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 | Virology | Minireview

Capsid-dependent lentiviral restrictions

Joy Twentyman,1 Michael Emerman,1 Molly Ohainle2

AUTHOR AFFILIATIONS See affiliation list on p. 11.

ABSTRACT Host antiviral proteins inhibit primate lentiviruses and other retroviruses 
by targeting many features of the viral life cycle. The lentiviral capsid protein and the 
assembled viral core are known to be inhibited through multiple, directly acting antiviral 
proteins. Several phenotypes, including those known as Lv1 through Lv5, have been 
described as cell type-specific blocks to infection against some but not all primate 
lentiviruses. Here we review important features of known capsid-targeting blocks to 
infection together with several blocks to infection for which the genes responsible for 
the inhibition still remain to be identified. We outline the features of these blocks as well 
as how current methodologies are now well suited to find these antiviral genes and solve 
these long-standing mysteries in the HIV and retrovirology fields.
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T he capsid (CA) protein of HIV-1 serves functions both early in the viral life cycle 
in targeting the viral core to the nucleus, as well as late in the viral life cycle by 

forming the core structural component of the virion (1, 2). The term “CA” will be used 
here to denote protein subunits. The term “capsid” will be used to refer to the assembled 
structure. CA is encoded by the viral gag gene, which is translated as a polyprotein 
and then cleaved into individual units including the CA protein that becomes the viral 
core after budding. Each viral core is composed of about 1,500 CA monomers which 
multimerize into approximately 250 hexamers and exactly 12 pentamers (1, 3). These 
hexamers and pentamers form the viral core that includes the viral RNA genome. In 
the early stages of the viral life cycle after entry into the host cell, the HIV-1 core is 
deposited in the cytoplasm and imported into the nucleus via the nuclear pore complex 
where reverse transcription is completed and integration into the host cell genome 
occurs (1). Host proteins bind to HIV-1 capsid both during its early phase in the viral 
life cycle and in its late phase. While some of these host proteins aid the virus in these 
processes, lentiviral capsids, including HIV, are also the target of host antiviral proteins 
(2). There are multiple phenotypes or blocks to lentiviral replication that have been 
characterized but for which a responsible host protein or proteins have not been fully 
or definitively identified, for example Lv2, Lv3, Lv4, and Lv5 (lentiviral susceptibility-2, 3, 
4, and 5). Here, we review the host antiviral proteins that target lentiviral capsids with 
a focus on the more poorly understood phenomena that suggest there are additional 
host antiviral strategies yet to be discovered. We will describe the general phenotypes 
of each restriction event, discuss the responsible host elements where they are known 
and summarize the current understanding of events that have not been fully described. 
Finally, we discuss how new tools could be used to identify unknown blocks to lentiviral 
infection.
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KNOWN CAPSID-DEPENDENT RESTRICTION FACTORS

Fv1 and Ref1/Lv1/TRIM5α

The first described CA-dependent block to retroviral infection was named Friend virus 
susceptibility-1 (Fv1) (in relation to Friend murine leukemia virus), which inhibited one 
type of murine leukemia virus (MLV), N-tropic MLV (N-MLV), but not another variant 
of MLV, B-tropic MLV (Table 1). This block was initially observed in different inbred 
mouse lines that displayed differential susceptibility to Friend MLV: NIH Swiss mice were 
permissive to viruses termed N-MLV and not permissive to others termed B-tropic MLV 
(B-MLV), whereas BALB/c mice were permissive to B-MLV and not permissive to N-MLV 
(4). The corresponding alleles were termed Fv1n and Fv1b (5). Cells derived from these 
mice expressing the respective alleles were similarly permissive or non-permissive to 
MLV strains (5). The inhibition was found to occur after reverse transcription and before 
integration (5). In the mid-1990s, the responsible gene for the non-permissive phenotype 

TABLE 1 Capsid-mediated lentiviral restrictions

Restriction Susceptible virus(es) Characteristics

Fv1a MLV • Susceptibility determined by CA position 110

• Block after reverse transcription

• Saturable

Lv1/Ref1/TRIM5αb HIV-1 • Susceptibility depends on CA identity and host 
protein identity (SPRY domain)

• Block before reverse transcription

• Saturable

• TRIM5α and other factors involved in sensing 
of lentiviral capsids

MxBc HIV-1 • Susceptibility depends on CA identity

• Block after reverse transcription, before nuclear 
import

TRIM-CypA and 
TRIM34

HIV, HIV CA mutants, 
and SIVs

• Susceptibility depends on CA identity

• Block before reverse transcription

Lv2d Certain HIV-2 isolates, 
HIV-1 CA mutants

• Susceptibility determined by both gag and env

• HIV-1 CA determinants: P38A, N74D, G89V, and 
G94D

• HIV-2 CA determinant: I73V

• Not saturable

• Reverse transcription products accumulate 
more slowly

Lv3e HIV-1 • Susceptibility determined by gag, env and 
entry mechanism/co-receptor utilization

• Not saturable

• Block after reverse transcription

Lv4f SIVSMM/SIVMAC/HIV-2 
lineage

• Susceptibility determined by capsid

• Occurs in lymphocytes but not epithelial cells

• Block after reverse transcription

Lv5g HIV-1 • Present in marmoset primary lymphocytes

• Block before reverse transcription

Megabat and
mouse cell block

HIV-1 • Capsid-dependent

• Block at or before nuclear import

aFriend virus susceptibility-1.
bRef1: restriction factor 1; Lv1: lentiviral susceptibility-1.
cMxB: Mx Dynamin-like GTPase 2 (Mx2).
dLv2: lentiviral susceptibility-2.
eLv3: lentiviral susceptibility-3.
fLv4: lentiviral susceptibility-4.
gLv5: lentiviral susceptibility-5.
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was identified (6, 7). Based on sequence homology to the endogenous retroviruses, 
it is proposed that Fv1 arose from an integration of an ancient rodent endogenous 
retrovirus in which the gag gene coding sequence remains intact (6). The block occurs 
via direct interaction with the viral capsid, suggesting interference with capsid integrity 
and uncoating (8–10). The essential difference between restricted and non-restricted 
MLV strains is mapped to the CA protein of these viruses (4). Specifically, differential 
capsid susceptibility to Fv1 between N-MLV and B-MLV was eventually attributed to a 
single amino acid change at position 110 in CA (11). Fv1 activity is also seen in outbred 
mice, where both gene duplication and amino acid changes confer specificity to restrict 
different retroviruses (12–15).

Subsequent to the discovery of the gene responsible for the Fv1 block, a block to 
infection of HIV-1 and MLV in primate cell lines was described with significant similarities 
to Fv1 (16–19). Specifically, it was known that some human cell lines could restrict 
N-MLV but not B-MLV thereby implicating capsid in susceptibility to this restriction (20). 
Furthermore, HIV-1 was known to be restricted in Old World monkeys by an element that 
acted on capsid (18, 21, 22). However, this block toHIV-1 was distinct from Fv1 in that the 
block to virus replication occurred before, rather than after, reverse transcription (17, 23, 
24). Furthermore, a direct human ortholog of the co-opted murine gag retroviral gene 
identified as Fv1 in mouse cells does not exist in the human genome (20). Therefore, 
this block in human cells was named restriction factor 1 (Ref1) to distinguish it from the 
mouse cell-specific Fv1 phenotype (20) (Table 1; Fig. 1a). In addition to Ref1, a similar 
phenotype was observed in African green monkey cells, which could broadly inhibit 
N-MLV, HIV-1, some Simian immunodeficiency viruses (SIVs) and an even more distantly 
related lentivirus, equine infectious anemia virus (EIAV) (25). This block in Old World 
monkey cells was termed lentiviral susceptibility-1 (Lv1) (21).

The Lv1 restriction of HIV-1 in many Old World monkey cells was shown to be 
mediated by a factor that acted on CA subunits in the viral core (18, 21, 22). Tripar­
tite motif 5 (TRIM5, specifically its alpha isoform TRIM5α) was identified as the factor 
that inhibits HIV-1 in rhesus macaque cells through expression of a rhesus macaque 
cDNA library in human cells and a subsequent screen for clones that were resistant to 
HIV-1 infection (27) (Fig. 1a). By knockdown and overexpression studies, TRIM5α was 
definitively identified as the host factor underlying both the Ref1 restriction of N-MLV in 

FIG 1 Lentiviral restrictions targeting capsid. (a) Lv1/Ref1/TRIM5α: HIV entering through either HIV envelope or the VSV-G envelope is restricted in Old World 

monkey cells by TRIM5α. A similar block is mediated by TRIM-CypA for CypA-binding lentiviruses and by TRIM34 for some HIV capsid mutants and primate 

lentiviral capsids. MxB inhibits at or before nuclear import. (b) Lv2: HIV-2 viruses entering through specific HIV envelopes are restricted in some human cells 

at a step before completion of reverse transcription. (c) Lv3: the Lv3 block inhibits HIV-1 viruses that enter via a non-human co-receptor at a step after reverse 

transcription in a rhesus macaque tumor cell line. (d) Lv4: Old World monkey (SIVMAC and SIVSMM) and HIV-2 capsids are inhibited in human immune cells 

by a block that restricts infection after reverse transcription. Adapted from Janet Iwasa (26), Creative Commons Attribution-NonCommercial-ShareAlike 4.0 

International License.
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human cells and the lentivirus-specific Lv1 block to HIV-1, some SIVs and EIAV in African 
green monkey cells (27–32). In other words, Lv1 was recognized to be a species-specific 
variant of Ref1 (29). Therefore, this discovery of TRIM5α restriction accounts for both the 
Ref1 and Lv1 blocks to infection.

TRIM5α, and TRIM proteins more generally, consist of a common set of N-terminal 
domains (RING, Bbox, and coiled-coil) and at least one variable C-terminal domain (33). 
In the case of TRIM5α, the C-terminal domain is a B30.2/SPRY domain that binds to 
CA and is the major determinant of specificity of capsid restriction (34–36). TRIM5α 
functions by multimerizing into higher-order structures on the viral capsid, resulting 
in aberrant uncoating and inhibition of viral replication (33). The restriction activity of 
human TRIM5α is enhanced in cells stimulated with type I interferon (37, 38) in an 
immunoproteasome-dependent manner (39). Loss of cyclophilin A (CypA) incorporation 
into HIV-1 virions via mutations in CA results in enhanced TRIM5α restriction (40–42). 
Restriction by TRIM5α may involve TRIM5α-mediating aberrant or premature uncoating 
of the capsid (43) or by inducing autophagy via the TRIM5α RING domain (44). Models of 
the TRIM5α restriction mechanism are not mutually exclusive (33).

Consistent with Lv1/Ref1 phenotypes described before its discovery, TRIM5α’s viral 
specificity is determined by both the host-encoded TRIM5α allele and the specific viral 
capsid (27, 29, 30, 34–36). Due to amino acid differences in the SPRY domains, TRIM5α 
from humans is a relatively poor restrictor of HIV-1 (2- to 5-fold restriction) whereas 
rhesus macaque TRIM5α is a potent (100-fold) restrictor of HIV-1 (27, 34). There are a 
number of individual amino acid residues in CA that have been found to alter TRIM5α 
susceptibility, including but not limited to P38A (45), G94D (46), A88 (47) and P90A (40, 
42).

Although Fv1 is not a TRIM gene and is encoded in an entirely different locus than 
TRIM5 (7), the Lv1/Ref1/TRIM5α block shares several similarities to Fv1. These similarities 
include the following: that viral sensitivity to these blocks is determined by CA amino 
acid 110 in MLV (11, 28), that the restriction phenotype is saturable (27, 48–50), that 
the gene is rapidly evolving (34, 51) and that despite no sequence homology there is 
a similar domain architecture to these proteins that features an N-terminal coiled-coil 
motif involved in multimerization and a C-terminal domain involved in capsid recogni­
tion and binding (13, 33, 52–54).

TRIM-CypA: a block to CypA-binding lentiviruses

CypA is a host protein with a number of putative functions in the lentiviral life cycle (55). 
CypA can be bound and incorporated into the virion of some but not all lentiviruses 
via an approximately eight amino acid-long loop in CA (56–58). Not all lentiviruses 
bind CypA: for example, HIV-1/SIVCPZ (SIV infecting chimpanzees) lineage viruses do 
bind CypA, while the HIV-2/SIVSMM/SIVMAC (SIVs infecting sooty mangabeys and rhesus 
macaques, respectively) lineage viruses do not (57, 58). More broadly, CypA is bound 
by CA of some non-primate lentiviruses (59). CypA binding is important for replication 
in CypA-binding lentiviruses in the context of restriction. For example, treatment with 
cyclosporine A (CsA), a CypA inhibitor, results in a block to infection that occurs at the 
step of reverse transcription (60, 61). Furthermore, the loss of CypA binding in T cells and 
other immune cell lines decreases replication of HIV-1 (40, 50, 61–65).

Although CypA generally has a positive effect on HIV infection, CypA also contributes 
to antiviral defense through host cell co-option of the capsid-binding properties of 
CypA (2, 55, 66). In some primate species, CypA is found as a fusion protein with the 
N-terminal domains of the restriction factor TRIM5α (67, 68). Of particular relevance 
to primate lentivirus biology, in some New World monkeys and in primates of the 
macaque lineage, a retrotransposon-mediated CypA insertion at the C-terminal end of 
TRIM5α replaces the capsid-binding SPRY domain of canonical TRIM5α (31, 33, 67–73). 
A TRIM-CypA fusion was found to restrict CypA-binding lentiviruses when attempts to 
restore CypA function after knockdown of CypA was unsuccessful; northern blotting 
mapped this unexpected phenotype to restriction mediated by a TRIM-CypA fusion 
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in owl monkey cells (68). Similar to canonical CypA, TRIM-CypA binds some lentiviral 
capsids via the CypA-binding domain (33, 74). Therefore, the capsid-binding ability 
of CypA can replace the capsid-binding function of the TRIM5α SPRY domain, while 
N-terminal domains remain intact and maintain their multimerization functions (75, 76). 
Similar to TRIM5α, TRIM-CypA blocks lentiviral replication prior to completion of reverse 
transcription (69, 77). TRIM-CypA has been shown to be a restriction factor of lentiviruses 
by both knockdown and overexpression studies (67–69). Therefore, unlike the important 
function of canonical CypA in mediating efficient lentiviral infection, TRIM-CypA acts as 
an antiviral restriction factor (Table 1).

The antiviral TRIM-CypA phenotype was first observed in owl monkey cells (16, 68). 
Remarkably, this TRIM-CypA fusion has arisen independently numerous times across 
vertebrate evolution in, for example, New World monkeys (68), the Asian macaque 
lineage (69, 71, 78–80), ray-finned fishes (81), shrews (82) and rodents (83). This may 
reflect the persistent intrusion of CypA-binding viruses throughout evolutionary history 
and repeated selection for this form of an antiviral fusion protein.

TRIM34

In addition to TRIM5, primate genomes encode approximately 70–100 other TRIM genes 
(84). TRIM5 itself exists in a gene locus with three paralogous TRIM family members 
(TRIM34, TRIM6, and TRIM22); these are the most closely related TRIM genes to TRIM5 in 
the human genome (85, 86). TRIM34 was first identified as ring finger 21 in a screen to 
identify novel RING domain-containing proteins in the human genome (87). Similar to 
TRIM5, TRIM34 is broadly expressed across many cell types and is upregulated by type I 
interferons such as Interferon alpha (IFN-α) (87).

TRIM34 antiviral function has recently been described. An HIV-1 CA mutant virus 
(N74D) was shown to be more sensitive to IFN-α-mediated blocks relative to wild-type 
HIV-1, suggesting the presence of one or more unknown restriction factors (62). The 
N74D CA mutant virus does not bind to the host protein CPSF6 (88, 89). TRIM34 
was identified as a restriction factor of this HIV-1 CA mutant (CA N74D) using an 
HIV-specificCRISPR (clustered regularly interspaced short palindromic repeats) screening 
approach (38, 41). In earlier studies, TRIM34 was not shown to have any anti-retroviral 
activity against HIV-1, but this did not include testing of what are now known to be 
TRIM34-susceptible HIV viruses (76). TRIM34 restriction has been demonstrated through 
knockout, knockdown and overexpression studies and has a 2-fold to 10-fold effect on 
virus replication (41, 90). Susceptibility to TRIM34 restriction and CPSF6 binding appear 
to be independent of one another as other mutations that abrogate CPSF6 binding 
are not sensitive to TRIM34 restriction (41). TRIM34 restricts lentiviruses prior to reverse 
transcription and does not require Interferon for activity (41). TRIM34 restricts other 
primate lentiviral capsids including SIVMAC and SIVAGM-TAN (an SIV originating from 
tantalus monkeys) (41, 90) (Table 1). Of note, TRIM34 does not function independently 
as TRIM5α is necessary for TRIM34-mediated restriction (41, 90). TRIM34 may multimerize 
with TRIM5α in order to restrict a subset of lentiviruses (41, 90). Possible models of 
how TRIM5α may contribute to TRIM34 activity include: acting as an effector molecule 
through its RING domain, providing structural support via its Bbox or coiled-coil domains 
or modifying binding specificity through its B30.2/SPRY domain (41, 90).

MxB

Myxovirus resistance protein B (MxB; also known as human Mx2) also restricts lentiviral 
capsids (Table 1). Mx genes are conserved across vertebrates and have expanded via 
ancient gene duplication and conversion events (91). Mx proteins comprise a dynamin-
like large GTPase domain followed by a helical region and a hinge-like bundle-signaling 
element (92). Humans encode two Mx proteins with known antiviral function: MxA, the 
human ortholog of mouse Mx1 and Mx2, and MxB (93). Human Mx proteins can restrict a 
broad range of viruses, including but not limited to influenza virus (94, 95), Thogoto virus 
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(96, 97), vesicular stomatitis virus (95, 98), human parainfluenza virus (99), herpesviruses 
(100, 101), and hepatitis B virus (102).

Human MxB was shown by overexpression and knockdown studies to inhibit HIV-1 
replication after MxB was identified as a candidate gene expressed upon Interferon-
mediated induction in non-permissive cells (103–105). MxB interferes with HIV nuclear 
import and perhaps subsequent proviral integration (103–106). MxB localizes at the 
nuclear pore complex and depends on the presence of a nuclear localization sequence 
for its activity (106, 107). Furthermore, MxB restriction depends on which nuclear pore 
proteins are utilized for nuclear entry and is linked to GTPase activity (106–108). Mx 
proteins form dimers and higher-order oligomers (92, 109). Dimerization is required for 
MxB antiviral activity against HIV-1 (110, 111). Recent experiments suggest that MxB may 
act as a decoy, luring HIV cores away from nuclear pores and thus impeding nuclear entry 
(112).

As with TRIM5α, restriction of HIV-1 by MxB is dependent on capsid sequence as 
point mutations in CA can markedly alter susceptibility of HIV capsids to MxB restriction 
(103–106, 113, 114). Most, if not all, CA mutations tested to date appear to reduce MxB 
sensitivity rather than enhance it. That restriction of HIV-1 by MxB can be abrogated or 
altered due to sequence differences in CA highlights the possibility of a direct interface 
of MxB with lentiviral capsids (115). However, sequence differences in CA could also have 
indirect effects on MxB restriction. For example, a change in susceptibility to TRIM5α 
could impact how much MxB restriction is observed as TRIM5α also interacts with capsid 
and could mask effects of MxB. In addition, CA sequence impacts host factor interactions, 
including those with CypA, and such differential interactions may impact restriction 
factor susceptibility (107, 108). Interaction of HIV capsids with host CypA is important for 
MxB restriction as disruption of CypA binding to CA also results in abrogation of MxB 
restriction (104, 105, 107, 108).

Capsid-binding factors as innate immune sensors

In addition to interacting with viral proteins to directly inhibit the viral life cycle, 
host proteins can sense lentiviral capsids and activate innate immune signaling as a 
mechanism of indirect inhibition of viral replication. For example, in addition to direct 
viral inhibition, TRIM5α possesses an innate immune detection and signaling function 
in the presence of viral infection (116–118). After CA recognition by the SPRY domain, 
the TRIM5α RING domain can act as an E3 ubiquitin ligase which generates K63-linked 
ubiquitin chains, thereby activating innate immune responses (116, 119, 120). Lentiviral 
capsids are differentially sensitive to detection by TRIM5α in human cells (121).

Innate immune induction also occurs when the host protein non-POU domain 
containing octamer binding (NONO) binds HIV-2 CA inside the nucleus and complexes 
with nuclear cGAS, resulting in cGAS sensing of viral DNA (122). This, in turn, leads to 
stimulator of interferon response cGAMP activator 1 (STING) activation and induction of 
an antiviral gene program (122–124). NONO has evolved under negative selection and 
recognizes a conserved epitope of the CA protein (122). Another host factor that has 
been proposed to be implicated in lentiviral capsid sensing is polyglutamine-binding 
protein 1 (PQBP1) (125). In contrast to NONO, which binds to CA inside the nucleus, 
PQBP1 is proposed to bind to intact viral cores in the cytoplasm (125–127). After 
the initiation of capsid disassembly and reverse transcription, PQBP1 recruits cGAS to 
the capsid, allowing it to sense viral DNA and induce innate immune activation (125, 
126). Taken together, these factors contribute indirectly but significantly to the capsid-
dependent blocks to infection in infected host cells.

UNKNOWN CAPSID-DEPENDENT RESTRICTIONS

While TRIM5α was identified as the cellular component responsible for the Lv1/Ref1 
restriction, there exist other known blocks to lentiviral infection that depend on capsid 
that remain poorly understood and for which the genes responsible have not been 
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identified. We will discuss a set of these, termed Lv2, Lv3, Lv4, and Lv5, as well as some 
additional, less well-characterized blocks.

Lv2: an entry and capsid-dependent block to HIV-2 infection

A block to lentiviral infection discovered after Lv1 was named Lv2 (128, 129) (Table 
1; Fig. 1b). Lv2 was first described as a block to infection by a primary HIV-2 isolate 
called molecular clone restricted (MCR) (128). Lv2 is a block to infection by MCR in 
primary macrophages, immortalized fibroblasts, and some immortalized epithelial cell 
lines but not in peripheral blood mononuclear cells (PBMCs), immortalized T cells and 
other immortalized epithelial cell lines (130). This is in contrast to a closely related T cell 
line-adapted HIV-2 isolate called molecular clone non-restricted (MCN), which replicates 
well in all cell lines tested (130). The Lv2 block results in roughly 10- to 100-fold less 
infectivity for MCR compared to MCN, depending on the cell type (130). MCR HIV-2 is 
hypothesized to be restricted by a host factor that does not target MCN HIV-2. Several 
correlates to restriction for MCR and MCN have been identified. The restricted MCR 
HIV-2 and the unrestricted MCN HIV-2 differ in gag and env sequences, with both genes 
playing a key role in determining Lv2 sensitivity (128, 131). Specifically, in terms of the 
role of capsid, a single amino acid at position 73 in CA (Gag 207) confers sensitivity and 
resistance to Lv2 (128).

As Lv2 restriction shows a dependence on capsid, TRIM5α was hypothesized to 
perhaps play a role in this restriction. However, several lines of evidence support that 
Lv2 restriction is distinct from TRIM5α. First, TRIM5α is saturable by pre-treatment with 
N-MLV, meaning that addition of a sufficient saturating amount N-MLV will prevent 
TRIM5α from being able to restrict other capsids (128). Lv2 is not saturable by addition 
of a different TRIM5α-restricted retrovirus, suggesting that Lv2 restriction is independ­
ent of TRIM5α (128). Second, the Lv2 restriction can be overcome by VSV-G pseudotyp­
ing, which bypasses receptor-mediated fusion and instead causes virus entry via an 
endocytic pathway (132), whereas TRIM5α restriction is not affected by VSV-G pseu­
dotyping (128, 130). Finally, the I73V CA mutant (Gag I207V) is not sensitive to Lv2 
restriction but is susceptible to restriction by TRIM5α (131, 133).

One notable aspect of the Lv2 block is that, in addition to being dependent on capsid, 
it is also entry pathway-dependent with post-fusion trafficking events also playing a 
role. VSV-G pseudotyping was shown to rescue MCR HIV-2 as well as numerous other 
restricted HIV-1 and HIV-2 strains from Lv2, supporting the entry dependence of the Lv2 
block more broadly (128, 134). Therefore, Lv2 restriction may include a host factor that 
acts specifically after receptor-mediated entry and that can be bypassed by viruses that 
enter via alternative routes such as endocytosis. An Lv2-sensitive capsid might escape 
restriction through utilization of an entry pathway in which it does not subsequently 
encounter Lv2 due to differential compartmentalization or trafficking pathways.

At least one gene candidate to explain Lv2 restriction has been identified. An siRNA 
screen to identify the host factors responsible for the Lv2 block against MCR HIV-2 
identified RNA-associate early-stage antiviral factor (REAF) (also known as regulation 
of nuclear pre-MRNA domain 2) as Lv2 (135). REAF was shown by knockdown to 
be implicated in restriction of MCR HIV-2 (135). When tested against an HIV-1 virus, 
knockdown of REAF relieved restriction about 50-fold, and overexpression of REAF 
resulted in about a 3-fold decrease in infectivity, supporting a model in which REAF 
can also restrict some HIV-1 viruses (135). Several single amino acid mutations in CA 
were found to be critical for REAF-mediated inhibition of HIV-1: in particular, the HIV-1 
CA mutations P38A, N74D, G89V, and G94D increased sensitivity to Lv2 (136). Residue 
74 in CA is important for CPSF6 binding (137) and more recently has been implicated in 
TRIM34 restriction (41). G89V and G94D are located in the CypA-binding loop in CA (138, 
139). Notably, although CA I73V (Gag I207V) is an important determinant of sensitivity 
for Lv2 restriction of HIV-2, the equivalent residue in HIV-1 is not an important determi­
nant of REAF susceptibility (136). In fact, the P38A, N74D, G89V, and G94D mutations in 
HIV-1 CA are stronger determinants of susceptibility to REAF than CA 73 (Gag 207) is for 

Minireview Journal of Virology

April 2024  Volume 98  Issue 4 10.1128/jvi.00308-24 7

https://doi.org/10.1128/jvi.00308-24


restriction of HIV-2 (136). This could suggest that the primary determinants of suscepti­
bility to REAF differ between HIV-1 and HIV-2 due to other differences in CA or even 
other viral proteins. Alternatively, this could indicate that REAF is only one component 
of Lv2 and that Lv2 susceptibility depends on more than one host factor. For example, 
while REAF might be sufficient on its own to restrict HIV-2, it might require other host 
components to restrict HIV-1. The most recent work on REAF restriction suggests that 
HIV-1 can use the accessory protein Vpr to overcome REAF-mediated restriction (140). 
This raises the question of whether HIV-2 can also use Vpr to antagonize REAF. While 
some aspects of the Lv2 block may be explained by REAF activity, we believe that the 
available evidence is not sufficient to support REAF as the major or sole component of 
Lv2 restriction.

Lv4: a block to Old World monkey lentiviral capsids in human leukocytes

Lv2 is characterized by differential susceptibility to restriction of HIV-2 across human 
cell types. In contrast, Lv4 is a block to lentiviral infection that is defined by differential 
inhibition of HIV and SIV strains in specific types of human cells but not in others 
(141) (Table 1; Fig. 1d). Infection by SIVMAC is not efficiently blocked in some human 
epithelial cell lines and this is correlated with a lack of restriction of SIVMAC by human 
TRIM5α (17, 19, 21, 27, 41, 142). However, SIVMAC, as well as SIVSMM (SIV from sooty 
mangabeys) and HIV-2, are less infectious than HIV-1NL4-3 in human leukocytes such 
as bulk PBMCs, human B cells, T cells, myeloid cells, and dendritic cells (16, 141). For 
example, HIV-1 is 50 times more efficient than SIVMAC239 and 10 times more efficient 
than HIV-2ROD in infecting these cell types (141). The differential restriction of SIVMAC 
viruses across human cell types suggests the potential presence of a cell type-specific 
restriction activity or lack of a required factor for SIVMAC replication in these immune 
cells (141). This block against SIVSMM/SIVMAC/HIV-2 lineage viruses in some human cells 
is termed Lv4 (141).

Substitution of HIV-1 CA with SIVMAC, SIVSMM, or HIV-2 CA is sufficient to reduce 
infectivity of the CA chimeric viruses, supporting the hypothesis that the Lv4 block 
targets capsid (141). To ask if the Lv4 restriction is due to a positive or negative factor, 
heterokaryon cell fusions were generated from HeLa cells (epithelial cell line, permissive) 
and Jurkat cells (T-cell leukemia cell line, non-permissive) (141). These heterokaryons 
are restrictive similar to Jurkat cells alone in that they cannot be infected by SIVMAC 
CA-containing viruses, supporting the hypothesis that there exists a dominant antiviral 
factor expressed in immune cell types that restricts SIVSMM/SIVMAC/HIV-2 lineage viruses 
but does not restrict HIV-1 (141). Like TRIM5α, but unlike Lv2, Lv4 is not affected by 
pseudotyping and is therefore entry pathway independent (16, 141). In contrast to 
TRIM5α, the block to infection occurs after reverse transcription and nuclear import 
(141). A similar post-reverse transcription, pre-integration block has also been observed 
for some CA mutant viruses that escape from cytotoxic T lymphocytes (143). TRIM5α 
blocks HIV replication at a later step (post-reverse transcription) if cells are treated with 
a proteasome inhibitor such as MG132 (144). A similar effect is observed if mutations 
are introduced into the RING E3 ubiquitin ligase domain of TRIM5α (145). One possibil­
ity is that the factor(s) resulting in the Lv4 block is/are functioning similar to an E3 
ligase activity-deficient TRIM5α perhaps by binding to capsids and blocking successful 
integration. In summary, Lv4 is likely one or more human factors expressed in some 
immune cell lines but not epithelial cells that inhibit SIVSMM/SIVMAC/HIV-2 lineage 
viruses.

OTHER POST-ENTRY RESTRICTIONS IN NON-HUMAN CELLS

Lv3: a block against HIV-1 infection in a rhesus macaque cell line

There are additional post-entry restrictions to HIV-1 in non-human cells that appear 
similar to TRIM5α but are independent of TRIM5α in each case. For example, CMMT/CD4 
cells, rhesus mammary gland tumor cells engineered to express human CD4, are 
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susceptible to efficient infection by SIVSMM, SIVMAC, and SIVAGM (SIV originating from 
one of the African green monkey species) (146) and HIV-2 (147) but are not susceptible 
to infection by HIV-1 (147) (Table 1; Fig. 1c). Interestingly, in these CMMT/CD4 cells, 
some HIV-1 isolates are blocked before initiation of reverse transcription, while others 
are blocked after reverse transcription (148). The block before reverse transcription is 
now known to be due to TRIM5α (149). However, the block occurring after reverse 
transcription supports the existence of another factor in these rhesus macaque cells that 
also restricts HIV-1. This block is termed Lv3 (149) (Table 1; Fig. 1c). In CMMT/CD4 where 
expression of TRIM5α has been knocked-down, this block results in about 20 times less 
infectivity of HIV-1 compared to infectivity in TRIM5α knockdown HeLa/CD4 cells (149). 
Further evidence supports the idea that Lv3 restriction is distinct from TRIM5α. First, Lv3 
restriction is not saturable (149). Second, while VSV-G pseudotyping does not rescue 
viruses from TRIM5α restriction, VSV-G pseudotyping enables escape from the Lv3 block 
occurring after reverse transcription (149). Thus, like Lv2, the pathway of entry plays a 
role in determining sensitivity of HIV to Lv3.

Further highlighting the importance of entry pathway to Lv3 restriction, productive 
infection of these rhesus macaque CMMT/CD4 cells by restricted HIV-1 can be rescued 
by overexpression of the human co-receptor (CXCR4 or CCR5) (148). Therefore, entry of 
HIV via the human co-receptor allows escape from Lv3-mediated restriction. Chimeric 
viruses made up of both SIV and HIV sequences (“SHIVs”) that consist of predominantly 
SIVMAC sequence but with a backbone containing env, tat, and rev from HIV-1 also 
productively infect these Lv3-encoding rhesus macaque cells (148). This indicates that 
HIV-1 env is sufficient for the virus to bind and enter via a macaque co-receptor, but 
other viral components determine sensitivity to the Lv3 block (148). One possibility is 
that differences in signaling after receptor-mediated entry could play a role. For example, 
the tyrosine kinase Lck has been shown to be activated upon env engagement with CD4 
(150); it may be that signaling downstream of receptor engagement could be important 
for Lv3 restriction. Overall, these findings support a model in which productive infection 
involves both the envelope and perhaps CA, although other viral components could also 
be important for Lv3.

Lv5: a block to infection of marmoset primary cells

HIV-1 infection of primary peripheral blood lymphocytes from common marmosets, a 
type of New World monkey, is also blocked by one or more restriction factors (151) 
(Table 1). Compared to human peripheral blood lymphocytes, marmoset peripheral 
blood lymphocytes are about 10 times less permissive to HIV-1 (151). This dominant 
post-entry phenotype, called Lv5, acts before reverse transcription and is not influenced 
by the mode of viral entry (151). Lv5 restriction does not appear to be explained by 
TRIM5α activity, as TRIM5α cloned from marmoset cells does not inhibit HIV-1 (151). 
Furthermore, TRIM-CypA does not contribute to the Lv5 block as this gene fusion has 
not been identified in marmoset cells (151). It is not known if capsid is directly involved 
in the Lv5 restriction, although a separate earlier block to infection in marmoset cells is 
influenced by mutations in HIV-1 CA, including N74D (151).

Restrictions to HIV-1 in megabat and mouse cells

Similar to Lv5, some species of megabats appear to encode a post-entry, dominant 
restriction factor to HIV-1 that is CA dependent and blocks at or before nuclear entry 
(152, 153) (Table 1). This bat restriction is not encoded by an ortholog of any of the 
known primate restriction factors so far identified in these bat species that act in a 
CA-dependent manner (152, 153). Likewise, a block to infection in murine T cells occurs 
after reverse transcription but before integration (154–156). Treatment with CsA, a CypA 
inhibitor, relieves the pre-integration block in mouse cells (which might implicate an 
effect of CypA on HIV-1 CA), but even in the presence of CsA, post-integration defects 
that are independent of CyclinT1, a factor known to be necessary for HIV to infection 
mouse cells, still remain (157).
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NEW APPROACHES TO CHARACTERIZE BLOCKS TO LENTIVIRAL INFECTION

We have herein described known capsid-binding retroviral restriction factors—Fv1, 
TRIM5α, TRIM-CypA, TRIM34, and MxB—and discussed additional blocks to lentiviral 
infection that are at least partially capsid-targeting restriction phenotypes that are not 
fully understood (Table 1). Lv2 seems to be entry pathway dependent, and sensitivity 
of lentiviruses to Lv2 is determined by both capsid and envelope sequence (128, 129). 
Lv3 is characterized as a block against HIV-1 in a rhesus macaque mammary tumor cell 
line and depends on envelope and another viral component that may include CA (147–
149). Lv4 is mediated by a dominant factor in immune cell types and targets capsids 
from the SIVSMM/SIVMAC/HIV-2 lineage (141). Lv5 is mediated by a dominant factor in 
marmoset primary lymphocytes that acts post-entry and prior to reverse transcription 
(151). Similarly, sensitivity to an unknown restriction in bat cells is dependent on CA (152, 
153).

Genes responsible for these blocks have been uncovered through various approaches 
over decades. However, as detailed in this review many blocks to lentiviral infection 
remain unexplained. It is possible that some of the genes responsible for these unknown 
restriction phenotypes may already have been described as restrictions but not directly 
connected with these characterized but not yet fully explained blocks to infection. For 
example, interferon-induced transmembrane proteins (IFITMs) are a family of interferon-
stimulated proteins that interfere with viral entry by altering membrane components 
and/or by altering vesicular trafficking (158). More specifically, IFITMs act by impeding 
viral entry and localize to endocytic compartments but do not directly inhibit endocyto­
sis (159). IFITMs can inhibit infection by a wide range of viruses including, but not limited 
to, influenza viruses (160), flaviviruses (160), coronaviruses (161, 162), filoviruses (161), 
rhabdoviruses (163), alphaviruses (164), and retroviruses, including HIV (159, 165). IFITM2 
and IFITM3, in particular, have been shown to block HIV-1 entry (159). Rapamycin, a drug 
that increases transduction by HIV-based vectors, was shown to enhance transduction 
through degradation of IFITM3 (166). IFITM3 has also been shown to possess activity 
against HIV-2, SIVCPZ, SIVMAC and SIVAGM (165). Therefore, it may be that some portion of 
unknown blocks to infection could be at least partially explained by IFITM restriction. The 
lack of connection of IFITM restriction with these unexplained blocks to infection could 
be due to one of the major challenges in the study of IFITMs: IFITMs function both after 
incorporation into virions as well as when expressed in target cells to inhibit incoming 
virus, making their function more complicated to assess than many other restriction 
factors (167). Furthermore, similar to the gene duplication and expansion observed for 
many antiviral gene families, humans encode five IFITMs, at least three of which possess 
antiviral properties (167, 168). Therefore IFITMs may have redundant function, making 
experiments to assess their role in a particular restriction phenotype through genetic 
deletions more technically challenging.

Similar to IFITM family members, the TRIM gene family is also a good candidate for 
finding unknown capsid-targeting restrictions. Previously described antiviral functions 
of some TRIM proteins may explain some unknown blocks to infection. For example, 
TRIM11 was identified as a restriction factor of HIV-1 in a screen of several dozen 
TRIMs for antiviral activity and could be involved in the Lv2 phenotype (169). TRIM11 
inhibits HIV viral entry and affects microtubule trafficking, but it is independent of 
the lysosome and the proteasome, consistent with observations of Lv2 (169, 170). The 
TRIM11 block occurs before reverse transcription and results in accelerated uncoating 
(170, 171). As with Lv2, TRIM11 restricts HIV-1 N74D and G94V CA mutant viruses (171); 
conversely, a G89V CA mutant is insensitive to TRIM11 restriction but restricted by Lv2 
(136, 171). Conducting knockout and complementation experiments with TRIM11 could 
establish whether it is necessary or sufficient for any or all of the Lv2 block. Similarly, 
other TRIM gene family members are good candidates for capsid-dependent restriction 
more generally. In addition to potential functional redundancy, a challenge in assessing 
the role of TRIMs in restriction phenotypes is that TRIM proteins are known to both 
homomultimerize and heteromultimerize with other TRIMs as a part of their antiviral 
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function. This heteromultimerization could be important for function as is the case for 
restriction of HIV-1 CA N74D and SIVs by TRIM34 and TRIM5α (41, 86, 90). Functional 
studies of TRIM restriction are significantly more complicated if there are more than 
one TRIM gene involved in a restriction phenotype but approaches to assess heteromulti­
meric TRIM restriction should be developed and considered in future work.

There are other significant challenges in identifying genes responsible for unknown 
blocks to infection. For example, as it is possible that more than one host protein 
contributes to a given block, a combination of strategies might be needed to identify 
all components. These factors could be independently acting proteins or together may 
be required for a given block to infection. While most lentiviral restriction factors that 
are presently known appear to act alone, some, such as TRIM34, require the presence of 
another protein for restriction (41). It is possible that this kind of multiprotein coopera­
tion could also occur in other restriction events. Finally, genes encoding these restriction 
blocks may be shared across multiple Lv phenotypes, and this should be considered 
when assessing the role of different antiviral genes in these blocks.

Technological advances since the initial characterization of these lentiviral restriction 
phenotypes may permit the identification of some or all of the cellular components 
responsible for Lv2, Lv3, Lv4, and Lv5 as well the other restrictions we have discussed 
and other blocks yet to be identified. For example, CRISPR editing technologies have 
revolutionized the process of quickly and accurately generating gene knockouts, a 
particularly powerful method to identify genes required for lentiviral restriction. A 
CRISPR screening approach could be employed using specific cells and viruses to 
identify antiviral factors underlying the unknown blocks described herein (38, 172, 173). 
Screening with genome-wide libraries is useful for unbiased screening. Alternatively, 
libraries based on known interferon-stimulated genes, TRIM family genes or other genes 
thought to have antiviral properties could be employed (174, 175). These types of 
approaches may uncover currently unknown restriction factors in addition to ones that 
have previously been identified in the literature but have not been demonstrated to play 
a role in these specific phenotypes. If the antiviral genes in these blocks have redundant 
functions, these genetic deletion approaches may not be successful. However, other 
CRISPR-based functional genomics approaches, such as CRISPR activation screens that 
lead to candidate gene overexpression, could prove fruitful (176).

CAPSID AS A TARGET FOR HOST RESTRICTION

We note that restriction factors that target the HIV capsid are of interest beyond the 
blocks to infection we have described here. Compared to other viral epitopes such as 
env, which is known for its mutational resilience and flexibility (177, 178), capsid is highly 
genetically fragile (179, 180). Proper maintenance of capsid integrity and the occurrence 
of proper uncoating spatially and temporally are important to a number of steps in the 
viral life cycle, including reverse transcription and nuclear import (1). Perhaps due to 
the relative abundance of capsid, its importance to the early steps of the viral life cycle 
and the lack of expression of viral gene products at this stage of infection, the incoming 
viral capsid appears to be a key target for host restriction. Identifying and characterizing 
host capsid-targeting lentiviral restrictions may lead to a better understanding of capsid 
susceptibilities that could be targeted therapeutically.
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