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COVID-19: Lessons from the Field

PROBLEM

Coronavirus disease 2019 (COVID-19), caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
was identified in late December 2019 and declared a 
pandemic by the World Health Organization (WHO) on  
11 March 2020.1 In the WHO Western Pacific Region, by 
the end of November 2021, there were 10 221 280 con-
firmed COVID-19 cases and 141 864 deaths.2 Although 
the COVID-19 death count is essential to understanding 
the epidemiology of COVID-19, the attributable mortality 
due to COVID-19 remains unclear. In any given country, 
official statistics may not reflect the actual number of 
lives lost to the disease.3

Identifying deaths from COVID-19 is difficult, es-
pecially in low-resource settings.4 Many countries have 
limited capacity for COVID-19 testing at national and 

subnational levels, and therefore no capability to track the 
spread of COVID-19. Even where cases are adequately 
detected, some deaths may not be reported promptly or 
even at all.4 Also, reporting of cause of death may be 
inaccurate because the quality of death certification de-
pends on the knowledge and skills of physicians, on the 
characteristics of the deceased person (older people are 
the most difficult to certify correctly), on errors in coding 
the death event and on the format of certification.5 There 
can also be a long lag between the death occurring and 
being certified, especially for deaths outside hospitals 
or other health-care facilities, or those that require an 
autopsy. Service interruptions due to the pandemic may 
further delay the death certification process.

According to an internal rapid assessment in the 
WHO Western Pacific Region, most Member States have 
two to four death reporting systems. Most systems are 
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Problem: Quantifying mortality from coronavirus disease (COVID-19) is difficult, especially in countries with limited resources. 
Comparing mortality data between countries is also challenging, owing to differences in methods for reporting mortality.

Context: Tracking all-cause mortality (ACM) and comparing it with expected ACM from pre-pandemic data can provide an 
estimate of the overall burden of mortality related to the COVID-19 pandemic and support public health decision-making. 
This study validated an ACM calculator to estimate excess mortality during the COVID-19 pandemic.

Action: The ACM calculator was developed as a tool for computing expected ACM and excess mortality at national and 
subnational levels. It was developed using R statistical software, was based on a previously described model that used non-
parametric negative binomial regression and was piloted in several countries. Goodness-of-fit was validated by forecasting 
2019 mortality from 2015–2018 data.

Outcome: Three key lessons were identified from piloting the tool: using the calculator to compare reported provisional ACM 
with expected ACM can avoid potential false conclusions from comparing with historical averages alone; using disaggregated 
data at the subnational level can detect excess mortality by avoiding dilution of total numbers at the national level; and 
interpretation of results should consider system-related performance indicators.

Discussion: Timely tracking of ACM to estimate excess mortality is important for the response to COVID-19. The calculator 
can provide countries with a way to analyse and visualize ACM and excess mortality at national and subnational levels.
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to month. Additionally, if a trend is present over time, us-
ing historical averages will not capture the trend or allow 
it to be projected into the future. A more sophisticated 
method by Weinberger et al.10 fits Poisson regression 
models that adjust for seasonality, year-to-year baseline 
variation, influenza epidemics and reporting delays. Our 
statistical model, the WHO Western Pacific Regional 
Office ACM calculator (hereafter, the ACM calculator), is 
based on this method.

ACTION

The WHO Western Pacific Regional Office ACM 
calculator

The ACM calculator was developed to assist Member 
States in the WHO Western Pacific Region in tracking 
and analysing ACM.11 The user enters the relevant ACM 
data into the designated template in the calculator, and 
the expected ACM and excess mortality are calculated.

The calculator can be used online or installed onto a 
local machine. The input data are never stored offline and 
are only accessible to the user. Depending on the amount 
of data entered, the calculator will finish computing within 
seconds or minutes. Various outputs are available, includ-
ing disaggregated results; for example, the calculator can 
provide expected ACM by age group and sex if the data 
entered are disaggregated by these factors. The results 
can be displayed in a variety of formats, including tables 
and graphs.11

Statistical methods

The ACM calculator is based on the model of Weinberger 
et al.,10 but uses non-parametric negative binomial re-
gression. This approach was preferred to Poisson regres-
sion because it allows for overdispersion and can account 
for instances of low or zero counts.10 The mean function 
includes a smooth trend and a smooth non-parametric 
annual cycle in mortality over time. These terms were 
specified using cubic smoothing splines, including a 
cyclical one for the annual cycle. The model allows for 
arbitrary time-varying covariates, and the parameters 
were estimated through restricted maximum likelihood 
estimation. The methodology does not currently adjust 
for influenza epidemics and reporting delays because this 
information is not consistently reported.

electronic or partially electronic, and although some are 
well-integrated within civil registration and vital statis-
tics systems, others are disjointed. The United Nations 
Statistics Division estimated that death registration 
coverage is over 80% in 15 of the 27 Western Pacific 
Regional Member States with data available.6 Total death 
counts, reported either weekly or monthly, are publicly 
available from at least six Member States, and data are 
available internally from at least four. Thus, it may be 
feasible for several Member States in the WHO Western 
Pacific Region to track all-cause mortality (ACM) to 
provide timely information on COVID-19 deaths. Ideally, 
deaths would be reported as soon as possible, with more 
detailed information (e.g. cause of death) reported later 
when death certificates become available.

CONTEXT

Tracking current ACM and comparing it with expected 
ACM from pre-pandemic data can provide an estimation 
of the overall burden of mortality potentially related to 
the COVID-19 pandemic.4 This method requires first 
estimating the number of deaths that would be expected 
if the COVID-19 pandemic had not occurred (i.e. ex-
pected deaths) using historical data and a sophisticated 
statistical model.7 Excess mortality is then estimated by 
comparing the current reported provisional deaths with 
the expected deaths.8

The excess mortality may be directly or indirectly due 
to COVID-19. Indirect deaths due to COVID-19 include 
those linked to conditions that were present before the 
pandemic and have resulted in death because health sys-
tems were overwhelmed, those due to patients avoiding 
health-care facilities and those linked to routine service 
delivery interruption for non-COVID-19 disease. These 
indirect deaths due to COVID-19 are not captured in the 
COVID-19 death numbers reported to WHO.9 Given that 
COVID-19 deaths can influence national and subnational 
response measures, additional effort is required to en-
sure that this information is readily available and quickly 
tracked.

A common method to estimate the expected ACM 
is to use the average death count for each week over a 
5-year period. However, this method does not account for 
the seasonality of mortality, or for the trend and smooth-
ness of expected mortality from week to week or month 
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only were well above the historical average (Fig. 1B) but 
confidence intervals and statistical increase were not 
calculated. The calculator values are above the histori-
cal average because of the presence of an upward trend 
in reported counts from 2015 to 2019; the calculator 
takes this into account whereas the historical average 
does not. Because historical averages do a poor job of 
predicting, comparison with the monthly average alone 
would lead to false conclusions.

The second example illustrates the ability of the 
calculator to show hidden excess mortality within sub-
regions based on disaggregated data. Using data from 
another country, the national data indicate no excess 
mortality over a particular period (Fig. 2A), whereas 
the data for that period from a single local region 
show excess mortality during July and August that is 
outside the 95% prediction intervals for these months  
(Fig. 2B). Therefore, the excess mortality for July and 
August is statistically significantly different from zero 
(even after adjusting for multiple comparisons).7 This 
example highlights the value of being able to analyse 
subregions, because excess mortality may not be iden-
tifiable at the national level in some cases.

Lessons identified

Three key lessons were identified from piloting the tool: 
using the calculator to compare reported provisional ACM 
with expected ACM can avoid potential false conclu-
sions from comparing with historical averages alone; 
using disaggregated data at the subnational level (e.g. 
by region, sex and age) can detect excess mortality by 
avoiding dilution of total numbers at the national level; 
and interpretation of results should consider system-
related performance indicators such as system coverage, 
completeness and reporting delays.

Suggestions for interpreting results

Given that the quality of mortality reporting varies greatly 
within and between Member States, the results of the 
ACM calculator should be interpreted with caution. Death 
coverage may differ if mortality reporting systems do not 
cover all death counts, with inconsistencies if a country 
has multiple systems, especially in low-resource settings. 
Civil registration of deaths is often below 20% in low- 
and middle-income countries.4 There are also timeliness 
issues and reporting delays, so the death count may be 

The expected ACM deaths are forecast stochasti-
cally, to represent uncertainty in the estimate of the 
expected. Thus, statistical significance in observed data 
can be determined (i.e. a substantial increase or decrease 
from the baseline). The forecast is an average over the 
sampling distribution of the parameter estimates, which 
is a simple way to account for uncertainty in the expected 
deaths, in addition to the sampling variation of the counts 
for given model parameters. This approach is preferred 
to a formal Bayesian model because of its simplicity. 
The model goodness-of-fit was validated by forecasting 
2019 mortality from 2015–2018 data (see Appendix 
for details). The validation indicated that the statistical 
coverage of the procedure is close to its nominal rate and 
that the prediction interval lengths are smaller than those 
based on the historical average model. The intervals 
based on the historical average are misleading and their 
actual coverage is far below their nominal coverage.

The calculator was developed using R statistical 
software (ver. 4.1.2), which includes the estimation of 
historical patterns and the computation of expected 
ACM. The software computes the excess mortality from 
2020 to the present time; displays different visualizations 
of expected ACM and excess mortality and allows these 
visualizations and their raw data to be downloaded for 
further analysis and inclusion in reports; and includes 
interactive help and documentation of the methodology. 
The software is open-source. For reproducibility pur-
poses, the exact code used for the analyses in this paper 
is in a static archive.13

OUTCOME

The ACM calculator has been tested using publicly avail-
able data from several Member States. Two examples 
are provided to highlight key lessons from implementing 
the calculator.

The first example from one country (January 
through September 2020) compares ACM plots using 
the calculator versus ACM plots based on historical 
averages only. The results from the calculator showed 
that the recorded counts were well within the 95% 
prediction interval generated (Fig. 1A). Although the 
reported counts were sometimes above the expected 
counts (most notably in August), the reported counts 
were always within the prediction interval. In contrast, 
the recorded counts based on the historical average 
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Fig. 1. A) Monthly reported ACM compared with expected ACM for the first 9 months of 2020 using the 
calculator. The red zone is the 95% prediction interval. B) Monthly reported ACM compared with the 
expected ACM and the historical average ACM. The blue lines plot the recorded number of deaths, the 
orange the expected number of deaths under the model and the green the average number of deaths by 
month during 2015–2019.
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Fig. 2. ACM at the national (A) and subregional level (B) within the same member state in the WHO Western 
Pacific Region. Looking at the aggregate would lead to a conclusion of no excess mortality present; 
however, by disaggregating the data into subregions we can identify areas where significant excess 
mortality is present.
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by the pandemic itself. In addition, it is assumed that 
the negative binomial regression model is adequate to 
capture this variation, and that counts are independent 
from period to period (conditional on the annual cycle 
and covariates). If these assumptions are incorrect, the 
estimates and prediction intervals will be inaccurate and 
probably overly optimistic.

DISCUSSION

During an epidemic or other public health emergency where 
mortality occurs, such as the COVID-19 pandemic, many 
countries experience disruption to routine health-care 
services and socio-behavioural changes in the population. 
For example, 90% of countries have reported disruptions 
to essential health services since the COVID-19 pandemic 
began.12 These changes, together with a lack of reliable 
data and reporting systems, make the true burden of the 
pandemic difficult to quantify. ACM, when reported in a 
timely manner, can be used to estimate excess mortal-
ity, providing a rapid snapshot of the situation to support 
decision-makers to identify the extent and progression 
of the pandemic. Analysing and interpreting ACM data 
(including disaggregated data) can also provide important 
information about who is dying and where, which can then 
guide decisions on targeted surveillance and efficient use 
of health resources. The ACM calculator was developed to 
make it easy for Member States to analyse and visualize 
their ACM data. Users reported that the tool allowed them 
to analyse data on their own and easily generate results. 
Although the underlying statistical model is sophisticated, 
the use of complex algorithms in the background provides 
state-of-the-art summaries in the foreground. The model 
is standardized for a broad user base but could be custom-
ized for the needs of specific Member States. However, 
caution should be exercised when interpreting the results.
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incomplete for certain periods (e.g. the latest week or 
month). It can take more than 12 months for mortality 
data to be finalized at the national level owing to deaths 
not being promptly reported or registered by subnational 
authorities, a long lag between a death and completion 
of the death certificate, a backlog at the subnational 
level that delays reporting to the national level and long 
processing times for the reporting systems. The use of 
disaggregated data to improve monitoring sensitivity may 
be affected by differences in the severity of COVID-19 
transmission between subnational regions; also, the 
impact may vary among different population groups (e.g. 
by sex, age and occupation).

Proactively tracking ACM at the local level may help 
to capture more timely information, given that reporting 
and validation from the local to the national level may 
take several months to complete. Also, in both the short 
and long term, careful interpretation of the results is cru-
cial to tailor specific actions based on conditions within 
each Member State.

For countries with existing systems that cover com-
pulsory and universal mortality reporting, it is important 
to make use of the existing data to monitor weekly and 
monthly trends, to drive decision-making. For countries 
with low levels of mortality reporting coverage, it is still 
worth monitoring weekly and monthly trends based on 
available data; however, results should be interpreted 
with caution, as mentioned above. Additional resources 
or channels (e.g. burial or cemetery registration) can be 
employed to track total death counts. Community based 
mortality reporting should also be considered if neces-
sary.

Limitations

There are two main limitations to the calculator. First, 
our methodology assumes that reported counts are the 
actual values and that reports are complete and ac-
curate. However, provisional death counts are normally 
used for timely monitoring. Results should be compared 
with in-place systems, as mentioned above. Second, the 
fundamental assumption is that the statistical variation 
in ACM during the historical period (2015–2019) is 
the same as that from 1 January 2020 onward in the 
counter-factual situation where there was no pandemic. 
This is not directly testable because of confounding 
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This appendix provides technical details on the statistical methods used to estimate excess mortality during the 
coronavirus disease (COVID-19) pandemic using data on all-cause mortality (ACM). It also provides a simulation study 
to assess the validity of the methodology. The exact code used in the analyses in this paper is in a static archive.1

We consider the case where we have multiple time-series of ACM counts from each Member State for each week 
between 1 January 2015 and a recent date. For some Member States we have only monthly data; for such cases, the 
description below is also suitable. We consider the case where we have separate reported counts for each sex and 
age group (typically, 5-year age groups).

The primary objective is to estimate the expected ACM counts for each week from 1 January 2020 onward 
assuming no pandemic had occurred. The excess mortality is defined as the difference between the reported counts 
and expected counts for each week.

Model

To illustrate, let us consider the case of females aged 65–74 years in Australia. Let yt be the count for week t=1,…,T 
with t=1,…,260 being the period 1 January 2015 to 31 December 2020. We model yt as a random variable following 
a negative-binomial distribution with mean parameter λt. We make this choice rather than using a Poisson distribution 
to account for overdispersion in the counts. The overdispersion parameter is itself estimated from the data and the 
mean parameters λt are modelled as:

log  λ t  =c (t)  + trend(t)  + Xtβ

where c(t) represents the annual cycle in ACM and trend(t) is the curvilinear trend of ACM over time. The annual cycle 
c(t) is modelled as a cyclic cubic spline function2 of time with a period of 52 weeks (i.e. c(t)= c(t + 52)), where a 
spline is a piecewise polynomial. Conceptually, one can imagine a high-degree polynomial capable of crossing through 
every data point. Such a polynomial would probably overfit the observed data, meaning it may not predict well using 
new data. Splines allow many low-degree (in this case, degree three) polynomials to fit the data in pieces, achieving 
a good fit to the data without the risk of overfitting.

Specifically, ct is modelled as a piecewise cubic polynomial that has a continuous second derivative, is continu-
ous, has continuous first and second derivatives at 52-week cycles and best fits the recorded ACM while being 
smooth. The specific criterion for the last feature is to choose ct to minimize the penalized square error (PSE):

where c’’[s] is the second derivative of c[s] and τ is a smoothing parameter, chosen to balance the closeness of fit 
to the recorded counts (the first term) with the smoothness of c[s] (the second term). Hence, choosing the function 
c[s] that minimizes PSEτ(c) provides a balanced representation of the annual cycle. It prioritizes smoothness of c[s] 
over the closeness of fit of c[s] to the recorded ACM. The traditional estimator, c[s], is the minimizer with τ=0; that 
is, there is no penalty for lack of smoothness. The choice of τ is subjective. In this work we chose to maximize the 
ability to predict unrecorded ACM counts. Specifically, we used generalized cross validation (GCV)3 to choose, and 
the R package ‘mgcv’ (created by Simon Wood) for analysis.4,5 The annual cycle obtained in this way is the optimal 
smoothest annual cycle chosen to maximize the likelihood of the observed ACM.

A similar approach is taken to the curvilinear trend trend(t). It is modelled as a (non-cyclic) cubic spline function 
– specifically, as a piecewise cubic polynomial that has a continuous second derivative, is continuous and best fits the 
recorded ACM while being smooth. The specific criterion for the last feature is to choose trend(t) to minimize the PSE:

APPENDIX
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where trend’’[t] is the second derivative of trend(t)  and 
γ is a smoothing parameter, chosen to balance the close-
ness of fit to the recorded counts (the first term) with 
the smoothness of trend(t) (the second term). Hence, 
choosing the function trend(t) that minimizes PSEγ 
(trend) provides a balanced representation of the trend. 
It prioritizes smoothness of trend(t)  over the closeness 
of fit of trend(t)  to the recorded ACM. The traditional 
estimator, trend(t), is the minimizer with γ=0; that is, 
there is no penalty for lack of smoothness. Like τ, the 
choice of γ is subjective. Also, as with the annual cycle, 
we chose to maximize the ability to predict unrecorded 
ACM counts by using the GCV criterion. The model al-
lows for arbitrary time-varying covariates, Xt. Including 
both the date and period allows for the model to detect 
trends both across and within years.

Negative-binomial regression is a natural choice 
given that we are seeking to estimate the death count 
during any time frame. Negative-binomial is preferred to 
Poisson regression because it allows for overdispersion; 
also, it can account for instances of low or zero counts 
without issue.

This particular negative-binomial regression 
model is a generalized additive model (GAM) that uses 
smoothing functions for the predictor variables. Since 
the date and period are input as discrete values, they 
are smoothed using cubic splines, a common smoothing 
technique. The parameters β and the splines themselves 
are found through restricted maximum likelihood esti-
mation. GAMs are a type of generalized linear model, 
which are generalizations of ordinary linear regression 
that allow for the response variable to have error distri-
butions other than the normal distribution (in this case, 
the negative-binomial distribution).

Currently, this model is simple in that it uses only 
information on sex, age group and time/date. When more 
data become readily available (e.g. influenza counts), 
the model can easily be extended to incorporate that 
data. There are also other ways to enhance the model, 
such as considering negative-binomial regression for 
the case of overdispersion or using hierarchical models 
for sharing information across groupings. Hence, this 
preliminary approach should serve as a strong starting 
point.

The next step is to stochastically forecast the 
expected to represent the uncertainty in the estimate 
of the expected. Thus, the statistical significance of the 
observed can be determined (i.e. if it represents a sub-
stantial increase or decrease from the baseline). One 
detail of the forecast is that it is an average over the 
sampling distribution of the parameter estimates. This 
is a simple way to account for uncertainty in our model 
for the expected mortality in addition to the sampling 
variation of the counts for given model parameters. We 
prefer this to a formal Bayesian model owing to its 
simplicity.

Currently, models are fit separately to each sex,  
each age group and each Member State. It is possible 
to improve the estimation by using information from 
both sexes and multiple age groups simultaneously, but 
this is a bias–variance trade-off that can be explored.

For Member States with missing (pandemic) 
weeks, we can stochastically interpolate using simple 
time-series models. If the number of missing weeks is 
significantly high, we use a negative-binomial model 
such as the one described above to stochastically 
interpolate.

An issue that may be important to adjust for 
is reporting delay (this is mainly an issue for recent 
weeks). To do this, information is needed on the 
reporting delay. In the United States, the National 
Center for Health Statistics reports mortality as the 
serial provisional data from the states are received and 
processed – counts of deaths from recent weeks are 
highly incomplete, reflecting delays in reporting. These 
“provisional” counts are updated regularly over the 
following weeks, and the counts are not finalized until 
more than a year later. The estimate of completeness 
is based on the number of weeks that have passed 
between when the death occurred and when the data 
set was obtained. We can model this relationship and 
use it to adjust the estimates, if necessary.

Validation of the statistical method for estimating 
ACM without a pandemic

One may ask why it is not better to simply compare the 
observed ACM counts to historical averages of recent 
years. As we will show, doing so offers less robust pre-
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diction intervals than using the model described above. 
The following validation metrics also justify using this 
model to gauge the significance of current ACM counts 
relative to pre-pandemic times.

The model attempts to forecast ACM counts for 
each week of 2020 and beyond, assuming no pandemic 
had occurred. Since the discrepancy between actual 
counts and expected counts is the sought-after esti-
mate of excess mortality in 2020, it is vital that the 
model makes accurate predictions. One way to validate 
the accuracy of the model is to use it to predict ACM 
during 2019, a year in which there would have been 
no “excess” mortality. The model is trained using data 
from 1 January 2015 through to 31 December 2018, 
then predictions are made on a weekly or monthly basis 

for 2019. The closer the predicted counts are to the 
observed counts, the better the model is performing.

The model has been validated across all age 
groups, sexes and Member States, but to continue 
with the example used earlier (i.e. of females aged 
65–74 years in Australia), we present those results for 
that example. Appendix Fig. 1 below shows the 95% 
prediction intervals for the model (“spline”) and for the 
weekly average. The actual weekly counts are denoted 
by the black dots, showing that the spline model fails to 
capture the true count just three times out of 52 periods 
(95% accurate). The weekly average fairs far worse. 
As is evident from Appendix Fig. 1, the lengths of the 
spline intervals are typically smaller than the lengths of 
the weekly average intervals, meaning that the spline 

Appendix Fig. 1. Prediction intervals for 2019 based on deaths in 2015–2018. The black dots are the reported 
deaths for each week in 2019. The green error bars are based on the weekly averages. The blue 
intervals are based on the spline model. Those based on the weekly averages are incorrect and their 
actual coverage is well below their nominal coverage. The intervals based on the spline model are valid.
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Sex and age group Average (PI %) Spline (PI %)

Female 0–44 85 94

Female 45–64 83 93

Female 65–74 81 91

Female 75–84 92 93

Female ≥85 87 96

Female total 88 95

Male 0–44 83 89

Male 45–64 81 97

Male 65–74 92 92

Male 75–84 87 91

Male ≥85 81 87

Male total 75 86

Total 0–44 87 89

Total 45–64 85 95

Total 65–74 88 90

Total 75–84 81 92

Total ≥85 81 95

Overall total 83 91

Median % 84 92

Mean % 84 92

Appendix Table 1. Prediction interval accuracy for all age and sex groups. The intervals produced by the spline 
model have the correct coverage whereas those produced by the weekly average model are well below 
their nominal coverage.

ETS: exponential triple smoothing; PI: prediction interval.

intervals should be long enough to capture the true 
values most of the time; however, intervals that are 
too long create too much uncertainty to be worthwhile. 
Appendix Table 2 shows the lengths of the prediction 
intervals for the spline, exponential triple smoothing 
(ETS) and weekly average. The spline intervals tend 
to be nearly the same length as those of the ETS for 
those aged 0–74 (the weekly average has a short 
length but is highly inaccurate). It is in those aged 
75+ (and when aggregating across all age groups) that 
the spline intervals are longer than their counterparts. 
The significant increase in the uncertainty surround-
ing the older age categories is something that will be 
investigated.

model has higher accuracy because it is a better model 
rather than just because it is larger. More importantly, 
the weekly average intervals are misleading and their 
actual coverage is far below their nominal coverage.

The accuracy of the spline model is not solely for 
females aged 65–74. Appendix Table 1 shows per cent 
accuracy (i.e. how often the prediction interval contains 
the actual value) for each demographic breakdown. The 
spline model significantly outperforms the weekly aver-
age across all sex and age groups.

Another way to check the validity of the model is 
to look at the length of the prediction intervals. The 
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Appendix Table 2. Prediction interval length for all Australian age and sex groups.

AUS: Australia; ETS: exponential triple smoothing; PI: prediction interval.

Member state: Sex and age 
group

Average from 2015 to 2018  
(PI length)

ETS (PI length) Spline (PI length)

AUS: Female 0–44 8.9 20 20

AUS: Female 45–64 18.6 43 43

AUS: Female 65–74 24.9 52 53

AUS: Female 75–84 37.8 70 78

AUS: Female ≥85 70.3 103 148

AUS: Female total 106.5 143 225

AUS: Male 0–44 10.0 21 21

AUS: Male 45–64 23.6 50 53

AUS: Male 65–74 36.0 63 72

AUS: Male 75–84 45.1 78 93

AUS: Male ≥85 60.2 87 118

AUS: Male total 107.2 143 210

AUS: Total 0–44 13.8 29 29

AUS: Total 45–64 28.3 66 66

AUS: Total 65–74 50.8 81 98

AUS: Total 75–84 64.7 105 130

AUS: Total ≥85 111.9 135 228

AUS: Overall total 191.0 202 386

Median length 41.5 74 85

Mean length 56.1 83 115




