourly, and ensure the sampled IPs are in the

blacklist through the duration of the experiment. To satisfy the “routable” requirement, I use

the daily RouteView data [128] to identify BGP routable IPs. As for geo-location diversity, I

use Netacuity [88] to make sure for each experiment the sampled IPs cover as many different

countries as the data allows.

4.2.6 Experiment Design

Previously, I described the ideal model of the measurement method, which explained the

idea and workflow at a high-level. However, this model does not take into consideration packet

loss or extra traffic at the reflector. As one would expect, these assumptions are unrealistic in a

real world scenario, as packet loss can happen at many stages along the path. Furthermore, there

is no guarantee that the host with an open port online will not receive any other traffic. Thus, to
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perform the measurement in the real world, I need to take all these factors into consideration and

make sure that the analysis model is robust to these real world uncertainties.

Moreover, the detection methodology also needs to be efficient, accurate, and have low

overhead. Since I need to measure every pair of (reflector, IP), which is a very large

number, and the blacklist content changes rapidly, the detection method needs to be efficient

so that I can finish the measurement in a reasonable amount of time. The method should also

have a low false positive and false negative rate, so I can be confident about the result. Finally, it

should require as few packets as possible, both to meet network bandwidth limitations on the

measurement machine side and reduce impact on reflectors.

I define a trial as a single measurement that tests if a reflector blocks a blacklist IP.

Figure 4.4 shows the process of one trial in detail. The solid blue lines are the probe packets.

Dashed red lines are the spoofed packets. The spoofed packets impersonating blacklist IPs trigger

the increase of the reflectors’ IP ID. The IP ID of responses to probe packets are used to determine

blocking behavior. For each trial, the measurement machine sends five consecutive probe packets

to the reflector, with each packet being sent one second apart. In the experiment, the probe

packets are TCP SYN-ACK packets and I get IP IDs from response RST packets. Between the

third and fourth probe packets, the measurement machine sends five spoofed packets, also TCP

SYN-ACK, with source IPs equal to the blacklist IP. And between the fourth and the fifth probe

packets, it sends another five spoofed packets. Each time I send the five spoofed packets, I send

them 0.15 second apart consecutively, spreading them across the one-second window between

two IP ID probes.

Now, I inspect the increases between the IP IDs for the packets received by the measure-

ment machine. In an ideal world, when there is no other traffic generated by the reflector, and

no packet loss during the measurement, one should observe that the IP ID increases between

consecutive probes by exactly 1, and for the last two deltas, since I send the spoofed packets in

between the probe packets, the final IP ID increases will be different based on the host’s blocking

behavior.
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Figure 4.4. Blocking detection methodology.

If the reflector does not block the blacklist IP, then I will observe an IP ID increase

sequence in the received RST responses as:

[ +1,+1,+6,+6 ]

Here the last two deltas are +6 since the reflector does not block the blacklist IP and thus responds

to spoofed packets, causing IP ID to increase by 5, and the probe packet causes it to increase by

another 1, which together make +6.

On the other hand, if the reflector blocks the blacklist IP, then I will see an IP ID increase

sequence as:

[ +1,+1,+1,+1 ]

Here the last two deltas are +1 since the reflector blocks the blacklist IP, leading to no extra

change in IP ID.

The first three probes — corresponding to the first two IP ID deltas — act as a control.

The last two “probe and spoof” patterns perform the actual measurement. Seeing the initial
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two “+1” indicates this host is in a quiet period — no extra network traffic. Therefore, I can be

more confident that the following IP ID jump (“+6” in this case) is because of the experiment.

However, while I present the choice of the numbers in the experiment as fait accompli, there is a

rationale behind the choice of numbers which I discuss in Section 4.2.6.

Inference Criteria

Now I discuss how to infer whether a reflector is blocking a blacklist IP in the real world.

I have limited vantage points from the measurement machine, as such, and my information is

limited to the IP IDs I see from the reflector. Therefore, I would like to be very conservative

when making a judgment. In this measurement, my approach is to try the same trial, between a

reflector and a blacklist IP, many times until I get a “perfect signal” — a response which matches

all the criteria below:

1. The measurement machine received exactly five RST responses from the reflector.

2. The five responses are received one second apart consecutively.

3. The IP ID increase sequence in the five responses are either [+1, +1, +6, +6], which I will

conclude as no blocking, or [+1, +1, +1, +1], which I will conclude as blocking.

4. If any of the above three criteria are not met, I repeat the same experiment again. I repeat

up to 15 times before giving up.

Essentially, the first requirement ensures no packet loss. The second requirement ensures

responses I received reflect the real IP ID changes in the reflector. The Internet does not guarantee

the order of packet arrival. Although I send one probe packet per second, and send the spoofed

packets in between of the probe packets, these packets might not arrive at the reflector in the

same order. There is a similar case for response packets. Therefore, the IP ID sequence I get from

the response packets might not represent the real order of IP ID changes in the host. Requiring

that the received response packets are also close to 1 second apart, I minimize the probability of
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the reordered packets. In my experiment, I enforce that the response packets can not be less than

0.85 or more than 1.15 seconds apart.

The third requirement is the core of my inference logic. I want to be conservative when

concluding whether there is blocking or not, so I will make the judgment only when I observe an

IP ID increase sequence [+1, +1, +1, +1] or [+1, +1, +6, +6], and ignore everything else. Then

if I saw a sequence of [+1, +1, +1, +1] but the host is not blocking the blacklist IP, that would

mean all the 10 spoofed packets were lost during the transmit. On the other hand, if I see [+1,

+1, +6, +6] and the host is actually blocking the blacklist IP, then that would mean during the

experiment, there are exactly five extra packets generated by the host during each of the last two

windows. Both cases are very unlikely to happen, and I will show a concrete analysis of false

positives and false negatives in the remainder of this section.

False Positive and False Negative Analysis

For the experiment, a “false positive” is when a host is not blocking a blacklist IP, but

I mistakenly conclude it is blocking. On the other hand, a “false negative” is when a host

is blocking a blacklist IP, but I mistakenly conclude it is not blocking. With reflectors being

collected, I can empirically evaluate the probability of a false positive or a false negative precisely.

For false positive evaluation, I first acquire a list of IPs that are verifiably not being

blocked by reflectors. Since I own these IPs, I can easily verify that by directly probing reflectors

from these IPs. I acquired and tested 1,265 IPs from five different /24s. Then I probe reflectors

and send the spoofed packets with source addresses set to these pre-selected IPs. Since I know

that these IPs are not blocked, if I observe an IP ID increase sequence of [+1, +1, +1, +1], then I

know it is a false positive.

For false negative, I run the experiment with only probe packets, and no spoofed packets.

This is equivalent to the scenario where the host blocks the spoofed IP. Then if I observe an IP

ID increase sequence of [+1, +1, +6, +6], then I know it was due to the background traffic at the

reflector and hence is a false negative.
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Figure 4.5. False positive rates and false negative rates of the technique when spoofing different
amount of packets.

Although I have presented the design where I spoof five packets in each of the last two

seconds, I also experimented with a range of numbers and calculated their false positive and

negative rates. I tested with spoofed packets equal to 3, 4, 5, 6, 7 respectively. For each number,

I use 15 distinct IPs I own as the source addresses to spoof, and I create another group with

15 place holder IPs where I do not send spoofed packets during the experiment. I run each

experiment twice, and the final results are shown in Figure 4.5.

A few things stand out. The false negative rate drops significantly when I send 5 spoofed

packets. Surprisingly, the false negative rate jumps up slightly when I spoof 6 packets. On the

other hand, the false positive rate keeps marginally trending downwards as I increase the number

of spoofed packets. I try to make the trade-off between having low false positive and negative

rates, but at the same time generating as little traffic as possible. I choose 5 spoofed packets as a

balance. By sending 5 spoofed packets, I get a false positive rate of 2.5e-5, and a false negative

rate of 8.5e-5.
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Furthermore, I also experimented with strategies where I send 4 probe packets, from

which I get 3 IP ID deltas, and sending 6 probe packets, from which I get 5 IP ID deltas. With

only 3 deltas I suffer a higher false negative rate, as it is easier for the reflector to show the

same IP ID increase sequence with extra traffic. With 6 probes, on the other hand, I prolong the

experiment, and more importantly, it is harder for us to get the “perfect signal” since it is harder

to capture a period with no other traffic when the time window is longer. Thus, the choice of 5

probe packets with 5 spoofed packets in between is a trade-off between multiple factors.

Here we use a different mathematical model than the sequential hypothesis testing

proposed in previous work [97]. We choose this simple and stringent method primarily because

we try to be extremely conservative. Also, we like to keep each trial “short”—with only 5

seconds— to make the overall experiment faster, as we intend to use this technique for a large

scale measurement. Using a statistical model could potentially cover more hosts, but there will

not be a fundamental difference, since in either case we still rely on the fact that reflectors having

a minimum amount of extra traffic.

4.2.7 Control Group

To further validate the measurements, every time I test a set of blacklist IPs against each

reflector, I also include a control group of 20 randomly chosen IPs. These IPs are chosen from

networks geo-located in the United States. I further ensure they do not appear on any of the

blacklists, they are BGP routable, and they are not from the same ASes as the reflectors. The

purpose of the control group is to create a random set of IPs that are unlikely to be blocked in

bulk by a reflector. I use US IPs to avoid the potential problem of geo-blocking. If a reflector

does block a significant fraction of control IPs, it is probably because the reflector is not suitable

for this methodology (one reason can be that the ingress-filtering step did not catch these IPs).

I discover 91 reflectors that constantly show blocking behavior for all control IPs, while the

remaining reflectors never block more than 10 of the control IPs. I conclude that these 91

reflectors are not useful for measurement, and remove them from the total reflector set.
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4.2.8 Ethical Considerations

In our experiments, we send spoofed packets to reflectors impersonating traffic from

other IPs to infer the presence of network-layer blocking based on IP blacklists. A key ethical

concern with this kind of measurement is the extent to which either receiving such packets or

being seen to have received such packets would put the recipients at undue risk. Indeed, this

is particularly problematic in censorship measurements [43, 97] because of the potential to

inadvertently cause a host to be associated with content that is politically dangerous in their

country. However, our work operates in a context that is substantially less risky, and we have

further designed multiple aspects of our protocol to minimize the likelihood of risk. In particular,

our methodology incorporates the following approaches to minimize risk:

Restriction in Scope: We have specifically restricted our measurements to only reflectors

within the United States, which affords relatively robust free speech rights and considerable

transparency around criminal proceedings. Indeed, from our conversations with both network

operators and law enforcement, we are unaware of a realistic scenario where the mere receipt of

a packet, regardless of its declared origin, has led to criminal or civil liability.

Conventional sources: Unlike in censorship studies, the source IP addresses being

spoofed are those that have been used to mount wide-spread abusive activity such as spamming,

port scanning, etc. and these represent precisely the kinds of traffic that a typical host on the

Internet would expect to receive (This is the very theory behind using such blacklists). Thus,

while the traffic we generate may appear malicious, it will be precisely the kind of malicious

traffic we all experience via typical Internet background radiation [94].

Inbound, connection-free probes: Our measurements are constructed to be inbound

only and connection free; that is, a network monitor could witness traffic consistent with an

external scan of one of their hosts, but will never witness a completed connection or any data

transmission. The only traffic ever sent by reflectors are RST packets. From our discussions with

network operators and network security equipment vendors, we could not identify a scenario
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Figure 4.6. Breakdown of reflector blocking based on three experimental runs.

where the mere receipt of the packets we send would be sufficient to drive an incident response

team to action.

Minimal use of end-host resources: Our scans are purposely constructed with SYN-

ACK packets to ensure that no state is created on the reflector. Moreover, our peak probing rate

per reflector is 6 min-sized packets per second, but even that rate only persists for two seconds in

each test, and in the following pilot study, we probe each reflector no more than once every 3

minutes.

4.3 Overall Reflector Blocking
The methodology provides the basis for performing blacklist blocking measurements

at scale: a measurement technique to confidently determine whether a reflector is blocking a

particular IP address, a viable set of reflectors that are compatible with the technique, and a set of

public security-related blacklists that provide a large set of candidate IPs that hosts might block.

In this section, I describe my large-scale experiment that uses this methodology for determining

which reflectors block IPs on the public blacklists, and which IPs they block. I then present

the overall results of the blocking behavior of reflectors, and subsequent sections explore the

different behaviors in more detail.

For a particular experimental run, I randomly selected 25 IPs from each blacklist that

satisfies the requirements defined in Section 4.2: exclusive, stable, routable, geo-diversified,
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and AS disjoint. Then I evaluated the blocking behavior for all 220K reflectors against the 225

blacklist IPs sampled from all nine blacklists. To increase the chances that these sampled IP will

be stable, also to handle cases where reflectors might update the blacklists slowly(a reflector

might take a long time to start blocking the newest IPs in a blacklist, although I discover later

that it is not the case, see Section 4.4.2), I ensure the sampled IPs have stayed in the blacklist for

at least 2 weeks before the experiment. Since for each blacklist, an experimental run can takes

days to perform, as a post-processing step I remove blacklist IPs from consideration that did not

remain on the blacklist for the duration of the experiment.

To increase the amount of evidence of blacklist blocking behavior, I conducted three

experimental runs, each time using a different set of 25 IPs from each blacklist. I then conclude

that a reflector is using a blacklist if only if all experiment runs show that it blocked all the

sampled stable IPs from that blacklist.

I conducted the measurements from December 3–23rd, 2019. During this period, I tested

96,067,051 distinct (reflector,IP) pairs3. Based upon the criteria from Section 4.2, I are able

to conclusively determine the blocking behavior (blocking or not blocking) of 98.3% of the

tested pairs. Among these pairs, 894,570 pairs display a clear signal indicating “blocking”.

Figure 4.6 presents the blocking behavior of all 222,782 reflectors I tested partitioned into

four categories: those reflectors that I conclude use at least one of the public blacklists (1.9%),

reflectors that block a large fraction of IPs on at least one blacklist in every experiment(0.4%,

see more in Section 4.5), remaining reflectors that block at least one blacklist IP (20.8%), and

reflectors that do not block any blacklist IPs (76.9%). (I identified 4,253 reflectors that use at

least one blacklist (Section 4.4). I also discovered reflectors that block a significant fraction

of blacklist IPs, due in part to geo-blocking (Section 4.5). Finally, I identified a large number

of reflectors blocking at least one IP, suggesting wider use of a much larger set of blacklists

(Section 4.6).) Note that given the requirements for hosts to be reflectors, such as running old

3The first two experiment I tested against all reflectors, the last experiment I only tested against the ones that
have shown blocking behavior in the first two tests
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Table 4.3. The number of reflectors using each of the nine different blacklists, as well as the
number of unique /24s and ASes those reflectors appear in.

Blacklist (abbr.) Reflectors /24s ASes

Spamhaus DROP (DROP) 4,142 1,782 50
Spamhaus EDROP (eDROP) 1,272 362 25
DShield Top Blacklist (DTop) 223 69 18
ET Compromised (ET) 116 58 15
BDS IP Ban List (BDS) 85 41 3
Feodo IP Blacklist (Feodo) 64 26 16
Snort IP Filter List (Snort) 52 20 11
Blocklist De Blacklist (DE) 36 18 8
Tor IP Blacklist (Tor) 24 9 8

Total Unique 4,253 1,827 77

OS versions, it is not surprising a large percentage shows no blocking of the blacklist IPs: they

already have attributes anti-correlated with high degrees of security hygiene. Consequently, I

want to emphasize that one should not conclude that this percentage is representative of all hosts

on the Internet.

These high-level results provide the foundation for additional analyses and experiments,

and going forward I further investigate each of these categories of reflector blocking behavior

in turn. Section 4.4 explores blacklist use among the reflectors, Section 4.5 then examines

significant partial blocking behavior (including geo-blocking), and Section 4.6 explores how

reflectors that show any blocking behavior can be used as evidence of much broader use of

blacklists. As a final analysis, Section 4.7 studies the consistency of reflector blocking behavior

at a coarser granularity.

4.4 Reflectors Using Blacklists
In this section, I focus on the reflectors that use the blacklists I study, including the

relative popularity of the blacklists, patterns in the use of multiple blacklists, and the rate at

which reflectors update. I also use external sources of ground truth to validate my findings.

Overall, I conclude from the results in this section that my methodology is indeed effective at
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Figure 4.7. CDF of the number of blacklists used by reflectors

identifying blacklist use from a remote third-party vantage point.

Recall that I use three experimental runs that test whether reflectors block 25 randomly

chosen IPs from the blacklists, and only conclude that a reflector uses a blacklist if it blocks all

stable IPs on that blacklist across all runs. Based on these criteria, I identified 4,253 reflectors

that use one of these public blacklists. Table 4.3 shows the number of reflectors using each of the

nine different blacklists, as well as the number of unique /24s and ASes those reflectors appear

in.

Spamhaus DROP is by far the most popular blacklist in the collection, followed by

Spamhaus EDROP. The remaining blacklists have a comparatively small number of reflectors

using them. On one hand, since many aspects of my methodology and experiment make con-

servative choices, these results should be considered a lower bound. On the other, one should

have very high confidence in these results: I believe these reflectors are actually on networks that

block the IPs on these blacklists.

85



4.4.1 Multiple Blacklist Use

For the reflectors using at least one blacklist, Figure 4.7 shows the cumulative distribution

of the number of blacklists they use. At least for the most popular public blacklists I study, most

use just one. Over 68.6% use just one blacklist, 23.8% use two or more, and only 7.6% use three

or more. I find one reflector using six of the nine blacklists – the most I see in my study.

For these reflectors, though, there are interesting patterns to the multiple blacklists used.

Figure 4.8 shows the use of multiple blacklists with a heatmap. Each cell shows the fraction of

the reflectors using the blacklist in the row R that are also using the blacklist in the column C:

|R∩C|/|R|. Rows and columns correspond to blacklists, and each cell of the heatmap shows the

fraction of the reflectors using the blacklist in row R that are also using the blacklist in column C.

For example, the first cell for ET Compromised shows that 78% of the reflectors that use ET also

use the Spamhaus DROP blacklist. Diagonal cells are 1.00 since they show blacklists compared

with themselves.

The first cell of the Spamhaus EDROP row indicates that all reflectors that use Spamhaus

EDROP also use Spamhaus DROP. Since the eDROP list is an extension of the DROP list, the

behavior is strongly consistent with expectations (and, as such, is also a minor validation of

the methodology). Moreover, the many significant values in the first two columns show that

reflectors that use any of the other blacklists very often also use Spamhaus DROP and eDROP.

These results underscore the popularity of Spamhaus DROP, and indicate that if a reflector

blocks traffic using blacklists, it very likely uses Spamhaus DROP.

4.4.2 Reflector Update Latency

The objective of IP blacklists is to capture the most up-to-date IPs associated with

malicious activities. As new threats come and go on the Internet, the content on the lists keeps

changing. This dynamic nature of underlying threats and thus the IPs on the blacklists underscores

the importance of reflectors keeping their blacklists recent. The goal of our next experiment is to

estimate the delay between when new IPs appear on a blacklist and when reflectors start blocking
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Figure 4.8. Pair-wise overlap of reflectors using the different blacklists.

them.

Because a single pass of the full set of reflectors takes hours, we examine the blacklist

update behavior of reflectors at the granularity of a day. For each blacklist we identify newly

added IPs between two consecutive days, and consider only those new IPs that were not on

the blacklist in the prior two weeks. For this measurement, the blacklist IPs do not need to

be exclusive, but still need to be routable. One day after the new IPs appear on a blacklist,

we then test whether the reflectors using that blacklist now block these IPs, we repeat the

experiment daily afterward if necessary. We also conduct this latency experiment twice to ensure

consistent results(Since Tor IP Blacklist is a synthesized list, we did not measure the update

latency regarding this blacklist).
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Aside from one outlier, we find that all reflectors track updates to the blacklists. The

reflectors that use the six non-Spamhaus blacklists all update within the one-day period. The

outlier is a group of reflectors using Spamhaus DROP that stop updating after late October 2019

(We observed this by testing with the newly added IPs in Spamhaus DROP in the past), all the

other reflectors that block Spamhaus DROP update within one-day period. After investigating,

we found that all these outlier reflectors are located in one organization (a hosting provider). We

suspect this organization stops updating their list after that October.

For Spamhaus EDROP, it hasn’t added new IPs since Dec 17, 2019 as of Feb 14, 2020.

We tested all the corresponding reflectors with the newly added IPs in Spamhaus EDROP back

on Dec 17, 2019 and before, and found all the reflectors are update to date.

4.4.3 Validation

We are able to infer the use of blacklists for various hosts from our measurement. Ideally,

we would also want to validate our findings. After checking the organizations where our reflectors

are from, we reached out to 2 universities that we conclude are using blacklists. We got the

ground truth regarding the exact blacklists they are using, and successfully validated our findings.

More specifically, University A confirmed our findings that they use BDS IP Ban List, ET

Compromised, Spamhaus DROP and Spamhaus EDROP. University B confirmed our finding

that they use Spamhaus DROP and Spamhaus EDROP.

4.5 Partial Blocking
When performing the experimental runs I noticed that a small percentage of reflectors

consistently blocked a significant subset of blacklist IPs, but not all, in every experiment. This

consistency suggests that, while the reflector may not use the exact blacklist, there is a large

overlap between the blacklist and the blocking policy of the reflector. We refer to such reflectors

as exhibiting significant partial blocking behavior. Figure 4.6 shows these reflectors are just 0.4%

of all reflectors that I tested, but they still correspond to 21% of the number of reflectors that

88



perfectly block at least one blacklist and therefore motivate further investigation. As a result, in

this section I characterize this partial blocking behavior in more detail.

4.5.1 Geo-Blocking

Geo-blocking is one type of blocking I identified that contributes to this partial blocking.

A reflector using geo-blocking will drop all traffic from a particular country. Organizations

typically use geo-blocking either for policy reason (e.g., block GDPR countries [16]), or for

security reasons (e.g., block countries that are sources of attacks, such as Russia or China). If a

reflector uses geo-blocking, one will observe it blocking IPs on a blacklist if those IPs happen to

be located in a blocked country. Although I take extra efforts to increase the geo diversity when

sampling IPs(Section 4.2.5), this kind of overlap can still be exacerbated if a blacklist happens

to have concentrations of IPs from particular countries. For example, DShield Top Blacklist on

January 25, 2020 had over 50% of its IPs geo-located in the Netherlands. If a reflector blocks

traffic from the Netherlands, then I would observe that the reflector is partially blocking DShield

Top Blacklist.

To identify whether a reflector uses geo-blocking, I test whether the reflector consistently

blocks a set of IPs from a particular country. For all countries related to blacklist IPs that I

test, I first enumerate the IP address prefixes for those countries using four IP-based location

services: MaxMind [84], IP2Location [60], IPDeny [61], and IPIP.net [62]. For each country, I

then randomly select 20 IP addresses from those prefixes such that: (1) all four location services

agree on the country label for the IPs, (2) the IPs do not appear on a blacklist, and (3) the IPs are

BGP routable. Then for all reflectors, I test whether it blocks all of the randomly-chosen IPs for

each country. If it does, then I conclude that it uses geo-blocking.

I tested the reflectors against 20 countries in total, ranging from large countries like

Russia and China to small island countries like Singapore and Seychelles. Overall, only a small

number of reflectors, 614 (0.28%), block at least one country, and 432 block at least two. China

is blocked most often, with 501 of the 614 reflectors blocking random IPs in China. Russia is
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Table 4.4. Number of reflectors exhibiting significant partial blocking on each blacklist.

Blocked over 75% Blocked over 50%
Blacklist Hosts /24s ASes Hosts /24s ASes

DROP 28 18 3 23 21 3
eDROP 96 60 32 49 27 18
DTop 157 66 19 319 165 72
ET 13 7 6 31 19 17
BDS 8 5 5 7 7 7
Feodo 65 30 19 23 17 15
Snort 11 9 7 34 20 17
DE 148 38 1 13 11 4
Tor 63 35 26 31 19 16

Total 492 207 71 459 257 108

second at 376, followed by Hong Kong (177) and Vietnam (175). European countries including

Belgium, Netherlands, and France also have over 60 reflectors blocking them.

Note that the methodology identifies geo-blocking at the network layer. Other forms of

geo-blocking exist, such as application-layer blocking (e.g., HTTP 403 Forbidden). I do not

explore all possible geo-blocking mechanisms since my goal was to identify reflectors using

geo-blocking at the network layer.

4.5.2 Significant Partial Blocking

In addition to geo-blocking, there are reasons why a reflector may block a blacklist IP

that is not due to the reflector using that blacklist. A host may have internal policies that deny

access from some network providers, or network administrators may add IPs into their firewall

on an ad-hoc basis based on an organization’s internal strategies or policies. These alternate

blocking behaviors could overlap with the blacklist IPs I sampled, leading to partial blocking

behavior in the results.

Having identified reflectors using geo-blocking, I remove these reflectors from further

consideration. I then calculate two groups of reflectors: for each blacklist, I identify reflectors

that partially block over 75% of the sampled IPs every time I test them, and another group where
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they partially block over 50% of the sampled IPs.

For each blacklist, Table 4.4 summarizes the number of reflectors that fall into each

category. If a reflector is blocking more than 75% of the sampled IPs every time, it is plausible

that the reflector is using a source that is very similar to the blacklist I tested. For instance,

there could be other blacklists where the data collection methodology is similar to the method

used by the public blacklists in this study. Previous work has shown that commercial products

can aggregate data from public blacklists, and that they potentially conduct post-processing to

eliminate some content [77].

I suspect that the partial blocking behavior in Table 4.4 likely results from such cases. In

particular, the number of reflectors that are partial blocking DShield Top Blacklist is relatively

high compared with other blacklists—it covers over 30% of all reflectors in the first group and

over 69% in the second group, suggesting that this list may be relatively frequently included into

other lists.

4.6 Beyond The 9 Blacklists
Previously I chose blacklist IPs that were exclusive to each blacklist, effectively creating

a set of IPs that served as a signature for that blacklist. But as one can see from Figure 4.6,

there are over 20% of reflectors that blocked at least one blacklist IP during one of the three

experiments, and I do not have a clear explanation. One possible case is that the blacklist IPs

I sampled happen to overlap with some commercial blacklists we do not know, and those lists

are more widely used. To check this possibility, I change the blacklist IP sampling criteria and

conduct a new experiment.

Now my goal is the opposite: I want to choose among common, or shared, IPs that appear

on multiple blacklists. As added caution, I also focus on shared IPs that are the most stable,

appearing on the blacklists for at least three weeks. The goal is to bias selecting blacklist IPs that

are so egregiously suspicious that not only do they appear on multiple of the public blacklists

for a long period of time, but as a result they also likely appear on other public and commercial
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Figure 4.9. Number of reflectors (y-axis) that block at least some number of blacklist IPs
(x-axis)

blacklists that I do not have access to.

For this experiment I randomly selected 80 blacklist IPs that appear on more than one

blacklist and, as with previous experiments, that are routable and AS disjoint. I refer to this set

as the “Shared” blacklist IPs. For comparison, I also randomly selected a set of 80 blacklist IPs

from the previous experiment, the ones that are exclusive to one blacklist (“Exclusive”), and a

random set of 80 IPs as a whitelist set (“Whitelist”), again with the routable and AS disjoint

criteria. Here the whitelist is constructed by randomly sampling IPs from top 10,000 most visited

IPs among all the network traffic in the own organization in one day (an education institute of

over 30K students and faculty).

For each of these sets of 80 blacklist IPs, Figure 4.9 shows how many reflectors block

the same number of IPs as a distribution over the number of blacklist IPs blocked. (I evaluated

multiple random sets of shared blacklist IPs to see whether the random selections introduced

noticeable variance. Since the results were very consistent across the different random sets, for
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Table 4.5. Blocking behavior of reflectors with the top 12 most-blocked blacklist IPs.

Granularity
Blacklist IP IP /24 AS

178.73.215.171 25,749 175 210
185.176.27.98 15,560 5,598 1,690

185.175.93.103 13,550 1,155 1,224
92.63.194.115 11,889 2,028 1,442
176.10.99.200 9,049 466 238
185.156.73.54 8,863 1,623 5,441
80.67.223.41 6,689 624 624

176.100.109.3 4,871 553 610
171.25.193.25 4,468 212 148
216.239.90.19 4,421 56 39
185.220.102.8 4,297 273 273
62.210.37.82 4,058 528 300

clarity I just show results for one of them.) For example, for “Exclusive” blacklist IPs only 2,649

reflectors block 10 or more IPs. In contrast, for “Shared” blacklist IPs that appear on more than

one blacklist, far more reflectors block them. Over 73K reflectors block at least one IP from

the shared set, and 5,412 reflectors block 10 or more IPs. In contrast, for the whitelist set, there

are only 202 reflectors that block 10 or more whitelist IPs(I checked these whitelist IPs and

found the most blocked ones are from Cloudflare, which is a popular CDN network but known

to associate with malicious activities). These results suggest that the number of Internet hosts

that potentially use security-related traffic blocking is much larger than just the ones that use the

public blacklists I study.

Of course, it is possible that this more extensive blocking behavior is not a result of

security-related blocking, but rather because of other blocking policies such as geo-blocking.

One notable difference, though, is that security-based traffic blocking usually targets individual

IPs, whereas other policy-driven blocking can target a specific network or subnet. As another

experiment, I check whether the blocking I observed indeed targets individual IPs, or instead

larger network blocks. I select the top 12 IPs where they have the most amount of reflectors

blocking them in the previous test. For each of these blacklist IPs, I randomly sample another
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Table 4.6. The blocking consistency of the reflectors in /24 prefixes with more than one reflector.

Consistent Almost Consistent Inconsistent
Blacklist No Blocking (%) Consistent (%) Off By One (%) Inconsistent (%)

BDS IP Ban List 35,540 (88.19%) 398 (0.99%) 2,332 (5.79%) 2,030 (5.03%)
Blocklist De Blacklist 40,228 (99.82%) 24 (0.06%) 13 (0.03%) 35 (0.09%)
DShield Top Blacklist 39,603 (98.27%) 393 (0.98%) 138 (0.34%) 166 (0.41%)
ET Compromised 39,535 (98.10%) 298 (0.74%) 102 (0.25%) 365 (0.91%)
Feodo IP Blacklist 39,943 (99.11%) 195 (0.48%) 42 (0.10%) 120 (0.31%)
Snort IP Filter List 39,830 (98.83%) 250 (0.62%) 88 (0.22%) 132 (0.33%)
Spamhaus DROP 39,320 (97.57%) 750 (1.86%) 30 (0.07%) 200 (0.50%)
Spamhaus EDROP 39,792 (98.73%) 349 (0.87%) 36 (0.09%) 123 (0.31%)
Tor IP Blacklist 40,000 (99.25%) 165 (0.41%) 43 (0.11%) 92 (0.23%)

Overall 353,791 (97.54%) 2,822 (0.78%) 2,824 (0.78%) 3,263 (0.90%)

Control Group 40,255 (99.89%) 3 (0.01%) 37 (0.09%) 5 (0.01%)

three IPs from the same /24, and randomly sample another four IPs from the same AS. For all of

these IPs, I then measure how many reflectors block each of them.

Table 4.5 shows the number of reflectors that block the top 12 blacklist IPs, the random

IPs from the same /24 as the blacklist IPs, and the random IPs from the same AS ( The second

column shows the number of reflectors that block the particular IP, the third column shows the

maximum number of reflectors that block IPs from the same /24, and the last column shows the

maximum number of reflectors that block IPs sampled from the same AS.). These results confirm

that reflectors exhibit blocking behavior targeting specific IPs rather than larger network blocks.

Indeed, searching the Web based on these blacklist IPs returns reports linking these IPs to a range

of malicious activities, including massive port scanning, brute-force login attempts, and sending

spam. That said, although I do not know the exact feeds these hosts are using, the results suggest

that security-related network blocking is prevalent even among hosts such as these reflectors.

4.7 Blocking Consistency
As a final analysis, I explore the consistency of reflector blocking behavior at a coarser

granularity. A common use case of blacklists is at the granularity of an organization, often via

some kind of network appliance. In such a scenario, I would expect the blocking behavior of
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reflectors to be consistent across an organization: if one reflector blocks a blacklist IP, then other

reflectors in the same organization should also block it.

Ideally I would like to map reflectors to organizations to answer this question. However,

mapping an IP to an organization is a challenging problem, particularly with the increasing use

of WHOIS anonymization. Instead, I use the common, more tractable technique of aggregating

reflectors by their /24 prefix. As a result, in this section I answer a methodological question: If I

aggregate reflectors by their /24 prefix, do the aggregated reflectors exhibit consistent blocking

behavior? Is the /24 prefix aggregation a useful proxy for expected consistent blocking by

organizations?

My data set has 134,370 reflectors that are part of /24s with more than one reflector. For

each blacklist, I categorize the blocking behavior of multiple reflectors in the same /24 into one

of three categories: consistent, almost consistent, and inconsistent. I define a /24 to be “consistent”

for a blacklist if all the individual reflectors in that /24 block the exact same blacklist IPs. A /24

is “almost consistent” if the blocking behavior of the reflectors in a /24 differs only by one IP.

For example, a /24 is “almost consistent” if it has four reflectors, three of which block the same

21 IPs from a blacklist, and the fourth reflector blocks 20 out the same 21 IPs. Finally, I consider

all other /24s “inconsistent”.

Using these definitions, Table 4.6 shows the consistency results for all the /24s that

have more than one reflector. The results are dominated by /24s that do not show any blocking

behavior. I consider such /24s consistent since all the hosts under these /24s block the same

number (zero) of blacklist IPs, but these cases also do not provide much insight.

Excluding the “no blocking” cases, then in the presence of any blocking, consistency of

blocking behavior at a /24 granularity is far from guaranteed. As discussed in Section 4.2.6, the

measurement technique has very low false positive and false negative rates. Measurement error

can potentially explain some “almost consistent” cases and perhaps some “inconsistent” cases,

too. However, the consistency results for the control group, comprised of 20 randomly sampled

US IPs (Section 4.3), shows that the potential effect of measurement error on consistency is
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small. In other words, the inconsistent cases do indeed demonstrate different blocking behavior

among hosts within the same /24.

One situation that could lead to inconsistent blocking behavior within a /24 is when the

network belongs to a cloud or hosting provider, and the IPs within the same /24 are used by

distinct entities. For instance, when manually examining the inconsistent /24s for BDS IP Ban

List (which has the highest inconsistency), I found more than 60% of these /24s belong to cloud

or hosting providers. Another situation leading to inconsistent block behavior is when a /24

belongs to an ISP which sub-allocates IP addresses to different customers.

In summary, the results indicate that one can not assume consistent blocking behavior for

reflectors in the same /24 network.

4.8 Discussion
In this chapter, I implement and test a technique for inferring the deployment of network

layer blacklisting and, further, for attributing the use of particular blacklists in particular networks.

There are a range of limitations in this pilot study, most significantly including potential selection

bias arising from using quiescent U.S. hosts running older versions of Windows. This is a

limitation of the methodology itself. Another limitation lies in the fact that I exclusive use public

blacklist data (i.e., since I do not have access to high-priced commercial threat intelligence feeds

which could be distinct).

However, even given these limitations, the measurements of 220K hosts reveal a number

of interesting artifacts. First, I discovered the widespread use of some kind of network layer

blocking (affecting over a third of hosts in the data set) even if it is not consistent with membership

in any of the lists I track. This demonstrated the prevalence of security related blocking even

among machines with low security hygiene. Most most previous network disruption measurement

explain the reason as censorship (whether nation wide or at corporate level). My work highlights

the prevalence of security related blocking, which serves as a reminder that for all the following

network connectivity study, researchers should always keep in mind the possibility of security
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related blocking.

Second, I find that there is evidence of intra-network diversity in traffic blocking policy.

While a number of network prefixes have consistent blocking behavior across multiple hosts,

quite a few do not, suggesting different network security policies are being employed on different

subnets. This implies that when measuring network behaviors, researchers should not assume

the consistency within a network.

Finally, for blacklist use that can be precisely attributed the most widely used blacklists

(Spamhaus DROP and eDROP and DShield Top) are also those that have extremely low false

positives. 4 This suggests that for many networks proactive traffic blocking is gated on having

lists of sufficient accuracy to remove the risks of accidentally blocking legitimate traffic.
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Chapter 5

Conclusion

This dissertation focuses on using empirical approach to study problems surrounding

threat intelligence. In Chapter 3, I proposed a set of simple but also fundamental metrics,

and measured a broad set of threat intelligence sources, and reported the characteristics and

limitations of threat intelligence data. In Chapter 4, I designed a method and conducted a large

scale measurement on how online hosts are using threat intelligence data. To summarize, I will

first highlight the lessons I learned from my studies, and then discuss the takeaways of my study

for the community. Here are the high-level lessons from my threat intelligence study:

• Threat intelligence feeds, far from containing homogeneous samples of some underlying

truth, vary tremendously in the kinds of data they capture based on the particularities

of their collection approach. Unfortunately, few threat intelligence vendors explain the

mechanism and methodology by which their data are collected and thus threat intelligence

consumers must make do with simple labels such as “scan” or “botnet”, coupled with

inferences about the likely mode of collection. Worse, a significant amount of data does not

even have a clear definition of category, and is only labelled as “malicious” or “suspicious”,

leaving the ambiguity to consumers to decide what action should be taken based on the

data.

• There is little evidence that larger feeds contain better data, or even that there are crisp

quality distinctions between feeds across different categories or metrics (i.e., that a threat
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intelligence provider whose feed performs well on one metric will perform well on another,

or that these rankings will hold across threat categories). How data is collected also does

not necessarily imply the feeds’ attributes. For example, crowdsourcing-based feeds (e.g.,

Badips feeds), are not always slower in reporting data than the self-collecting feeds (like

Paid IP Reputation).

• Most IP-based threat intelligence data sources are collections of singletons (i.e., that each

IP address appears in at most one source) and even the higher-correlating data sources

frequently have intersection rates of only 10%. Moreover, when comparing with broad

sensor data in known categories with broad effect (e.g., random scanning) fewer than 2%

of observed scanner addresses appear in most of the data sources I analyzed; indeed, even

when focused on the largest and most prolific scanners, coverage is still limited to 10%.

There are similar results for file hash-based sources with little overlap among them.

• Security related network blocking is relative prevalent on the Internet. The measurement

has shown that many online hosts, even with our biased selection of low security hygiene

hosts, are blocking network traffic based on threat intelligence data, or part of the data.

When studying network connectivity disruption, researchers should not ignore the effect of

these security related blocking, instead, we should model these behavior when conducting

measurements and analyzing the results.

• The network behaviors within a subnet are not always the same, different hosts in the

same network can have different behavior, and these cases are not neglectable. Researchers

should not make such assumptions when measuring the behaviors of a network, and one

should always be careful when trying to conclude a behavior with only a few vantage

points in a network.

The low intersection and coverage of threat intelligence feeds could be the result of

several non-exclusive possibilities. First is that the underlying space of indicators (both IP
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addresses and malicious file hashes) is large and each individual data source can at best sample

a small fraction thereof. It is almost certain that this is true to some extent. Second, different

collection methodologies—even for the same threat category—will select for different sub

distributions of the underlying ground truth data. Third, this last effect is likely exacerbated by

the fact that not all threats are experienced uniformly across the Internet and, thus, different

methodologies will skew to either favor or disfavor targeted attacks.

There are many ways people can use threat intelligence data. It can be used to enrich other

information (e.g., for investigating potential explanations of a security incident), as a probabilistic

canary (i.e., identifying an overall site vulnerability via a single matching indicator may have

value even if other attacks of the same kind are not detected) or in providing a useful source of

ground truth data for supervised machine learning systems. However, even given such diverse

purposes, organizations still need some way to prioritize which threat intelligence products to

invest in. The metrics I proposed in Chapter 3 provide some direction for such choices. For

example, an analyst who expects to use threat intelligence interactively during incident response

would be better served by feeds with higher coverage, but can accommodate poor accuracy,

while an organization trying to automatically label malicious instances for training purposes

(e.g., brute force attacks) will be better served by the converse.

Based on my experience analyzing threat intelligence data and how people are using

it, I try to provide several recommendations for the security community on this topic moving

forward:

• The threat intelligence community should standardize data labeling, with a clear definition

of what the data means and how the data is collected. Security experts can then assess

whether the data fit their need and the type of action should be taken on this data.

• There are few rules of thumb in selecting among threat intelligence feeds, as there is not

a clear correlation between different feed properties. Consumers need empirical metrics,

such as those I describe, to meaningfully differentiate data sources, and to prioritize certain
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metrics based on their specific need.

• Blindly using threat intelligence data—even if one could afford to acquire many such

sources—is unlikely to provide better coverage and is also prone to collateral damage

caused by false positives. Customers need to be always aware of these issues when deciding

what action should be taken on this data.

• Besides focusing on the threat intelligence data itself, future work should investigate the

operational uses of threat intelligence in industry, as the true value of threat intelligence

data can only be understood in operational scenarios. Moreover, the community should

explore more potential ways of using the data, which will extend people’s understanding

of threat intelligence and also influence how vendors are curating the data and providing

the services.

• Follow up on the previous point, it is also important to for the community to study the

potential impact of people using threat intelligence. Since this is security related data,

certain use cases, like blocking network traffic (either IP or DNS), could have broader

impact on the Internet. As threat intelligence getting more and more popular, researchers

should closely follow the impact of these products, so we can spot problems early on and

make changes before heavy damage is made.
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