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Banded and tapered estimates for autocovariance matrices and the

linear process bootstrap

Abstract

We address the problem of estimating the autocovariance matrix of a stationary process.

Under short range dependence assumptions, convergence rates are established for a gradually

tapered version of the sample autocovariance matrix and for its inverse. The proposed estima-

tor is formed by leaving the main diagonals of the sample autocovariance matrix intact while

gradually down-weighting off-diagonal entries towards zero. In addition we show the same con-

vergence rates hold for a positive definite version of the estimator, and we introduce a new

approach for selecting the banding parameter. The new matrix estimator is shown to perform

well theoretically and in simulation studies. As an application we introduce a new resampling

scheme for stationary processes termed the linear process bootstrap (LPB). The LPB is shown

to be asymptotically valid for the sample mean and related statistics. The effectiveness of the

proposed methods are demonstrated in a simulation study.

Key words: autocovariance matrix; stationary process; bootstrap; block bootstrap; sieve boot-

strap

1 Introduction

LetX1, . . . , Xn be a realization of a mean zero, stationary process {Xt}t∈Z, and let γk = cov [X0, Xk]

be its autocovariance function. The goal of the present work is to estimate the n×n autocovariance

matrix

Σn =
[
γ|i−j|

]n
i,j=1

.

The lag-k autocovariance γk has a natural estimate given by the sample autocovariance

γ̂k = n−1
n−k∑
i=1

XiXi+k

However, plugging in γ̂k instead of γk in Σn does not work because

Σ̂n =
[
γ̂|i−j|

]n
i,j=1
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is not a consistent estimator of Σn in the sense that the operator norm of Σn−Σ̂n does not converge

to zero. To achieve consistency, Wu and Pourahmadi (2009) proposed a banded estimator of the

sample covariance matrix.

In the present work, we propose a more general estimator of Σn which leaves the 2l + 1 main

diagonals of Σ̂n intact, and then gradually down-weighs increasingly distant off-diagonal entries

instead of setting them to zero as in the banded matrix case. We establish rates of convergence and

demonstrate the efficacy of the proposed method. In addition, by analogy with the related problem

of spectral density estimation, we introduce a natural estimate for the banding parameter, l, that

is useful even for the Wu and Pourahmadi (2009) estimator.

The remainder of the paper is structured as follows: Section 2 presents our main results; Sec-

tion 3 addresses a correction to positive definiteness; Section 4 presents a method to choose the

banding parameter; Section 5 introduces as an application the linear process bootstrap, a new boot-

strap for stationary processes; Section 6 provides a small simulation study; and Section 7 contains

all technical proofs.

2 A tapered covariance matrix estimator

In the present section, we establish convergence rates for the tapered sample covariance matrix to

Σn in the operator norm, defined by

ρ(A) = max
x∈Rn:|x|=1

|Ax|, (1)

where | · | denotes the usual Euclidean norm on Rn. It is worth noting that ρ(A) =
√
λmax(A∗A),

where λmax(A∗A) is the largest eigenvalue of A∗A, and where A∗ denotes the conjugate transpose

of A; see Horn and Johnson (1990), p. 296.

We propose estimating Σn by the matrix Σ̂κ,l :=
[
w|i−j|γ̂|i−j|

]n
i,j=1

, where w|i−j| is a weight

function which down-weighs the values of γ̂|i−j| when |i − j| is large; this is desirable because

estimated covariances with large values of |i − j| are known to be less reliable (see, for example,

Brockwell and Davis, 1991).

The motivation for our approach lies in the relationship between this problem and that of

spectral density estimation. The spectral density is defined as

f(ω) =
1

2π

∞∑
j=−∞

γje
−iωj ,
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and is nonparametrically estimated by

f̂(ω) =
1

2π

l∑
j=−l

wj γ̂je
−iωj ,

where the wj are weights that play a role analogous to those used in the present problem. In the

context of spectral density estimation, the weighting scheme we propose here has shown to provide

optimal convergence rates (Politis and Romano, 1995) and to allow for a straightforward method

of banding parameter selection (Politis, 2003a); we show that these advantages carry over to the

present setting.

With this motivation in mind, we denote our weight function by κ(·) and define it as follows.

Definition 1. The tapered weight function κ is given by

κ(x) =


1 if |x| ≤ 1

g(|x|) if 1 < |x| ≤ cκ

0 if |x| > cκ,

(2)

where |g(x)| < 1. The l-scaled version of κ(·) will be denoted by

κl(x) := κ(x/l).

With this notation, our tapered estimator of Σn is given by

Σ̂κ,l =
[
κl(i− j)γ̂|i−j|

]n
i,j=1

. (3)

A simple example of a weight function satisfying Definition 1 is the trapezoid proposed by

Politis and Romano (1995), i.e.,

κ(x) =


1 if |x| ≤ 1

2− |x| if 1 < x ≤ 2

0 if |x| > 2

(4)

but other choices are possible. For example, McMurry and Politis (2004) consider an infinitely

differentiable weight function, and Politis (2007) considers several smooth tapers.

Remark 1. The function g(x) will typically also be decreasing in |x| in such a way that κ(x)

is continuous; these restrictions do not impact asymptotic convergence rates but they tend to

improve finite sample results. The banded estimator of Wu and Pourahmadi (2009) can be put in

the framework of our general tapered estimator (3) with the choice cκ = 1 and no function g, i.e.,

a rectangular window κ(x). However, the rectangular window does not perform well for spectral

estimation, and similarly here the use of a non-rectangular window is recommended.
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In order to establish convergence rates of Σ̂κ,l to Σn, we need to impose some short range

dependence assumptions on the time series. We follow Wu and Pourahmadi (2009) in adopting the

physical dependence measure of Wu (2005). Let εi, i ∈ Z be a sequence of i.i.d. random variables.

Moreover, assume that Xi is a causal process of the form

Xi = f(. . . , εi−1, εi),

where f is a measurable function such that Xi is well defined and E
[
X2
i

]
<∞.

In order to quantify the dependence, let ε′i be an independent copy of εi, i ∈ Z. Let ξi =

(. . . , εi−1, εi), ξ′i = (. . . , ε−1, ε
′
0, ε1, . . . , εi), and X ′i = g(ξ′i). For α > 0, we define the physical

dependence measure

δα(i) := ||Xi −X ′i||α,

where ||Y ||α := E [|Y |α]1/α.

Note that the difference between Xi and X ′i is due only the difference between ε0 and ε′0, and

therefore δα(i) measures the dependence of Xi on an event i units of time in the past. To measure

the cumulative dependence across all time, the quantity

∆α :=
∞∑
i=1

δα(i)

is helpful. We will say that {Xi} is short-range dependent with moment α if ∆α <∞.

Lemma 1. (Wu and Pourahmadi, 2009) Assume that {Xi} satisfies ∆2q < ∞ with 1 < q ≤ 2.

Then for any j ∈ Z,

||
n∑
i=1

XiXi+|j| − nγj ||q ≤ 2Bqn1/q||X1||2q∆2q

where

Bq =


18q3/2

(q−1)1/2
if q 6= 2

1 if q = 2.

The above lemma is used to establish our main result, which gives an upper bound for the rate

of convergence of Σ̂κ,l to Σn.

Theorem 1. Let 1 < q ≤ 2. Assume ||X1||2q <∞, ∆2q <∞, and 0 ≤ cκl < n− 1. Then

||ρ(Σ̂κ,l − Σn)||q ≤ dq(bcκlc+ 1)n−(q−1)/q +
2
n

bcκlc∑
i=1

i|γi|+ 2
n∑

i=l+1

|γj |, (5)

where dq is a constant depending on ||X1||2q, ∆2q, and q, and cκ is as given in (2).
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Theorem 1 generalizes Theorem 2 of Wu and Pourahmadi (2009) who consider an estimate Σn

of the same form as that given in equation (3) but with the weights restricted to being only 1 or 0,

i.e., a rectangular window. The additional generality is achieved without changing the overall rate

of convergence.

Remark 2. Theorem 1 is stated for mean zero data, but the result applies equally well to the

centered data X1 − X̄, . . . , Xn − X̄.

The inequality (5) suggests approximately optimal rates for l depending on the rate at which

|γi| → 0 as i→∞.

Corollary 1. The convergence rate for the bound in inequality (5) can be optimized by minimizing

the bound (5) as a function of l. The optimal bounds are found to be:

i. If |γi| = O(i−d) for some d > 1, then the rate for the bound in Theorem 1 is optimized by

choosing l ∝
(
n(q−1)/(dq)

)
, and the bound (5) becomes of order O

(
n−(d−1)(q−1)/(dq)

)
.

ii. If |γi| = O(θi) for some θ with |θ| < 1 and if l = ba log nc for a large enough, then the

bound (5) becomes of order O
(
n−(q−1)/q log n

)
.

iii. If there exists B such that γi = 0 for all i > B, then if l = B, the bound (5) becomes of order

O
(
n(−q−1)/q

)
.

In all three cases above, the second term of the bound (5) is dominated by the other two terms.

3 Positive definite autocovariance matrix estimation

Under some additional conditions, Theorem 1 implies that Σ̂κ,l is asymptotically invertible and

provides a bound for the convergence rate of Σ̂−1
κ,l to Σ−1

n .

Theorem 2. Assume l grows fast enough to ensure the convergence (5) and that l = o(n(q−1)/q).

Also assume that the spectral density

f(ω) = (2π)−1
∞∑

k=−∞
γke
−iωk,

satisfies 0 < c1 ≤ f(ω) ≤ c2 <∞ for some positive constants c1 and c2. Then, under the conditions

of Theorem 1, Σ̂κ,l is positive definite with probability tending to 1, and

ρ
(

Σ̂−1
κ,l − Σ−1

n

)
= Op(rn), where rn = ln−(q−1)/q +

∞∑
i=l

|γj |.
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However, Σ̂κ,l is not guaranteed to be positive definite for finite samples. If positive definiteness

of Σ̂κ,l is desired, a modified estimator achieves this goal without compromising accuracy. In

particular, consider the spectral decomposition Σ̂κ,l = TnDT
t
n where Tn is an orthogonal matrix,

and D = diag(d1, . . . , dn), a diagonal matrix containing the eigenvalues of Σ̂κ,l. Now let

Σ̂ε
κ,l := TnD

εT tn,

where Dε = diag(dε1, . . . , d
ε
n) and dεi = max(di, εγ̂0/n

β); here β and ε are user-defined positive

constants to be discussed below. The presence of the term γ̂0 in the definition of dεi is in order to

make Σ̂ε
κ,l scale-equivariant.

It is obvious that Σ̂ε
κ,l is positive definite by construction. The following is the analog of

Theorem 1 for the modified estimator Σ̂ε
κ,l.

Theorem 3. Let 1 < q ≤ 2. Assume ||X1||2q <∞, ∆2q <∞, and 0 ≤ cκl < n− 1. Then

||ρ(Σ̂ε
κ,l − Σn)||q ≤ 2dq(bcκlc+ 1)n−(q−1)/q +

4
n

bcκlc∑
i=1

i|γi|+ 4
n∑

i=l+1

|γj |

+εγ(0)/nβ +O(n1/q−1−β), (6)

where dq, ||X1||2q, ∆2q, and q, and cκ are as in Theorem 1.

The two last terms on the right hand side of (6) are dominated by the first term when β >

1/2. The following corollary ensues showing that the modified estimator Σ̂ε
κ,l maintains the same

asymptotic rate of convergence as Σ̂κ,l.

Corollary 2. Assume the conditions of Theorem 3 and that β > 1/2. Then,

||ρ(Σ̂ε
κ,l − Σn)||q = O(||ρ(Σ̂κ,l − Σn)||q).

For practical use, it is advisable not to take β close to the threshold 1/2. In simulation, we found

taking β = 1 in conjunction with ε = 1 worked well. Taking ε = 0 will result into an estimator that

is non-negative definite but not necessarily positive definite.

An immediate corollary of the two preceding theorems is that the inverse positive definite version

of the estimator also achieves the same convergence rates as given in Theorem 2.

Corollary 3. Under the conditions of Theorems 2 and 3,

ρ
(

(Σ̂ε
κ,l)
−1 − Σ−1

n

)
= Op(rn).
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4 Banding parameter selection

In this section we recall the rule introduced in Politis (2003a) for estimating the bandwidth in

spectral density estimation using flat-top kernels.

Empirical Rule of Picking l. (Politis, 2003a) Let %(k) = γk/γ0 and %̂(k) = γ̂k/γ̂0. Let l̂ be the

smallest positive integer such that |%̂(l̂ + k)| < c
√

log n/n for k = 1, . . . ,KN where c > 0 is a fixed

constant, and Kn is a positive, nondecreasing sequence that satisfies Kn = o(log n).

The rates of increase of l̂ chosen by the above rule vary according to how quickly the autocor-

relation function of the process decays; they are summarized in the following theorem.

Theorem 4. (Politis, 2003a) Assume conditions strong enough to ensure that for all finite m

max
i=1,...,m

|%̂(s+ i)− %(s+ i)| = OP (1/
√
n)

uniformly in s, and

max
i=0,1,...,n−1

|%̂(i)− %(i)| = OP

(√
log n/n

)
.

Also assume there exists a positive i0 such that |γi| > 0 for all i < i0.

i. Assume that γi = Ci−d for i > i0, and for some C > 0, and a positive integer d. Then,

l̂
P∼ A1n

1/2d

(log n)1/2d

ii. Assume γi = Cθi for i > i0, where C > 0, and |θ| < 1 are some constants. Then

l̂
P∼ A2 log n

where A2 = −1/ log |θ|.

iii. If γi = 0 for all k > B ≡ i0, but γB 6= 0, then

l̂ = B + op(1).

Note l̂ automatically adapts to the underlying correlation structure by switching its rate of increase

without any decision from the practitioner.

An immediate consequence of Theorem 4 is that, in the case where q = 2, the above rule proves

close to optimal in the present setting of estimating Σn. As a matter of fact, except for the slowly
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varying factor (log n)1/2d in case i, the rates of increase of l̂ are the same as the optimal rates

for q = 2 given in Corollary 1. We thus have the following Corollary that gives credence to the

applicability of l̂ for use in estimating the autocovariance matrix.

Corollary 4. Assume ||X1||4 < ∞, ∆4 < ∞, 0 ≤ cκl < n − 1, and let l̂ be picked by the above

empirical rule. Then

i. If γi = Ci−d for i > i0 for some C > 0 and positive integer d, then,

||ρ(Σ̂κ,l − Σn)||2 = OP

(
(n/ log n)(−1/2)(1−d−1)

)
.

ii. If γk = Cθi for i > i0 for some C > 0 and |θ| < 1, then

||ρ(Σ̂κ,l − Σn)||2 = OP

(
n−1/2 log n

)
.

iii. If γi = 0 for all k > B ≡ i0, but γB 6= 0, then

||ρ(Σ̂κ,l − Σn)||2 = OP

(
n−1/2

)
.

5 Linear process bootstrap

There are several bootstraps for time series data; see, for example, Lahiri (2003), Politis (2003b), or

Bühlmann (2002) for reviews. The most popular methods in the literature are the block bootstrap

and the AR sieve. The block bootstrap of Künsch (1989) and Liu and Singh (1992) create bootstrap

pseudo-data by resampling from blocks of b consecutive observations. If b, which is assumed to

grow with n, is sufficiently large, the pseudo-data will have a dependence structure which closely

mimics that of the original process. The AR sieve bootstrap of Kreiss (1992), Paparoditis and

Streitberg (1992), and Bühlmann (1997) fits an AR(p) model to the original data, and then uses

the fitted model in conjunction with a residual bootstrap to simulate pseudo-data. Letting p grow

with n allows the sieve bootstrap to asymptotically capture the covariance structure of the original

time series.

A natural extension of the AR sieve would be an MA sieve, which models the observed time series

by fitting increasingly high order MA(q) processes to the data; this has not been done because of the

relative difficulty of fitting MA models. MA models are either fit by numerical optimization, which

is not feasible for large values of q, or by algorithms such as the innovations algorithm presented in

Theorem 8.3.1 of Brockwell and Davis (1991). Unfortunately, the innovations algorithm requires
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estimating MA coefficients of orders much greater than q in order to assess the stability of the first

q fitted parameters; see the discussion following Theorem 8.3.1 in Brockwell and Davis (1991).

Below, we propose a new bootstrap, termed the linear process bootstrap (LPB) which is an

alternative to an MA sieve; it works because knowledge of Σ̂ε
κ,l makes it possible to generate an

MA process without knowing the MA coefficients. The LPB is also more general because one could,

in principle, use a taper κ(·) that is not identically zero after a point, but just tends to zero, (see,

for example Politis, 2007); in that case the LPB is generating linear MA(∞) rather than MA(q)

processes. We prove the validity of the LPB for the mean, and we conjecture its validity for all

statistics whose asymptotic distribution depends only on the mean and covariance of the data.

The LPB algorithm is as follows.

1. Let Yi = Xi − X̄ for i = 1, . . . , n, and let Y = (Y1, . . . , Yn)t.

2. Let W = (Σ̂ε
κ,l)
−1/2Y .

3. Let Z be the standardized version of W , with Zi = (Wi − W̄ )/σ̂W , where W̄ = n−1
∑n

i=1Wi

and σ̂2
W = n−1

∑n
i=1(Wi − W̄ )2.

4. Generate Z∗1 , . . . Z
∗
n by an i.i.d. bootstrap of Z1, . . . , Zn.

5. Compute Y ∗ = (Σ̂ε
κ,l)

1/2Z∗, where (Σ̂ε
κ,l)

1/2 is taken to be the lower triangular matrix L in

the Cholesky decomposition Σ̂ε
κ,l = LLt.

Remark 3. The matrix square root (Σ̂ε
κ,l)
−1/2 in step 2 can be any matrix square root that converges

to Σ−1/2
n at the same rate as Σ̂ε

κ,l converges to Σn, such as those obtained by the Cholesky or spectral

decompositions (see, for example, Horn and Johnson, 1990, p. 411). We conjecture that the same

is true of the square root used in step 5, but our proof of Theorem 5 (below) is specific to the

Cholesky decomposition. For reasons of symmetry, it seems preferable to use the same square root

in step 2 as in step 5.

Under assumptions of the preceding theorems, the algorithm above can be used to produce

confidence intervals for the mean which are justified by the following theorem.

Theorem 5. Let E [Xi] = µ. Then under the conditions of Theorems 1, 2, and 3, with q = 2,

sup
x

∣∣∣P [n1/2(X̄ − µ) ≤ x
]
− P∗

[
n1/2Ȳ ∗ ≤ x

]∣∣∣→P 0, (7)

and

var∗
[
n1/2Ȳ ∗

]
→P σ

2,
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Figure 1: An infinitely differentiable weight function

where σ2 = (γ0 + 2
∑∞

k=1 γk) = limn→∞ var
[
n1/2X̄

]
.

Surprisingly, the assumptions of Theorem 5 do not include linearity of the original time series,

i.e., an MA(∞) model. Thus our theorem is more general than one would expect.

6 Simulations

6.1 Covariance matrix estimation

We conducted several simulations with the aim of a direct comparison between our estimator and

that of Wu and Pourahmadi (2009). They use a subsampling rule to estimate l, whereas we employ

the empirical rule of Section 4. We also use three different weight functions: rectangular, defined

by κ(x) = 1{|x| < 1}; trapezoidal as defined in equation (4); and infinitely differentiable, as

defined in McMurry and Politis (2004) and shown in Figure 1. All simulations were performed in

R (R Development Core Team, 2009). Our results show that the trapezoid is consistently the best

performer. All results are based on N = 100 replications, and the parameters in the bandwidth

choice rule were chosen to be c = 2, and Kn = 5.

We also tested the adjustment to positive definiteness given in Theorem 3 using the trapezoid

weight. While negative eigenvalues were occasionally observed, they were so close to zero that,

to the two digit resolution given in the following tables, the results were numerically identical to

the unadjusted trapezoid estimator. For this reason, these losses are omitted from the table. The

rectangular weight function is expected to produce many more nonpositive matrices, as the negative

sidelobes of its Fourier transform are more pronounced than those of the trapezoid’s.
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n l̂ ∞-WP ∞-Rect ∞-Trap ∞-InfD Op-Rect Op-Trap Op-InfD

250 0.95 (0.22) 2.7 0.27 (0.24) 0.27 (0.24) 0.27 (0.24) 0.27 (0.24) 0.27 (0.24) 0.27 (0.24)

500 1.00 (0.00) 2.2 0.20 (0.14) 0.20 (0.14) 0.20 (0.14) 0.20 (0.14) 0.20 (0.14) 0.20 (0.14)

750 1.00 (0.00) 1.9 0.16 (0.10) 0.16 (0.10) 0.16 (0.09) 0.16 (0.10) 0.16 (0.10) 0.16 (0.09)

Table 1: Banding parameter and losses in the matrix infinity norm and operator norm for the

moving average processes. Losses are calculated for the trapezoid, rectangular, and infinitely dif-

ferentiable weight functions. The column ∞-WP contains the losses reported in Wu and Pourah-

madi (Wu and Pourahmadi, 2009). Standard deviations are shown in parentheses.

6.1.1 MA(1)

In the first simulation, the data was generated by the moving average process Xt = εt+ θεt−1, with

θ = 0.5, and εt and iid sequence of N(0, 1) random variables. Our results are provided in Table 1.

Wu and Pourahmadi (2009) estimate losses in the matrix infinity norm

|||A|||∞ := max
i∈{1,...,n}

n∑
j=1

|aij |,

so this is included along with operator norm losses. The only difference between our approach with

rectangular kernels and their approach is in the selection of l̂. In infinity norm, our methodology

reduces the loss by more than a factor of 10 for all sample sizes, and we are close to achieving the

theoretically best possible results presented in Table 1 of Wu and Pourahmadi (2009).

6.1.2 AR(1)

In the second experiment data was simulated from the AR(1) process Xt = φXt−1 +εt, where the εt

were iid N(0, 1− φ2), for φ = 0.1, 0.5, and 0.9; the error variance was chosen to make var [Xt] = 1

for all simulations. Results are presented in Table 2. Wu and Pourahmadi (2009) do not provide

numeric results for this case.

6.1.3 Absolute value AR(1)

For the final simulation, data were simulated from the model Xt = φ|Xt−1|+ εt, where εt were iid

N(0, 1). The autocovariance function for the absolute AR model does not have a simple closed form,

so we approximate the true Σn with its empirical version using a very large amount of data. While
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n φ l̂ ∞-Rect ∞-Trap ∞-InfD Op-Rect Op-Trap Op-InfD

250 0.1 0.00 (0.00) 0.29 (0.05) 0.29 (0.05) 0.29 (0.05) 0.28 (0.05) 0.28 (0.05) 0.28 (0.05)

250 0.5 1.22 (0.46) 1.22 (0.25) 1.18 (0.29) 1.19 (0.27) 1.03 (0.33) 1.02 (0.35) 1.02 (0.35)

250 0.9 10.01 (5.18) 10.57 (2.88) 9.63 (3.71) 9.73 (3.66) 9.3 (3.35) 8.73 (3.98) 8.79 (3.94)

500 0.1 0.00 (0.00) 0.27 (0.04) 0.27 (0.04) 0.27 (0.04) 0.25 (0.04) 0.25 (0.04) 0.25 (0.04)

500 0.5 1.71 (0.52) 0.90 (0.27) 0.81 (0.32) 0.84 (0.30) 0.75 (0.33) 0.70 (0.37) 0.72 (0.36)

500 0.9 13.98 (7.23) 9.76 (4.52) 9.12 (5.41) 9.21 (5.40) 8.49 (4.78) 8.40 (5.57) 8.41 (5.57)

750 0.1 0.00 (0.00) 0.27 (0.03) 0.27 (0.03) 0.27 (0.03) 0.25 (0.04) 0.25 (0.04) 0.25 (0.04)

750 0.5 1.92 (0.37) 0.76 (0.20) 0.66 (0.24) 0.70 (0.23) 0.66 (0.26) 0.57 (0.28) 0.60 (0.28)

750 0.9 15.19 (5.10) 7.45 (2.43) 6.42 (2.76) 6.54 (2.76) 6.37 (2.64) 5.76 (2.85) 5.82 (2.85)

Table 2: Banding parameter and losses in the matrix infinity norm and operator norm for the

auto-regressive processes. Losses are calculated for the trapezoid, rectangular, and infinitely differ-

entiable weight functions. Standard deviations are shown in parentheses.

this provides (crude) estimates of the loss, it induces some additional, and difficult to quantify,

uncertainty into the values shown in Table 3. Nonetheless, our results again show significant

improvement over those presented in Wu and Pourahmadi (2009), particularly for smaller values

of φ.

6.2 Linear process bootstrap

Finally, we ran several simulation experiments to assess the performance of the linear process

bootstrap and for comparison we also tested each simulated data set using two other popular

resampling schemes. First, we considered the block bootstrap of Künsch (1989) and Liu and Singh

(1992), as implemented in Canty and Ripley (2009), using the block length selection of Politis and

White (2004) (see also Patton, Politis, and White, 2009). We also considered the sieve bootstrap

of Bühlmann (1997). Each experiment was repeated 1000 times using 1000 bootstrap replications.

The results are shown in Table 4.

For the absolute AR and AR models, the LPB’s performance was comparable to that of the

block bootstrap, and slightly less efficient than the sieve bootstrap; this is unsurprising as the sieve

approximates the time series with a best fit AR model, while the LPB essentially approximates the

time series with an MA model. In the case of an AR(1) series, fitting an AR model should be close

to optimal, and in the case of the absolute AR model, it seems reasonable that an AR time series

13



n φ l̂ ∞-WP ∞-Rect ∞-Trap ∞-InfD Op-Rect Op-Trap Op-InfD

250 0.1 0.00 (0.00) 1.7 0.15 (0.05) 0.15 (0.05) 0.15 (0.05) 0.08 (0.05) 0.08 (0.05) 0.08 (0.05)

250 0.5 0.01 (0.10) 2.2 0.67 (0.07) 0.67 (0.07) 0.67 (0.07) 0.54 (0.10) 0.54 (0.10) 0.54 (0.10)

250 0.9 4.43 (3.56) 14.3 12.94 (4.77) 12.13 (6.31) 12.38 (6.21) 11.24 (5.04) 10.97 (6.37) 11.11 (6.28)

500 0.1 0.00 (0.00) 1.3 0.19 (0.04) 0.19 (0.04) 0.19 (0.04) 0.08 (0.04) 0.08 (0.04) 0.08 (0.04)

500 0.5 0.15 (0.36) 1.8 0.69 (0.09) 0.69 (0.09) 0.69 (0.09) 0.51 (0.11) 0.51 (0.11) 0.51 (0.11)

500 0.9 5.05 (1.81) 13.4 9.98 (2.92) 8.80 (3.46) 9.01 (3.42) 8.43 (3.46) 7.67 (3.86) 7.79 (3.82)

750 0.1 0.00 (0.00) 1.1 0.24 (0.03) 0.24 (0.03) 0.24 (0.03) 0.07 (0.03) 0.07 (0.03) 0.07 (0.03)

750 0.5 0.40 (0.49) 1.5 0.67 (0.15) 0.67 (0.15) 0.67 (0.15) 0.41 (0.17) 0.41 (0.17) 0.41 (0.17)

750 0.9 6.48 (2.87) 14.6 9.40 (3.10) 8.41 (3.87) 8.57 (3.85) 7.40 (3.26) 6.97 (4.08) 7.03 (4.01)

Table 3: Banding parameter and approximate losses in the matrix infinity norm and operator norm

for the absolute value auto-regressive processes. Losses are calculated for the trapezoid, rectangular,

and infinitely differentiable weight functions. The column ∞-WP contains the estimated losses

reported in Wu and Pourahmadi (2009). Standard deviations are shown in parentheses.

might provide a better fit. The results for the absolute AR model are only approximate, as the

true mean for the model was estimated using a very large simulated data set. Perhaps the most

surprising feature of the simulations was the sieve bootstrap’s relatively poor performance when

the AR coefficient was 0.9. Although the AR sieve bootstrap is expected to break down when φ is

close to 1, the bad behavior for φ = 0.9 was unexpected.

For the MA model, the LPB was slightly better than the other two when the MA coefficient

was large. A more comprehensive comparison of the LPB with the block bootstrap and AR sieve

would include the case of studentized sample mean and is part of future work on the subject.
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7 Technical proofs

Proof of Theorem 1: By Problem 21, p. 313 in Horn and Johnson (1990), and since Σ̂κ,l − Σn is

symmetric,

ρ(Σ̂κ,l − Σn) ≤ max
1≤j≤n

n∑
i=1

|γ̂i−jκl(|i− j|)− γi−j |

≤
n−1∑
i=1−n

|γ̂iκl(i)− γi|

≤ 2
l∑

i=0

|γ̂i − γi|+ 2
bcκlc∑
i=l+1

|γ̂iκl(i)− γi|+ 2
n∑

i=bcκlc+1

|γi|

= T1 + T2 + T3.

We first examine T1. By Lemma 1, there exists a constant d′q depending on ||X1||2q and ∆2q,

but not l or n, such that

||γ̂i − γi||q ≤ ||γ̂i − E [γ̂i] ||q +
i

n
|γi|

≤
d′q(n− i)1/q

n
+
i|γi|
n
.

Therefore

||T1||q ≤ dq(l + 1)n−(q−1)/q +
2
n

l∑
i=1

i|γi|,

where dq = d′q/2.

The second term, T2, follows in a similar fashion.

T2 ≤ 2
bcκlc∑
i=l+1

κl(i)|γ̂i − γi|+ 2
bcκlc∑
i=l+1

|κl(i)− 1||γi|.

Therefore,

||T2||q ≤ dq(bcκlc − l)n−(q−1)/q +
2
n

bcκlc∑
i=l+1

i|γi|+ 2
bcκlc∑
i=l+1

|γi|.

Proof of Theorem 2: All the eigenvalues of Σn lie in the interval [2πc1, 2πc2] (see Grenander and

Szegö, 1958, Section 5.2). By Theorem 1, ρ
(

Σ̂κ,l − Σn

)
= Op(rn). Since rn tends to zero, the

probability Σ̂κ,l is positive definite tends to 1.
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Let An = Σ−1/2
n and Γn = AnΣ̂κ,lAn. Then

ρ (Γn − In) ≤ ρ(An)2 ρ
(

Σ̂κ,l − Σn

)
= Op(rn).

Similarly,

ρ
(
Γ−1
n − In

)
≤ ρ(Γ−1

n ) ρ (Γn − In)

= Op(rn).

Since Σ̂−1
κ,l − Σ−1

n = An(Γ−1
n − In)An, the result follows.

Proof of Theorem 3: By the triangle inequality,

ρ(Σ̂ε
κ,l − Σn) ≤ ρ(Σ̂κ,l − Σn) + ρ(Σ̂ε

κ,l − Σ̂κ,l). (8)

Recall that Σ̂κ,l = TnDT
t
n, where without loss of generality, we assume that the eigenvalues of Σ̂κ,l

have been ordered so that D = diag(d1, . . . , dn), where d1 ≥ d2 ≥ . . . ≥ dn. Let λmax(A) and

λmin(A) respectively denote the largest and smallest eigenvalues of a symmetric matrix A. Then,

dn = λmin(Σ̂κ,l)

= −λmax(−Σ̂κ,l)

≥ −λmax(Σn − Σ̂κ,l)

≥ −ρ(Σn − Σ̂κ,l), (9)

where the first inequality follows because Σn is non-negative definite (see Corollary 4.3.3, p.182 in

Horn and Johnson, 1990).

We now focus on the second term of (8).

Σ̂ε
κ,l − Σ̂κ,l = TnD

−T tn

where D− = diag
(
max(d1, εγ̂0/n

β)− d1, . . . ,max(dn, εγ̂0/n
β)− dn

)
. By the above spectral decom-

position and inequality (9),

ρ(Σ̂ε
κ,l − Σ̂κ,l) = max

(
0, εγ̂0/n

β − dn
)

≤ max
(

0, εγ̂0/n
β + ρ(Σn − Σ̂κ,l)

)
≤ εγ̂0/n

β + ρ(Σn − Σ̂κ,l).

The result now follows from Theorem 1 and Lemma 1.
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Proof of Theorem 5: By Theorem 3 in Wu (2005),

n1/2(X̄ − µ) D−→ N(0, σ2).

We establish (7) by showing n1/2Ȳ ∗ has the same limiting normal distribution. For clarity of

exposition, the proof proceeds through a sequence of lemmas.

Lemma 2. Define Z̃∗ to be the equivalent bootstrap resample to Z∗, except the resample is drawn

from the standardized values of Σ−1/2
n Y rather than its data driven counterpart (Σ̂ε

κ,l)
−1/2Y . Let 1

be the n-vector of 1’s. Under the conditions of Theorem 5,

n1/2Ȳ ∗ = n−1/21t(Σ̂ε
κ,l)

1/2Z∗

= n−1/21t(Σ1/2
n )Z̃∗ + n−1/21t(Σ1/2

n )(Z∗ − Z̃∗) + n−1/21t
[
(Σ̂ε

κ,l)
1/2 − Σ1/2

n

]
Z∗

= n−1/21t(Σ1/2
n )Z̃∗ +R1 +R2 (10)

= n−1/21t(Σ1/2
n )Z̃∗ + oP (1).

Proof of Lemma 2. We first consider R2. It has bootstrap mean 0 and variance

var∗
[
n−1/21t

(
(Σ̂ε

κ,l)
1/2 − Σ1/2

n

)
Z∗
]

= E∗
[
n−11t

[
(Σ̂ε

κ,l)
1/2 − Σ1/2

n

]
Z∗(Z∗)t

[
(Σ̂ε

κ,l)
1/2 − Σ1/2

n

]
1
]

= oP (1),

where the final equality follows because E∗
[
Z∗(Z∗)t

]
= I and ρ

(
(Σ̂ε

κ,l)
1/2 − Σ1/2

n

)
→P 0.

For R1, we can write, Z∗ = σ̂−1
W M∗(I − n−11n)Σ̂−1/2

κ,l Y where 1n is the n × n matrix of ones,

and M∗ is a random n × n matrix, where each row is independently and uniformly selected from

the standard basis vectors e1, . . . , en. With this notation, Z̃∗ = σ̂−1
W̃
M∗(I − n−11n)Σ−1/2

n Y . Since

|σ̂2
W−σ̂2

W̃
| = oP (1), and both σ̂2

W and σ̂2
W̃

are bounded away from 0 and from above with probability

tending to 1,

n−1/21t(Σ1/2
n )(Z∗ − Z̃∗) = n−1/21t(Σ1/2

n )M∗(I − n−11n)
[
σ̂−1
W Σ̂−1/2

κ,l − σ̂
−1
W̃

Σ−1/2
n

]
Y

= n−1/21t(Σ1/2
n )M∗(I − n−11n)

[
σ̂−1
W̃

Σ̂−1/2
κ,l − σ̂

−1
W̃

Σ−1/2
n

]
Y + oP (1)

= R3 + oP (1).
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It is clear by construction that E∗ [R3] = 0. Its bootstrap variance is

var∗ [R3]

= σ̂−2
W̃
E∗
[
n−11tΣ1/2

n M∗(I − n−11n)(Σ̂−1/2
κ,l − Σ−1/2

n )Y Y t(Σ̂−1/2
κ,l − Σ−1/2

n )(I − n−11n)(M∗)tΣ1/2
n 1

]
= σ̂−2

W̃
E∗
[
n−11tΣ1/2

n V ∗(V ∗)tΣ1/2
n 1

]

where V ∗ is an n-vector of bootstrap resamples of the elements of (I − n−11n)(Σ̂−1/2
κ,l − Σ−1/2

n )Y .

Since the sample is i.i.d., E∗
[
V ∗(V ∗)t

]
= σ2

V I, where

σ2
V = n−1Y t(Σ̂−1/2

κ,l − Σ−1/2
n )(I − n−11n)2(Σ̂−1/2

κ,l − Σ−1/2
n )Y

= n−1Y t(Σ̂−1/2
κ,l − Σ−1/2

n )(Σ̂−1/2
κ,l − Σ−1/2

n )Y (1 +OP (1)).

Since Y tY = OP (n) (see Wu, 2005) and ρ(Σ̂−1/2
κ,l − Σ−1/2

n ) = OP (rn), we have σ2
V = oP (1) which

implies var∗ [R3] = oP (1) and therefore R3 = oP (1).

Lemma 3.

var∗
[
n−1/21t(Σ1/2

n )Z̃∗
]

=

n−1
n−1∑

i=−(n−1)

(n− |i|)γi


Proof of Lemma 3.

var∗
[
n−1/21t(Σ1/2

n )Z̃∗
]

= E∗
[
n−11t(Σ1/2

n )Z̃∗Z̃∗tΣ−1/2
n 1

]
=

n−1
n−1∑

i=−(n−1)

(n− |i|)γi

 ,

where the final equality follows because E∗
[
Z̃∗Z̃∗t

]
= I.

Lemma 4. Let An and Bn be sequences of n × n symmetric matrices bounded in operator norm

and satisfying ρ(An −Bn)→ 0. Then n−1/21tAnZ̃∗ = n−1/21tBnZ̃∗ + oP (1).

Proof of Lemma 4. Since Z̃∗ has bootstrap mean 0, it is sufficient to show the variance converges

to 0 in probability.

var∗
[
n−1/21t(An −Bn)Z̃∗

]
= σ2

Z̃∗
n−11t(An −Bn)21

≤ ρ(An −Bn)(1 + op(1))

= op(1)
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Lemma 5. Under the assumptions of Theorem 5, E
[
Z̃4
i

]
uniformly bounded in i.

Proof of Lemma 5. Denote the entries of Σ−1/2
n = [aij ]ni,j=1. With this notation, Z̃i =

∑n
j=1 aijYj .

Following Theorem 2 in Wu (2005), define the projection operator PkY = E [Y |ξk] − E [Y |ξk−1],

and define Mk,n =
∑n

j=1 aijPj−kYj . Then, Z̃i =
∑∞

k=0Mk,n. By Proposition 4 in Dedecker and

Doukhan (2003),

||Mk,n||4 ≤ ||P0Yk||4

8
n∑
j=1

a2
ij

1/2

Since
∑n

j=1 a
2
ij = etiΣ

−1
n ei, where ei is the i’th standard basis vector, for large enough n,

∑n
j=1 a

2
ij is

bounded from above and away from 0 uniformly in i. By Theorem 1 in Wu (2005),
∑∞

k=0 ||P0Yk||4 <

∞. Therefore, ||Z̃i||4 is uniformly bounded in i.

Lemma 6. (Horn and Johnson, 1990, p. 411) Let A and B be symmetric and positive definite. Let

A1/2 and B1/2 denote the lower triangular square roots obtained through the Cholesky decomposition

of A and B. Then ρ(A1/2 −B1/2) ≤ ρ(A−1/2)ρ(A−B).

We are now in a position to complete the proof of Theorem 5. We do so by approximating Σ1/2
n

in (10) in the following manner. Let Σn,k =
[
γ|i−j|1|i−j|≤k

]n
i,j=1

be the k-banded version of Σn. By

Horn and Johnson (1990) p. 313,

ρ(Σn,k − Σn) ≤ 2
∞∑

i=k+1

|γi|.

Therefore ρ(Σn,k − Σn) → 0 for any sequence k → ∞. Let Ln,k and Σ1/2
n be the lower-triangular

matrices associated with the Cholesky decompositions of Σn,k and Σn respectively. By Lemma 6,

ρ(Ln,k − Σ1/2
n )→ 0, so by Lemma 4 we can approximate Σ1/2

n in (10) by Ln,k.

Matrix multiplication shows that Ln,k is nonzero only on the main diagonal and the first k

diagonals below the main, and that the entries of Ln,k are bounded in absolute value by γ
1/2
0 .

Letting c1,n, . . . , cn,n denote the column sums of Ln,k, we immediately see
∑n

i=1 c
4
i,n = O(k4n) =

O(n(log n)4), if we choose k ∝ log n. We can now establish the main result.

In order to proceed with the proof of Theorem 5, we use Ln,k to approximate Σ1/2
n in the first

term of (10).

n−1/21t(Ln,k)Z̃∗ = n−1/2(c1,nZ̃∗1 + . . .+ cn,nZ̃
∗
n).
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We establish the desired result via the central limit theorem for triangular arrays (Resnick, 1999,

p. 321) which is implied by the Liapunov condition

1
(c21,n + . . .+ c2n,n)1+δ/2

n∑
i=1

E∗
[
|ci,nZ̃∗i |2+δ

]
→ 0, (11)

for some δ > 0. Convergence (11) will be shown to hold for δ = 2. We first examine the numerator.

n∑
i=1

E∗
[
|ci,nZ̃∗i |2+δ

]
=

(
n∑
i=1

c4i,n

)(
n−1

n∑
i=1

Z4
i

)
= OP (k4n)

by Lemma 5 and the preceding calculation. By a basic eigenvalue argument, for n large enough,

2πc1n < (c21,n + . . . + c2n,n) < 2πc2n for c1 and c2 as in Theorem 2. The only requirement on k

is that k → ∞, so we now choose k = log n, and it immediately follows that the left side of (11)

converges to 0 in probability. With Lemma 3, this completes the proof.

References

P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer, New York, 1991.
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U. Grenander and G. Szegö. Toeplitz Forms and Their Applications. University of California Press,

Los Angeles, 1958.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, New York, 1990.

J.-P. Kreiss. Bootstrap procedures for AR(∞)-processes. In Bootstrapping and related techniques

(Trier, 1990), volume 376 of Lecture Notes in Econom. and Math. Systems, pages 107–113.

Springer, Berlin, 1992.
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Coverage Avg. Length

Model n φ LPB Blk Sieve LPB Blk Sieve

AbsAR(1) 250 0.1 0.95 0.95 0.95 0.25 0.25 0.25

AbsAR(1) 250 0.5 0.89 0.92 0.92 0.26 0.30 0.31

AbsAR(1) 250 0.9 0.87 0.85 0.90 0.94 0.90 1.02

AbsAR(1) 500 0.1 0.94 0.94 0.94 0.18 0.18 0.18

AbsAR(1) 500 0.5 0.91 0.94 0.94 0.19 0.21 0.22

AbsAR(1) 500 0.9 0.90 0.89 0.91 0.72 0.69 0.75

AbsAR(1) 750 0.1 0.96 0.96 0.95 0.14 0.14 0.14

AbsAR(1) 750 0.5 0.92 0.95 0.95 0.16 0.18 0.18

AbsAR(1) 750 0.9 0.91 0.90 0.93 0.60 0.58 0.62

AR(1) 250 0.1 0.92 0.93 0.94 0.25 0.26 0.27

AR(1) 250 0.5 0.88 0.90 0.92 0.36 0.38 0.42

AR(1) 250 0.9 0.84 0.81 0.88 0.86 0.76 0.94

AR(1) 500 0.1 0.92 0.94 0.94 0.18 0.19 0.19

AR(1) 500 0.5 0.91 0.92 0.94 0.27 0.28 0.30

AR(1) 500 0.9 0.90 0.86 0.91 0.68 0.61 0.72

AR(1) 750 0.1 0.93 0.95 0.95 0.14 0.15 0.16

AR(1) 750 0.5 0.93 0.93 0.95 0.23 0.23 0.25

AR(1) 750 0.9 0.93 0.90 0.94 0.56 0.51 0.59

MA(1) 250 0.1 0.92 0.93 0.93 0.25 0.26 0.27

MA(1) 250 0.5 0.93 0.92 0.93 0.36 0.35 0.36

MA(1) 250 0.9 0.94 0.92 0.90 0.47 0.44 0.44

MA(1) 500 0.1 0.92 0.94 0.94 0.18 0.19 0.19

MA(1) 500 0.5 0.93 0.93 0.93 0.26 0.25 0.26

MA(1) 500 0.9 0.96 0.94 0.93 0.33 0.32 0.32

MA(1) 750 0.1 0.93 0.94 0.94 0.14 0.15 0.16

MA(1) 750 0.5 0.94 0.93 0.94 0.21 0.21 0.21

MA(1) 750 0.9 0.94 0.94 0.93 0.27 0.26 0.26

Table 4: Simulation of bootstrap confidence intervals for the mean at nominal 95% coverage.

Coverage is shown in the first 3 columns and average interval length is shown in the rightmost 3

columns.
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