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ABSTRACT

Recent observations identify a valley in the radius distribution of small exoplanets,

with planets in the range 1.5�2.0R� significantly less common than somewhat smaller

or larger planets. This valley may suggest a bimodal population of rocky planets that

are either engulfed by massive gas envelopes that significantly enlarge their radius,

or do not have detectable atmospheres at all. One explanation of such a bimodal

distribution is atmospheric erosion by high-energy stellar photons. We investigate an

alternative mechanism: the luminosity of the cooling rocky core, which can completely

erode light envelopes while preserving heavy ones, produces a deficit of intermediate

sized planets. We evolve planetary populations that are derived from observations us-

ing a simple analytical prescription, accounting self-consistently for envelope accretion,

cooling and mass loss, and demonstrate that core-powered mass loss naturally repro-

duces the observed radius distribution, regardless of the high-energy incident flux.

Observations of planets around di↵erent stellar types may distinguish between pho-

toevaporation, which is powered by the high-energy tail of the stellar radiation, and

core-powered mass loss, which depends on the bolometric flux through the planet’s

equilibrium temperature that sets both its cooling and mass-loss rates.

Key words: planets and satellites: atmospheres – planets and satellites: physical

evolution

1 INTRODUCTION

Over the past decade, the Kepler mission has revealed an
ubiquitous population of short-period planets smaller than
Neptune (. 4R�; see, e.g., Marcy et al. 2014a, and refer-
ences therein). Combining the transit radius with mass es-
timates from either radial velocity measurements or transit
timing variations provides a handle on the density of some
of these planets, indicating that many of them do not have
a rocky composition (Weiss & Marcy 2014; Jontof-Hutter
et al. 2016; Hadden & Lithwick 2017). A commonly sug-
gested structure that explains the low densities of these
planets is a rocky core engulfed by a voluminous gas at-
mosphere of several percent in mass (e.g. Lopez et al. 2012;
Lissauer et al. 2013; Wolfgang & Lopez 2015). Theoretical
models demonstrate that such atmospheres can be gravi-
tationally accreted by the cores from the gaseous nebulae
that surround young stars for their first few million years
(Lee et al. 2014; Inamdar & Schlichting 2015; Lee & Chiang
2015; Ginzburg et al. 2016).

? E-mail: sivan.ginzburg@mail.huji.ac.il

Recently, refined radius measurements by the
California-Kepler Survey (Johnson et al. 2017; Petigura
et al. 2017) allowed Fulton et al. (2017) to identify a distinct
valley in the radius distribution of short-period planets.
Explicitly, planets with a radius of ⇡ 1.8R� are significantly
less common than smaller (⇡ 1.3R�) or larger (⇡ 2.4R�)
planets. A plausible interpretation of this valley is that
planets either come as bare rocky cores (the low-radius
peak) or with gas envelopes that are massive enough to
roughly double their radius (the high-radius peak).

Owen & Wu (2013) have already noticed such a valley
in the observations, and explained it by atmosphere evapo-
ration due to high-energy stellar photons (see also Lopez &
Fortney 2013; Jin et al. 2014; Chen & Rogers 2016; Lehmer
& Catling 2017). In a recent paper, Owen & Wu (2017)
use analytical arguments to illustrate how photoevaporation
naturally sculpts a bimodal distribution that resembles the
results of Fulton et al. (2017).

Here, we focus on an alternative mechanism that is un-
related to the high-energy flux and yet also naturally re-
produces the observed bimodal distribution. In a previous
paper (Ginzburg et al. 2016, hereafter GSS16) we showed
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2 S. Ginzburg, H. E. Schlichting and R. Sari

that, following the dispersal of the protoplanetary disc, the
heat from the cooling inner layers of the atmosphere unbinds
the loosely bound outer layers, on a timescale of a few mil-
lion years. As a result, the planet’s radius shrinks to roughly
twice the size of the rocky core in this time (see also Owen &
Wu 2016). The fate of the gas envelope from this stage on-
ward is determined by the ratio of its heat capacity to that of
the rocky core. In GSS16 we explained that if the core dom-
inates the heat capacity then its cooling luminosity might
strip o↵ the overlying atmosphere entirely, leaving behind
a bare core. More massive atmospheres, on the other hand,
survive and cool without being a↵ected by the core’s lumi-
nosity. Since massive envelopes are una↵ected, while light
ones can be lost completely, core-powered mass loss nat-
urally leads to a bimodal distribution of final atmosphere
masses and planet radii.

In this paper we implement the theory presented in
GSS16 and demonstrate that core cooling can reproduce the
observational valley in Fulton et al. (2017).

2 PLANET STRUCTURE AND EVOLUTION

In this section we briefly review the core plus envelope struc-
ture and evolution of short-period planets a few times the
mass of Earth (M�) after the dispersal of the protoplanetary
disc, with a detailed description given in GSS16.

We assume a rocky core1 of mass Mc and radius Rc,
that are related by Mc/M� = (Rc/R�)

4 (due to gravita-
tional compression; see Valencia et al. 2006). The core is
engulfed by a gaseous atmosphere, with a mass fraction
f ⌘ Matm/Mc, that can be divided into a radiative (nearly
isothermal) envelope with negligible mass and a convective
interior, connected at the radiative–convective boundary,
Rrcb. In GSS16 we showed that the dispersal of the proto-
planetary disc causes a loss of pressure support that trig-
gers atmospheric mass loss (powered by the luminosity of
the cooling inner layers) until the atmosphere shrinks to a
thickness DR⌘Rrcb�Rc ⇡Rc (note the slight notation change
compared to GSS16: here, DR marks the thickness of the con-
vective layer, whereas Rrcb is the radius of the RCB, mea-
sured from the planet’s centre) in a few million years (Rrcb is
a good approximation for the planet’s observed radius, since
the scale height of the radiative layer is much smaller than
Rc; see GSS16).

Here, we focus on the thin-atmosphere regime (DR .
Rc) since the core does not cool during the preceding thick
regime, as we explain below. More precisely, as explained
in GSS16, atmospheres transition smoothly from the thick
(1 . DR/Rc . RB/Rc) to the thin (Rc/RB < DR/Rc . 1) and
finally to the ultra thin (DR/Rc . Rc/RB) regime, with RB ⇠
GMcµ/(kBTeq) denoting the Bondi radius (G, µ, kB and Teq

are defined below). As described in Section 3.2, the observed
valley in the radius distribution is at Rc/RB . DR/Rc . 1,
further encouraging us to focus on the thin regime.

By solving the hydrostatic equilibrium for an ideal gas
in the convective layer (where the pressure scales with den-
sity as P µ rg ) we can calculate the temperature, density,

1 Arguments similar to those in Jin & Mordasini (2017) can be
used to distinguish between rocky and icy cores scenarios.

and pressure profiles of the atmosphere. Specifically, by in-
tegrating the density profile, we find that the mass of the
atmosphere is given by

Matm =
g �1

g
4⇡R2

crrcbDR
✓

R0
B

DR
R2

c

◆1/(g�1)

. (1)

Here, g denotes the adiabatic index, rrcb is the density at
the RCB, and R0

B
is the modified Bondi radius:

R0
B
⌘ g �1

g
GMcµ
kBTrcb

, (2)

where G is the gravitational constant, µ is the atmosphere’s
molecular mass, kB is Boltzmann’s constant, and Trcb ⇠ Teq

is the temperature at the RCB, which is similar, for the
power-law opacities that we incorporate (Section 2.2), to the
equilibrium temperature (determined by the distance from
the star).

Similarly, by calculating the temperature profile, we find
the temperature at the bottom of the atmosphere (R = Rc)

kBTc =
g �1

g
GMcµ

R2
c

DR, (3)

which is valid for Rc/R0
B
. DR/Rc . 1. The ultra thin regime

(DR/Rc < Rc/R0
B
⇡ 0.1, for which Tc ⇠ Teq) is relevant only

for DR . 0.1Rc and therefore does not a↵ect the observed
radius distribution. We treat the rocky core as a roughly
isothermal ball with a temperature Tc, given by equation
(3). This approximation relies on the assumption that the
core is roughly incompressible, molten, and therefore fully
convective. While we mention in GSS16 the possibility of
forming an insulating solid crust, it is easy to verify, using
equation (3), that our typical cores (Mc ⇡ 3M�; see Sec-
tion 3) cool down to the rock melting temperature only
when their atmospheres are as thin as DR . 0.1Rc. There-
fore, crust formation does not significantly a↵ect the shape
of the planet radius distribution. We note, however, that
the core-convection might occur on a slow timescale if the
molten rock’s viscosity is high enough (Stamenković et al.
2012). We disregard this possibility here for simplicity and
assume that the bottleneck for the convective cooling of both
the core and the atmosphere is the di↵usion through the at-
mosphere’s radiative layer. Explicitly, the planet cools with
a luminosity

L =�Ėcool =
64⇡

3

sT 4

rcb
R0

B

krrcb

, (4)

where s is the Stefan-Boltzmann constant and k is the opac-
ity at the RCB.

The available energy for cooling (gravitational and ther-
mal) is given by

Ecool = gDR
✓

g
2g �1

Matm +
1

g
g �1

gc �1

µ
µc

Mc

◆
, (5)

where µc and gc mark the rocky core’s molecular weight and
adiabatic index, respectively, and g ⌘ GMc/R2

c is the surface
gravity. The first term in equation (5) is the energy of the
gaseous envelope (obtained by integrating its density and
temperature profiles), while the second term is the thermal
energy of the rocky core. This term is obtained by assum-
ing that the core is at a uniform temperature that is given
by equation (3), as discussed above. Equation (5) empha-
sizes a fundamental di↵erence between thin (DR . Rc) and

MNRAS 000, 1–7 (2017)



Core-powered mass loss 3

thick (DR & Rc) envelopes. The temperature at the bottom
of a thick convective envelope is an approximately constant
kBTc = (g � 1)/g ⇥GMcµ/Rc (see GSS16), regardless of DR.
Therefore, as thick envelopes cool and contract, their un-
derlying rocky cores remain almost at the same temperature
and do not contribute significantly to the heat capacity. Only
once the envelopes reach the thin regime (which is the focus
of this work), the cores beneath them can cool, giving rise
to the second term in the equation.

Quantitatively, the ratio between the heat capacities of
the core and the envelope is of the order of (µ/µc) f�1 in the
thin regime, as evident from equation (5). In the preceding
thick regime (DR > Rc), on the other hand, this ratio is given
by a smaller (µ/µc)(Rc/DR)1/2 f�1 for the same atmosphere
mass fraction f , as can be derived from equations (5) and
(12) in GSS16 (for g = 7/5 which we choose below).

2.1 Spontaneous mass loss

As a result of the vanishing pressure boundary condition
at infinity once the nebula disperses, gas tends to escape
if there is enough energy to lift it out from the planet’s
potential well (see GSS16). In our case, the cooling lumi-
nosity L = �Ėcool, given by equation (4), may provide this
energy. We thus identify (see also Ikoma & Hori 2012; Owen
& Wu 2016) a process of spontaneous mass loss that is essen-
tially di↵erent from (and complementary to) the high-energy
photoevaporation that is usually discussed in the literature
(Murray-Clay et al. 2009; Lopez et al. 2012; Owen & Jackson
2012; Owen & Wu 2013). The energy required to blow o↵
the entire atmosphere is Eloss = GMcMatm/Rc = MatmgRc. By
comparing Eloss to Ecool from equation (5) we learn that once
atmospheres reach the thin regime, their fate is determined
by the ratio of their heat capacity to that of the core.

2.1.1 Heavy Atmospheres

If Matm/Mc > µ/µc ⇠ 5% (we temporarily omit the g and gc
factors for simplicity) then initially (when DR = Rc) Ecool ⇠
Eloss and the atmosphere cools and loses mass at the same
rate. However, once the atmosphere shrinks (due to cool-
ing), DR < Rc and Ecool < Eloss. Therefore, the cooling time
of heavy envelopes is shorter than their mass-loss time and
they survive roughly intact (cooling without losing mass,
with an analytical solution given in GSS16).

2.1.2 Light Atmospheres

If Matm/Mc < µ/µc ⇠ 5% then the heat capacity is dominated
by the rocky core and Ecool > Eloss, implying that the mass-
loss timescale is shorter than the cooling time. As the mass
of the atmosphere decreases, the mass-loss time becomes
even shorter, resulting in a rapid removal of the entire en-
velope. Explicitly, since Ecool µ McDR according to equation
(5), the atmosphere loses mass primarily by decreasing its
density (and rrcb), according to equation (1), whereas DR
and Ecool change more slowly (maintaining Ecool > Eloss).
In other words, the shrinking of the envelope is (to lead-
ing order) inhibited by the core’s heat, and it loses mass
faster than it shrinks. We note, however, that spontaneous
mass loss is also limited by the escape rate of molecules at

the speed of sound cs ' (kBTeq/µ)1/2 at the Bondi radius
RB ⌘ GMcµ/(kBTeq)� Rc (see also Owen & Wu 2016)2

|Ṁatm|< ṀB

atm ⌘ 4⇡R2

B
r(RB)cs, (6)

where we relate the density at the Bondi radius to that at the
RCB using hydrostatic equilibrium in the nearly isothermal
radiative layer

r(RB)

rrcb

= exp

✓
� RB

Rrcb

+1

◆
. (7)

In GSS16 we demonstrated that the exponential dependence

on RB/Rrcb µ M3/4

c /Teq in equation (7) di↵erentiates between
light or hot planets that lose their atmospheres within a
few gigayears, and massive or cold ones that partially retain
their gas envelopes. It is this additional limit on the mass-
loss rate that allows some atmospheres with Matm/Mc < 5%

to avoid complete removal in a runaway process, producing
some (relatively rare) planets with 0 < Matm/Mc < 5%.

By definition, Rrcb does not change significantly during
the thin regime, which is the focus of this work. Therefore,
the limit on the mass-loss timescale posed by equation (7) re-
mains approximately constant as the planet cools (in the nu-
merical implementation we take the exact Rrcb = Rc +DR(t);
see Section 2.2). The situation is di↵erent during the earlier
thick regime, when the atmosphere contracts significantly
due to cooling. During that regime (which is not discussed
in this work) the competition between the cooling time and
the disc dispersal timescale determines which atmospheres
su↵er from significant mass loss (see Section 2.2 of Owen &
Wu 2016).

2.2 Implementation

We implement the simultaneous cooling and mass loss (spon-
taneous loss due to cooling; we disregard photoevaporation
for simplicity and to separate these two di↵erent e↵ects) by
keeping track of the planet’s energy Ecool and envelope mass
Matm. In each time step Dt we evolve the planet:

Ecool ! Ecool �LDt (8a)

Matm ! Matm �min

✓
L

gRc
,ṀB

atm

◆
Dt, (8b)

with the luminosity L and the Bondi rate ṀB
atm given by equa-

tions (4) and (6). More accurately, the mass-loss e�ciency is
not 100%, as implied by equation (8b), since roughly half of
the luminosity is radiated away when L < ṀB

atmgRc (required
to sustain the radiative–convective profile), introducing an
order of unity coe�cient which we omit.

The order of unity e�ciency can also be understood by
the following argument. As the pressure boundary condi-
tion is removed, gas escapes from the Bondi radius, initially
at the Bondi rate, given by equation (6). However, once the
small amount of gas near the Bondi radius escapes, gas from
deeper in the planet’s potential well (near Rrcb) must expand

2 The Hill radius RH may also set a boundary condition. However,
for short-period super Earths, RH ⇠ RB (Lee et al. 2014; Inamdar
& Schlichting 2015)

MNRAS 000, 1–7 (2017)
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towards RB in order for the mass loss to continue. Due to adi-
abatic cooling during this expansion, heat must be supplied
in order for the gas to reach RB (see GSS16). In our case,
this heat is supplied by the planet’s cooling luminosity L,
at the expanse of the radiated luminosity. However, as the
radiated luminosity decreases, the RCB is pushed inward,
lowering the Bondi mass-loss rate, according to equations
(6) and (7). This reduction in the mass loss rate continues
until the luminosity required to lift the escaping mass from
the planet’s potential well, gRcṀatm, becomes significantly
smaller (⇠ 1/2) than the planet’s cooling luminosity L, so
that the radiated luminosity L� gRcṀatm does not change
significantly.

In each time step, the time interval Dt is chosen to be
one percent of the minimum between the current cooling
and mass-loss timescales. At the end of each time step, the
envelope’s density (rrcb) and thickness (DR) are updated ac-
cording to equations (1) and (5). Using this procedure we
obtain the planet’s radius (Rc +DR) and the atmosphere’s
mass as a function of time.

Following Freedman et al. (2008), the (combination of
molecular and alkali) opacity at the RCB is given by (valid
for our temperature range 500 K< Trcb < 2000 K)

k
0.1 cm2 g�1

=

✓
rrcb

10�3 g cm�3

◆
0.6

. (9)

The adiabatic index is the diatomic3 g = 7/5 (the molecular
mass µ is also that of diatomic Hydrogen), and for the sake
of simplicity and comparison with Owen & Wu (2017) we
assume that the ratio of the envelope’s to the core’s heat ca-
pacities is simply 17 f , with a similar result obtained by sub-
stituting gc and µc in equation (5). Consequently, envelopes
with mass fractions f & 5% regulate their own cooling and
survive, while lighter envelopes are dominated by the heat
from the underlying rocky core and may be blown o↵ entirely
(see Section 2.1).

3 RESULTS

In Section 2 we intuitively explained how core cooling might
naturally lead to a bimodal planet population, as described
by Fulton et al. (2017). Here, we evolve planets according
to the implementation given in Section 2.2 and compare the
resulting distributions to the observations.

3.1 Simple demonstration

In Fig. 1 we demonstrate how core-powered mass loss trans-
forms an initially uniform distribution of f into a bimodal
population of atmosphere masses. We evolved 1000 planets
for 3 gigayears, all with Mc = 3M� (motivated by the ob-
served peak at R ⇡ 1.3R�), Trcb = 10

3 K, and starting from
DR = Rc (all planets reach this atmosphere thickness after
a few million years, see GSS16, so all the planets in Fig. 1
start from R = 2.6R�). As in the schematic demonstration

3 See, however, the discussion in Lee et al. (2014), Lee & Chi-
ang (2015), and Piso et al. (2015). Di↵erent choices of g can
significantly alter the structure and evolution of thick envelopes
(DR & Rc), but not of thin envelopes, on which we focus here.

log10(f 2Matm=Mc)
!1 -5 -4 -3 -2 -1 0

d
N

=
d
lo

g
f

0

0.2

0.4

0.6

0.8

1

No mass loss
Mass loss

Radius (R))
1 1.5 2 2.5 3

d
N

=
d
lo

g
R

0

0.2

0.4

0.6

0.8

1

Figure 1. Distribution of the atmosphere mass fraction f (top
panel) and of the planet radius R (bottom panel) after 3 gigayears
of evolution with (blue bars) and without (dotted black line) mass
loss (i.e. cooling only). All planets have a core mass Mc = 3M�,
equilibrium temperature Teq ⇠ Trcb = 10

3 K and start from twice
the radius of the core R = 2Rc. The initial atmosphere mass frac-
tions are distributed logarithmically flat (top panel, dotted black
line). The left blue column represents planets that have lost their
atmospheres entirely due to core cooling.

in Owen & Wu (2017), the initial atmosphere mass fraction
f is distributed logarithmically flat between 10

�5 and 1. In
Section 3.2 we employ a more physically-motivated distri-
bution.

Fig. 1 clearly illustrates that envelopes heavier than sev-
eral percent survive (the right peak), while lighter envelopes
are blown o↵ completely (the left peak), forming a double-
peaked distribution with a valley between 1.5�2.0R�. Inter-
estingly, a logarithmically flat initial distribution of f devel-
ops a valley in the radius distribution even when the mass
loss is turned o↵ (i.e., no photoevaporation and no core-
powered loss), and planets are only allowed to cool according
to equation (8a). This is because light envelopes are optically
thinner and therefore they cool and shrink rapidly, accord-
ing to equation (4), whereas heavy envelopes cool slowly,
roughly retaining their initial radius. By eroding light at-
mospheres, mass loss due to core cooling amplifies this e↵ect
and deepens the valley.

3.2 Comparison with observations

In order to check whether our evolutionary tracks can repro-
duce more specific features of the observed distribution, we
simulate more realistic planet populations.

First, we take into account that planets are found at
di↵erent orbital periods P µ T�3

eq , and therefore have a vari-
ety of equilibrium temperatures. According to the discussion
below equation (7), we expect spontaneous mass loss to be

MNRAS 000, 1–7 (2017)
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Mc (M))
0 5 10 15 20 25

d
N

=
d
M

c

Observations
Rayleigh
Power law

Figure 2. Core-mass distributions that are used in this work.
The solid blue line is according to equation (12) and it generates
the solid blue radius distribution in Fig. 3 (middle panel). It is
also used by Owen & Wu (2017). The dotted green line is ac-
cording to equation (11) and it generates the dotted green radius
distribution in Fig. 3 (bottom panel). The observed distribution
(grey histogram) is from Marcy et al. (2014b).

less e�cient for colder planets. For comparison with Owen
& Wu (2017), we roughly follow their orbital period distri-
bution and distribute our temperatures according to

dN
dlog(Teq)

µ

(
constant 500 K< Teq < 1000 K

T�6
eq 1000 K< Teq < 2000 K .

(10)

Next, we distribute our core masses according to a broken
power-law distribution

dN
dMc

µ

(
constant Mc < 5M�
M�2

c Mc > 5M� .
(11)

Owen & Wu (2017), on the other hand, use a Rayleigh dis-
tribution

dN
dMc

µ Mc exp

✓
� M2

c
2s2

M

◆
(12)

with sM = 3M�. Fig. 2 shows that our distribution is more
consistent with the observed high-mass tail from radial ve-
locity measurements (Marcy et al. 2014b). Unlike Owen &
Wu (2017), who use a logarithmically flat distribution for

the initial atmosphere mass fraction, we correlate f µ M1/2

c ,
according to theoretical planet formation models (GSS16)4.

In Fig. 3 we present the results of over 6,500 evolu-
tionary tracks and compare them to the observed distribu-
tion from Fulton et al. (2017). Our nominal results (bottom

4 The relevant initial condition for the thin regime is given by
equation (24) of GSS16, which accounts for both atmosphere ac-
cretion and the mass loss during the thick-atmosphere regime.
Adopting di↵erent opacities and values of g (as in Lee & Chi-
ang 2015, who, however, do not consider mass loss) would have
resulted in a somewhat di↵erent power-law correlation. Never-
theless, our results are not sensitive to the exact choice of this
power.

d
N

=
d
lo

g
R

0

0.05

0.1

0.15
No mass loss
Observations

d
N

=
d
lo

g
R

0

0.05

0.1

0.15
Rayleigh (mass loss)

Radius (R))
1 1.5 2 2.5 3 3.5 4

d
N

=
d
lo

g
R

0

0.05

0.1

0.15
Rayleigh + tail Uniform + tail

Figure 3. Distribution of planet radii after 3 gigayears of evolu-
tion (starting from R = 2Rc). The equilibrium temperature is dis-
tributed according to equation (10) and the initial f ⌘ Matm/Mc
is given by f = 0.05(Mc/M�)

1/2. The observed distribution (grey
histogram) is from Fulton et al. (2017). Top: the core mass is dis-
tributed according to the Rayleigh distribution of equation (12)
and the mass loss is turned o↵. Middle: same as the top panel, but
with the mass loss turned on. Bottom: same as the middle panel,
but with the Rayleigh distribution replaced by a dN/dMc µ M�2

c
power law for Mc > 5M� (solid) or with the whole distribution
given by equation (11) (dotted).

panel, dotted green) are obtained using the power-law tail
of equation (11). The other panels use the Rayleigh distri-
bution for a pedagogical demonstration. Without mass loss
(top panel, red) only the right peak is reproduced. This peak
corresponds to ⇡ 3M� cores that retain their atmospheres.
When mass loss is taken into account (middle panel, blue),
the light and hot cores lose their atmospheres completely,
producing the left peak. In this way, a single population
evolves into a double-peaked distribution that closely re-
sembles the observed valley. However, the Rayleigh model
(middle panel, blue) su↵ers from a clear deficit of Neptune-
size (2.5� 4R�) planets. The reason for this is that equa-
tion (12) underestimates the abundance of massive cores, as
evident in Fig. 2 (see also Owen & Wu 2017). When we re-
place (bottom panel, solid green) the exponential tail with a
power law for Mc > 5M� (continuously concatenated), the
observed distribution is reproduced. In fact, since Fulton
et al. (2017) include only planets larger than 1.16R�, and
since the Rayleigh distribution is approximately constant in
the low-mass range (1.8�5M�), we can safely substitute it
for simplicity with a uniform distribution, reverting to our
nominal equation (11).

Fig. 4 displays the final atmosphere mass fraction distri-
bution, emphasizing the bimodal nature of the core-powered
mass loss.

MNRAS 000, 1–7 (2017)
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0.1% 1% 10%

log10(f 2Matm=Mc)
-6 -5 -4 -3 -2 -1 0

d
N

=
d
lo

g
f

0

0.1

0.2

0.3

0.4

0.5

Figure 4. Distribution of the final atmosphere mass fraction f
in our nominal model (dotted green line, bottom panel of Fig. 3).
Atmospheres with f < 10

�6 are considered to be lost completely
and are binned in the leftmost bin.

Radius (R))
1 1.5 2 2.5 3

d
N

=d
lo

g
R

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Hot: Teq > 103 K
Warm: Teq < 103 K
Cold: Teq < 500 K

Figure 5. Distribution of the final planet radii in our nominal
model (dotted green line, bottom panel of Fig. 3), divided into
hot (solid red) and warm (dotted blue) populations. The distri-
bution of each group is normalized separately. We also show the
distribution of colder planets 300–500 K (unfilled dashed black)
which are excluded from Fulton et al. (2017) and Fig. 3.

3.3 Dependence on orbital period

Since the Bondi condition limits the gas escape (see Section
2.1.2), we expect core-powered mass loss to be more promi-
nent at high equilibrium temperatures, i.e. short orbital pe-
riods or hot stars (see also GSS16). In Fig. 5 we show how
the shape of the valley in the radius distribution changes
with Teq. Specifically, at temperatures Teq > 10

3 K (equiv-
alently, P . 10 days), the distribution is dominated by the
left peak, which contains the stripped cores. For Teq < 10

3 K
(P & 10 days), the right peak, which is composed of surviv-
ing atmospheres, is more prominent as expected. Note that
according to equation (10) warm planets are more abundant
than hot ones, so the overall distribution (bottom panel of
Fig. 3) has a somewhat higher right peak.

The observed scatter of radii and orbital periods or inci-
dent flux (Lundkvist et al. 2016; Fulton et al. 2017) shows a
similar trend to Fig. 5 (so does the photoevaporation model;
see Owen & Wu 2017).

4 SUMMARY AND DISCUSSION

Recent studies identify a valley in the radius distribution of
small (a few R�) planets with short (< 100 days) orbital
periods (Fulton et al. 2017). Atmosphere erosion by high-
energy stellar photons (photoevaporation) has been invoked
to explain this valley (Owen & Wu 2017).

In a previous paper (GSS16) we explained that spon-
taneous atmosphere mass loss, powered by the cooling lu-
minosity of the rocky core (see also Ikoma & Hori 2012),
can also naturally lead to a bimodal population. Explicitly,
if the heat capacity of a gas envelope is larger than that of
the underlying rocky core, then it survives roughly intact,
significantly increasing the planet’s radius. If, on the other
hand, the core dominates the heat capacity, then its cool-
ing luminosity may blow o↵ the light atmosphere entirely in
a runaway process, reducing the planet’s size to that of its
bare core.

In this paper we applied our theory to realistic planet
populations by evolving them according to a simple analyt-
ical prescription that accounts for the simultaneous cooling
and spontaneous mass loss (but not stellar photoevapora-
tion) of their gas envelopes. We demonstrated that these
populations are naturally transformed by core-powered mass
loss into a double-peaked size distribution that closely re-
sembles the observations, including their dependence on the
orbital period.

To summarize, core-powered mass loss alone easily re-
produces the main features of the observed radius distribu-
tion. Since core cooling is a simple process that is regulated
by the planet itself and depends on the stellar bolometric
luminosity, regardless of the less understood and more vari-
able high-energy tail, it poses an appealing alternative to the
standard photoevaporation explanation (Murray-Clay et al.
2009; Owen & Jackson 2012; Owen & Alvarez 2016).

4.1 Relation to Owen & Wu (2017)

This work was motivated by the recent Owen & Wu (2017)
paper. Essentially, both studies evolve fairly similar initial
populations of planets and compare the resulting radius dis-
tribution to Fulton et al. (2017).

While the cooling of the planets is treated similarly in
both studies (the heat capacity of the core is considered in
Owen & Wu 2017), we list below the key di↵erences between
the two papers:

(i) The removal of the gas envelopes is modelled accord-
ing to two fundamentally di↵erent processes. Owen & Wu
(2017) consider only the high-energy stellar flux as an energy
source that unbinds the atmosphere, while we consider only
the cooling luminosity of the planet itself (see also Owen &
Wu 2016), and especially of its core. Owen & Wu (2017)
suggest that this spontaneous mass loss can be ignored be-
cause it only enhances the mass loss of envelopes that are on
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their way to be completely stripped anyway by photoevap-
oration. We, on the other hand, focus on the spontaneous
mass loss and demonstrate that it can explain the observed
distribution on its own, regardless of the high-energy flux.
We suggest, with a similar logic to Owen & Wu (2017), that
including photoevaporation would strip only light and hot
atmospheres, that are on their way to be completely removed
by core cooling anyway.

(ii) The high-mass tail of our core-mass distribution is
consistent with radial velocity measurements (Fig. 2).

(iii) Our initial Matm distribution is consistent with core-
accretion models, in contrast to the logarithmically flat dis-
tribution of the initial f ⌘ Matm/Mc in Owen & Wu (2017).
Actually, our Fig. 1 suggests that the valley in the schematic
demonstration of Owen & Wu (2017) is partially a result of
their assumed initial conditions of f , rather than photoevap-
oration (the situation is di↵erent for their nominal model,
in which f is also distributed logarithmically flat, but from
a much narrower range).

4.2 Outlook

It is important to distinguish between the di↵erent mass loss
mechanisms (core cooling versus photoevaporation). How-
ever, since both processes seem to behave similarly (includ-
ing their scaling with the equilibrium temperature, which
di↵ers only for high temperatures and masses; see Fig. 3 of
GSS16), distinguishing between them is di�cult. A promis-
ing avenue will be to compare the distributions of planets
around di↵erent stellar types (in this context, see the re-
cent paper by Hirano et al. 2017). This will exploit the
main di↵erence between the two models: photoevaporation
is powered by the high-energy tail of the stellar irradiation,
whereas core cooling correlates to the total bolometric flux
(through Teq). Another aspect of this di↵erence is the large
scatter in the high-energy flux of stars with the same mass
(Tu et al. 2015), leading to a less distinct photoevapora-
tion “desert” of short-period low-density planets, compared
to the core cooling scenario. Future observations could also
study the dissimilar early histories of photoevaporation and
spontaneous mass loss, which act on di↵erent timescales.

Though our model can be used to infer the initial at-
mosphere masses from the observed radius distribution and
thereby constrain planet formation theories, there is some
inherent degeneracy in the initial conditions due to the run-
away nature of the mass loss.
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