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Abstract

An important aspect of language comprehension is learning and
generalizing complex lexical relations. For instance, having
learned that the phrase preserve cucumbers predicts vinegar and
that preserve berries predicts dehydrator, one should be able to
infer that the novel phrase preserve peppers is more compatible
with vinegar, because pepper is more similar to cucumber. We
studied the ability to perform such (compositional) generaliza-
tion in distributional models trained on an artificial corpus with
strict semantic regularities. We found that word-encoding mod-
els failed to learn the multi-way lexical dependencies. Recurrent
neural networks learned those dependencies but struggled to
generalize to novel combinations. Only mini GPT-2, a minified
version of the Transformer GPT-2, succeeded in both learning
and generalization. Because successful generalization in our
tasks requires capturing the relationship between a phrase and a
word, we argue that mini GPT-2 acquired hierarchical represen-
tations that approximate phrase structure. Our results show that,
compared to older models, Transformers are architecturally
advantaged to perform compositional generalization.

Keywords: distributional semantics; language model; semantic
plausibility; language comprehension; compositionality

Introduction

Knowing how words relate to each other in a sentence is cru-
cial to language comprehension. For instance, the knowledge
that The baby is sleeping is semantically more plausible than
The table is sleeping is in part a consequence of knowing that
sleep is a better fit for baby compared to table. Moreover, judg-
ments of semantic plausibility often require understanding of
the relation among more than two lexical items. For example,
in the sentence John preserves the cucumber with vinegar, the
choice of the instrument (vinegar) is constrained jointly by the
verb (preserve) and the patient noun (cucumber). If the verb
were replaced by cut, or the patient noun were replaced by an-
tiques, the instrument vinegar would be less compatible. This
suggests that the lexical relation preserve-cucumber-vinegar
cannot be reduced to relations between word pairs, and it is
better framed as relation between the instrument and the verb-
patient combination (VP). Psycholinguistic experiments have
shown that representing such multi-way lexical relations —
relations that involve three or more words — is an important
component for understanding transitive sentences and com-
plex language (Rayner, Warren, Juhasz, & Liversedge, 2004;
Bicknell, Elman, Hare, McRae, & Kutas, 2010).
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The productivity of natural language means that humans
do not observe all possible instances of multi-way relations
(Fodor & Pylyshyn, 1988). However, humans are capable of
making useful inferences about combinations of familiar lexi-
cal items that they have never encountered. For instance, upon
learning the multi-way relation preserve-cucumber-vinegar,
one may generalize this knowledge to unobserved sentences
like John preserves pepper with vinegar to judge how well the
instrument fits with the VP preserve pepper. How can this
be performed from a computational perspective? There are
two potential approaches: (1) Identify known phrases that are
similar to preserve pepper at the phrase level, and make an in-
ference based on the relatedness between the proxy phrase and
the instrument vinegar (Figure 1a). (2) Decompose preserve
pepper into words, identify similar words that were previously
observed in identical syntactic positions, and combine the
relatedness of the proxy verb-instrument pair and the proxy
patient-instrument pair to make an inference (Figure 1b). In
this work, we refer to the former approach as holistic general-
ization, and the latter as compositional generalization.

preserve cucumber V1negar preserve cucumber V1negar

T cucumber
similar preserve mm]]ar
l pepper / /

preserve pepper - preserve pepper -

(a) b)

Figure 1: The holistic (a) and compositional (b) perspective
on semantic inference. The task is inferring the plausible but
omitted instrument vinegar given the verb phrase preserve
pepper which was never observed with vinegar. Solid and
dashed lines indicate familiar, and inferred relations, respec-
tively. Similarity relations are labeled ‘similar’.

While holistic generalization can be enormously useful, it
may fall short relative to compositional generalization in some
situations. First, complex phrases tend to occur less often than
the words that make up those phrases. This means that con-
structing representations of words requires less data compared
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to phrases. Because compositional generalization relies pri-
marily on representations of individual words and not phrases,
the representations used by compositional generalization tend
to be more available and useful in a wider range of situations.
Another advantage of the compositional approach is the ability
to compute relatedness on the fly. It has been argued that natu-
ral language is productive in the sense that infinite meaningful
sentences can be generated from a finite vocabulary (Fodor &
Pylyshyn, 1988; Fodor & Lepore, 2002). The compositional
approach provides a way to judge the semantic plausibility of
novel lexical combinations based on a representation of lexical
relations formed from finite language input. Psycholinguists
have shown that humans rely on this computational capabil-
ity to understand complex sentences (Bicknell et al., 2010;
McRae, Hare, Elman, & Ferretti, 2005).

Despite these advantages, the intricacies of the computa-
tional mechanisms that enable compositional generalization in
both humans and artificial systems are not thoroughly charac-
terized. What representational structure and processing mech-
anisms are needed to learn multi-way lexical relations, and to
generalize such knowledge to novel lexical combinations? In
this work, we evaluate the abilities of various distributional
models to perform compositional generalization, in order to
hone in on the representational and processing mechanisms
needed for compositional generalization. We first discuss a
recently introduced graphical distributional model, the Con-
stituent Tree Network (CTN), which performed perfectly in
compositional generalization (Mao, Huebner, & Willits, 2022).
The CTN is an important tool as its internal operations are
fully understood, and are governed by a small set of highly
interpretable equations. This is a stark contrast to most other
distributional models, especially those that rely on computa-
tion of similarity in vector space. However, the advantage
of most existing distributional models is that they operate on
raw text, as opposed to syntactic trees (which the CTN re-
lies on). We examined three distributional models which are
based on raw text: Hyperspace Analogue to Language (HAL),
Recurrent Neural Networks (RNN), and a miniature version
of GPT-2 (mini GPT-2). Having found that only mini GPT-2
achieved consistently accurate results in a task that evaluates
compositional generalization, we argue that a hierarchical at-
tentional structure analogous to the constituent trees encoded
in the CTN may have emerged in mini GPT-2 over the course
of training. We discuss the implication of these findings to the
study of human semantic development and language modeling.

Models
The Constituent Tree Network

The Constituent Tree Network (CTN) encodes distributional
language data in a graphical format. Given a corpus of
constituency-parsed sentences (Figure 2a), a semantic net-
work is constructed by joining the constituent parse-trees at
shared nodes (Figure 2b). As a result, constituent structure is
explicitly encoded in the topology of the network. By joining
parse-trees into a single network, the CTN is able to lever-
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age phrasal nodes to infer the relation between structures that
did not occur in the corpus, e.g.. preserve-berry-vinegar and
preserve-cucumber-dehydrator (Figure 2b). Critically, con-
stituents that belong to the same phrase are connected via
higher-order phrasal nodes, which helps to differentiate rela-
tions between words and phrases in terms of graph-theoretic
metrics. For instance, after constructing the network in a way
that preserves phrasal nodes, the constituent cucumber (part
of the phrasal node preserve cucumber), is closer to vinegar
than to dehydrator by 2 steps. To compute graded graphical
semantic relatedness, we adopted the spreading-activation al-
gorithm used by Mao, Huebner, and Willits (2023), and known
to account for a diverse range of human semantic judgments
(De Deyne, Navarro, Perfors, & Storms, 2016).

Previous work demonstrated that constituent structure is
essential for networks built from text to perform compositional
generalization (Mao et al., 2022). This is not surprising given
arich literature that has supported the notion that constituent
structure is critical to making semantic inferences involving
complex phrases. As mentioned, this is accomplished by the
presence of nodes that represent complex phrases in the CTN;
phrasal nodes enrich network connectivity so that semantically
similar phrases become more tightly connected. That said,
a noteworthy disadvantage of prior work on the CTN is that
it does not specify how information about constituency is
derived from raw text.

Assuming such a sophisticated structure as a modeling pre-
requisite not only makes it difficult to use the model in applied
settings, but also distances it from studying human semantic
development. As a remedy, this work investigates the CTN in
comparison to distributional models trained on raw text. Partic-
ularly, what representational structures emerge when training
on un-parsed linguistic input, and how do such structures relate
to the constituency explicitly provided to the CTN?

Distributional Models Processing Raw Text

Word-Encoding Models The simplest class of distributional
models derive representations of linguistic units by counting
co-occurrences between linguistic elements in a raw corpus.
HAL (Lund & Burgess, 1996), alongside LSA (Landauer &
Dumais, 1997) and BEAGLE (Jones & Mewhort, 2007) are
examples of this class of models. Individual words are repre-
sented as vectors in a high-dimensional space, enabling the
quantification of the similarity between two words (Landauer
& Dumais, 1997) by operations in the vector space. Models
in this class have been used in cognitive science, including
predicting human behavior in linguistic tasks (Baroni, Dinu,
& Kruszewski, 2014; Evert & Lapesa, 2021), and providing
plausible mechanisms for word learning in humans (Mandera,
Keuleers, & Brysbaert, 2017; Lupyan & Lewis, 2019). We
refer to models of this type as word-encoding models, and
investigate the HAL model as a representative. While the
word-encoding models are useful for modeling pair-wise lexi-
cal relations, they may struggle to learn multi-way relations,
e.g., preserve-cucumber-vinegar. How might HAL correctly
select vinegar instead of dehydrator as the best-fitting instru-
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Figure 2: Formation of the network structure in the Constituent Tree Network (CTN) given the mini corpus preserve pepper,
preserve cucumber with vinegar, preserve berry with dehydrator. (a) The input to the CTN consists of constituency-parsed trees
for sequences in the mini corpus. (b) The network structure of the CTN is formed by joining the constituent trees at shared nodes.

ment? One way is to find an effective function to compose
the vector representations of the verb and the patient into a
vector representation of the VP. Then the VP-instrument relat-
edness can be evaluated. Historically, this approach has been
less successful, due to the difficulty of manually selecting a
composition function (Mitchell & Lapata, 2010).

Recurrent Neural Network One way to overcome the need
to manually select or construct a composition function is to
train models to learn an implicit function on their own. The
class of models that excel at this are recurrent neural networks
(RNNs) (Elman, 1990). By being trained to predict which
words are likely to come next, such models learn implicit
composition functions for how to combine words in their in-
put. These functions are encoded in the network’s weights,
and are gradually tuned to the statistics of the training cor-
pus. RNNs have been extremely useful in accounting for a
broad range of behavioral phenomena in the psycholinguistic
literature (Chang, Dell, & Bock, 2006; Elman, 1990, 1991;
Huebner & Willits, 2018). Despite the advantage of RNNs
over word-encoding models in learning which words tend to
go together in a sequence, it can be a challenge for RNNs to
generalize such knowledge compositionally to novel phrases.
Since RNNs tend to form a holistic representation of a se-
quence, they may only compare preserve pepper and preserve
cucumber as a whole (Figure 1a), instead of constructing the
phrasal similarity in terms of word-word similarities (Figure
1b). Because of this, an RNN that has never previously ob-
served preserve pepper with vinegar may struggle to infer the
most plausible instrument when given only preserve pepper.

Transformer While trained on similar prediction tasks used
for RNNs, Transformers do not forcibly compress represen-
tations of individual items into one holistic representation
of the input sequence, but organize and process tokens in
parallel, using self-attention (Vaswani et al., 2017). Rather
than learning a single transition function, (e.g., the recurrent
weights for preserve cucumber to predicting with vinegar in
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the RNN), a Transformer learns how to combine arbitrary
tokens in the input using unique keys and queries for each
token, e.g., with attends cucumber and/or preserve across
different attention layers. The representations of individual
tokens (i.e., words) are combined as a function of the match
between the query of one token and the key of another.
One major advantage of self-attention is that integration of
information is unique to a given pair of words and is sensitive
to the context in which those words have occurred. In this way,
Transformers may keep the track of the individual identities
of all the words in the model’s input, allowing for flexible
combination of lexical representations.

We made the following predictions. Word-encoding models
like HAL will fail to learn multi-way lexical relations due
to the lack of an effective composition function. In contrast,
RNNs should be able to learn multi-way relations by com-
posing lexical items into a holistic representation, at the cost
of representing individual items which leads to generalizing
learned relations to novel lexical combinations in a compo-
sitional manner. Finally, the Transformer based mini GPT-2
should succeed in learning and compositional generalization,
because its architecture enables learning of representations for
each element in a sequence as well as how to flexibly combine
them to represent larger chunks of language.

Materials and Methods

All models were trained on an artificial corpus that incor-
porated controlled semantic constraints. This allow us to
concludes about the model mechanisms, which would not
have been possible if using a naturalistic corpus. Each sen-
tence in the artificial corpus is of the form agent-verb-patient-
instrument, e.g., John preserve cucumber (with) vinegar. For
each trained model, all pairwise semantic relatedness scores
between VP pairs and instruments were computed, and eval-
uation is based on how well a model predict the structurally-
licensed instrument of certain VPs.



Corpus

The artificial corpus is based on a set of 48 verbs and sets
of nouns that define possible arguments for each verb. Each
verb is associated with three nouns in the agent position, three
nouns in the patient position, and zero, one, or two nouns
in instrument position (depending on verb-type, defined be-
low). The agent nouns (John, Mary, and Fatima) are not
verb-specific, while the patient and instrument nouns are verb-
specific. In total, there are three possible nouns in the agent
position, 48 nouns in the patient position, and 24 nouns in
the instrument position, and the vocabulary consists of 123
word types, not counting the preposition with (that optionally
preceded instruments) and the period symbol marking sen-
tence boundaries. Words are bound to specific positions; for
instance, words that occur in the agent position never occur
in the patient position and vice versa. Sentences used for
training were derived by iteratively sampling from all possible
(576) agent-verb-patient-instrument combinations over 400
blocks. In each block, one of 48 verbs was selected without
replacement, and arguments were filled by choosing among
legal candidates randomly. For the purpose of statistical com-
parison, 30 instances of each model were trained, each on a
unique corpus generated with a different random seed.

Patients Each patient (e.g. cucumber, berry) belongs to one
of 16 semantic categories, such as FRUIT and VEGETABLE.
Each category consists of 3 patients, and defines the verbs
with which a patient could co-occur. For each category, two
category members were designated as ‘control’ patients, and
one member was designated as the ‘experimental’ patient
(Table 1). The experimental patient never occurs with an
instrument, while control patients always occur with an instru-
ment in the training corpus. Thus, the corpus included Mary
preserve cucumber with vinegar, and Mary preserve pepper
instead of Mary preserve pepper with vinegar. In this way,
VP-instrument relations are expressed in the pairing between
control VPs and instruments. The critical test was whether
models generalized these relations to the experimental VPs
that had not been seen with these instruments.

Table 1: Two of 16 patient categories and their members.
Experimental patients are in bold-face.

Patient Category Members

VEGETABLE potato cucumber pepper

FRUIT apple  berry orange
Verbs There are four verb types in the corpus. Type-0 verbs

only occur with patients that belong to the same category, to
provide distributional evidence for similarity among patients
belonging to the same category. Similarly, type-1 verbs can
occur with two related patient categories (e.g. FRUIT and
VEGETABLE), and their purpose is to induce a distributional
semantic hierarchy for patients. The type-0 and type-1 were
created for the sole purpose of forming the semantic structure
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in our corpus, and therefore never occur with instruments. In
contrast, Type-2 and type-3 verbs occur with instruments and
are therefore used during evaluation. The difference is that
type-2 verbs can only occur with one instrument, whereas
type-3 verbs can occur with two. The instrument that can
occur with type-3 verbs is contingent on the choice of patient;
for instance, while ‘preserve cucumber’ can only occur with

‘vinegar’, ‘preserve berry’ can only occur with dehydrator.

In this way, we created (i) systematic dependencies between
the verb, patient and instrument by patient category, and (ii)
a semantic taxonomy of the patients basing on their distribu-
tional associations to the verbs (e.g., for pepper, cucumber
and potato are most similar patients as they are in the same
category; this is followed by FRUIT such as berry that shares
partial verbs with VEGETABLE, and finally all other patients.
We refer to the two categories which share verbs, e.g. FRUIT
and VEGETABLE as forming a ‘super-category’. There are 8
super-categories in total, and Table 2 shows the sentences for
each verb-type in a particular super-category.

Model Training

Three types of models were investigated, the HAL model
(Lund & Burgess, 1996), the Long Short-Term Memory model,
or LSTM (Hochreiter & Schmidhuber, 1997), and a minia-
ture version of GPT-2 (Radford et al., 2019). We trained 30
instances of each model, varying the random seed used to
generate the corpus each time.

In the HAL model, vector representations of the words (pa-
tients, verbs and instruments) are first formed.Then the vector
representations of VPs are composed from word representa-
tions, with two composition functions: addition and point-wise
multiplication. The semantic relatedness between the VP and
the instrument was computed as the cosine similarity between
their vector representations. To form word vectors in HAL, we
tuned on minor parameters that may affect the performance in
the downstream tasks (Bullinaria & Levy, 2007, 2012). We
identified the best performing HAL model by tuning the win-
dow weight (flat, linear), window type (forward, backward,
sum, concatenated), and the number of singular dimensions
(16,22,24,... 30,32,...,36,64). Bold-face indicates the chosen
parameters. The window size for tracking co-occurrences was
constrained such that all words in a sentence are available for
analysis — other window sizes were not considered.

For the LSTM and the mini GPT-2, we identified one
highest-performing hyper-parameter configuration for each
model after extensive tuning on the generalization task. Hyper-
parameter search was restricted to 2-layer architectures, and
64 and 32 hidden units performed best for the LSTM and the
mini GPT-2 model respectively. In keeping with the format
of the task used for training, we operationalized the related-
ness of a VP-instrument pair by the network’s activation at
the output layer. To obtain the network’s prediction of the
best fitting instrument, we provided the model with sentences
like John preserve pepper with, and chose the instrument with
the highest activation as the model’s prediction. This is in
accordance with previous studies where constraints on predic-



Table 2: Example sentences from the artificial corpus, for 2 patient categories (1 super-category) only. Each category is associated
with 4 verb types. Type-2 and 3 verbs always occur with instruments except when patient is experimental (indicated by bold-face).

Patient Category type-0 type-1

type-2 type-3

VEGETABLE J dice cucumber | J ferment cucumber | J grow cucumber with fertilizer | J preserve cucumber with vinegar
J dice potato J ferment potato J grow potato with fertilizer | J preserve potato with vinegar
J dice pepper J ferment pepper J grow pepper J preserve pepper

FRUIT J dice berry J pick berry J spray berry with insecticide | J preserve berry with dehydrator
J dice apple J pick apple J spray apple with insecticide | J preserve apple with dehydrator
J dice orange J pick orange J spray orange J preserve orange

tive processing are considered to reflect knowledge of typical
events (McRae et al., 2005). In addition, RNNs tend to ignore
the context on the left. In our artificial corpus, the patients
are categorized by the verb before them, so that the ignorance
of the left-side semantic constraints may affect the model’s
performance. To rule out this potential effect, we further
tuned and trained the same LSTM model on corpora with re-
versed sentences. To be more specific, for a sentence like John
preserve cucumber with vinegar in the original corpus, we
included both the sentence and its reversed sequence vinegar
with cucumber preserve John. We report the performance of
LSTMs trained on the original and the augmented corpus.

Evaluation Tasks

After training, we evaluate each model’s knowledge of the
VP-instrument relations. In each super-category, there are 12
‘instrument-relevant’ VPs, like grow cucumber and preserve
berry that associate to instrument, and 4 instruments (Table 1),
resulting in a total of 96 VPs and 32 instruments in the corpus.
For each VP, we computed the semantic relatedness between
the VP and all 32 instruments, and ranked the instruments by
the model’s relatedness score. A hit is recorded if a model
assigns the largest relatedness score to the pair that contains
the structurally licensed instrument.

There is only one structurally licensed instrument for each
VP. A model’s ability to choose the one is used as a measure
for its ability to learn and/or generalize lexical relations from
distributional statistics. Which instrument is structurally li-
censed depends on the VP. We focus on the 48 VPs that include
type-3 verbs, e.g., preserve, among which 32 VPs have been
allowed to co-occur with instruments in the corpus, and 16
VPs did not. We reserved the first group of VPs to evaluate the
ability of models to learn multi-way relations, and the latter
group of VPs to evaluate their ability to generalize the learned
knowledge to novel lexical combinations.

In the learning tasks, the structurally licensed instrument
is the one that co-occurred with a given VP in the corpus, i.e.
preserve cucumber - vinegar. The model needs to combine the
clues from preserve and cucumber to pinpoint on the licensed
instrument vinegar. If the model only pay attention to the verb
preserve, it would be distracted by the competitor instrument
dehydrator, which also associated with the verb, but only when
the patient is in FRUIT, e.g., preserve berry with dehydrator.
Alternatively, if the model only focused on the patient, it might
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fall prey to the instrument attached to the patient but under the
competing type-2 verb, e.g., fertilizer for grow cucumber. In
the generalization tasks, the structurally licensed VP is the one
that was associated with the verb and the category of the given
patient, i.e., preserve pepper - vinegar. To succeed in the task,
the model needs to at first ace the learning task, i.e., knowing
preserve cucumber -vinegar. On top of that, the model must
capture the distributional similarity between cucumber and
the experimental patient pepper, and then infer that preserve
pepper should be similar to preserve cucumber, to select on
the licensed instrument (vinegar).

Results and Analysis

All results are summarized in Table 3. The HAL models per-
formed poorly (invariant to the composition function) in both
tasks. Critically, they failed to learn the multi-way relations im-
plicit in the corpus, e.g., the relation between the VP preserve
cucumber and vinegar. Further analysis showed that HAL
models consistently confused the two instruments associated
with the same super-category. In other words, HAL models
predicted that vinegar and dehydrator are equally likely instru-
ments for preserve cucumber and preserve berry. The same
conflation was also observed in the generalization task.

Table 3: Accuracy of inferring the structurally-licensed instru-
ments in the learning and generalization tasks. Accuracies are
averages across 30 seeds.

Learning  Generalization
HAL-addition 0.25 (0.07) 0.28 (0.18)
HAL-multiplication ~ 0.27 (0.07) 0.23 (0.12)
LSTM 0.84 (0.28) 0.26 (0.15)
LSTM, add_reversed 0.86 (0.29) 0.57 (0.29)
Mini GPT-2 1.00 (0.00) 0.87 (0.15)

As predicted, the LSTMs learned the multi-way relations
presented in the input, but failed to generalize. While perfor-
mance was enhanced with the addition of reversed sentences to
the training corpus, accuracy was nowhere near optimal (100%
accuracy). Further analysis showed that the most frequent
error made by LSTMs (19% of all errors) is predicting an in-
strument that belongs to a related category (e.g., FRUIT instead
of VEGETABLE). In contrast, mini GPT-2 achieved perfect
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Figure 3: Structural representations in the Transformer and the CTN. (a) We propose that the Transformer learned a pattern of
self-attention across layers that resembles a hierarchically structured parse tree of the input sentence. (b) The corresponding

constituent tree used to build the CTN.

accuracies in our learning tasks and near-perfect accuracies
during generalization. These results support our hypothesis
that the parallel architecture of Transformers is better suited
for compositional generalization than recurrence in RNNs.
We expand on this point below and argue that a hierarchical
structure in terms of learned attentional weights might have
emerged in the Transformer through the process of learning
the distributional regularities in our artificial corpus.

Discussion

This work examined the ability of distributional models to per-
form compositional generalization — transferring knowledge
of familiar multi-way lexical relations to novel combinations.
Our results show that word-encoding models like HAL strug-
gle to learn multi-way relations, resonating with previous work
showing that it is difficult to construct a single function to ef-
fectively compose word representations (Mitchell & Lapata,
2010). While the LSTM learned an implicit composition func-
tion for combining next-words and their linguistic context, it
failed when generalizing to novel combinations. Finally, the
Transformer-based mini GPT-2 succeeded in both learning
and generalization tasks.

How do we explain the success of mini GPT-2 in contrast to
the LSTM? Inspired by the previous finding that the CTN suc-
ceeds in compositional generalization with its explicit encod-
ing of constituent structure (Mao et al., 2022), we argue that
a similar hierarchical structure emerged in the self-attention
weights of the Transformer architecture. As illustrated in Fig-
ure 3, each layer in the Transformer may correspond to a depth
in a hierarchically structured parse tree. Hypothetically, the
token with could attend to cucumber in layer 1 to form a com-
posite representation in layer 2. The composite representation
could, in turn, attend to preserve to form a representation of
the VP in layer 3. Recall that self-attention enables Transform-
ers to combine token representations at arbitrary time steps.
At successively higher layers, these representations become
more contextualized, capturing information about increasingly
larger chunks of the input. This ability to flexibly combine
lexical representations is one proposal for how a system can
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make semantic inferences after exposure to finite language
inputs. Lacking self-attention, RNNs must compress all infor-
mation about an unfolding sequence into a single hidden layer
representation that is forcibly updated at each time step.

Taken together, the performance of the CTN and mini GPT-
2 support our argument that distributional models can enrich
their semantic processing with information about constituent
structure, and that this information can emerge automatically
as a consequence of ingesting raw text. This phenomenon
not only provides models the ability to generalize multi-way
relations to novel lexical combinations, but could be used to
explain how humans may make accurate semantic plausibility
judgements about sentences they have never heard. Further,
the presence of this ability is often interpreted in terms of the
productivity of human language (Fodor & Pylyshyn, 1988). In
this regard, our work provides a motivation for investigating
productivity as an emergent result of training connectionist
systems. Moreover, our interpretation can explain why state-
of-the-art LLMs can generate semantically plausible text that
strongly resembles language produced by humans.

Follow-up work is required to address limitations of the
current study. First, diagnostic research is needed to scrutinize
our claim that the attentional patterns that mini GPT-2 learned
are indeed hierarchical, and analogous to constituent trees.
Future work on opening the black box of Transformers should
make use of toy corpora so that semantic regularities that are
used for testing can be more strictly controlled. The second
direction involves behavioral experiments that explore the
interplay between syntax and semantics in language develop-
ment. Our modeling results suggest that exposure to linguistic
distributional information may spur the development of early
syntactic abilities, and that syntactic abilities, in turn, enrich
semantic development. More work is needed to establish at
which age children start to track and use multi-way lexical
relations. Result of such studies can be aligned with hallmarks
of syntactic development. Lastly, the combination of mod-
eling and behavioral work will be an important strategy in
advancing our understanding of syntax-semantics interactions
in computational models and human semantic cognition.
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