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Boussinesq dynamics of an idealized tropopause

Olivier Asselin, Peter Bartello and David Straub

McGill University
olivier.asselin@mail.mcgill.ca

Abstract
The near-tropopause flow has been interpreted using quasigeostrophic (QG) theory.
Asselin et al. (2016) showed that this simplified dynamical framework is inconsistent. In
the vicinity of rapid changes in stratification such as those characterizing the tropopause,
QG flows develop statically unstable conditions. In this paper, a simple yet self-consistent
Boussinesq model of the near-tropopause flow is proposed. As expected, the Boussinesq
model reduces to the QG model in the limit where the Rossby number is much smaller than
ε, the nondimensional height scale characterizing the stratification change. In the more
relevant case where the Rossby number is larger than ε but still smaller than unity, analysis
and numerical simulations suggest that Boussinesq dynamics inhibit the development of
statically unstable density profiles. Additionally, tropopause displacements are to found
to scale with the Rossby number.

1 Introduction

The quasigeostrophic (QG) approximation has been used extensively to model tropo-
spheric dynamics at mid-latitudes. Under such balanced conditions, the potential vortic-
ity distribution can be inverted to deduce all the other dynamical variables (eg. Hoskins
et al. (1985)). Tropopause motion plays a crucial role in the dynamics, because potential
vorticity anomalies are generally strongest there. Blumen (1978) considered a simplified
configuration whereby the tropopause is treated as a rigid lid overlying a semi-infinite
domain with uniform potential vorticity. In this surface quasigeostrophic (SQG) model,
the flow is everywhere determined by the distribution of temperature anomalies at the
tropopause. Tulloch and Smith (2006) showed that the finite-depth version of Blumen’s
model produces an energy spectrum similar to that observed near the tropopause (eg.
Nastrom and Gage (1985)). The SQG model can also be derived as a limit of QG in
which the stratification profile undergoes a discontinuous jump (eg. Juckes (1994), Held
et al. (1995)). The rigid-lid approximation is thus not formally required and the strato-
spheric flow may be taken into account. More recently, Plougonven and Vanneste (2010)
and Smith and Bernard (2013) examined the more realistic case of a rapid yet continuous
transition in the stratification profile.

Asselin et al. (2016) showed that only very weak QG flows are self-consistent near the
tropopause. In the presence of a sharp transition in the stratification profile, QG dynam-
ics produce comparably sharp vertical gradients of perturbation buoyancy. These small
vertical scales imply locally large Froude numbers. For realistic atmospheric parameters,
not only does QG break down, but statically unstable conditions also develop. In this con-
tribution we describe a simple yet self-consistent Boussinesq model of the near-tropopause
flow. In the next section, we analyze near-tropopause Boussinesq dynamics in the limit
of low Rossby number and compare them to the QG case. Leading order dynamics sug-
gest that Boussinesq flows have a lessened tendency to static instability and tropopause
displacements scale with the Rossby number. In Section 3, we use numerical simulations
to confirm our analysis. Section 4 briefly discusses the results.
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2 Analysis

2.1 QG dynamics

The development of statically unstable conditions can be understood by examining the
evolution equation for bz, the vertical derivative of perturbation buoyancy. Under quasi-
geostrophic dynamics this equation takes the form:

Dbz
Dt

= −wzN
2 − wN2

z , (QG) (1)

where D/Dt = ∂/∂t+u·∇ is the horizontal material derivative, u and w are the horizontal
and vertical velocities, N2 = N2(z) is the base-state stratification profile and where the
symbol N2

z is taken to mean d(N2)/dz. Following Smith and Bernard (2013), we assume
a hyperbolic tangent N profile that varies over a small vertical scale, h, characterizing
the tropopause height scale. Asselin et al. (2016) showed analytically and numerically
that the vertical velocity remains vertically smooth near the tropopause — wz ∼ w/H,
where H is a characteristic (smooth) vertical scale. In the vicinity of the tropopause, the
ratio of the first over the second term on right-hand side of (1) scales like ε ≡ h/H. The
leading order dynamics thus reduce to

Dbz
Dt
≈ −wN2

z . (Near-tropopause, QG) (2)

Strong intensification of bz features occurs through the wN2
z term, and thus may only

take place in the transition region, defined as z < |h|. This is consistent with our earlier
work, which interpreted the development of statically unstable conditions from the point
of view of a differential advection of buoyancy above and below the stratification jump.
In the transition region, buoyancy develops h-scale features — strong bz patches — and
thus unstable density profiles unless the flow is very weak.

2.2 Boussinesq dynamics

In contrast with QG, Boussinesq dynamics retain the effects of the vertical advection of
perturbation buoyancy. The evolution equation for bz may be written as

Dbz
Dt

+ (uz · ∇)b = −wz(N2 + bz)− w(N2 + bz)z. (BO) (3)

We now perform a scale analysis in order to obtain a simplified picture of near-tropopause
Boussinesq dynamics in the case where the Rossby and Froude numbers are comparably
small. More precisely, we study the case Ro ∼ Fr ∼ ε, where Ro = U/fL is the Rossby
number, Fr = U/NH is the Froude number, f is the coriolis parameter, U and L are the
characteristic velocity and horizontal length scales and ε ≡ h/H is the nondimensional
height scale characterizing the stratification jump. We further assume1 that the velocity
field varies smoothly in the vertical — uz ∼ u/H, wz ∼ w/H — but that buoyancy may
vary on the scale of the stratification jump — bz ∼ b/h. At leading order, the bz equation
then reduces to

Dbz
Dt
≈ −wN2

z + wbzz. (Near-tropopause, BO) (4)

1This was confirmed by numerical simulations (not shown here).
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It is instructive to compare this equation with (2), its QG counterpart. At leading order,
the equations mainly differ by the presence of vertical advection. Importantly, this term
does not partake in the growth of bz structures. To make this explicit, one may write the
above equation in terms of a total, three-dimensional material derivative,

dbz
dt
≈ −wN2

z . (Near-tropopause, BO) (5)

For both the QG and Boussinesq cases, it is only through the wN2
z term that bz may

strongly grow. That is, large bz patches may only be generated in the transition region,
|z| < h. In the QG case, there is no vertical advection and patches are trapped in
this region. In the Boussinesq case, however, the patches are advected away from the
transition region — the only place they can experience significant growth. As such,
we expect Boussinesq dynamics to lessen the tendency to static instability. Let us now
consider the argument more quantitatively.

Leading order dynamics suggest that the growth of bz occurs over a characteristic time
scale, τ1 = L/U . That is, one expects vertical velocity to switch signs over τ1 on average.
In Boussinesq dynamics, however, vertical advection may push the bz patches out of the
transition region. In such case, growth stops when the patches leave this region, i.e. after
a characteristic residence time, τ2 = h/W . Assuming standard QG scaling for the vertical
velocity, W ∼ RoUH/L, the timescales are related by:

τ2 =
( ε

Ro

)
τ1. (6)

We now perform a scale analysis on the bz evolution equation, (5). Assuming bz to be
initially small, we obtain a quantitative measure of stability at the end of the growth
period, τ ≡ min(τ1, τ2):

|bz|
N2
∼ Wτ

h
=

{
Ro/ε if Ro < ε,
1 if Ro > ε.

(7)

Similarly, the expected characteristic vertical scale of buoyancy, γ, may be estimated as

γ ∼
∣∣∣∣ bbz
∣∣∣∣ ∼ hτ1

τ
=

{
h if Ro < ε,
h(Ro/ε) if Ro > ε.

(8)

If Ro < ε, the growth time is given by τ1. That is, vertical advection is too weak to push
bz patches away from the intensification region. As in the QG case, bouyancy develops
h-scale features, but the flow is so weak that it remains statically stable. Interestingly,
the QG approximation is strictly valid only if Ro � ε. This is consistent with our
earlier work. In the more relevant limit where Ro > ε, however, vertical advection is
strong enough to push the bz patches away from the transition region. Growth thus
ceases after a characteristic time τ2. Interestingly, scale analysis suggests that negative
patches leave the intensification region with marginal stability. By contrast, a similarly
strong QG flow would satisfy the necessary condition for static instability. Therefore,
Boussinesq dynamics inhibit the development of statically unstable density profiles in the
range ε < Ro� 1.
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Table 1: Key parameters of the numerical simulations.

Domain size (km3) 15000× 15000× 20

Frequencies (s−1) Nt = 0.01, Ns = 0.02, N0 = (Nt +Ns)/2, f = 0.0001

Resolution Nx = Ny = Nz = 256

Initial energy peak ki
H = 5, ki

z = 1

Grid spacing ∆x = ∆y = (N0k
i
H/fk

i
z)∆z, h = 2∆z

2.3 Tropopause displacement

The above analysis also sheds light on the tropopause displacement, η, which we define
as the height at which the total stratification reaches the average value of the base state:

N2(η) + bz(x, y, η, t) ≡ N2
0 , (9)

where N0 = N(0). Perturbation buoyancy depends on all space and time variables,
and thus η is a two-dimensional surface that evolves with time. In Earth’s atmosphere,
the change in N2 across the tropopause is comparable to N2 itself (see Table 1). As
such, significant tropopause displacements are expected when bz ∼ N2. According to the
above analysis, bz structures grow to comparable magnitudes when ε < Ro � 1. One
thus expects the tropopause displacement to approximately match the location of these
structures. On average, vertical advection will push these structures over a characteristic
distance

|η| ∼ τ1W = RoH. (ε < Ro� 1) (10)

Therefore, in this low-Ro range, we expect the amplitude of the tropopause displacement
to grow with the Rossby number. This is consistent with earlier works by Rivest et al.
(1992) and Juckes (1994). In the limit of very weak flow, Ro < ε, no significant tropopause
displacement is expected.

3 Numerical simulations

In order to test the above analysis, we conduct numerical integrations of the Boussinesq
equations for various flow strengths, U , and compare them with a QG control run. Fol-
lowing Asselin et al. (2016), the model is initialized with smooth geostrophically balanced
initial conditions superimposed on a rapidly-varying background stratification profile.
The Rossby and Froude numbers are based on the horizontal and vertical length scales
at which energy is initially located. Initial conditions and parameters, outlined in Table
1, are set so that Ro = Fr for all simulations. The flow is freely decaying under the
influence of hyperviscosity. Vertical diffusion is absent in order to facilitate comparison
with the QG version of the model. For more detail on the model the reader is referred to
Asselin et al. (2016).

Figure 1 shows the early time evolution of bz and the associated tropopause displacement.
As anticipated from leading order dynamics, (5), strong patches are concentrated near the
transition region. Also, intensifying positive (negative) patches sink (rise). This translates
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Figure 1: Snapshots of bz (upper panels) and total buoyancy frequency N2 + bz (lower panels) on the xz
plane during the first turnover time in the Boussinesq simulation with Ro = 0.03 (or U = 3 m/s).

into tropopause undulations. The above analysis predicted that the amplitude of these
undulations grows linearly with the Rossby number. This is confirmed in the left panel
of Figure 2, which depicts the time-averaged tropopause displacement over a range of
Rossby numbers. For stronger flows, the dependency on Ro is no longer linear. Unstable
patches away from the near-tropopause region are then more frequent and our definition
of the tropopause, (9), becomes less meaningful. The right panel of Figure 2 shows the
time-averaged vertical scale of buoyancy, γ, in the transition region. At very low Ro, both
the Boussinesq and QG simulations produce h-scale buoyancy features. That is, γ/h is
near unity. At higher Ro, Boussinesq dynamics produce smoother vertical scales. As
expected from our scale analysis, there is a significant range of Ro for which γ increases
linearly with Ro.
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Figure 2: Time-averaged root mean square tropopause displacement η (left panel) and vertical scale of
buoyancy γ (right panel) in the transition region. Both quantities are normalized by the transition region
height scale, h. The solid guidelines suggest a linear dependency upon Ro.

Figure 3 shows the growth rate of static instability as a function of time and the Rossby
number. More precisely, we average real values of σ =

√
−(N2 + bz)/N0 over an extended

transition region, |z| < 10h. As such, tropopause undulations are generally included in
the averaging domain (η̄ < 10h in the left panel of Figure 2). Note also that the growth
rate is set to zero if N2 + bz ≥ 0. It is clear from this figure that Boussinesq simulations
have a lessened tendency to static instability. In the QG simulation, the growth rate
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quickly increases as differential advection of buoyancy produces h-scale features. By
contrast, the lower Ro Boussinesq simulations have vanishingly small growth rates. This
is consistent with the prediction that bz structures leave the intensification region with
marginal stability. In the higher Ro cases, the flow has significant regions of instability
from the onset of the simulation. Therefore, one cannot assume that Ro � 1, and the
analysis of Section 2 does not hold. Correspondingly, neither η nor γ linearly depends on
Ro in this range. The right panel displays the time-averaged growth rate as a function
of the Rossby number. Interestingly, the Boussinesq flow needs to be roughly 10 times
stronger than the QG flow to be as unstable.
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 0  1  2  3  4

σ

t

QG, Ro = 0.01 (U = 1 m/s)
BO, Ro = 0.01 (U = 1 m/s)
BO, Ro = 0.02 (U = 2 m/s)
BO, Ro = 0.03 (U = 3 m/s)
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BO, Ro = 0.1 (U = 10 m/s)
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Figure 3: Left-panel: Time evolution of the static instability growth rate for various Ro. Right panel:
Time-averaged (between t = 1 and t = 2) growth rate as a function of Ro. The QG simulation (with
effective Ro = 0.01) is represented with dashed lines. The growth rate is normalized by N0 and averaged
over an extended transition region |z| < 10h.

4 Discussion

In this paper, we have described a simplified picture of the near-tropopause flow based
on Boussinesq dynamics. From this point of view, statically unstable conditions develop
because perturbation buoyancy feeds on the base-state buoyancy in the transition region.
This interpretation provides us with interesting insights on low-Ro Boussinesq dynamics
and facilitates comparison with the QG case. However, this separation into perturbation
and base-state components is arbitrary in Boussinesq or more general models: only the
total stratification is dynamically relevant. Future work will adopt this point of view,
whereby the total stratification is advected by a three-dimensional velocity field. The
present analysis assumed that the Rossby and Froude numbers were comparable to the
small nondimensional tropopause width, ε. Future work will also consider more realistic
regimes. For instance, the near-tropopause flow would be better characterized by stronger
winds, say U ∼ 10 m/s.
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