
UC Davis
IDAV Publications

Title
Parallel View-Dependent Tessellation of Catmull-Clark Subdivision Surfaces

Permalink
https://escholarship.org/uc/item/5h95328x

Authors
Patney, Anjul
Ebeida, Mohamed S.
Owens, John D.

Publication Date
2009

DOI
10.1145/1572769.1572785

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5h95328x
https://escholarship.org
http://www.cdlib.org/

Anjul Patney, Mohamed S. Ebeida, and John D. Owens. Parallel

View-Dependent Tessellation of Catmull-Clark Subdivision Surfaces. In

Proceedings of High Performance Graphics 2009, August 2009.

© ACM, 2009. This is the author’s version of the work. It is posted here

by permission of ACM for your personal use. Not for redistribution. The

definitive version was published in High Performance Graphics, August,

2009. http://doi.acm.org/10.1145/nnnnnn.nnnnnn.

Parallel View-Dependent Tessellation of Catmull-Clark Subdivision Surfaces

Anjul Patney

University of California, Davis

Mohamed S. Ebeida

Carnegie Mellon University

John D. Owens

University of California, Davis

Figure 1: We adaptively subdivide faces of a Catmull-Clark subdivision mesh until the screen-space geometric criterion is met. Using a
parallel approach to the subdivision procedure, we are able to obtain interactive performance for complex real-life models. Moreover, we
ensure that the subdivided mesh is free of cracks and T-junctions.

Abstract

We present a strategy for performing view-adaptive, crack-free tes-
sellation of Catmull-Clark subdivision surfaces entirely on pro-
grammable graphics hardware. Our scheme extends the concept of
breadth-first subdivision, which up to this point has only been ap-
plied to parametric patches. While mesh representations designed
for a CPU often involve pointer-based structures and irregular per-
element storage, neither of these is well-suited to GPU execution.
To solve this problem, we use a simple yet effective data structure
for representing a subdivision mesh, and design a careful algorithm
to update the mesh in a completely parallel manner. We demon-
strate that in spite of the complexities of the subdivision procedure,
real-time tessellation to pixel-sized primitives can be done.

Our implementation does not rely on any approximation of the limit
surface, and avoids both subdivision cracks and T-junctions in the
subdivided mesh. Using the approach in this paper, we are able to
perform real-time subdivision for several static as well as animated
models. Rendering performance is scalable for increasingly com-
plex models.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism; I.3.6 [Com-
puting Methodologies]: Computer Graphics—Methodology and
Techniques

Keywords: Subdivision surfaces, Catmull-Clark, GPGPU, adap-
tive surface subdivision

1 Introduction

Higher-order surfaces offer numerous advantages as rendering
primitives, including ease of modeling and a compact representa-
tion. Of these, Catmull-Clark subdivision surfaces form one of the
most popular primitives for off-line modeling and rendering. How-
ever, the difficulty of robustly subdividing such a surface in an in-
teractive, view-dependent manner has thus far precluded its use in
real-time graphics pipelines.

The programmability and peak computational capabilities of a
modern graphics processor (GPU) make it an ideal candidate to per-
form such subdivision. However, GPUs are highly parallel proces-
sors, and thus adapting an already complex subdivision algorithm
to such a parallel architecture is a challenging task. As a result, pre-
vious work in real-time adaptive subdivision has generally tackled
less complex primitives such as parametric surfaces (specifically,
Bézier patches and PN-triangles) [Patney and Owens 2008; Eise-
nacher et al. 2009; Schwarz and Stamminger 2009]. While this
previous work has been successful in showing the feasibility of us-
ing higher-order surfaces in real-time graphics pipelines, we believe
the advantages of Catmull-Clark surfaces over other higher-order
surfaces (Section 2.1) motivate its use in future graphics pipelines
as the higher-order surface of choice. In this work we describe
our system for performing view-adaptive, crack-free tessellation of
Catmull-Clark subdivision surfaces entirely on the GPU.

Like previous work, we use a breadth-first subdivision strategy to
parallelize within a subdivision step. However, Catmull-Clark sub-
division surfaces present multiple challenges over and above pre-
vious work. These challenges include maintaining a mesh-based
data structure instead of a list of smaller primitives (patches), allow-
ing the inherent dependence of each subdividing face on its 1-ring
neighborhood, and avoiding cracks and T-junctions. In this paper,
we address these problems.

Contribution Our main contribution in this paper is a simple yet
robust framework to perform an all-quad view-adaptive tessellation
for subdivision surfaces on a highly parallel graphics processor.

This is a hard problem due to the lack of a straightforward par-
allelization (as in the case of parametric patches), the absence of
efficient GPU data structures for performing parallel surface sub-
division, and the vulnerability to subdivision cracks. While previ-
ous techniques to subdivide surface meshes using GPU resources
have either been highly specialized (fixed number of subdivision
levels, limit surface tessellation for a few finite cases) or approxi-
mate, our approach is highly generic and completely flexible. We
have carefully chosen a compact but intuitive data structure to main-
tain the subdivision mesh, and perform updates to this structure in
a completely parallel fashion. We also present a data-parallel tech-
nique that uses templates given by Schneiders [1996] to completely
avoid cracks by eliminating T-junctions in the subdivided mesh. We
demonstrate the validity of our strategy by achieving real-time per-
formance for several real-life models.

2 Background

2.1 Subdivision Surfaces

The theory behind subdivision surfaces was first described by Cat-
mull and Clark [1978]. Subdivision surfaces are a popular class
of primitives in modeling and animation of free-form surfaces.
They provide a robust abstraction for smooth surfaces through the
specification of a coarse piecewise linear mesh, which can be re-
peatedly subdivided to give an approximation of the smooth sur-
face. Of the many different types of subdivision surface primi-
tives, Catmull-Clark subdivision surfaces have become the standard
modeling choice for many offline applications, including computer-
generated motion pictures. Their use in character animation was
first described by Pixar [DeRose et al. 1998].

In many ways, Catmull-Clark surfaces are superior to other forms
of surface representations used in 3D graphics:

• Catmull-Clark subdivision rules can be applied to two-
manifold meshes of arbitrary topology, without any continuity
limitations. In contrast, parametric surfaces like NURBS and
Bézier tensor product patches usually have restrictions on sur-
face topology, and multiple patches need to be carefully con-
nected to ensure piecewise continuity [DeRose et al. 1998].

• Catmull-Clark surfaces remain smooth under animation of the
base mesh. Thus, vertices of the base mesh can be arbitrarily
modified without producing artifacts in the final rendered sur-
face. This is not generally true for parametric surfaces.

• Scalar fields like texture coordinates can be subdivided using
the same rules as the mesh vertices. Thus, unlike polygonal
meshes, static storage of texture coordinates is only needed
for the base mesh.

The above advantages, in addition to the compactness of a coarse
mesh representation, make subdivision surfaces attractive candi-
dates for both off-line and interactive 3D graphics. Off-line graph-
ics are typically implemented on a scalar architecture without real-
time performance requirements, so in off-line applications, the su-
perior features of subdivision surfaces motivate their widespread
use, and performance issues relevant to real-time rendering are less
important. For real-time applications, however, the difficulty of fast
and parallel subdivision algorithms has thus far precluded their im-
plementation on the GPU.

The iterative process described previously is called the refinement
scheme. For a subdivision surface, this scheme defines how the sub-
division takes place. Repeated application of the refinement scheme
produces a sequence of finer meshes, which quickly approximate
the limit surface. In practice, a few subdivision steps are usually

v
1

v
2

v
3

v

fp
2

fp
nf

fp
3

ep
1

ep
2

ep
3

vp

v
4

v
5

v
6

v
nv

v
nv-1

Figure 2: Catmull-Clark refinement scheme. The refinement pro-
cess generates a face point (fp) for each face, an edge point (ep)
for each edge, and a vertex point (vp) for each vertex. This new
set of vertices is then appropriately connected to form the next level
subdivision mesh. This figure shows face-points, edge-points, and
vertex-points generated around a parent vertex v. For further de-
tails on the subdivision rules, please refer to Section 3.

sufficient to provide a dense mesh for rendering purposes. The re-
finement scheme for Catmull-Clark surfaces is shown in Figure 2,
and described in Section 3.

One possibility for avoiding the complexity of real-time subdivision
is to compute the result of subdivision off-line and simply send it to
the renderer (GPU) as needed. This approach does not fully exploit
the power of subdivision surfaces, and in fact creates several issues.
A subdivided mesh typically requires a large amount of static stor-
age, which can be quite expensive. Moreover, it places significant
pressure on the bus bandwidth to and from the GPU during ren-
dering, which can be prohibitive for performance-sensitive applica-
tions. Off-line subdivision is also not useful for dynamic/animated
surfaces, because every vertex of the dense mesh may change from
frame to frame. Finally, statically subdivided meshes are not view-
dependent. Thus, subdivided surfaces with an arbitrary viewpoint
might display faceting artifacts or an unnecessarily detailed subdi-
vision. Due to the these problems, static subdivision is not an ef-
fective technique for using subdivision surfaces in real-time appli-
cations. Dynamic GPU-based subdivision avoids these problems,
and is thus better suited for real-time applications. Our review of
prior work in this field (below) focuses on this topic.

2.2 Related Work

In recent years, several efforts have been made to dynamically
subdivide Catmull-Clark meshes for rendering on a GPU plat-
form [Shiue et al. 2005; Bunnell 2005; Bolz and Schröder 2002].
These implementations perform view-dependent subdivision on ev-
ery frame of rendering, and thus do not suffer from the many of the
issues described in Section 2.1. The earliest work from Bolz and
Schröder [2002] first performs subdivision on the CPU, and then
renders the generated polygons using a GPU. This approach suf-
fers from both the cost of transferring the geometry to the GPU as
well as a lack of viewpoint awareness.

Our work is more similar to that of Shiue et al. [2005] and Bun-
nell [2005], who both use GPU shaders to perform dynamic sub-
division on the GPU. However, apart from the improved perfor-
mance, there are two main differences from our work. First, while
both these implementations use multiple textures to store the base
mesh as ‘patches,’ we perform subdivision without modifying the
original mesh structure. This makes animation a much easier task
(Figure 3), since there is no need to modify a vertex at multiple lo-
cations. In general, the resulting data structures also become much
easier to manage. Secondly, unlike the prior work, we perform sub-
division without using precomputed lookup tables, so we have no
limitations on either the number of subdivision levels, or the va-

lence of input faces. Our implementation is thus more general in
comparison.

There has also been prior work in high performance adaptive sub-
division of Catmull-Clark surfaces for ray tracing [Benthin et al.
2007]. Although the approach in this paper also performs view-
adaptive subdivision, it appears that the granularity of subdivision
is coarse (constant for a face) and hence expected to generate a
comparatively denser target mesh. Moreover, since the authors’
subdivision technique is tuned for ray tracing, it is unclear how the
design trade-offs will translate to a rasterizer-based rendering envi-
ronment.

The closest work to our own performs software tessellation using
GPU computing techniques [Patney and Owens 2008; Eisenacher
et al. 2009; Schwarz and Stamminger 2009]. Research in this area
has gained significant popularity due to its impressive performance
for real-time applications, as well as the flexibility of a completely
programmable implementation. The central idea is the reformula-
tion of tessellation as a breadth-first task, which provides ample par-
allelism for acceleration using a GPU architecture. However, prior
to our work, all work in this domain is restricted to parametric sur-
faces, which have several disadvantages compared to subdivision
surfaces (Section 2.1). There is no obvious extension to subdivision
surfaces, except through the approximation by Loop and Schae-
fer [2008]. Their approach regularizes the workload, which lends
to robust rendering performance for real-time applications. How-
ever, the resulting tessellated surface is approximate and in general
does not possess the same continuity as the limit surface. This is
overcome by using a different approximation for tangent patches,
which suppresses visual artifacts due to lack of proper continuity.
We do not make these approximations, so surfaces tessellated using
our technique follow properties of the limit surface.

Loop and Schaefer’s approximation also forms the basis for
hardware-supported Catmull-Clark subdivision in the upcoming
Direct3D 11 pipeline [Microsoft Corporation 2008]. This API
adds three new stages to the rendering pipeline, which allow for
programmable tessellation of parametric patches, and through this
approximation, Catmull-Clark surfaces as well. The tension be-
tween hardware acceleration’s superior performance and efficiency
vs. software’s superior flexibility is broader than this paper and by
no means settled, but we look forward to carefully comparing our
implementation against DirectX 11 implementations when they are
available.

3 Breadth-First Subdivision

In this section, we describe the core of our technique for perform-
ing real-time Catmull-Clark subdivision on a modern GPU. The
original formulation of the subdivision process, as described below,
is not a natural fit for a massively-parallel GPU platform. In the
following subsections, we discuss modifications to this procedure
that allow an efficient GPU implementation.

3.1 Catmull-Clark Refinement Scheme

Catmull-Clark subdivision begins with an arbitrary polyhedron M0,
called the control mesh. The faces of this mesh are subdivided into
a collection of quadrilateral subfaces to produce the mesh M1. The
procedure is repeated for M1 to produce the mesh M2, then M3,
and so on. By following Catmull-Clark refinement rules, it can be
shown that the mesh resulting from this recursive process succes-
sively approximates the smooth limit surface.

At each step, a face with k edges is subdivided into k quadrilaterals,
which results in three classes of new vertices. A face point fp is
positioned at the centroid of the vertices corresponding to a face.

An edge point ep for every edge is defined as the centroid of four
vertices: the two vertices that connect to make up the edge, and the
face points for the two adjoining faces. Finally, a vertex point vp,
for a vertex connected to n edges (valence n), is defined using the
following relation

vp =

(

n−2

n

)

v+
1

n2

n−1

∑
j

v j +
1

n2

n−1

∑
j

f
j
p, (1)

where v is the original vertex, and v j is the jth neighboring vertex.

f
j
p is the face point of the jth adjoining face.

An example of a single step of Catmull-Clark subdivision is shown
in Figure 2. Note that each face in the newly created mesh is a
quadrilateral, and after the first subdivision step, no subsequent step
can produce extraordinary vertices (i.e. those with valence ! = n).

3.2 Overview of Approach

Our goal is to efficiently accelerate the above subdivision proce-
dure using the highly parallel resources available on a GPU. Our
algorithm must be able to take advantage of the large number of
SIMD cores capable of general-purpose execution. Conceptually, a
single step of subdivision consists of three tasks: generation of face
points for all faces, edge points for all edges, and vertex points for
all vertices.

For any realistic input, each of these steps presents a significantly
parallel execution workload. However, this is not sufficient for ob-
taining high performance, especially on the target architecture. Tra-
ditionally, polygonal meshes have been represented using a variety
of data structures, and at the onset, it is unclear which of these is
most suited to performing parallel subdivision on the GPU. Apart
from evaluating face points, edge points and vertex points, mesh
structure must also be kept updated. Performing such updates in
parallel can be tricky. Maintaining a reasonable size for the static
data structure can also be equally challenging. Clearly, the choice
of data structure is critical in order to to achieve high subdivision
performance.

To maintain visual fidelity without rendering too many primitives,
subdivision should be view-dependent. In our approach, we only
subdivide faces that are inside the view frustum. Also, the depth
of subdivision for each face is dependent on its contribution to the
screen pixels.

Finally, since adjacent faces of the mesh may be subdivided by sep-
arate execution units to potentially different subdivision depths, we
must ensure that the final mesh is free of cracks. To achieve this,
we use an efficient data-parallel technique for removing T-junctions
in an all-quad mesh. This technique is discussed in detail in Sec-
tion 3.3.

Given the above constraints, we perform breadth-first subdivision
broadly as a sequence of the following steps, exploiting parallelism
within each step of subdivision across faces of the mesh. Note
that we partition the execution roughly based on the tasks outlined
above.

For each step of subdivision, (1) we apply the subdivision criterion
to each mesh face in parallel. (2) If all faces satisfy the criterion,
we display the current mesh and exit. (3) Otherwise, we generate
face points for faces that need subdivision, and update the mesh
structure as necessary. (4) Then we generate edge points for rele-
vant edges, and update the mesh. (5) Finally, for all vertices that
require updates, we evaluate vertex points and move old vertices to
new ones.

Figure 3: Four frames of an animated subdivision surface. Note that the rendered surface remains smooth even though only vertices of the
base mesh are modified. Since subdivision is performed every frame, there is no animation overhead.

(a) Naive subdivision (b) T-junction-free subdivision

Figure 4: Comparison of subdivision using a naive approach and
our technique. Our algorithm is able to robustly remove all hang-
ing nodes from an adaptively subdivided mesh. (For illustration
purposes, the subdivision criterion has been relaxed.)

This procedure continues until the subdivision criterion is satisfied
for all faces, after which the mesh can be rendered. This is a simple
extension to the conceptual formulation of Catmull-Clark subdivi-
sion that exploits the parallelism offered by the three original tasks.
We discuss the details of our crack-avoidance algorithm, then our
chosen data structure, and finally, our runtime algorithm that per-
forms view-dependent subdivision.

3.3 Avoiding Cracks and T-Junctions

Adaptive refinement of quadrilateral meshes is a challenging prob-
lem, because straightforward algorithms result in faces with T-
junctions, or hanging nodes. A hanging node is a vertex that lies on
an edge without being one of its endpoints, and is usually formed
at a subdivision transition. Hanging nodes can lead to cracks and
pinholes on the output mesh, and are also undesirable from the per-
spective of mesh quality—a mesh with hanging nodes is not well
suited for further processing. Schneiders [1996] proposed two dif-
ferent approaches based on refinement templates to solve this prob-
lem. His 3-refinement templates, which in some cases subdivide a
face into 9 sub-faces, tend to generate a large number of small faces.
However, his 2-refinement templates (both shown in Figure 5(a))
can remove hanging nodes from an all-quad mesh by only subdivid-
ing a face into either four (4-subdivision) or three (3-subdivision)
faces. Unfortunately, he did not describe a concrete algorithm to

efficiently implement such refinement, and we were also unable
to find one in our literature survey. Thus, robustly performing 2-
refinement is a difficult (and we believe previously unsolved) prob-
lem. In our work, we have used his ideas to develop a completely
parallel crack-free refinement scheme.

It is easy to show that a quadrilateral mesh always has an even num-
ber of vertices along its boundary. Thus, the number of vertices
along a sequence of transition edges, i.e. those between two levels
of subdivision, will also be even (see Figure 5(b)). We utilize this
fact in eliminating hanging nodes from a mesh with adjacent faces
subdivided to different levels. Since we perform elimination after
every step of subdivision, the only hanging nodes that we encounter
are those where the level of subdivision differs by 1.

Schneiders’s approach works along this transition edge sequence,
by tagging every alternate transition vertex as active. In Fig-
ures 5(d) and 5(e), active vertices are represented as solid circles. A
refinement template operates on a face by subdividing it based on
which of its vertices are active. By simply looking at the number
of active vertices adjacent to a face, one can choose either one of
the 2-refinement templates from Figure 5(a). As a result of apply-
ing these templates, all T-junctions present in the subdivided mesh
will be removed. Examples of the resulting watertight mesh can be
seen in Figures 5(d) and 5(e). While assigning templates to faces is
trivially parallel, computation of active vertices is not.

We begin by showing how to locate active vertices on a transition
edge using a propagation-based approach. Note that for every edge
in the mesh, at most one of its vertices can ever be active. We
start by randomly choosing a transition vertex and making it ac-
tive. Starting from this vertex, we then move along transition edges,
activating alternate vertices such that no two neighboring vertices
are active. Examples of active vertices can be seen as solid cir-
cles in in Figures 5(d) and 5(e). Once this procedure terminates
(i.e. each transition vertex is known to be either active or not), we
can choose templates for transition faces in parallel. However, this
propagation-based approach is serial, so it is best suited for offline
computation.

We now demonstrate an efficient approach to assign active vertices
along a transition edge sequence. Our contribution is demonstrating
algorithms for computing an initial set of potentially active vertices
for the mesh and incrementally updating this vertex set dynamically
on each subdivision step. When the base mesh is initially gener-
ated, we use the same propagation-based approach as above to tag
alternate vertices along all edges of the mesh as potentially active.
Figure 5(f) shows an example of such a static set. Note that no
two potentially active vertices share an edge. Also, any sequence of
connected vertices—and thus any transition sequence—will have

1.

2.

(a) (b) (c)

(d) (e)

(f) (g)

Figure 5: Eliminating hanging nodes during adaptive subdivision.
(a): The 2-refinement templates (3-subdivision and 4-subdivision)
by Schneiders [1996]. (b): Mesh showing subdivision transitions.
(c): Updates to the potentially-active set depend on the template
used. (d), (e): Hanging nodes may be eliminated to give two differ-
ent meshes, based on the selection of the active vertices (solid cir-
cles). Note every alternate vertex on the transition edge-sequence
is active. (f): Our parallel technique maintains a set of potentially
active vertices. (g): When these vertices intersect a transition, they
are turned active. The templates can then be applied.

alternating potentially active vertices.

We then incrementally update the set of potentially active vertices
with each subdivision step, in parallel and at interactive rates. Be-
ginning with the initial set of potentially active nodes from the base
mesh that we computed offline, for each subdivision step, we must
compute a new and accurate set of potentially active vertices on the
current mesh, and then select subdivision templates for transition
faces.

To update the set of potentially active vertices, we first remove each
vertex that was active during subdivision from the active set. Then,
we add all new edge points to the set. This rule translates to the
individual templates as the update shown in Figure 5(c). This is also
easily parallelized, and can be shown to maintain the properties of
potentially active vertices.

To select subdivision templates for transition faces, we activate each
potentially active vertex that lies on a transition. Next, each face
counts the number of its active vertices, independently and in par-
allel. This number can only be 0, 1, or 2. No template is applied to
a face with 0 active vertices. For 1 active vertex, the first template
(3-subdivision) is used, and if 2 vertices are active, the second tem-
plate (4-subdivision) is used. In Figure 5(g), we can see an example
application of this procedure.

 Face

Vertex

Edge
Edge

E
dg

e

E
dge

Vertex

Vertex

Vertex

Figure 6: General structure of the topological information stored
in our mesh structure. Note that the number of arrows exiting an
element is always fixed, yielding fixed-size data structures.

ARRAY ELEMENT SIZE

Mesh Structure
Vertex{In,Out}Buffer Position: {v} 2×nv

Normal: {n}
Valence: {vc}

Index{In,Out}Buffer Face: {v0,v1,v2,v3} 2×n f

Edge{In,Out}Buffer Edge: {v0,v1, f0, f1} 2×ne

Temporary Data

SubdivFlags {ap,a,vs,es, f 3
s , f 4

s } max(n f ,ne,nv)
Face3Scanned ∑

i
0{ f 3

s } n f

Face4Scanned ∑
i
0{ f 4

s } n f

EdgeScanned ∑
i
0{es} ne

Base Mesh

VBase Position: {v} ninit
v

Normal: {n}
Valence: {vc}

FBase Face: {v0,v1,v2,v3} ninit
f

EBase Edge: {v0,v1, f0, f1} ninit
e

SDBase Active flag: {ap} ninit
v

Table 1: Data structures used for managing parallel subdivision
of Catmull-Clark meshes. The dynamic mesh structure is used to
perform multiple steps of subdivision every frame. Temporary data
structures assist these operations by providing indices for data up-
dates. The base mesh data structure statically holds the base mesh,
and is usually small in size. Please see Section 3.4 for details.

The result is a mesh with no hanging nodes or T-junctions. Mea-
sured over a variety of models and varying subdivision conditions,
our procedure adds an average of 4.46% total faces to a subdivided
mesh without this procedure. Figure 4 shows before and after mesh
visualizations.

3.4 Data Structure

Our goals in choosing a data structure for subdivision are twofold.
First, we must be able to update the data structure in parallel dur-
ing subdivision with high performance. Second, the chosen data
structure must not occupy a large amount of static storage.

To meet these goals of performance and convenience, we first note
that at the end of every frame, the resulting mesh needs to be ren-
dered. It is thus sensible to maintain a vertex buffer (VB) and an
index buffer (IB) as a part of the data structure, which enables ras-
terization with a single GPU call. A subdivided mesh can often be
huge in size, so a runtime translation to these structures is undesir-
able.

2
2

2

2

2

2
2

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

1
1

2

2

2
2

Figure 7: Data structure updates are performed by two main tasks
of our runtime algorithm: face point update (1), and edge point
update (2). These updates are performed in parts by the two ker-
nels, based on the available information and access indices. See
Section 3.5 for details.

We maintain a VertexBuffer of vertices that allows us to perform
updates at the level of parallelism of a vertex. Similarly, our In-
dexBuffer enables updates at the level of parallelism of a face. Thus,
we can evaluate vertex points as well as face points in parallel.
We maintain two copies of each buffer (VertexInBuffer, VertexOut-
Buffer, EdgeInBuffer, and EdgeOutBuffer), in order to stream data
from one to the other while performing subdivision. After every
step, the pointers to the two buffers are swapped, so the next step
streams data in the opposite direction.

To be able to update edges in parallel, we also maintain
Edge{In,Out}Buffers, which contain a sequential list of edges. An
edge can be defined either by its two end vertices, or by the two
faces that connect at the edge. Since evaluation of an edge point
requires connecting vertices as well as centroids of adjacent faces
(see Figure 2), we chose to keep both as a part of our EdgeBuffer.
Thus, each element of the EdgeBuffer contains four indices: two
for each vertex, and two for adjacent faces. A visual depiction of
our mesh representation can be seen in Figure 6.

Unlike many mesh representations, the elements of each of the
above buffers have fixed size. These buffers are dynamic and are
updated on every subdivision step. Also, due to the nature of our
adaptive subdivision technique, the IndexBuffer always stores a col-
lection of quads. This adds to the convenience of the rendering
operation.

The data structure described above is also known as a Render Dy-
namic Mesh [Wikipedia 2009]. A similar data structure has also
been used in the past for subdivision in a serial context [Tobler and
Maierhofer 2006]. Details of a Render Dynamic Mesh as used in
our application are shown in Table 1.

View adaptivity implies that the number of child faces for any par-
ent face will depend on the current viewpoint and the subdivision
criterion. Thus, to ensure contiguity, updates made to the above
data structure require a global pass to evaluate target indices for
child faces and edges. We achieve this by using storage-conserving
variations of the GPU scan primitive [Sengupta et al. 2007]. This
adds three temporary arrays to our data structure, also shown in
Table 1. The elements of the array SubdivFlags store the fol-
lowing bit-flags: ap, a (whether vertex is potentially active, ac-
tive, or both), vs (whether vertex needs update), es (whether edge
needs subdivision), f 3

s / f 4
s (whether face needs 3-subdivision or 4-

subdivision), and vs (whether vertex needs update). The outputs of
scan operations for es, f 3

s and f 4
s are placed in the EdgeScanned,

Face3Scanned and Face4Scanned arrays, respectively. Flags that
are not scanned are used during the subdivision process, and for
removing T-junctions.

In order to reset the subdivision procedure at the beginning of every
frame, we also retain the base mesh and the set of active vertices for
it. The size of these static arrays is usually negligible in comparison
to the other arrays used in subdivision.

3.5 Runtime Algorithm

Listing 1 Parallel Catmull-Clark Subdivision (Precomputation)

procedure Load mesh

1: Load the subdivision mesh from the disk
2: Compute a set of potentially active vertices by repeatedly

choosing a new vertex and walking along edges to mark al-
ternate vertices.

We repeatedly perform view-adaptive subdivision on the base mesh
until the subdivision criterion is satisfied. Each step of subdivision
begins with an evaluation of this criterion over the partially subdi-
vided mesh. Once edges that need subdivision have been identified,
we update the faces and edges by generating face points and edge
points in parallel. Finally, we update vertices to their new positions
by evaluating vertex points. As shown in Figure 7, connectivity up-
dates for child faces and edges are performed as a part of the above
three tasks, without affecting parallelism. Pseudocode for the run-
time procedure can be found in Listings 1–5. Their descriptions
follow.

Subdivision Test Every step of the subdivision loop begins by
clearing all subdivision flags (except ap) from previous instances
of the loop. The target vertex array, VertexOutBuffer, is also reset to
the values of VertexInBuffer. This simplifies calculations of vertex
points later in the execution.

Our subdivision test is based on screen-space geometric extent and
view frustum visibility. (Though we do not incorporate backface
culling, it would be straightforward to incorporate in the function
TestSubdivision.) For each edge of the input face, we compute the
subdivision metric in parallel. Currently, if any edge lies on-screen
and is bigger than a pre-determined threshold, its potentially active
endpoints are turned active. This flag is then used to tag nearby
faces and edges for subdivision. Every face that touches two ac-
tive vertices is tagged for 4-subdivision, and every face that touches
one active vertex is tagged for 3-subdivision around that vertex (see
Figure 5(a)). Every edge touching an active vertex is also tagged
for subdivision. Once all flags have been propagated, we perform a
parallel prefix-sum (scan) operation over flags for faces as well as
edges [Sengupta et al. 2007]. Using the prefix-sums, it is possible
for each face/edge to individually deduce the indices of its children.
This reduces the need for global communication when these struc-
tures are being updated.

GenFacePoints Generating face points is a straightforward par-
allel operation over all faces in the FaceInBuffer. Each face eval-
uates the centroid of its four corners, and updates it in the Vertex-
OutBuffer. To maintain connectivity in the target subdivided mesh
and simplify later tasks, we also perform some additional opera-
tions here. First, we partially update the corner indices for child
faces. Since each child will usually have the face point and one
parent corner as two of its corners, this update can be easily per-
formed. Second, each face also adds its face point coordinates to
the vertices corresponding to its corners in VertexOutBuffer. This
update has a potential race condition, because multiple faces could
be simultaneously competing to perform an addition to a memory
location. We use atomic operations to achieve deterministic behav-
ior in this update. Since floating-point atomic operations are not
natively supported, we observe a slight performance penalty. For
further discussion of this issue, please refer to Section 3.6.

GenEdgePoints Analogous to GenFacePoints, the kernel
GenEdgePoints primarily generates edge points. By taking the
centroid of its neighboring face points and vertices, an edge can
perform this evaluation in a simple and regular fashion. However,

Listing 2 Parallel Catmull-Clark Subdivision (Subdivision Test)

procedure Initialize data structures

1: VertexOutBuffer ⇐ VertexInBuffer {copy}
2: Clear bits of SubdivFlags (except ap)
3: need subdiv ⇐ false

function TestSubdivision

1: for all faces in FaceInBuffer do {in parallel}
2: Transform end points v0 – v3 to screen space
3: if all four edges lie outside the view frustum then
4: return
5: end if
6: Calculate the screen space extent of each edge, |vivi+1|.
7: if |vivi+1| ≥ subdivision criterion then
8: Set a = ap for all four corners. (turn potentially active

vertices to active)
9: Set vs = 1 for all four corners.

10: need subdiv ⇐ true
11: end if
12: end for

If need subdiv is false, stop.

procedure UpdateFaces

1: for all faces in FaceInBuffer do {in parallel}
2: Count the number of active corners for the face
3: if 2 corners are active then
4: Set f 4

s for face to 1 and update SubdivFlags
5: else if 1 corner is active then
6: Set f 3

s for face to 1 and update SubdivFlags
7: end if
8: end for

procedure UpdateEdges

1: for all edges in EdgeInBuffer do {in parallel}
2: if either of the two endpoints is active then
3: Set es for edge to 1 and update SubdivFlags
4: else
5: Add 2 or 4 to es if any (or both) adjacent faces are tagged

for 3-subdivision.
6: end if
7: end for

scan SubdivFlags by masking f 3
s values, output to Face3Scanned.

scan SubdivFlags by masking f 4
s values, output to Face4Scanned.

scan SubdivFlags by masking es values, output to EdgeScanned.

as before, this kernel also performs extra tasks to ensure connectiv-
ity and maintain efficiency in subsequent subdivision operations.
Remember that partial connectivity updates were performed as a
part of GenFacePoints. Since new edge points have been generated
in this phase, we can now provide appropriate indices to complete
those updates. Each edge that was tagged for subdivision also
generates and updates its child edges, by computing their end
points and adjacent faces. Finally, each edge also adds twice
the coordinates of its midpoint to VertexOutArray, giving rise
to a similar race condition as in GenFacePoints. Again, we use
atomic operations to obtain deterministic results, with a minor
performance hit (see Section 3.6). Note that our technique ensures
that both neighbors of any subdividing edge will necessarily
subdivide into either 3 or 4 children. This way we are guaranteed
that no T-junctions will arise.

GenVertexPoints As a final subdivision step, we need to update
the positions of old vertices to provide a closer approximation of
the limit surface. To do this, we generate vertex points as detailed

Listing 3 Parallel Catmull-Clark Subdivision (Face points)

procedure GenFacePoints

1: for all faces in FaceInBuffer do {in parallel}
2: if face is tagged for subdivision then
3: Calculate the face point fp as the centroid of the four end-

points. Add to VertexOutBuffer.
4: For each corner point, atomically add fp to the coordi-

nates already in VertexOutBuffer
5: if 4-subdivision is needed then
6: Create four child faces in FaceOutBuffer
7: for all Child faces do
8: Set first corner to be the corresponding parent corner
9: Set third corner to be the face point

10: Set the other two corners to -1
11: end for
12: else if 3-subdivision is needed then
13: Create three child faces in FaceOutBuffer
14: for all Child faces do
15: Set first corner to be the corresponding parent corner
16: Set third corner to be the face point
17: Set one corner to -1 (edge point)
18: Set the last corner to be the remaining parent corner
19: end for
20: Set vs = 0 for all corners.
21: end if
22: else
23: Copy face to FaceOutBuffer while translating indices
24: end if
25: end for

in Section 3.1. Remember that all adjacent face points as well as
edge midpoints have already been aggregated in VertexOutBuffer.
We use the following equation to evaluate the updated position for
a vertex:

vout ⇐
vin × (vc −3)+

(vout−vin)
vc

vc
(2)

Here vout is obtained from VertexOutBuffer, and vc is the valence of
the input vertex. It is easy to see that equation (2) is equivalent to
(1), since vout initially contains the sum of the original vertex, all
face points as well as twice the midpoints of all edges. Moreover, as
before, this step is easily parallelized. Only vertices of faces tagged
for subdivision and not lying on a subdivision transition are updated
by this method.

The above sequence of subdivision steps is repeated till the sub-
division criterion is met, i.e. while need subdiv is true. For most
models, a few levels of subdivision are sufficient for this purpose.
In our tests, we have observed subdivision depths of up to 8.

3.6 Atomic Accesses

An important part of the above subdivision steps is the use of atomic
updates to accumulate scattered coordinates, primarily for the com-
putation of vertex points. We believe this is a reasonable cost for
two reasons: first, atomics allow maintaining a highly regular mesh
data structure, with completely parallel updates, and second, since
most vertices tagged for subdivision have a small valence (≤ 5),
the amount of contention is negligible. However, atomic memory
accesses on current generation GPUs are relatively slow. More-
over, floating-point atomic operations are not natively supported,
and thus had to be emulated (using an integer lock). Thus, although
in theory there shouldn’t be any impact due to atomic operations,
in practice we do observe a performance hit of a few ms per frame.

Listing 4 Parallel Catmull-Clark Subdivision (Edge Points)

procedure GenEdgePoints

1: for all edges in EdgeInBuffer do {in parallel}
2: if edge is tagged for subdivision then
3: Calculate the edge midpoint
4: For each end point, atomically add twice the midpoint co-

ordinates to those already in VertexOutBuffer
5: Calculate the edge point ep as the centroid of the two end-

points and adjacent face points. If edge lies on boundary,
set edge point to edge midpoint. Add to VertexOutBuffer.

6: Complete indices for child faces that were previously in-
complete, depending on whether each face is tagged for
3-subdivision or 4-subdivision. Write to FaceOutBuffer.

7: Create four child edges in EdgeOutBuffer
8: for first and second child edges do
9: Set first end point to corresponding parent end point

10: Set second end point to the edge point
11: Set neighboring faces to the two child faces from dif-

ferent parent faces
12: end for
13: for third and fourth child edges do
14: Set first end point to one of the neighboring face points
15: Set second end point to the edge point
16: Set neighboring faces to children of the same parent
17: end for
18: else
19: Copy edge to EdgeOutBuffer while translating indices.

Also consider adjacent faces that might have subdivided
into three children.

20: end if
21: end for

Listing 5 Parallel Catmull-Clark Subdivision (Vertex Points)

procedure GenVertexPoints

1: for all vertices in VertexInBuffer do {in parallel}
2: if vertex vin is tagged for update then
3: Retrieve the corresponding vertex vout from VertexOut-

Buffer
4: Retrieve the valence vc from VertexInBuffer

5: Set vout ⇐
vin×(vc−3)+(vout−vin)/vc

vc

6: Write to VertexOutBuffer
7: end if
8: end for

We believe that future GPU generations will offer better support for
atomic operations, resulting in improved subdivision performance.

3.7 Implementation Details

We implemented our subdivision framework using NVIDIA CUDA
2.2 on a system with an Intel Core 2 CPU with 2 GB memory and
an NVIDIA GeForce GTX 280 GPU. This GPU contains 32 pro-
grammable SIMD cores, each of which can work on 32-wide vec-
tors. Subdivision is well-suited to a highly parallel processor such
as a modern GPU—even moderately complex models have a large
number of faces, edges and vertices. Moreover, during execution,
this number tends to grow quickly with the level of subdivision.

4 Results

The GPU implementation of our approach demonstrates the mer-
its of parallelization—we demonstrate real-time rendering perfor-
mance for most of our test models, even under animation. This is

Mesh Size (faces) Subdivision Rendering
Model name Input Output depth time (ms)

Bigguy 1,450 91,992 5 37.12
Monsterfrog 1,292 80,452 5 34.17
Monsterfrog2 1,292 83,750 5 35.41
Killeroo 2,894 80,277 5 31.34
Three-block 18 60,018 7 30.06
Complex 1,350 495,076 6 176.67

Table 2: Rendering performance for the models used in our experi-
ments. The input meshes are adaptively subdivided to meet subdivi-
sion criterion every frame. These results were taken at a resolution
of 800 × 800 with a screen-space subdivision threshold (maximum
edge length) of 5 pixels.

in spite of the fact that our CUDA programs have not been aggres-
sively optimized, and suffer from several incoherent long-latency
memory transactions. Looking at our performance, we believe that
our parallelization technique has contributed to maintaining high
throughput for real-time tessellation.

Rendering Performance Figures 1 and 10 show examples of
rendered images using our approach. The subdivision performance
for these cases is shown in Table 2. Figure 3 shows a subdivision
surface rendered from an animated base mesh, and Figure 9 shows
how meshes with sharp boundaries (following DeRose [1998]) and
textures fit into our framework. In Figure 8(a), we have plotted the
relationship between the number of faces in the subdivided mesh
and the time it takes to perform subdivision and rendering. This re-
lationship is unmistakably linear and is consistent across all models
tested.

Performance Scalability Figures 8(b) and 8(c) graph the perfor-
mance of subdivision (generated mesh size/subdivision time) with
two varying parameters: the subdivision criterion and the screen
size of the rendered image. Both have an impact on the complex-
ity of the work load. From the two plots it can be seen that in
general, subdivision throughput either improves or is maintained
as the workload is increased. The subdivision performance of
roughly 2.5–3 MFaces/s is independent of any specific model, and
(as a rough measure) is about 2.5 times the performance of recur-
sive subdivision as we previously reported on a less powerful GPU
(GeForce 8800 GTX) [Patney and Owens 2008].

5 Discussion

From our results, our first observation is the consistently linear de-
pendence between the size of the final mesh and the time taken
to subdivide to it. This performance characteristic is similar to
what is observed for parametric surfaces [Patney and Owens 2008],
which is encouraging because it follows our original goal of ex-
tending breadth-first subdivision to subdivision surfaces. Also, as
the complexity of the subdivision workload increases, performance
improves towards its peak of approximately 2.5–3 MFaces/s (Fig-
ure 8(b) and 8(c)). This suggests that our parallel approach to sub-
division scales well with hardware, and can be expected to perform
better as GPU capabilities improve.

While performance achieved by our implementation could be opti-
mized to more impressive numbers, this is not our primary contribu-
tion. We have provided a data structure and an associated algorithm
to efficiently perform breadth-first subdivision in a completely par-
allel environment. It has several advantages over related implemen-
tations found in literature:

0 100000 200000 300000 400000
Mesh Size (faces)

0

50

100

150

200
Fr

a
m

e
 T

im
e
 (

m
s)

bigguy
killeroo
monsterfrog2

(a) Render times with varying final mesh size.

110
Subdivision Criterion (pixels)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
u
b
d
iv

is
io

n
 P

e
rf

o
rm

a
n
ce

 (
M

fa
ce

s/
s)

bigguy
complex
killeroo
monsterfrog2
threeblock

(b) Varying the subdivision criterion (threshold

edge length).

0 200 400 600 800 1000
Screen Width and Height (pixels)

0.0

0.5

1.0

1.5

2.0

2.5

S
u
b
d
iv

is
io

n
 P

e
rf

o
rm

a
n
ce

 (
M

fa
ce

s/
s)

bigguy
complex
killeroo
monsterfrog2
threeblock

(c) Varying the screen size of the surface render-

ing.

Figure 8: Performance results of breadth-first subdivision. These graphs plot subdivision performance for varying parameters of the system.
In (a), rendering times for various models are graphed as a function of the size of the final subdivided mesh, showing a near-linear relation-
ship. Graphs (b) and (c) plot the rendering performance with varying subdivision criterion as well as with the screen size of the target mesh.
As the complexity of the workload is increased, subdivision performance (throughput) generally improves and approaches a peak of about
2.5–3 MFaces/s.

• In our approach, we do not need to maintain unreasonable
amounts of extra storage for the mesh: only three main data
structures are sufficient. Moreover, our data structure does not
rely on variable-size neighbor lists, and hence has a constant
element size. At no point during runtime do we need to loop
through any list of unknown size.

• We always maintain the mesh as a set of quads, even after
performing view-adaptive updates. This keeps the subdivi-
sion process uniform and permits drawing the entire mesh in
a single draw call. An all-quad mesh is also well-suited to
Reyes-like applications, where the subdivided mesh is eval-
uated further (diced) before rendering. Having non-quads in
the mesh makes dicing a much harder problem.

• Using our technique, we can obtain completely watertight
subdivision – there are no subdivision cracks or T-junctions.
Moreover, elimination of cracks also happens completely in
parallel, and is thus well-suited to data parallel systems.

• Our data structure allows generalized subdivision. Little pre-
processing is needed, and there are no assumptions or approx-
imations on the input. We expect it to be straightforward to
extend our technique to other forms of refinement, such as
Loop and Doo-Sabin.

Limitations Inefficient memory accesses are our biggest perfor-
mance limitation. Many accesses in our code are uncoalesced due
to non-deterministic mesh layout, and thus hurt performance. Also,
since our algorithm needs to perform atomic accesses for data struc-
ture updates, we incur a penalty in rendering performance. We be-
lieve that performing faster memory accesses is the biggest opti-
mization challenge for our approach. To address this, we are in-
vestigating the feasibility of a software-managed geometry cache.

6 Conclusion

We have presented a simple and generic data structure and algo-
rithm that helps to perform recursive subdivision of Catmull-Clark
meshes entirely on a GPU. Our scheme uses fairly regular data
structures and carefully manages updates to ensure maximal paral-
lelism. Subdivision is divided into a sequence of four broad steps,
which link directly to the conceptual definition of subdivision sur-

(a) A non-closed mesh with edges

tagged as ‘sharp’.

(b) Applying a texture to the big

guy model.

Figure 9: Our technique can effectively support non-closed meshes
(using edge rules from DeRose [1998]) as well as textures. In the
above figures, these features have been demonstrated. No perfor-
mance issues were observed in these experiments.

faces. We are able to use this approach to demonstrate real-time
rendering performance for several complex models.

We have also generalized the idea of performing programmable sur-
face tessellation using breadth-first subdivision to include Catmull-
Clark meshes, thereby extending its scope to a richer domain of 3D
modeling. We have also shown how the crack prevention operation
can be effectively parallelized. Our work presents an alternative to
fixed-function hardware tessellation; one potential outcome of our
work could be the adoption of programmable tessellation as a com-
mon operation in real-time graphics.

Finally, we see our work as part of a larger effort to study efficient
data structures for programmable graphics on a GPU. Research in
this area is still in infancy, and we hope that our ideas like ours will
encourage further development of techniques to efficiently handle
the irregular execution and data management tasks often encoun-
tered in graphics, and map them to a massively parallel GPU archi-
tecture.

(a) Monster Frog

(b) Complex

(c) Three-block

Figure 10: More examples of our test models. Each rendered image
is accompanied by a high-detail and a low-detail mesh representa-
tion. We control detail by varying the subdivision criterion.

Acknowledgments We would like to thank Bay Raitt of Valve
Software for the “Big Guy” and “Monster Frog” models. The
“Killeroo” subdivision mesh is courtesy of Headus Inc. (http:
//www.headus.com.au). Thanks also to our funding agencies, the
National Science Foundation (Award 0541448) and the SciDAC In-
stitute for Ultrascale Visualization, and to NVIDIA for equipment
donations.

Finally, thanks to Eric Lengyel and the anonymous reviewers for
their comments and valuable suggestions that improved the work.

References

BENTHIN, C., BOULOS, S., LACEWELL, D., AND WALD, I.
2007. Packet-based ray tracing of Catmull-Clark subdivision sur-
faces. Tech. Rep. UUSCI-2007-011, SCI Institute, University of
Utah.

BOLZ, J., AND SCHRÖDER, P. 2002. Rapid evaluation of Catmull-
Clark subdivision surfaces. In Web3D 2002: Proceedings of the
Seventh International Conference on 3D Web Technology, 11–
17.

BUNNELL, M. 2005. Adaptive tessellation of subdivision surfaces
with displacement mapping. In GPU Gems 2, M. Pharr, Ed.
Addison Wesley, Mar., ch. 7, 109–122.

CATMULL, E., AND CLARK, J. 1978. Recursively generated B-
spline surfaces on arbitrary topological meshes. Computer Aided
Design 10, 6 (Nov.), 350–355.

DEROSE, T. D., KASS, M., AND TRUONG, T. 1998. Subdivision
surfaces in character animation. In Proceedings of SIGGRAPH
98, Computer Graphics Proceedings, Annual Conference Series,
85–94.

EISENACHER, C., MEYER, Q., AND LOOP, C. 2009. Real-time
view-dependent rendering of parametric surfaces. In I3D ’09:

Proceedings of the 2009 Symposium on Interactive 3D Graphics
and Games, 137–143.

LOOP, C., AND SCHAEFER, S. 2008. Approximating Catmull-
Clark subdivision surfaces with bicubic patches. ACM Transac-
tions on Graphics 27, 1 (Mar.), 8:1–8:11.

MICROSOFT CORPORATION. 2008. Introduction to
the Direct3D 11 graphics pipeline. http://www.
microsoft.com/downloads/details.aspx?familyid=
E410716F-12BF-4E8F-AC41-97B4440C3B90.

PATNEY, A., AND OWENS, J. D. 2008. Real-time Reyes-style
adaptive surface subdivision. ACM Transactions on Graphics
27, 5 (Dec.), 143:1–143:8.

SCHNEIDERS, R. 1996. Refining quadrilateral and hexahedral el-
ement meshes. In Proceedings of the Fifth International Con-
ference on Numerical Grid Generation in Computational Field
Simulations, 679–689.

SCHWARZ, M., AND STAMMINGER, M. 2009. Fast GPU-based
adaptive tessellation with CUDA. Computer Graphics Forum
28, 2 (Mar.), 365–374.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for GPU computing. In Graphics Hard-
ware 2007, 97–106.

SHIUE, L.-J., JONES, I., AND PETERS, J. 2005. A realtime GPU
subdivision kernel. ACM Transactions on Graphics 24, 3 (Aug.),
1010–1015.

TOBLER, R. F., AND MAIERHOFER, S. 2006. A mesh data struc-
ture for rendering and subdivision. In Proceedings of WSCG (In-
ternational Conference in Central Europe on Computer Graph-
ics, Visualization and Computer Vision), 157–162.

WIKIPEDIA, 2009. Polygon mesh — Wikipedia, the free encyclo-
pedia. [Online; accessed 28-April-2009].

