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EPIGRAPH

So, ultimately, in order to understand nature it may be necessary to have a deeper
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courses in different departments, such compartmentalization is really artificial, and we

should take our intellectual pleasures where we find them.

—Richard Feynman
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ABSTRACT OF THE DISSERTATION

Stability and bounding of flow quantities in time-modulated convection

by

Todd W. Christopher

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2021

Professor Stefan Llewellyn Smith, Chair

The daily cycle of heating and cooling from the rising and setting of the sun creates

the potential for periodically-forced convection in the world’s atmosphere and bodies of

water. In this dissertation, we model a body of water experiencing daily heating from

the sun and examine the onset of convection using linear and nonlinear stability analysis.

We also find the first exact bound on a flow quantity in time-modulated convection. The

setup considered consists of fluid between two surfaces that are infinite in the horizontal

directions, with one of the surfaces heated in a time-varying manner. The most important

parameters are the Rayleigh number, Ra, which captures the strength of the heating, and

the nondimensional frequency of the time modulation, ω.
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Radiative heating from the sun is modeled as a source term with exponential decay

in the vertical. When confined to a thin layer near the surface, the effects of radiative

heating may be approximated by an imposed temperature or heat flux boundary condition,

and this approach forms the main focus of the dissertation. Each method of heating has

time dependence to capture the sun’s daily cycle. For stability analysis a sinusoidal time

dependence is used, and for bounding results are found for a generic profile.

The stability results show that while the critical Rayleigh numbers for both lin-

ear and nonlinear stability increase with increasing modulation frequency, the linear and

nonlinear stability thresholds show very different behavior at high modulation frequen-

cies. As expected, the nonlinear stability threshold is always below the linear stability

threshold. For the linear stability threshold, the ratio Raω−3/2 or Raω−2 approaches a

constant, with the power of the frequency depending on the type of heating. This is found

to match the result from considering a semi-infinite domain. For the nonlinear stability

threshold, the growth of the Rayleigh number with the frequency is approximately linear,

and no semi-infinite domain result is found. Beyond stability, we find an exact bound on

the temperature dissipation that grows like
√

Ra and
√
ω in the large Ra and ω limits,

respectively.
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Chapter 1

Introduction

Does the daily heating of a lake by the sun lead to convection in the lake? If so,

what are the important length scales revealed by stability analysis? What can be stated in

a precise, mathematical manner about the flow variables involved? This dissertation seeks

to answer these and related questions by investigating a variety of scenarios in convection

and fluid dynamics. The study is motivated by observations of springtime warming in Lake

Superior by Austin (2019), which indicate convection throughout the depth of the lake on

the timescale of hours. The observations shown in Figure 1.1 demonstrate that on a typical

day a temperature rise near the surface is followed by temperature rises throughout the

water column, indicating the presence of convection.

Convection has a long and storied history in fluid dynamics, going back to the

original observations by Bénard of convective cells in 1900 and the linear stability anal-

ysis by Rayleigh in 1916. The configuration with two infinitely large horizontal plates

held at fixed temperatures with fluid between them is now called Rayleigh–Bénard (RB)

convection, and this is the configuration used throughout this dissertation. Of the many

possible aspects one could investigate in this convection scenario, perhaps the most basic

is that of stability. For fluid that is initially quiescent, one determines the conditions under

1
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Figure 1.1: Observations in Lake Superior in 2019 (Austin, 2019; Austin, 2020). Left:
Lake overturn occurs between May and July; Right: Observations over two days showing
that a temperature rise at 30 m appears to propagate down to 90 m and then 150 m over
the course of the day, with a relatively uniform temperature reached overnight.

which the fluid begins to move, which is termed the stability threshold. Once the fluid

is in motion, describing the exact evolution of the flow is difficult, but in some cases we

are still able to make precise, quantitative statements about the flow. For example, in

RB convection it is sometimes possible to derive an exact bound on the heat transport

between the two plates. These two aspects of convection, stability and bounding of flow

quantities, will be treated in this dissertation. For stability, thresholds of linear and non-

linear stability are found and compared. For bounding of flow quantities, a bound is found

on the temperature dissipation.

Instability occurs when the buoyancy effects from heating are stronger than the

dissipative effects from viscosity and diffusion. For everyday liquids at everyday tempera-

tures, this means instability is created by heating the fluid from the bottom to make the

fluid less dense there, so that with strong enough heating the fluid particles begin to rise.

In a lake that has just recently become ice-free, the water temperature will be between 0◦C

and 4◦C, a regime in which water actually becomes denser as the temperature is increased,

contrary to our normal experience. This means that, during springtime warming, heating

2



at the surface of the lake has the potential to create an instability.

To model this situation, we consider fluid confined between two horizontal surfaces,

just as in standard RB convection, but with time-dependent heating. For a relatively

murky body of water, one can consider the radiative heating from the sun to be confined

to a thin layer near the surface, in which case the heating would appear to reduce to a

specified flux at the surface itself. Because it has not been previously addressed and is

likely to capture the fundamental physics of radiative heating in a body of water, this is

the case we focus on for the stability portion. A source term with true radiative heating

and a modulated temperature boundary condition are also considered, with the bounding

section using the latter for mathematical simplicity.

The remainder of this introduction serves as an outline of the dissertation. Broadly

speaking, we first discuss convection in general and introduce the techniques of stability

analysis and bounding with steady RB convection before treating stability and bounding

of flow quantities in time-modulated convection. A brief description of each chapter is now

given.

In Chapter 2, the important parameters and governing equations for convection

in fluid dynamics are introduced. Dimensional analysis is used to discuss the physics

of the important dimensionless parameters. This leads to a discussion of the difference

between low and high frequency modulation, which will be addressed in depth in later

chapters. Complications such as rotation and radiative heating are also discussed. Finally,

the Boussinesq equations governing convection are presented and nondimensionalized.

In Chapter 3, the basic RB setup is reviewed. The techniques are introduced

that will be used for the stability analysis and bounding of flow quantities, and they are

applied to steady RB, both (i) to demonstrate the general procedure of each technique

before proceeding to more complicated cases and (ii) to establish steady RB results for

later reference. Special attention is paid to what does and does not carry over directly to

3



cases with modulation.

In Chapter 4, the stability of a configuration with time-modulated heat flux or

temperature at one boundary is investigated. Both linear and nonlinear stability are

addressed. To determine the threshold for linear stability, the periodic nature of the

heating allows the use of Floquet theory to decompose the solution into an exponentially

growing and a periodic component, leading eventually to an eigenvalue problem with some

similarities to the standard RB linear stability eigenvalue problem. A key difference,

however, is that the instability is not necessarily stationary, as it is in standard RB,

but may instead occur with an oscillating disturbance. The linear stability problem is

solved numerically using expansions from Chebyshev spectral methods and Fourier series,

truncating these expansions, and solving the resulting linear algebra eigenvalue problem

with standard routines.

To determine the threshold for nonlinear stability, the energy method is used, which

involves using variational calculus to find when the “energy” of the fluctuations (essentially

the kinetic energy added to the square of the temperature) decays over time. One can

find conditions for both a strong form of nonlinear stability named strong global stability,

where the energy of the fluctuations always decays in time, and a weaker form named

asymptotic stability, where the energy is allowed to grow during a period but must have

net decay over the whole period.

Most work in modulated RB convection has focused on nonzero-mean modulation

of the temperature, meaning the average of the temperature difference or heat flux between

the two boundaries is nonzero. For example, researchers have performed linear stability

analyses for zero-mean modulation of the temperature at the boundary without considering

modulated flux, and have performed nonlinear stability analyses for a configuration with

nonzero-mean modulation of the temperature, but not the heat flux. This dissertation

extends past work to include these cases, with the novelty being that zero-mean modulation

4



of the boundary heat flux is considered, and that linear and nonlinear stability thresholds

are directly compared.

In Chapter 5, the low-frequency regime is analyzed more closely. For no-stress

conditions with temperature modulation, the equations governing linear stability reduce

to a decoupled set of Mathieu equations. The WKB approximation can then be used to

determine the threshold for linear stability. This has been done before in Or (2001), but

detailed results and comparisons to full solutions are given here. For other conditions, the

governing equations are not decoupled, and a matrix WKB approach must be attempted.

We present possible approaches for future researchers to build on, but we are not able to

solve for the stability threshold in these more difficult cases.

In Chapter 6, the high-frequency regime is considered with both boundary mod-

ulation and modulated radiative heating. A high modulation frequency is equivalent to

a very deep body of water, as in either case the effects of the forcing are confined to a

boundary layer near the surface. Mathematically, both cases are treated in a semi-infinite

domain. The relevant length scale is no longer the depth of the water but is instead what

could be termed a thermal Stokes layer, constructed from the modulation frequency and

the thermal diffusivity. We treat radiative heating and investigate the dependence of the

critical Rayleigh number on the penetration depth of the radiative heating. As the heat

penetrates less and less into the body of water, we expect the results to closely resemble

those from the case of an imposed boundary heat flux, which is what we find for linear

stability.

In Chapter 7, bounding of flow quantities is treated. The background technique

is used to find an exact bound on the temperature dissipation rate for the standard two-

plate RB setup, but with the temperature of one boundary varying in time. In steady RB

convection, researchers generally attempt to bound the Nusselt number, which captures the

relative strength of convective to conductive heat transfer. In time-dependent convection,
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the Nusselt number becomes more complicated, and the natural quantity to bound is the

temperature dissipation (the two-norm of the gradient of the temperature, ||∇T ||22). The

novelty in this result is that it is the first treatment of time-dependent forcing in convection

using the background method, building on the bound on shear stress for time-dependent

shear flow in Marchioro (1994).

The optimal bound must in general be found numerically, but an asymptotic anal-

ysis can be carried out for high frequency ω and large Rayleigh number Ra. There are

two distinct regimes for small and large ω. In the small ω limit, the bound reduces to the

same bound in the steady case, whereas in the large ω limit, the bound grows like
√
ω.

For large Rayleigh numbers with fixed ω, the bound on temperature dissipation grows like
√

Ra, as it does in the steady case.

In Chapter 8, we conclude by summarizing the important results in the dissertation

and discussing possible avenues of future work. Though the work in this dissertation is

inspired by observations of lake convection, the scenarios considered are fundamental fluid

dynamics problems abstracted away from the lake setting. Different possible ways of

achieving more direct applicability to real-world lake convection are discussed, such as

directly incorporating rotation, considering different modulation profiles, and relating the

bound more directly to the Nusselt number.

In Appendix A, work inspired from geophysical flow considerations but unrelated

to convection is covered. A solution is found for a stationary hollow vortex in a straining

flow in a corner of arbitrary angle, which might describe a sharp bend in a river, for ex-

ample. Complex analysis and conformal mapping techniques are used in conjunction with

the Schottky–Klein prime function to construct the stationary hollow vortex boundaries,

extending previous work which treated only the case of a hollow vortex in uniform flow

near a wall, which can be thought of as a corner of angle π.
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Chapter 2

Equations and Parameters

In this chapter, we first discuss the important scales and parameters in modulated

convection, with an emphasis on the physics involved. We then present the governing

Boussinesq equations and carry out the process of nondimensionalization. The relevant

physical quantities and dimensionless parameters are summarized in Table 2.1, and their

approximate values are listed in Table 2.2.

2.1 Steady RB scales and parameters

From the physics of convection, we expect a competition between (i) the buoyant

force created from temperature differences that lead to density differences and (ii) the

dissipation of energy by κ and ν, the thermal diffusivity and momentum diffusivity, re-

spectively. To compare these quantitatively, we construct characteristic time scales for

each, and then the phenomenon acting on a smaller time scale is expected to dominate.

The time scale for diffusion of thermal energy and momentum is

tdiff =
d2

√
κν
, (2.1)
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Table 2.1: Parameters and variables corresponding to different configurations.

No
Modulation

Ra buoyancy
diffusion

αgTscd3

κν

Pr momentum diffusivity
thermal diffusivity

ν
κ

Modulation ω oscillation
diffusion

or lake depth
boundary layer size

ω∗d2

κ

Ra∞ Ra for very deep lake αgTsc
√
κ

νω
3/2
∗

Radiative
Heating

γ lake depth
radiation penetration depth

d
drad

Rotation Ro diffusion
rotation

κ
d2f

d: water depth ν: momentum diffusivity
ω∗: frequency of modulation α: coef. of thermal expansion
κ: thermal diffusivity Tsc: temperature scale
k: thermal conductivity drad: radiation e-folding depth
S0: incoming radiation g: gravitational acceleration
f : Coriolis coefficient
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where d is the depth of the water. A time scale for buoyancy may be constructed from the

buoyant force acting on a fluid particle. The volume change for a volume V experiencing

a temperature change Tsc is V αTsc. The density change is

δρ = −ραTsc. (2.2)

The buoyancy force arises from the difference in density between the particle and its

surroundings, and is

Fb = −V ραTscg, (2.3)

where g is the acceleration due to gravity. We see that a characteristic acceleration is then

αTscg, from which we can use the length scale d to get the time scale for buoyancy of

tb =

√
d

αTscg
, (2.4)

which is the time scale for the fluid parcel to traverse the depth of the water with constant

acceleration αgTsc. We now compare the diffusive time scale to the buoyancy time scale

to find

tdiff

tb
=

√
αgTscd3

κν
. (2.5)

The Rayleigh number is traditionally defined as the square of this ratio,

Ra ≡ αgTscd
3

κν
. (2.6)

When the time scale for buoyancy is much shorter than the time scale for diffusion, so

that the Rayleigh number is large, we expect buoyancy to dominate and for the fluid to be

set in convective motion. When the time scale for diffusion is much shorter than the time

scale for buoyancy, we instead expect the buoyancy difference to be quickly dissipated so
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that the fluid remains still.

For RB convection with an imposed temperature difference, the obvious candidate

for Tsc is the imposed temperature difference. When instead a heat flux is imposed, a

temperature scale can be constructed from the heat flux. If the heat flux is imposed at a

boundary through an equation of the form k∂zT = S0, then the appropriate temperature

scale is S0d/k.

The ratio of the momentum diffusivity to the thermal diffusivity is also important.

This ratio is known as the Prandtl number,

Pr ≡ ν

κ
. (2.7)

2.2 Modulation parameters

When time modulation is introduced into RB convection, new time and length

scales are possible. The characteristic frequency of modulation ω∗ can be compared with

the time scale for diffusion of thermal energy to define a new parameter,

ω ≡ ω∗d
2

κ
, (2.8)

which we will call the nondimensional modulation frequency. From ω we see that a high

modulation frequency has the same effect as a very deep lake, with both leading to high

ω, and in fact this parameter can equally well be thought of as the square of the ratio of

d to the diffusive length scale
√
κ/ω∗.

For an infinitely deep body of water, d ceases to be a relevant length scale. Instead,

a length scale must be created from the thermal diffusivity and momentum diffusivity.

Using only the thermal diffusivity leads to a length scale of
√
κ/ω∗. With this length scale
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in place of d, the Rayleigh number becomes

Ra∞ ≡
αgTscκ

1/2

ω
3/2
∗ ν

, (2.9)

which we expect to be the important control parameter for a semi-infinite domain. We

note that for an imposed temperature, this is equivalent to Ra/ω3/2. For an imposed heat

flux, the temperature scale involves d as well, so that Ra/ω2 is equivalent to Ra∞. As d

becomes larger, we expect the separate effects of Ra and ω to be captured by Ra∞. As

shown below, this is exactly what we find for linear stability.

2.3 Radiation and rotation parameters

Radiative heating from the sun can be described using the equation for the intensity

of light as a function of depth,

I(z) = S0ez/drad . (2.10)

The change in intensity with depth transfers thermal energy to the water, and is

dI

dz
=
S0ez/drad

drad

, (2.11)

which is the energy per time per volume transferred to the fluid. By relating this to the

change in energy of a fluid parcel ρcdT/dt, we find the temperature scales S0drad/k or

S0d/k, which may be used to find the Rayleigh number. A new parameter that arises is

the ratio of the e-folding scale of the radiative heating to the depth of the lake,

γ ≡ drad

d
. (2.12)

Accounting for rotation introduces a new time scale associated with f = Ω sin θ,
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where Ω is the frequency of the earth’s rotation and θ is the latitude. The ratio of the

inertial term to the Coriolis term leads to the Rossby number

Ro ≡ 1

τf
, (2.13)

where τ is the time scale chosen. If we choose the time scale for diffusion, we have

Ro = κ/(d2f), whereas if we choose the time scale from the fundamental frequency of

forcing ω∗, we have Ro = ω∗/f . If the time scale for diffusion is used, the Rossby number

will be low, indicating that rotation is important, though it should be noted that one would

have to draw this conclusion for most RB setups because of how small κ is. If the time scale

from the forcing frequency is used, however, the Rossby number is O(1), indicating that

rotation may or may not play a large role. To limit the number of parameters, we defer

treating the case with rotation to later work. In standard RB, rotation has a stabilizing

influence on linear stability, and we would therefore expect similar behavior with time-

modulated forcing. However, including rotation in the linear stability analysis requires

the inclusion of extra variables, namely the components of vorticity. This enlarges the

eigenvalue problem for linear stability, and in the time-modulated case the matrices are

too ill-conditioned to return results.

For nonlinear stability, the standard techniques involve forming an inner product

of the momentum equation with the velocity, which immediately eliminates the Coriolis

term 2Ω × u, and therefore all the nonlinear stability results found below hold also for

the case with rotation. In order to directly incorporate rotation into nonlinear stability,

a more complicated energy must be formed. Unfortunately this leads only to conditional

stability results, so we do not attempt to use a more complicated energy to account for

rotation here.
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2.4 Values of properties and parameters

The relevant properties of water at 3◦C along with the other relevant properties

in the lake are listed in Table 2.2. We see that the expected Rayleigh number is large,

though we do not yet have any context for the expected stability threshold. In Chapter 3,

we will see that the Rayleigh number threshold for instability in steady RB is O(103), so

this would appear to be high, but we must keep in mind that modulation means that the

Rayleigh number captures only the maximum of the forcing strength, and that the forcing

strength is otherwise lower throughout a forcing period. We therefore might expect the

threshold to be higher, which is indeed what we find below. The nondimensional frequency

is large, so that in nondimensional terms we are in the very deep or high frequency regime.

The parameter γ comparing the radiation penetration depth to the depth of the lake is

also small, indicating that treating the incoming radiation as a surface heat flux could be a

good approximation to true radiative heating, and we demonstrate this for linear stability

on a semi-infinite domain in Chapter 6.

2.5 Governing equations

We use the Navier-Stokes equations in the Boussinesq approximation to model the

behavior of the fluid. We present the equations in their full generality here, though we

will present the relevant simplified equations again in each section. The equations are

∂t∗u∗ + u∗ · ∇∗u∗ = −∇∗p∗
ρ
− g [1− α(T∗ − TR)] ez + ν∇2

∗u∗, (2.14)

∇∗ · u∗ = 0, (2.15)

∂t∗T∗ + u∗ · ∇∗T∗ = κ∇2
∗T∗ +

S∗(t∗)e
z∗/drad

drad

, (2.16)
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Table 2.2: Approximate values for properties relevant to convection in a lake at 3◦C at
a latitude of 47.5◦N. (First five properties calculated using Holmgren (2006), which uses
data from the International Association for the Properties of Water and Steam.)

Property Value Units
ν 1.6(10)−6 m2/s
κ 1.4(10)−7 m2/s
α -1.6(10)−5 1/◦C
k 0.57 W/(m◦C)
ρ 1000 kg/m3

d 100–300 m
drad 3–10 m
S0 200-1000 W/m2

ω∗ 7(10)−5 rad/s
f 10−4 rad/s
Pr 11
Ra 1020

ω 107

γ 0.05

where S∗(t∗+2π/ω∗) = S∗(t∗), so that the fundamental frequency of the bulk heating term

is ω∗. The variable u∗ is the velocity, T∗ is the temperature, p∗ is the pressure, t∗ is time,

and z∗ is the vertical position component. The constant TR is a reference temperature, ρ

is the density at the reference temperature, drad is the e-folding scale of the radiation, and

α is the coefficient of thermal expansion at the reference temperature. In this section we

take the domain as −d ≤ z ≤ 0, though in other sections we will use 0 ≤ z ≤ d.

Different boundary conditions are considered. For the velocity, the boundary con-

ditions are no-penetration and then a choice of no-slip or no-stress at both the top and

bottom. For the temperature, the following boundary conditions are considered:

Top (z∗ = 0) :


T∗ = f∗(t∗) specified temperature

k∂z∗T∗ = kf∗(t∗)/d bulk heating & specified flux

(2.17)
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Bottom (z∗ = −d) :


T∗ = TR specified temperature

k∂z∗T∗ = 0 no flux,

(2.18)

where f∗(t∗ + 2π/ω∗) = f∗(t∗) so that the fundamental frequency is ω∗, and

TR ≡


mean(f∗(t∗)) specified temperature

mean (f∗(t∗)d/k) bulk heating & specified flux.

(2.19)

Most fluids in most circumstances expand when heated, so in most of the literature the

fluid is heated from the bottom. Heating at the top in the anomalous regime of water is

equivalent to heating at the bottom outside of that regime.

We choose scales L,U, τ , and Tsc for length, velocity, time, and temperature to

define the nondimensional variables

x ≡ x∗
L
, u =

u∗
U
, t ≡ t∗

τ
, T ≡ T∗ − TR

Tsc

, S(t) ≡ S∗(t)

S0

, f(t) ≡ f∗(t)− TR

f0

,

(2.20)

where S0 = maxS∗(t) and f0 = max f∗(t). We set U = L/τ , fold the constant term due

to gravity into an appropriately scaled pressure term, and choose L and τ depending on

the case under consideration,

L ≡


d finite domain√
κ/ω∗ semi-infinite domain

(2.21)
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and

τ ≡


d2/κ finite domain

ω−1
∗ semi-infinite domain.

(2.22)

For a finite domain, any set of choices can be made. For all cases, we have τ = L2/κ. Our

choice of the temperature scale depends on where the forcing occurs,

Tsc =


f0 boundary forcing

S0L/k bulk heating.

(2.23)

The resulting nondimensional governing equations are

∂tu+ u · ∇u = −∇p+ Ra Pr Tez + Pr∇2u, (2.24)

∇ · u = 0, (2.25)

∂tT + u · ∇T = ∇2T +
S(t)

γ
ez/γ, (2.26)

where for boundary forcing the source term S(T ) is set to zero. The parameters are defined

as

Ra ≡ αgTscL
3

νκ
, Pr ≡ ν

κ
, γ ≡ drad

L
, ω ≡ ω∗L

2

κ
. (2.27)

The boundary conditions become

Top (z = 0) :


T = f(t) specified temperature

∂zT = f(t) bulk heating & specified flux

(2.28)
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and

Bottom (z = −1) :


T = 0 specified temperature

∂zT = 0 no flux.

(2.29)

The fundamental period of the forcing term becomes 2π in the semi-infinite case and 2π/ω

in the finite case. For radiative heating, a more general boundary condition could be used

to connect the water with the atmosphere above it, such as a Newtonian condition, but

this would require knowledge of a parameter characterizing that interaction.

As the e-folding scale of the radiative heating goes to zero, the configuration reduces

to an imposed heat flux setup. In this limit, γ → 0, and the source term is nonzero only

in an O(γ) region while still imparting all of the incoming heat to the water. This is

equivalent to a source term of zero and a boundary condition specifying the incoming heat

flux. Chapter 6 shows that these two cases do in fact give equivalent linear stability results

in this limit. For this reason, in this dissertation we will deal mostly with the modulated

heat flux as representative of radiative heating.
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Chapter 3

Stability and Bounding in Steady RB

In this chapter, we review steady RB convection and introduce the tools of linear

stability analysis, nonlinear stability analysis, and bounding of flow quantities. We only

include details when they will not be given later, as our main goals are to introduce the

techniques first in a familiar setting and to derive results to refer back to when we examine

more complicated scenarios.

3.1 Setup

The setup for steady RB convection is fluid confined between two surfaces infinitely

large in the horizontal directions. In this chapter we will assume temperatures are fixed at

the surfaces because that is the best known case. After nondimensionalizing, the equations

are (2.24)–(2.26) but with the source term in the temperature equation set to zero. The

boundary conditions for temperature are the imposed temperatures, and the boundary
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conditions for velocity may be taken as no-slip or no-stress. The equations are therefore

∂tu+ u · ∇u = −∇p+ Ra Pr Tez + Pr∇2u, (3.1)

∇ · u = 0, (3.2)

∂tT + u · ∇T = ∇2T, (3.3)

with temperature boundary conditions

T (0) = 1, T (1) = 0. (3.4)

The velocity satisfies a no-penetration boundary condition at both surfaces along with

either a no-slip or no-stress condition. For no-slip conditions, u = 0. For no-stress

conditions, ∂zu = 0 and ∂zv = 0; then (3.2) leads to ∂2
zw = 0.

3.2 Linear stability

To find the linear stability threshold, we choose a base state and then determine

what happens to small perturbations of the base state. In linear stability, we ignore all

products of perturbations and assume perturbations depend on time through an exponen-

tial term. If small perturbations decay, the state is deemed stable, and if small perturba-

tions grow, the state is deemed unstable. If perturbations neither grow nor decay, then the

state is referred to as marginally stable. The first linear stability analysis for convection

was presented in Rayleigh (1916), and a thorough treatment was given by Chandrasekhar

(1961). We use the same procedure but take advantage of modern computing to solve the

eigenvalue problem resulting from the linear stability analysis.

The temperature profile for the base state with no motion is determined by (3.3)
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with u set equal to zero. The result is

TB(z) = 1− z. (3.5)

We let U = (U, V,W ) stand for the velocity perturbation and set

T (x, t) = TB(z) + Θ(x, t), (3.6)

where Θ is the temperature perturbation. We write the pressure as p = pB + P . Substi-

tuting these forms into the governing equations and neglecting products of perturbations

leads to

∂tU = −∇P + Ra Pr Θez + Pr∇2U , (3.7)

∇ ·U = 0, (3.8)

∂tΘ +W∂zTB = ∇2Θ, (3.9)

where ∂zTB = 1 in this case but not in more complicated cases. Taking the double curl of

(3.7) and then isolating the z component leads to a system in W and Θ alone,

∂t∇2W = Ra Pr ∇2
HΘ + Pr∇4W, (3.10)

∂tΘ−W = ∇2Θ. (3.11)

The boundary conditions satisfied by the perturbations are Θ = 0, W = 0, and ∂zW = 0

for no-slip conditions (from incompressibility) or ∂2
zW = 0 for no-stress conditions. We

now assume normal modes in the horizontal directions and an exponential time dependence
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so that we have

W (x, t) = eikxxeikyyeµtw(z), (3.12)

Θ(x, t) = eikxxeikyyeµtθ(z), (3.13)

where kx and ky are real and µ is complex, and we let k2 = k2
x + k2

y. Equations (3.10) and

(3.11) become

µLw = −Ra Pr k2θ + PrL2w, (3.14)

µθ − w = Lθ, (3.15)

where the operator L = ∂2
z − k2. This is an eigenvalue problem. Either Ra or µ can

be treated as the eigenvalue. It so happens that for steady RB one can show that the

imaginary part of µ is zero at the stability threshold, a situation often called exchange of

stabilities. In more complicated cases this is not possible, and when the base state depends

on time we will see that the appropriate analog of µ often has an imaginary part of 1/2.

In all cases, if we take the real part of µ to be zero and specify its imaginary part, we are

left with an eigenvalue problem for Ra as a function of k and Pr giving marginal stability.

The critical Rayleigh number for fixed Pr is the minimum Ra over all possible k.

In order to solve the eigenvalue problem, we must in general resort to numerical

methods. For the special case of no-stress boundaries and specified temperature, sine

functions serve as eigenfunctions and an analytical result is possible. For all other cases

this is not possible. Throughout this dissertation we use Chebyshev spectral methods to

discretize in space, meaning the variables are expressed in a basis of Chebyshev polyno-

mials. There are a variety of ways to apply Chebyshev spectral methods, and these are

discussed in more detail in Chapter 4. One method involves turning the unknown vari-
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Figure 3.1: Curves of marginal stability for different boundary conditions in steady RB
convection. The critical Rayleigh number is noted with a dot for each case and written
above the curve.

ables w and θ into vectors of their values at Chebyshev grid points. In this method, the

differential operators become matrices, and the boundary conditions are incorporated into

the matrices.

When this method is applied, the resulting linear algebra eigenvalue problem is

µL− PrL2 0

I L− µI


w
θ

 = Ra

0 −Prk2I

0 0


w
θ

 (3.16)

By sweeping through k, a curve of marginally stable Rayleigh numbers is found. The

curves of marginal stability are shown in Figure 3.1. Because exchange of stabilities can

be shown to apply, µ = 0, and Pr drops out of the eigenvalue problem, so these results

hold for all Pr. These results will be important for comparison with the more complicated

cases considered in this dissertation.

When we perform a linear stability analysis of time-modulated convection below, we

will follow the same general procedure, but the non-autonomous nature of the differential

equations will necessitate the use of Floquet theory. The resulting eigenvalue problem will

entail a system of coupled sixth order equations rather than a single sixth order system, and
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the linear algebra eigenvalue problem will therefore be much larger than the corresponding

problem in steady RB convection.

3.3 Nonlinear stability

The process for determining nonlinear stability proceeds similarly to the process for

determining linear stability, but the perturbations may be of arbitrary size and are there-

fore termed fluctuations. Whereas linear stability finds a Rayleigh number above which

instability is assured, nonlinear stability finds a Rayleigh number below which stability is

assured. If the Rayleigh numbers for linear and nonlinear stability are different, potential

instabilities occurring between the two are called subcritical instabilities. As we will see

in this section, for steady RB the linear and nonlinear thresholds coincide. For cases with

modulation, that is no longer necessarily true. The method of nonlinear stability analysis

is explained in Straughan (2013), which also details a wide variety of nonlinear stability

calculations.

The starting equations are (3.1)–(3.3). We take a base state of no motion and

decompose the variables to separate the base state from the fluctuations. The velocity

fluctuation is taken to be u(x, t), and the temperature fluctuation is θ(x, t), so that

T (x, t) = TB(z, t) + θ(x, t). (3.17)

For nonlinear stability we use the rescaled temperature variable

φ ≡ θR, (3.18)
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where R ≡
√

Ra. The equations become

Pr−1 (∂tu+ u · ∇u) = Rφez +∇2u, (3.19)

∂tφ+ u · ∇φ = wR +∇2φ. (3.20)

We define the energy as

E(t) ≡

(
‖u‖2

2

2Pr
+
‖φ‖2

2

2

)
, (3.21)

which upon taking a time derivative leads to

E ′(t) = IR−D, (3.22)

where

I ≡ 2

∫
V

wφdV, (3.23)

D ≡ ‖∇u‖2
2 + ‖∇φ‖2

2 , (3.24)

and the norms are

‖φ‖2
2 =

∫
V

φ2dV, ‖∇φ‖2
2 =

∫
V

|∇φ|2dV, ‖∇u‖2
2 =

∫
V

∂uj
∂xk

∂uj
∂xk

dV. (3.25)

Now we turn the evolution equation for the energy into an inequality by defining

1

RE

≡ max

(
I

D

)
(3.26)

so that (3.22) becomes

E ′(t) ≤ −D
(
RE −R
RE

)
(3.27)
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From Poincaré’s inequality, we have D ≥ α1E, with α1 ≥ 0, so that

E ′(t) ≤ −α1

(
RE −R
RE

)
E(t). (3.28)

Integrating shows that the energy satisfies

E(t) ≤ E(0) exp

{
−α1

(
RE −R
RE

)
t

}
. (3.29)

From (3.29) we see that R < RE leads to exponential decay of the energy, which we will

refer to as energy stability or more specifically strong global stability. We see that this

holds for any E(0) < ∞, which is termed unconditional stability. The energy stability

threshold is R = RE. Nonlinear stability with the energy method is a stronger notion

than linear stability because the energy method accounts for fluctuations of any size and

is not limited to small perturbations.

Finding the energy stability threshold requires solving for RE in (3.26) using vari-

ational calculus methods. To do so, we must solve

δ

(
I

D

)
= 0. (3.30)

The quotient rule implies

δI − I

D
δD = 0, (3.31)

and since by assumption I/D is at its maximum value of 1/RE, (3.30) is equivalent to

REδI − δD = 0. (3.32)
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To enforce incompressibility, we use a Lagrange multiplier λ(x) and write

δ

(
REI −D −

∫
V

λ(x)∇ · udV

)
= 0. (3.33)

Each term is an integral that can be written as

IF =

∫
V

F (u, φ,∇u,∇φ)dV. (3.34)

Application of the variational derivative operator then leads to

δIF =

∫
V

(
∂F

∂uk
− ∂

∂xi

(
∂F

∂(∂iuk)

))
εηkdV +

∫
V

(
∂F

∂φ
− ∂

∂xi

(
∂F

∂(∂iφ)

))
εηkdV, (3.35)

where ηk and ηφ are the arbitrary variations of uk and φ, respectively, as ε → 0. When

carried out for each term in (3.33), the results are

δI =

∫
V

2ε(ηφw + ηwφ)dV, (3.36)

δD =−
∫
V

2ε
(
ηk∇2ukdV + ηφ∇2φ

)
dV, (3.37)

δ

∫
V

λ(x)∇ · udV = −
∫
V

εηk∂kλdV. (3.38)

Using these in (3.33) leads to

∫
V

[
ηφ(REw +∇2φ) + ηk(REδk3φ+∇2uk + ∂kp)

]
dV = 0, (3.39)

where we have defined p ≡ λ/2. The variations ηφ and ηk are arbitrary, which means the
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rest of the integrands must be zero, leading to

REδk3φ+∇2uk + ∂kp = 0, (3.40)

REw +∇2φ = 0. (3.41)

Transforming back to θ gives

RaEθez +∇2u+∇p = 0, (3.42)

w +∇2φ = 0, (3.43)

where RaE = R2
E, which is identical to the eigenvalue problem for linear stability from

(3.7)–(3.9) but without the time derivatives, which can be ignored because exchange of

stabilities holds for steady RB. The energy stability threshold satisfies the same eigenvalue

problem as the linear stability threshold, and they must therefore be the same for steady

RB convection.

When we perform a nonlinear stability analysis of time-modulated convection be-

low, the general procedure detailed here will be the same, but there will be a few key

differences. First, we will find that the linear and nonlinear stability eigenvalue problems

are not the same and that the two thresholds do not coincide. Second, we will make use

of a coupling parameter in the definition of the energy in order to improve the result.

A coupling parameter is simply a factor multiplying one of the terms in the energy that

can be tuned to achieve a better result. Third, the eigenvalue problem itself will be more

complicated due to the time modulation.
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3.4 Bounding

Stability analysis reveals only whether or not a flow will be stable, and the results

do not necessarily give any information about what form the flow will take. Starting with

only the setup (geometry, governing equations, and boundary conditions), we would often

like to say something about what values various quantities of interest associated with the

flow can take. To do this using the background method, we decompose the variables into

a background part and a fluctuating part, where the background part meets the boundary

conditions. Just as in the energy stability method, we use the governing equations to

get power integrals for the evolution of the fluctuating parts, but now after combining

the power integrals we use mathematical inequalities to find a bound on a flow quantity.

In steady RB, a bound on the Nusselt number Nu is found, which compares the heat

transport of convection to the heat transport in a state of pure conduction.

The governing equations are once again (3.1)–(3.3) with temperature boundary

conditions (3.4). We take the velocity boundary conditions to be no-slip at the top and

bottom. In the horizontal directions, we take both temperature and velocity to be periodic,

though it is possible to relax this to no-slip, adiabatic conditions.

We decompose using the background flow technique by writing the temperature as

T (x, t) = τ(z) + θ(x, t), (3.44)

where τ satisfies the boundary conditions on T so that

τ(0) = 1, τ(1) = 0, θ(0, t) = 0 = θ(1, t). (3.45)

The next step is to form power integrals from the momentum and temperature equations

and combine the results. The details are given in Chapter 7. The resulting differential
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equation is

1

2

d

dt

(
‖θ‖2

2 +
‖u‖2

2

RaPr

)
= −‖∇T‖

2
2

2
+
‖∂zτ‖2

2

2
−H[θ, τ,u], (3.46)

where we have defined the quadratic-form functional

H[θ, τ,u] ≡
∫
V

(
|∇θ|2

2
+
|∇u|2

Ra
+ θw(∂zτ − 1)

)
dV. (3.47)

We now take a time average, denoted by the operator 〈·〉 = T−1
∫ T

0
(·)dt, and assume the

flow is statistically stationary so that the time average of the time derivative terms is zero.

We also enforce

H ≥ 0, (3.48)

which we call the spectral constraint. As a result, (3.46) turns into the inequality

〈
‖∇T‖2

2

〉
A

≤
∫ 1

0

(∂zτ)2dz, (3.49)

where A is the nondimensional horizontal area. For steady RB, it is shown in section 7.8

that Nu = 〈‖∇T‖2
2〉/A, so that this represents a bound on the Nusselt number,

Nu ≤
∫ 1

0

(∂zτ)2dz. (3.50)

The remaining task is to choose τ so as to achieve the best possible bound while

meeting the spectral constraint H ≥ 0. From (3.47), we see that choosing ∂zτ = 1 would

lead to H = 0, thereby satisfying the spectral constraint, but the resulting τ would not be

able to meet both boundary conditions. As the next simplest option, we choose a linear

piecewise profile such that ∂zτ = 1 over most of the domain except for a small boundary

layer near the bottom to meet the boundary condition there. In this section, we use only
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Figure 3.2: Background profile τ(z) with one boundary layer.

one boundary layer in the definition of τ , but improved results can be found with two

boundary layers, as discussed in Chapter 7.

The linear piecewise profile for τ(z) is shown in Figure 3.2 and is

τ(z) =


(
δ−2
δ

)
z + 1 0 ≤ z ≤ δ,

z − 1 δ < z ≤ 1.

(3.51)

We must choose δ to meet the spectral constraint and give the best bound. Using the

definition of τ from (3.51) in the definition of H from (3.47), along with the procedure

discussed in Chapter 7 and the inequalities from section 7.6, we find that we must have

δ ≤ 2
√

2√
Ra

(3.52)

to meet the spectral constraint. The resulting bound on Nu from (3.50) is

Nu ≤ 4

δ
− 3. (3.53)

To achieve the lowest upper bound we must clearly make δ as large as possible. Using the
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maximum allowable value for δ from (3.52) leads to

Nu ≤
√

2
√

Ra− 3. (3.54)

This shows that the bound on Nu scales with
√

Ra. The constraint δ ≤ 1 leads

to a constraint on the Rayleigh number, Ra ≥ 8. The prefactor
√

2 in the bound can be

improved downwards by using another boundary layer and making slightly more clever

rearrangements of the equations in the bounding process, as shown in Doering and Con-

stantin (1996). The
√

Ra dependence remains the same even with the improved prefactors

and appears to be the best possible scaling achievable with a linear piecewise background

profile. In Chapter 7, with a time-modulated boundary temperature, we will follow the

same general bounding procedure, but the bound will be more complicated to derive and

interpret. For example, determining the optimum value of δ will not be as clear as in

(3.53), but will instead require numerical optimization or asymptotic treatment. Further-

more, because of the time dependence, Nu and 〈‖∇T‖2
2〉 will not have a simple relationship,

and the bound found will therefore be on 〈‖∇T‖2
2〉.
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Chapter 4

Stability: Boundary Modulation

4.1 Introduction

The convection configuration considered in this paper has emerged from the study

of radiatively-driven convection in ice-free Lake Superior. During springtime warming of

this freshwater lake, observational data in Austin (2019) appears to show that an instability

arises each day near the surface and carries heat through the entire water column on a

time scale of hours. The temperature of the lake is between approximately 0◦C and 4◦C,

which means the water is in the anomalous regime where increasing temperature serves to

increase rather than decrease density.

The instability can be understood physically as follows. The water column begins

the day at a uniform temperature throughout. As the sun comes up, radiative heating

penetrates into the water column, with the heating concentrated near the surface and

falling off exponentially with depth. Because the water is in the anomalous regime where

temperature increase leads to density increase, heating at the surface increases the density

of the water there. Buoyancy effects then cause the denser water to sink. If the buoyancy

effects outweigh the restraining effects of heat diffusion and viscosity, an instability arises.
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In many bodies of water, radiative heating penetrates into only a small fraction of the

water column, and here we therefore treat the limit of radiative heating confined to a

small layer near the surface, meaning that we specify a time-varying heat flux at one of

the boundaries rather than including a radiative source term in the governing equations.

The two infinite surfaces with heating imposed at one boundary makes this essentially a

Rayleigh–Bénard (RB) configuration, but with an imposed flux that is modulated in time

rather than an imposed steady temperature difference.

Most previous work has considered modulation on top of a background temperature

gradient. Here we treat modulation with zero mean, meaning the average of the tempera-

ture difference between the top and bottom surfaces is zero. With zero-mean modulation,

if the amplitude of the boundary heat-flux modulation is set to zero, nothing interesting

happens as the water column is stably stratified from gravity and uniform in tempera-

ture. Only with a nonzero modulation amplitude is there a possibility for an unstable

configuration.

The linear stability of modulated convection has been studied in earnest since at

least Gershuni and Zhukhovitskii (1963), who looked at the low-frequency limit of modu-

lated temperature gradient in standard Rayleigh-Bénard (RB) convection. Just as temper-

ature boundary conditions were considered first in standard RB convection, temperature

modulation was considered first for modulated RB convection. In particular, the combina-

tion of no-stress velocity conditions and fixed-temperature boundary conditions allows an

analytical solution in terms of sine functions to be obtained, which was the approach taken

in Venezian (1969), where the amplitude of modulation of the boundaries in standard RB

was taken as a small parameter.

These were followed by a number of studies on the linear stability of modulated con-

vection. Few authors, however, addressed zero-mean modulation, with the exception of Yih

and Li (1972), Gershuni and Zhukhovitskii (1976), Or and Kelly (1999), and Souhar and

33



Aniss (2016). These authors investigated boundary temperature modulation, but no one

appears to have addressed boundary heat-flux modulation. Davis (1976) reviewed stability

(linear and nonlinear) of a variety of time-periodic flows, including thermal instabilities,

but does not explicitly mention zero-mean modulated flow or heat flux modulation.

In addition to linear stability, we also examine nonlinear stability of modulated

convection using the energy method. The first major work using the energy method

to establish nonlinear stability in fluid dynamics appears to be Joseph (1976), though

it was used before that by a variety of researchers, including Serrin (1959), who cited

Reynolds and Orr as the progenitors. More recent textbooks covering the energy method

include Doering and Gibbon (1995) and Straughan (2013). The work most relevant to our

concerns is Homsy (1974), who investigated gravity modulation as well as modulation of

the boundary temperatures.

To summarize the two approaches to determining stability, linear stability analysis

establishes a sufficient condition for instability, in this case a Rayleigh number above

which exponentially growing disturbances exist. Nonlinear stability analysis establishes a

sufficient condition for stability, in this case a Rayleigh number below which the energy

of all disturbances eventually decays. For asymptotic stability, the disturbance may grow

during a cycle but overall experiences net decay, whereas for strong global stability the

disturbance decays exponentially in time.

In the present paper, we consider convection in a layer of fluid that is infinite in the

horizontal directions. We investigate zero-mean modulation of the heat flux at the bottom

boundary, which, from the symmetry of the modulation profile, is equivalent to modulation

at the top as would be the case for a lake. For comparison, we also give results for zero-

mean modulation of the temperature at the bottom boundary, though we do not detail

the derivation of the equations. While it is possible to treat modulated radiative heating,

doing so would introduce additional parameters, and we therefore consider modulated
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heat flux at the boundary as the limit of radiative heating confined near the surface. After

discussing the setup and governing equations, we go through the calculation of linear and

nonlinear stability thresholds and present results.

At low frequencies, the physical relevance of the results may be limited as the period

of the forcing becomes increasingly large. Numerically, the nonlinear stability results can

be calculated without difficulty to very small frequencies, while the linear stability results

become more difficult for frequencies of O(1) and below.

In certain cases it is possible to make analytical arguments for what the critical

Rayleigh numbers should be as ω → 0. It is possible to derive analytical results in

this limit for strong global stability in all configurations and for asymptotic stability with

symmetric no-stress boundary conditions and temperature modulation. For linear stability,

the WKB approximation in Or (2001) can be used, but only for symmetric no-stress

boundary conditions and temperature modulation.

4.2 Setup

We consider two parallel plates extending infinitely far in the x- and y-directions

containing fluid satisfying the Boussinesq equations,

∂t∗u∗ + u∗ · ∇∗u∗ = − 1

ρ0

∇∗p∗ + αgT∗ẑ + ν∇2
∗u∗, (4.1)

∇∗ · u∗ = 0, (4.2)

∂t∗T∗ + u∗ · ∇∗T∗ = κ∇2
∗T∗, (4.3)

where asterisks represent dimensional quantities; u∗ is the velocity, T∗ is the temperature

measured with respect to the reference temperature at the upper boundary, ρ0 is the

density at the reference temperature, g is the acceleration due to gravity, ν is the kinematic
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viscosity, κ is the thermal diffusivity, α is the thermal expansion coefficient, and p∗ is the

pressure. The bottom boundary is at z = 0, and the top boundary is at z = d.

The velocity boundary conditions can be either no stress or no slip, and the tem-

perature boundary conditions are

k∂zT∗ = H cos (ω∗t∗) at z∗ = 0, (4.4)

T∗ = 0 at z∗ = d, (4.5)

where d is the domain size in the z-direction, H is the amplitude of the modulated heat

flux, and k is the conductivity. We nondimensionalize using

t ≡ ω∗t∗ x ≡ x∗
d
, u ≡ du∗

κ
, T ≡ kT∗

Hd
, (4.6)

and an appropriate scaling for pressure. We note that choosing to scale time by a diffusive

time scale (e.g. d2/κ) may be more appropriate in certain cases such as in the low frequency

limit ω∗ → 0.

Using the nondimensional variables in (4.6), the nondimensional governing equa-

tions become

ω∂tu+ u · ∇u = −∇p+ RaPrT ẑ + Pr∇2u, (4.7)

∇ · u = 0, (4.8)

ω∂tT + u · ∇T = ∇2T. (4.9)
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The temperature boundary conditions become

∂zT = cos t at z = 0, (4.10)

T = 0 at z = 1. (4.11)

The nondimensional frequency ω, Rayleigh number Ra, and Prandtl number Pr, are defined

as

ω ≡ ω∗d
2

κ
, Ra ≡ αgHd4

kνκ
, Pr ≡ ν

κ
. (4.12)

We write the base state velocity, temperature, and pressure as uB, TB, and pB. For

the stability analysis, we take a base state with no motion (uB = 0) and a temperature

profile satisfying equation (4.9) with the velocity set to zero, namely

ω∂tTB = ∇2TB, (4.13)

and the boundary conditions (4.10) and (4.11). We write the solution for the base state

temperature as

TB(z, t) = Re

{
eit

β

[
sinh (βz)− sinh β cosh (βz)

cosh β

]}
, (4.14)

where β =
√

iω.
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4.3 Linear stability calculation

For linear stability, we consider small perturbations to the base state and write the

independent variables as

u = uB + up, T = TB + θp, p = pB + P. (4.15)

Using these in the governing equations (4.7) and (4.8), neglecting products of perturba-

tions, and isolating the vertical velocity component (ez · up = wp) results in

(
ω∂t∇2 − Pr∇4

)
wp(x, t) = RaPr∇2

Hθp(x, t), (4.16)(
ω∂t −∇2

)
θp(x, t) = −(∂zTB)wp(x, t), (4.17)

where ∇2
H = ∂2

x + ∂2
y . The governing equations have constant coefficients in space, and

therefore the horizontal spatial components of the functions can be analyzed using normal

modes, so that we can write the perturbations as

wp(x, t) = eikxxeikyyw(z, t), (4.18)

θp(x, t) = eikxxeikyyθ(z, t). (4.19)

The resulting equations are

(
ω∂tL− PrL2

)
w(z, t) = −k2RaPrθ(z, t), (4.20)

(ω∂t − L) θ(z, t) = −(∂zTB)w(z, t), (4.21)

where k2 ≡ k2
x + k2

y and L ≡ (∂2
z − k2).

To remove the z dependence, we use Chebyshev polynomials. One possibility is

to use Chebyshev differentiation matrices, as discussed in Weideman and Reddy (2000)
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and Trefethen (2000), so that w and θ are solved for at specific grid points. Another

possibility is to express w and θ as Chebyshev polynomials and then use collocation or

Galerkin projection to remove the z dependence so that the coefficients in the Chebyshev

expansion of w and θ become the relevant unknowns, which is the approach taken in Or

and Kelly (1999). The boundary conditions must be satisfied in each case. For details on

the numerical methods used, see 4.8.

In all cases, the resulting matrix equation can be written as

A 0

0 E

 d

dt

w
θ

 =


B 0

0 F

+ Ra

0 C

0 0

+

 0 0

G1 0

 eit +

 0 0

G−1 0

 e−it


w
θ

 , (4.22)

wherew and θ are vectors of coefficients or of the solutions at chosen grid points, depending

on the method chosen. The base state gradient is expressed as ∂zTB = T1(z)eit+T−1(z)e−it

and discretized using the same method as the solutions. By defining

x =

w
θ

 , (4.23)

we can write (4.22) as

Hd
dx

dt
=
[
H0 + RaHR +H1eit +H−1e−it

]
x. (4.24)

The system of ordinary differential equations represented by equation (4.24) has

coefficients that are periodic in time, and we therefore use Floquet theory. There are two

ways we can use Floquet theory, which we will call the Floquet–Fourier–Hill (FFH) and

39



monodromy matrix methods. The FFH method requires solving an eigenvalue problem,

while the monodromy matrix method requires solving a system of ODEs. Here we use

the FFH method because it is computationally more efficient. The FFH and monodromy

matrix methods both fail to reach converged solutions at low enough frequencies, and we

therefore report results only for frequencies high enough so that the results are converged

and validated. For details on the FFH method, see Deconinck and Kutz (2006).

4.3.1 Floquet–Fourier–Hill method

For the FFH method, we use Floquet theory to decompose w(t) and θ(t) into an

exponential function of time multiplying a function that is periodic in time with the same

period as the coefficients, namely 2π. The solution vector is then

x(t) = eµt
∞∑

n=−∞

xneint, (4.25)

where µ is the Floquet exponent. Using this representation in (4.24) leads to

∞∑
n=−∞

Hd(in+ µ)xneint =
∞∑

n=−∞

[H0xn + RaHRxn +H1xn−1 +H−1xn+1] eint. (4.26)

Orthogonality of the exponential functions leads to

Hd(in+ µ)xn = H0xn + RaHRxn +H1xn−1 +H−1xn+1, (4.27)

which is an infinite system of coupled equations for the Fourier coefficients and can be

treated as an eigenvalue problem for Ra or µ. We solve this coupled set numerically by

truncating the Fourier series and solving the resulting generalized eigenvalue problem,

which is block tridiagonal on one side and block diagonal on the other.

The eigenvalue problem depends on Pr, ω, k, Ra, µ, the number of Fourier modes,
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the number of Chebyshev modes or grid points, and the boundary conditions. Once other

parameters are fixed, either the Rayleigh number, Ra, or the Floquet exponent, µ, can be

considered as the eigenvalue. The critical Rayleigh number for a given Pr and ω is the

lowest Rayleigh number found through varying k that results in µreal = 0.

If the Rayleigh number is treated as the eigenvalue, then we fix µreal = 0 to look

for marginal stability If we write µ = µ0 + im in (4.25), with 0 ≤ Im(µ0) ≤ 1 and m a

positive integer, we find

x(t) = eµ0t
∞∑

n=−∞

xnei(n+m)t, (4.28)

We see that m serves only to shift the association between the coefficient index and the

frequency of the exponential it accompanies, and we can therefore restrict Im(µ) to be

between zero and one without loss of generality. The lowest Rayleigh number found over

all wavenumbers is the critical Rayleigh number. If instead the Floquet exponent µ is

chosen as the eigenvalue, then k and Ra must be swept through to find the minimum

value of Ra resulting in µreal = 0.

For our numerical results, we have generally found the critical Rayleigh number

by treating Ra as the eigenvalue. We have then checked the resulting critical Rayleigh

number and wavenumber by using these values and treating µ as the eigenvalue to ensure

µreal is truly close enough to zero to represent the stability threshold. Furthermore, we

have checked the surrounding (k,Ra) parameter space to be sure that the critical Rayleigh

number found is truly a local minimum leading to marginal stability.

We have generally used 18 Chebyshev grid points. The highest Fourier mode used

when solving for Ra as the eigenvalue varied between 15 and 30, depending on the fre-

quency, with more Fourier modes being necessary to reach a converged solution at lower

frequencies. When solving for µ as the eigenvalue, it is possible to use sparse eigenvalue,

and we have therefore been able to use a largest Fourier mode of 35 to 50.
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4.3.2 Low-frequency limit

At a certain O(1) value of ω, the eigenvalue problem resulting from the FFH method

becomes too ill conditioned to continue working. For small ω, the leading order of the z-

derivative of the base state in (4.14) becomes independent of space and can be written

as

∂zTB = cos t+O(ω). (4.29)

This coincides with what we expect physically since for very slow modulation, the tem-

perature profile will be almost linear, and the slope will be that imposed at the boundary,

namely cos t. With the spatial dependence eliminated, we can compare the eigenvalue

problems for stability in the modulated case to the eigenvalue problems for stability in the

steady case with boundaries held at different temperatures, which has a nondimensional

temperature profile slope of negative one.

For temperature modulation with no-stress boundary conditions, the governing

equations reduce to a Mathieu equation in this limit, and a WKB analysis can be done,

as discussed in Or (2001). For all other cases, a similar approach leads to a system of

coupled Mathieu equations, which can formally be solved with an extension of the WKB

ansatz to systems of equations. Unfortunately, connecting the WKB solutions through

turning points is much more difficult with higher-order systems of equations than it is

for the standard second-order ODE. Mathematical details are discussed in Wasow (1985),

but there does not appear to be a simple way to use the WKB approach for the cases

considered here.

4.4 Nonlinear stability calculation

To determine the threshold for nonlinear stability, we use the energy method and

two notions of nonlinear stability: strong global stability and asymptotic stability, as used
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and described in Homsy (1974) for nonzero-mean temperature modulation. The analysis

in Homsy (1974) uses the mean of the boundary temperature difference as the temperature

scale, which is not possible for zero-mean modulation, and the base state is different, but

otherwise the approach is similar. We therefore give only the essentials and refer the reader

to Homsy (1974), Joseph (1976), or Straughan (2013) for more details.

The first step is to form an energy functional using power integrals. The first

integral comes from taking the dot product of (4.7) with u and integrating over the

volume. The second integral comes from writing the temperature as the base state plus

a fluctuation of arbitrary size, T (x, t) = TB(z, t) + θ(x, t), using this expression in (4.9),

and then multiplying by θ and integrating over the volume. Finally, we multiply the

temperature integral by λRa and add the result to the momentum integral, where λ is a

coupling parameter that we can later tune to achieve better stability results. The resulting

equation for the time evolution of the energy is

ω
d

dt

(
‖u‖2

2

2Pr
+
‖φ‖2

2

2

)
=

R√
λ

∫
V

wφ (1− λ∂zTB) dV −
(
‖∇u‖2

2 + ‖∇φ‖2
2

)
, (4.30)

where R =
√

Ra, φ = θ
√
λRa, and the norms are

‖φ‖2
2 =

∫
V

φ2dV, ‖∇φ‖2
2 =

∫
V

|∇φ|2dV, ‖∇u‖2
2 =

∫
V

∂uj
∂xk

∂uj
∂xk

dV. (4.31)

We now define

E =

(
‖u‖2

2

2Pr
+
‖φ‖2

2

2

)
, Iλ = λ−1/2

∫
V

wφ (1− λ∂zTB) dV, D =
(
‖∇u‖2

2 + ‖∇φ‖2
2

)
,

(4.32)

so that we have

ω
dE

dt
= RIλ −D. (4.33)
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From (4.33) we develop strong global stability and asymptotic stability.

4.4.1 Strong global stability

For strong global stability, we divide both sides of (4.33) by D to find

ω
E ′(t)

D
= R

Iλ
D
− 1 ≤ Rmax

H

(
Iλ
D

)
− 1. (4.34)

We define

1

ρλ(t)
≡ max

H

(
Iλ
D

)
, (4.35)

where H is the space of divergence-free functions satisfying the boundary conditions and

ρλ(t) is periodic with the same period as the base state temperature gradient. We then

define

RS,λ ≡ min
t∈[0,2π]

ρλ (4.36)

to arrive at

E ′(t) ≤ −D
ω

(
RS,λ −R
RS,λ

)
. (4.37)

From Poincaré’s inequality, we have D ≥ α1E, with α1 ≥ 0. We therefore have

E(t) ≤ E(0) exp

(
−α1t(RS,λ −R)

ωRS,λ

)
. (4.38)

For R < RS,λ, the energy decays exponentially in time, which we call strong global stability.

To find RS,λ, we must first solve the variational problem for ρλ(t) in (4.35), which

upon using variational calculus with a Lagrange multiplier for the incompressibility con-
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straint leads to

ρλ(t)

2
√
λ

(1− λ∂zTB)∇2
Hφ+∇4w = 0, (4.39)

ρλ(t)

2
√
λ

(1− λ∂zTB)w +∇2φ = 0. (4.40)

We use normal modes and write

(w(x, t), φ(x, t)) = (W (z, t),Φ(z, t))eikxxeikyy. (4.41)

The equations then become

L2W (z, t) =
k2ρλ(t)

2
√
λ

(1− λ∂zTB) Φ(z, t) (4.42)

LΦ(z, t) = −ρλ(t)
2
√
λ

(1− ∂zTB)W (z, t). (4.43)

This is a generalized eigenvalue problem for ρλ(t), which can be written as

L2 0

0 L


W

Φ

 = ρλ(t)

(
1− λ∂zTB

2
√
λ

) 0 k2

−1 0


W

Φ

 . (4.44)

We solve this generalized eigenvalue problem by discretizing on a Chebyshev basis (as

discussed in the linear stability section). To find RS,λ, we then minimize ρλ(t) over time as

specified in (4.36). Finally, we vary λ to find the best stability result, namely the highest

RS,λ, which we define as the threshold for strong global stability, RS. Altogether this is

RS = max
λ

min
k

min
t
ρλ(t; k). (4.45)
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Low-frequency limit

For strong global stability, as ω → 0 the eigenvalue problem from (4.39) and (4.40)

becomes

ρλ(t)

2
√
λ

(1− λ cos t)∇2
Hφ+∇4w = 0, (4.46)

ρλ(t)

2
√
λ

(1− λ cos t)w +∇2φ = 0. (4.47)

The eigenvalue problem for the linear stability threshold in standard RB can be written

as

R∇2
Hθ +∇4w = 0, (4.48)

Rw +∇2θ = 0, (4.49)

The spatial operators in the two cases are equivalent, and so ρλ(t) must satisfy

ρλ(t)

2
√
λ

(1 + λ cos (t)) ∈ {Rj,steady}, (4.50)

where each Rj,steady satisfies the eigenvalue problem in (4.48) and (4.49). Rearranging, we

have

ρλ(t) =
2
√
λ

1 + λ cos (t)
Rj,steady (4.51)

for each possible j. Now we use normal modes and perform RS = maxλ mink mint ρλ(t; k).

Minimizing in time clearly means we must take cos t = 1. We are then left to maximize

over λ, which leads to λ = 1. Finally, we minimize the resulting ρλ(t; k) over k, which

leads to RS = mink{Rj,steady}. Because RaL,steady ≡ mink{Rj,steady}, we conclude that

RaS → RaL,steady as ω → 0. This is the limit approached by the numerical results, as seen

in figures 4.1 and 4.4 for modulated flux and temperature, respectively.
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4.4.2 Asymptotic stability

For asymptotic stability, we start from (4.33) and write

E ′(t) =

(
RIλ(t)−D
ωE(t)

)
E(t). (4.52)

First we define

νλ(t) ≡ max
H

(
RIλ(t)−D
ωE(t)

)
, (4.53)

where H is the space of divergence-free functions satisfying the boundary conditions. This

leads to

E ′(t) ≤ νλ(t)E(t), (4.54)

which means that

E(t) ≤ exp

(∫ t

0

νλ(t
′)dt′

)
E(0). (4.55)

Variational calculus with a Lagrange multiplier for incompressibility leads to

R

2
√
λ

(1− λ∂zTB)∇2
Hφ+∇4w =

νλ
2Pr
∇2w, (4.56)

R

2
√
λ

(1− λ∂zTB)w +∇2φ =
νλ
2
φ. (4.57)

The eigenvalue νλ(t) is periodic, and we define the configuration as asymptotically stable

if the integral of νλ over one period is less than zero, defining

ν̄λ ≡
∫ 2π

0

νλ(t)dt. (4.58)
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We use normal modes as in (4.41) and find the generalized eigenvalue problem

 L2 −k2R
2
√
λ

(1− λ∂zTB)

R
2
√
λ

(1− λ∂zTB) L


W

Φ

 = νλ(t)

Pr−1L/2 0

0 1/2


W

Φ

 . (4.59)

We then discretize in z using a Chebyshev basis and solve this generalized eigenvalue

problem numerically in order to estimate ν̄λ, the integral of νλ(t) over one period. For

fixed Ra, Pr, and ω, we first sweep through wavenumbers and take the worst case (largest)

value for νλ(t) at the chosen points in time over one period, which upon integrating in

time gives us ν̄λ. For efficiency, we have used Gauss quadrature with 30 grid points for the

integral. Checks using more advanced integration methods indicate a relative error in the

resulting Rayleigh number of well below one percent when using Gauss quadrature with

30 grid points. We then vary λ to minimize this integral, and we define the result as

ν̄ ≡ min
λ

max
k
ν̄λ. (4.60)

Finally, we find the largest R satisfying ν̄ < 0 and define it as RA, so that

RA ≡ maxR s.t. ν̄ < 0. (4.61)

Low-frequency-limit

For heat-flux modulation, we have not found any simplification to be possible in

the low-frequency limit for asymptotic stability, and we therefore discuss temperature

modulation with symmetric no-stress boundary conditions in this section. In this case,

sine functions may be used as eigenfunctions as in standard RB, and the z derivative of

the base state is ∂zTB ≈ − cos t.
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In (4.59), we use

W (z, t) =
∞∑
n=0

wn(t) sinnπz, Φ(z, t) =
∞∑
n=0

φn(t) sinnπz. (4.62)

to arrive at a quadratic equation for νλ(t),

ν2
λ − 2λn(1 + Pr)νλ +

4Pr

λn

(
λ3
n + k2g(λ)2R2

)
= 0, (4.63)

where λn = −(k2 + n2π2) and g(λ) = (1− λ∂zTB)/(2
√
λ).

To find the stability threshold, we solve the quadratic, set the resulting ν̄λ equal to

zero, and find

RaA ≤ RaL,steady

(
2π
√
λ

2 cos−1 (−1/λ)− π + 2λ sin (cos−1 (−1/λ))

)2

, (4.64)

with kcr = π/
√

2, the critical wavenumber in steady RB with the same boundary condi-

tions. The λ leading to the largest RaA is λ ≈ 1.319, leading to RaA ≈ 2891.38, which is

exactly what we find numerically, as seen in figure 4.4.

4.5 Results

4.5.1 Heat flux modulation

Carrying out the linear and nonlinear stability calculations as described in the

preceding sections, we are able to find results for linear stability, asymptotic stability, and

strong global stability for specified ω, Pr, and boundary conditions. Results for no-slip

conditions on the top and bottom are shown on the left side in figure 4.1, while no-stress

conditions are shown on the right side of the same figure. As usual in Rayleigh–Bénard
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Figure 4.1: Critical Rayleigh numbers and wavenumbers for heat flux modulation. Left:
no-slip; Right: no-stress. Pr = 1. For RaL, magenta indicates a synchronous disturbance
and red indicates a subharmonic disturbance. Linear stability results at low frequencies
are absent because the numerical problem becomes ill conditioned.

convection, no-slip conditions lead to a higher critical Rayleigh number.

For linear stability, we find that the critical Rayleigh number always arises from

either µimag = 0 or µimag = 1/2, representing synchronous and subharmonic disturbances,

respectively. There is a stark contrast between low and high frequencies. At low fre-

quencies, RaL generally decreases with ω, but in an oscillatory manner as the critical

instability switches between a synchronous and subharmonic disturbance. At high fre-

quencies, the critical instability is always subharmonic, and an asymptotic balance is
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Figure 4.2: Critical Rayleigh numbers and wavenumbers for heat flux modulation scaled
for high ω. Left: no-slip; Right: no-stress. Pr = 1. For RaL, magenta indicates a
synchronous disturbance and red indicates a subharmonic disturbance.
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reached with RaLω
−2 approaching a nonzero constant, as shown in figure 4.2. For linear

stability, no-slip conditions with Pr = 1 lead to RaLω
−2 → 22.58, while no-stress condi-

tions lead to RaLω
−2 → 12.44. The nonlinear stability thresholds do not appear to reach

the same asymptotic relationship between the critical Rayleigh number and the modula-

tion frequency. The nonlinear stability results do not change as radically with frequency

as the linear stability results overall, though the threshold for both asymptotic stability

and strong global stability does go down at low frequencies.

A lower Prandtl number generally leads to a higher linear stability threshold. A

rationale for this is that decreasing the Prandtl number means increasing the thermal

diffusivity relative to the momentum diffusivity, thereby allowing heat to escape more

easily and hence requiring a greater strength of heating to create an instability. It is

somewhat surprising then to find that RaA reaches a maximum near Pr = 0.6 and then

decreases with decreasing Pr for ω = 100 and no-stress boundary conditions, with a similar

result for no-slip conditions. Calculations for ω = 10 show the same pattern of behavior.

The dependence of the critical Rayleigh number on Pr is shown in figure 4.3, where

it can be seen that RaL changes by orders of magnitude as Pr is varied while RaA stays

in a relatively narrow range. In contrast, strong global stability is independent of the

Prandtl number. A subcritical instability is an instability arising for a Ra between the

linear and nonlinear stability thresholds. There is therefore a very large region for potential

subcritical instabilities at low Pr, with the region increasing as Pr decreases, as seen in

figure 4.3.

4.5.2 Temperature modulation

Linear stability results for nonzero-mean temperature modulation of one boundary

can be found in Or and Kelly (1999). For completeness, we include here nonlinear stability

results for that same setup. These results are shown in figure 4.4. The general dependence
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Figure 4.3: Dependence of RaL and RaA on Pr for ω = 100 with symmetric no-slip and
no-stress conditions and heat flux modulation.

of the critical Rayleigh number is the same as in the modulated flux case, and only the

specific numbers are different.

The no-stress case can be treated with sine eigenfunctions, meaning the stability

problem reduces to a single ODE. It is also possible to use the WKB approximation for

this case, as in Or (2001), but we do not pursue further WKB calculations here for the

reasons discussed in section 4.3.2.

Results scaled for large ω are shown in figure 4.5. As ω → ∞, the appropriately

defined Rayleigh number grows with ω3/2. For linear stability, no-slip conditions with

Pr = 1 lead to RaLω
−3/2 → 27.86, while no-stress conditions lead to RaLω

−3/2 → 18.38.

The nonlinear stability thresholds do not appear to reach the same asymptotic relationship

between the critical Rayleigh number and the modulation frequency.

4.5.3 High frequency

In this section we look at high-frequency results for all configurations to compare the

behavior of the linear and global stability thresholds. Though we have explicitly treated

only the zero-temperature top boundary condition listed in (4.11), it is of course possible to

use a no-flux top boundary condition. As the modulation frequency is increased, the base

53



0 10 20 30 40 50
ω

0
2500
5000
7500

10000
12500
15000
17500

Ra

RaL RaA RaS

0 10 20 30 40 50
ω

0
1000
2000
3000
4000
5000
6000

Ra

RaL RaA RaS

0 10 20 30 40 50
ω

2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00

k

kL kA kS

0 10 20 30 40 50
ω

1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25

k

kL kA kS

Figure 4.4: Temperature modulation results with Pr = 1. Left: no-slip; Right: no-stress.
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Figure 4.5: Temperature modulation results scaled for high ω with Pr = 1. Left: no-slip;
Right: no-stress. For RaL, magenta indicates a synchronous disturbance and red indicates
a subharmonic disturbance.
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state temperature profile becomes largely confined to a small layer near the modulated

surface at the bottom. For large ω, the base state for heat-flux modulation in (4.14) leads

to the following form for the base state derivative,

∂zTB(z, t) ≈ e−z
√
ω/2 cos

(
t− z

√
ω

2

)
. (4.65)

The boundary layer thickness is therefore O(ω−1/2), so that for large enough ω we might

expect the same results even with different boundary conditions imposed at the top at

z = 1 because the base state derivative has hardly any influence there.

For linear stability, the top boundary conditions do not matter for large ω. Figure

4.6 shows the critical Rayleigh numbers for all possible configurations, demonstrating that

by ω = 100, the boundary conditions at the non-modulated surface have ceased to affect

the critical Rayleigh number, which for ω ' 100 is essentially dependent only on the

conditions at the modulated surface. For all frequencies shown in figure 4.6, the critical

disturbance is subharmonic. The scaled Rayleigh number used in the figure is defined as

Ra∞ =


Raω−3/2 temperature modulation

Raω−2 heat-flux modulation.

(4.66)

In contrast, for nonlinear stability the bottom boundary condition does affect the

critical Rayleigh number even at high frequencies. Figure 4.6 shows that results for the four

possible top boundary conditions do not converge at high frequency as they do in linear

stability. Asymptotic stability results indicate the same pattern, with the top boundary

conditions influencing results even at higher frequencies.
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Figure 4.6: Comparison of results for all 16 possible combinations of boundary conditions
and modulation style: no slip or no stress for velocity, zero temperature or no flux for
temperature, and heat-flux or temperature modulation. Left: linear stability; Right: global
stability. Color indicates the velocity boundary condition at the surface of modulation and
the modulation type, with the associations listed in the legend. Line style indicates the
boundary conditions at the non-modulated surface, with solid meaning no slip & zero
temperature, dashed meaning no slip & no flux, dotted meaning no stress & no flux, and
dash-dot meaning no stress & zero temperature. Pr = 1.

4.6 Discussion

For all results found here, we have RaL > RaA > RaS. Because nonlinear stability

is a stronger notion and establishes a threshold below which the energy of all disturbances

eventually decays, a weaker result, in this case a lower critical Rayleigh number, is expected

for nonlinear stability when compared to linear stability.

At low frequencies, we have an analytical asymptotic result for strong global sta-

bility. As shown in section 4.4.1, the strong global stability threshold should approach

the steady stability result for the same configuration, which is what we find in both the

no-stress and no-slip results in figure 4.1. We also have an analytical asymptotic result

for asymptotic stability with symmetric no-stress boundary conditions, temperature mod-

ulation, and a zero-temperature condition at the non-modulated surface. The numerical

results agree with the analytical asymptotic result.

At high frequencies, we find that RaLω
−2 approaches an O(10) constant. This
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combination of the nondimensional parameters emerges from considering the problem from

the beginning with an infinite depth, so that the governing parameter that emerges in

the equation is Raω−2, which is independent of d. For temperature modulation, the

parameter is instead the Raω−3/2, as used in Gershuni and Zhukhovitskii (1976) and Or

and Kelly (1999). In the high-frequency limit, the critical disturbance is always found to

be subharmonic.

For linear stability, solving the problem on a semi-infinite domain with the param-

eters Ra and ω replaced by the single parameter Raω−2 or Raω−3/2 confirms the results

found for ω � 1. For nonlinear stability, the critical Rayleigh numbers grow at a rate

closer to Ra ∼ ω as ω →∞, and it appears that both RaSω
−2 and RaSω

−2 go to zero in

that limit. This means that the potential region for subcritical instabilities grows rapidly

as ω →∞. It would be of interest to explore this region with experiments or simulations

to determine which stability threshold more accurately captures reality.

The dependence on Pr exhibited in figure 4.3 means that as Pr→ 0, there is a wide

range of possible Rayleigh numbers for subcritical instability. Asymptotic stability turns

out to behave more like strong global stability than linear stability in the limits of small

and large ω and Pr. For linear stability, the difference between the Rayleigh numbers for

no-slip and no-stress decreases as Pr→ 0.

4.7 Conclusion

We have described the first stability results for Rayleigh–Bénard convection with a

modulated flux condition at one boundary, and we have also included results for a mod-

ulated temperature condition at one boundary. Three different notions of stability have

been used: linear stability, asymptotic stability, and strong global stability. For all re-

sults found, the linear stability threshold is above both nonlinear stability thresholds, as
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expected. For velocity, both no-stress and no-slip velocity boundary conditions have been

considered. For temperature, the bulk of the results come from a zero-temperature condi-

tion at the non-modulated surface, but a no-flux condition there has also been considered.

The critical Rayleigh number for linear stability RaL has different behavior in

the small and large ω limits. Below a certain value of ω, the critical Rayleigh number

arises alternately from synchronous and subharmonic disturbances and decreases non-

monotonically as ω decreases, and the linear stability problem becomes ill conditioned for

an O(1) frequency.

For large enough ω, the critical instability is always subharmonic, and RaLω
−2 and

RaLω
−3/2 approach an O(10) constant in the modulated flux and modulated temperature

cases, respectively. The critical Rayleigh numbers for nonlinear stability grow more slowly

with ω, approximately linearly.

The modulated-flux setup considered here is relevant to situations in nature where

a body of fluid experiences periodic heating at the surface, such as the diurnal heating of

a lake by the sun. An example of this setup arising in the analysis of natural phenomena

is Coenen et al. (2021). The nonlinear stability results complement the linear stability

results, showing that the window of possible Rayleigh numbers for subcritical instability

is relatively small for low frequencies but increases rapidly as ω →∞.

We have treated the modulated-flux condition at one boundary as being representa-

tive of radiative heating confined to a thin layer near the surface, and we have also neglected

effects from rotation. Future work could include these additional factors. Radiatively-

driven convection without modulation has recently been used experimentally in Bouillaut

et al. (2019) to observe the transition to the ultimate scaling regime of RB convection,

where the Nusselt number scales with the square root of the Rayleigh number. Radiative

heating could be incorporated into the stability methods used here, but the modulation

profile would need to avoid unphysical radiative cooling.
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When considering linear stability, rotation generally has a stabilizing effect on RB

convection, as shown in Chandrasekhar (1961), and we would expect the same effect when

combined with modulation. When considering nonlinear stability, the form of the energy

used here in the energy method is not sensitive enough to include rotation because the

inner product of the velocity with the Coriolis term is zero. To find nonlinear stability

results with rotation, researchers have had to use a modified energy that leads only to

conditional stability results, as detailed in Galdi, Straughan, and Chandrasekhar (1985),

for example.

4.8 Numerical Methods

The stability calculations in this paper are all solved numerically by discretizing in

space with Chebyshev polynomials. We have done this in three different ways, both for

checking results with a different method and because different methods work better for

different cases. The three ways are (1) Chebyshev differentiation matrices, (2) Chebyshev

collocation in coefficient space, and (3) Chebyshev Galerkin projection.

4.8.1 Chebyshev differentiation matrices

The use of Chebyshev differentiation matrices is covered in Weideman and Reddy

(2000) and Trefethen (2000). The basic idea is to approximate the solution using a trun-

cated Chebyshev polynomial expansion. The result of applying the derivative operator to

the solution may then be expressed as the result of a matrix times a vector containing

the solution at Chebyshev grid points, so that du/dx becomes Du. The Chebyshev grid

points we use are defined by xj = cos (π[1− (j − 1)/(N − 1)]), with j = 1, 2, . . . , N .

To meet the boundary condition, we use what we will call the nullspace method,

which does not seem to have been discussed in the literature until recently in Hsu, Hung,
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and Liao (2018). If the boundary conditions can be written in the form Bu = 0, then

the solution u must be in the nullspace of B. We define U ≡ nullspace(B), and then we

project the entire problem into the nullspace of B. For example, if the eigenvalue problem

is u′′(x) = −λu(x), u(0) = 0 = u(1), then the discretized problem is.

D2u = −λu, Bu = 0, (4.67)

where

u =

(
u(x1) u(x2) . . . u(xN)

)T
, B =

1 0 . . . 0

0 . . . 0 1

 , (4.68)

and D is the appropriately sized Chebyshev differentiation matrix. To project this into

the nullspace of B, we set U = nullspace(B), with U †U = I and assume u∗ holds the

coordinates of u expressed in the nullspace of B so that

u = Uu∗. (4.69)

This leads to

D2Uu∗ = −λUu∗, (4.70)

and upon multiplication on the left by U †, we have

Mu∗ = −λu∗, (4.71)

with M = U †D2U .

This is exactly how one would arrive at (4.22) using this method. Here we will walk

through the procedure for the left-hand side of (4.22). We would have A ≡ ω(D2 − k2I)
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and E ≡ ωI. Next we need to project the operator

Hd ≡

A 0

0 E

 (4.72)

into the nullspace of the appropriate boundary condition operator. For no-stress conditions

with heat-flux modulation at the bottom and a fixed-temperature condition at the top, we

have w(0) = w′′(0) = θ′(0) = 0 at the bottom and w(1) = w′′(1) = θ(1) = 0 at the top.

The boundary condition operator is therefore

B ≡



1 0 . . . 0 0 . . . . . . 0

0 . . . 0 1 0 . . . . . . 0

D2[1, :] 0 . . . . . . 0

D2[N, :] 0 . . . . . . 0

0 . . . . . . 0 D[1, :]

0 . . . . . . 0 0 . . . . . . 1


, (4.73)

so that

B

w
θ

 = 0. (4.74)

The boundary condition operator B is unrelated to the B in (4.22), and the vertical line

separates the columns applying to w and θ. The notation D[1, :] indicates the first row of

the derivative matrix, similar to the notation employed in many programming languages.

The point corresponding to z = 0 is assumed to reside in the first index of w and θ. We

now define

U ≡ nullspace(B) (4.75)
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and project Hd into this nullspace using

M = U †HdU . (4.76)

The same procedure is followed for the right-hand side of (4.24), with the result that all

solutions to the resulting eigenvalue problem satisfy the boundary conditions.

4.8.2 Chebyshev collocation in coefficient space

For collocation with Chebyshev polynomials, we express the solutions in terms of

basis functions consisting of Chebyshev polynomials combined so as to meet the boundary

conditions. We therefore use different basis functions for w and θ, which we write as φwn and

φθn for the nth basis function of each type. The domain in z is discretized zj = (xj + 1)/2

with

xj = cos θj, θj = π

(
1− j − 1

N − 1

)
, j = 1, 2, . . . , N. (4.77)

A surface with a no-slip condition satisfies ∂zφ
w
n = 0, whereas a surface with a no-stress

condition satisfies ∂2
zφ

w
n = 0. A surface with a zero-temperature boundary condition

satisfies φθn = 0, and a surface with a no-flux boundary condition satisfies ∂zφ
θ
n = 0. In

order to meet the boundary conditions, we use the following forms for the basis functions,

φwn (z) = Tn+3(z) +
3∑
j=0

anjTj(z), φθn(z) = Tn+1(z) +
1∑
j=0

bnjTj(z), (4.78)

where Tj represents the jth Chebyshev polynomial. For each n, enforcing the six boundary

conditions leads to six equations for the six unknowns anj and bnj, resulting in basis

functions that meet the boundary conditions. The Polynomials package for the Julia

programming language was helpful in working with Chebyshev polynomials numerically.

To use these basis functions, for linear stability we start from (4.20) and (4.21) and
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assume solutions of the form

w(z, t) =
N∑
n=1

wn(t)φwn (z), θ(z, t) =
N∑
n=1

θn(t)φθn(z), (4.79)

to find

∑
n

( ω
Pr
w′n(t)Lφwn (z)− wn(t)L2φ2

n(z)
)

= −
∑
n

(
k2Raθn(t)φθn(z)

)
(4.80)

∑
n

(
ωθ′n(t)φθn(z)− θn(t)Lφθn(z)

)
= −

∑
n

∂zTBwn(t)φwn (z). (4.81)

Now we use collocation and enforce the equation at the Chebyshev grid points. This

leads to (4.22), with the vectors w and θ containing the coefficients wn(t) and θn(t). For

example, for the matrices A and E in (4.22) we have

Ajn ≡
ω

Pr
Lφwn (zj), Ejn ≡ ωφθn(zj), (4.82)

and the other matrices are defined in the same manner. These individual matrices are N

by N , and the vector holding the unknown coefficients wn and θn has total length 2N .

4.8.3 Chebyshev Galerkin projection

Chebyshev Galerkin projection starts in the same way as Chebyshev collocation.

The same basis functions are used, but the differential equation is forced by driving the

residual to zero on the basis space used rather than enforcing the differential equation at

specific points as in collocation. We take the inner product of 2N basis functions with

(4.80) and (4.81) to find 2N equations for the 2N unknown coefficients. The inner product

is defined as

(f, g) ≡
∫ 1

−1

f(x)g(x)√
1− x2

dx. (4.83)
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Taking the inner product of each of the 2N basis functions with each of the two equations

would result in 4N equations, so that a choice must be made as to which basis functions

to use. We have used velocity basis functions for (4.80) and temperature basis functions

for (4.81).

For example, taking the inner product of equation (4.80) with φwj leads to

∑
n

( ω
Pr
w′n(t)

(
φwj , Lφ

w
n

)
− wn(t)

(
φwj , L

2φwn
))

= −
∑
n

k2Raθn(t)
(
φwj , φ

θ
n

)
, (4.84)

which could be written as

∑
n

(w′n(t)Aj,n − wn(t)Bjn) =
∑
n

θn(t)Cjn. (4.85)

The required integrations make the Galerkin projection method slower than collocation,

but in the equations treated in this paper, it seems to create better conditioned matrices

as well as better accuracy for a low number of modes. For this reason, Galerkin projection

is useful in conjunction with the monodromy matrix method to find Floquet multipliers.

4.9 Nonlinear stability validation

Figure 4.7 shows results from Figure 4 in Homsy (1974) for asymptotic and strong

global stability alongside our results for the same exact problem. Here the bottom bound-

ary starts out warmer than the top (as in standard RB) and is then modulated. The

results are fairly close, with some possible error in the process of digitizing the plot and

extracting the results, as well as possible differences from the fact that only five to seven

grid points were used with Gauss quadrature in the Homsy (1974), whereas 30 grid points

have been used here.

Homsy claims the asymptotic result should go to the linear result for low frequen-
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Figure 4.7: Comparison of results from Figure 4 in Homsy (1974) with our results for
the same problem.

cies, but that is not what we find here. Homsy shows successfully that for no-stress

conditions RaA goes to RaL,steady at low frequencies for Pr = 1, and our numerical results

confirm this. He does not show anything analytically for no-slip conditions, but he does

claim that his figure shows that RaA goes to RaL,steady in that case as well. His figure,

however, does not actually seem to show this, and our results indicate that in fact RaA

goes to 1679 rather than 1708. For RaS, the low frequency limit appears to be RaL,steady/2.

Interestingly enough, RaA and RaS both go to RaL,steady at large ω. At ω = 105,

both critical Rayleigh numbers are approximately equal to the standard threshold for no-

slip conditions of 1707.76 with kcr = 3.116. This is to be expected, because at very high

frequencies, the modulation effects would be confined to a very thin layer near the bottom.

Modulation would therefore have a negligible effect on the temperature profile, essentially

reducing the temperature profile to the profile with no modulation, and the threshold for

instability would be the same as in the non-modulated case.

Chapter 4, in part, is being prepared for submission for publication as “Linear and

nonlinear stability of Rayleigh–Bénard convection with zero-mean modulated heat flux”

by T. W. Christopher and S. G. Llewellyn Smith. The dissertation author was the primary
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investigator and author of this material.
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Chapter 5

Linear Stability: Low-Frequency

Limit

5.1 Introduction

In this chapter, the WKB approximation is used to find the linear stability of

boundary-temperature-modulated convection at low modulation frequencies. This is use-

ful because solving the full linear stability problem numerically becomes increasingly dif-

ficult as the frequency is lowered. The major caveat is that only the case with no-stress

boundaries is carried out successfully. Other boundary conditions present much greater

difficulties, and possible approaches to circumvent these difficulties are discussed. In the

no-stress case, the linear stability problem reduces to the Mathieu equation, and the Flo-

quet multiplier method can be used on the WKB solution to the approximated stability

problem. Constructing the overall WKB solution involves connecting different WKB so-

lutions through two turning points.

For a given ω and Pr, we sweep through values of Ra and k, computing the mon-

odromy matrix from the WKB approximation and then finding the eigenvalues of the

68



monodromy matrix to determine stability. The lowest Ra resulting in instability is taken

as the critical Rayleigh number, and the phase of the disturbance is recorded. We find

that the phase of the disturbance switches between synchronous and subharmonic (half

the nondimensional forcing frequency) as the nondimensional forcing frequency varies.

This WKB analysis is discussed in Or (2001), though the notation used means no

explicit critical Rayleigh numbers are given. Here we explicitly compare WKB predictions

to results from the full equations. A similar WKB analysis requiring connection through

turning points is performed in Deng, Biondini, and Trillo (2016) in a different context, but

they use a Mathieu equation with one of the parameters set to one.

5.2 Base state for low-frequency forcing

For temperature modulation at the bottom boundary, when time is scaled by the

dimensional forcing frequency, the base state temperature obeys

∂tT = ω−1∂2
zT, T (0, t) = cos t, T (1, t) = 0. (5.1)

It can be shown that for small ω the z-derivative of the solution is

∂zT = − cos t(1 +O(
√
ω)), (5.2)

where there is no z-dependence at leading order. We can understand this intuitively,

because we expect that for a very slowly varying temperature, the profile has enough time

to equilibrate to a linear profile with temperature cos t at the bottom and 0 at the top,

and therefore

∆T

∆z
≈ 0− cos t

1
= − cos t. (5.3)
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5.3 Governing equations for low-frequency forcing

The equations governing perturbations for linear stability are (4.16) and (4.17),

which we rewrite here for convenience:

(
ω∂t∇2 − Pr∇4

)
wp(x, t) = RaPr∇2

Hθp(x, t), (5.4)(
ω∂t −∇2

)
θp(x, t) = −(∂zTB)wp(x, t), (5.5)

Using normal modes as in (4.18)–(4.19) and writing k2 = k2
x + k2

y, L = ∂2
z − k2, we can

turn these two equations into a single equation for w(z, t):

[
ω2

Pr
L∂2

t − ω(1 + Pr−1)L2∂t + (L3 − k2Ra∂zTB)

]
ŵ(z, t) = 0. (5.6)

We use no-stress boundary conditions so that

w = ∂2
zw = ∂4

zw = 0 at z = 0, 1. (5.7)

As recognized over a century ago by Rayleigh (1916), in this special instance we can meet

the boundary conditions by letting

w(z, t) =
∞∑
n=1

wn(t) sin (nπz) (5.8)

and examining the worst case value of n. This removes the spatial dependence from the

problem completely, with the effect that the operator L becomes simply (−nπ2−k2). This

comes about because the sine functions are (i) eigenfunctions of the L operator, and (ii)
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orthogonal to each other. Using (5.8) in the governing equation (5.6) yields

∞∑
n=1

[
ω2

Pr
λnw

′′
n(t)− ω(1 + Pr−1)λ2

nw
′
n(t) + (λ3

n − k2Ra∂zTB)wn(t)

]
sin (nπz) = 0, (5.9)

where λn = −(n2π2 + k2). By taking the inner product of this infinite sum with each of

the sine functions, we get a single decoupled equation for each n,

ω2

Pr
λnw

′′
n(t)− ω(1 + Pr−1)λ2

nw
′
n(t) + (λ3

n − k2Ra∂zTB)wn(t) = 0. (5.10)

Note that this assumes ∂zTB is independent of z. We can transform these equations into

canonical form using

wn(t) = un(t)e−(1+Pr)t/(2ε), ε =
ω

n2π2 + k2
, (5.11)

so that the governing equation for un(t) becomes

−ε2u′′n(t) +

(
(1− Pr)2

4
+

k2PrRa∂zTB
(−n2π2 − k2)3

)
un(t) = 0. (5.12)

Now using the low-frequency approximation for the base state ∂zTB = − cos t leads to the

Mathieu equation

ε2u′′n(t) +Q(t)un(t) = 0, Q(t) ≡ α− β cos t, (5.13)

where

α ≡ −(1− Pr)2

4
, β ≡ k2PrRa

(n2π2 + k2)3
. (5.14)

For context, we here recall that the Mathieu stability diagram consists of mostly

stable regions below the line α = β for positive α, with tongues of instability rising off the
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α axis at resonance points. In this case, we see that we always have α ≤ 0, so we are in the

mostly unstable region of the left half-plane of the stability diagram. We must remember,

however, that the velocity perturbation wn includes exponential damping from (5.11), so

that we are not looking for where un itself transitions to instability, but instead where un

grows enough to overcome the exponential damping so that wn transitions to instability.

In general, higher β leads to larger growth, so that we set n = 1 as the worst case in all

that follows and suppress the n subscript.

5.4 Floquet theory

The growth of (5.13) is determined using standard Floquet theory. We construct the

monodromy matrix out of linearly independent solutions and their derivatives, and then

the eigenvalues of the monodromy matrix reveal the maximum growth. The monodromy

matrix is

M = W−1(−π)W (π), (5.15)

where

W (t) ≡

w1(t) w2(t)

w′1(t) w′2(t)

 (5.16)

and w1(t) and w2(t) represent linearly independent solutions to (5.10). In terms of the

u(t), the fundamental solution matrix is

W (t) = e−γt

 u1(t) u2(t)

u′1(t)− γu1(t) u′2(t)− γu2(t)

 , (5.17)

where γ = (1 + Pr)/(2ε). Because it is easier to construct the monodromy matrix for the

Mathieu equation than for the equation in w(t), we now show the relationship between
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(5.15) and U(t), which is defined as

U(t) ≡

u1(t) u2(t)

u′1(t) u′2(t)

 . (5.18)

The monodromy matrix for the Mathieu equation satisfies the equivalent of (5.15),

MU = U−1(−π)U(π), (5.19)

We can write (5.17) as

W (t) = e−γt

I − γ
0 0

1 1


U(t) (5.20)

Defining

B ≡ I − γ

0 0

1 1

 , (5.21)

we have

W (t) = e−γtBU (t). (5.22)

Using the monodromy matrix definitions (5.15) and (5.19) then leads to

M = e−2γπMU . (5.23)

This allows us to find the monodromy matrix for the standard Mathieu equation, which

is useful because we will need to connect WKB solutions through turning points, and this

is more straightforward for the Mathieu equation than for the original equation.
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5.5 WKB approximation

The small parameter ε in (5.13) gives us the option of using the WKB approximation

rather than finding a full numerical solution. In general, we have to find WKB solutions

in three regions and connect them through the two turning points where Q(t) = 0. For

α < −β and α > β, there are no turning points, and the WKB solutions are real and

imaginary exponentials, respectively. Only for −β < α < β are there two turning points.

We do not treat the cases α = ±β, for which there would be only a single turning point.

When α < −β, so that Q(t) < 0, there are no turning points, and the solutions are

simply

u±(t) = (−Q)−1/4e±Si(t;α,β)/ε, (5.24)

where

Si(t;α, β) =

∫ t

−π
(−Q(t′))1/2dt′. (5.25)

From these solutions we find that the monodromy matrix is

MU =

eSi(π)/ε 0

0 e−Si(π)/ε

 , (5.26)

from which we may read off the eigenvalues.

When −β < α < β, the overall solution is constructed using asymptotic matching

of Airy functions near the turning points to the standard WKB solutions away from the

turning points. The work is considerably more involved than in the previous case. We

consider the turning points to be at ±c and write the solution in the first region as

u1(t) = a11u11(t) + a12u12(t), (5.27)
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and the solution in the final region as

u3(t) = a31u31(t) + a32u32(t). (5.28)

By connecting through the two turning points, the relationship between the two sets of

coefficients is found to be

a3 = Ca1 (5.29)

where

C =
1

4

 4eS2(c)/ε + e−S2(c)/ε −i4eS2(c)/ε + ie−S2(c)/ε

i4eS2(c)/ε − ie−S2(c)/ε 4eS2(c)/ε + e−S2(c)/ε

 , (5.30)

and

S2(t) =

∫ t

−c

√
−Q(t′)dt′, −c ≤ t ≤ c. (5.31)

To find the monodromy matrix, we need the fundamental solution matrix at the beginning

and end, ensuring that we use the correct set of solutions. Before the first turning point

we have

u1(t) = U 1(t)a1, (5.32)

where u1(t) is a vector holding u1(t) and its derivative, and a1 is the vector of coefficients.

After the second turning point we have

u3(t) = U 3(t)a3, (5.33)

Using (5.29) leads to

u3(t) = U 3(t)Ca1. (5.34)

The fundamental solution at the beginning is therefore U 1(−π), and its continuation to
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the end is U 3(π)C, so that we construct the monodromy matrix (5.19) as

MU = U−1
1 (−π)U 3(π)C, (5.35)

which is found to be

MU =

 e2iS3(π)/ε
(

eS2(c)/ε + e−S2(c)/ε

4

)
−ie2iS3(π)/ε

(
eS2(c)/ε − e−S2(c)/ε

4

)
ie−2iS3(π)/ε

(
eS2(c)/ε − e−S2(c)/ε

4

)
e−2iS3(π)/ε

(
eS2(c)/ε + e−S2(c)/ε

4

)
 , (5.36)

where

S3(t) =

∫ t

c

√
−Q(t′)dt′. (5.37)

The determinant of this matrix is 1, and the trace is

tr (MU) = 2 cos

(
2S3(π)

ε

)(
eS2(c)/ε +

e−S2(c)/ε

4

)
. (5.38)

The eigenvalues of MU can be written as

ν1,2 =
1

2

(
tr (MU)±

√
(tr (MU))2 − 4 det (MU)

)
. (5.39)

If cos (2S3(π)/ε) 6= 0, then as ε→ 0 we see that

ν1,2 → tr (MU), 0 (ε→ 0). (5.40)

The Floquet multipliers λ1,2 determining stability of the original system come from the

eigenvalues of M , which from the relation between M and MU in (5.23) are simply

λ1,2 = e−2γπν1,2. (5.41)
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Figure 5.1: Stability diagrams with the stable and unstable regions separated by black
curves. Left: ω = 2; Right: ω = 5. Red indicates the solution at that point is subharmonic,
while magenta indicates the solution is synchronous. The bands of common phase narrow
as the frequency is decreased.

Specializing now to ε→ 0 and assuming S2(c) > 0, we have

λ = 2 cos

(
2S3(π)

ε

)
exp

(
S2(c)− (1 + Pr)π

ε

)
. (5.42)

We see that the dividing point between Floquet multipliers that go to zero and those that

grow exponentially as ε goes to zero must be where S2(c) = (1 + Pr)π. The combination

that makes S2(c)− (1 + Pr)π = 0 is approximately k = π/
√

2, Ra = 4520.

For each Pr and ω, we can produce a stability diagram in terms of Ra and k by

finding the Floquet multiplier with the largest absolute value at each point. The lowest Ra

resulting in instability is then deemed the critical Rayleigh number, Racr for those values

of Pr and ω. Example stability diagrams are shown in Figure 5.1, where Pr = 1 and ω = 2

and 5. We see that the Floquet multiplier results appear to be banded, with adjacent bands

alternating between synchronous and subharmonic phases. As the frequency decreases, the

bands narrow, as can be seen by comparing the stability diagrams for the two frequencies

in Figure 5.1. The movement of the bands means that the value of Racr and the frequency

of the critical disturbance can change as the ω changes.

Finally, for fixed Pr we can compute Racr as a function of ω. The results for Pr = 1

77



0 5 10 15 20 25
ω

3000
3250
3500
3750
4000
4250
4500
4750

Ra
cr

WKB FFH-LF FFH

0 5 10 15 20 25
ω

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

k c
r

WKB FFH-LF FFH

Figure 5.2: Critical Rayleigh numbers and wavenumbers for Pr = 1. Blue, red, and black
correspond to critical instabilities with a subharmonic phase, whereas cyan, magenta, and
gray correspond to critical instabilities with a synchronous phase. Floquet–Fourier–Hill
results are indicated with FFH, and the LF designation means low frequency, i.e. that the
FFH method was applied to the ODE in (5.10) with n = 1, which incorporates the low
frequency approximation to the base state. The curves labeled simply FFH come from
solving the PDE eigenvalue problem without making a low frequency approximation for
the base state.

are shown in Figure 5.2, where a comparison is made with results from two separate

linear stability calculations using the Floquet–Fourier–Hill method. The red/magenta

curve comes from solving the exact ODE that the WKB approximation is applied to, and

therefore serves as a check of the accuracy of the WKB solution. Both the Rayleigh number

and wavenumber for the WKB and FFH-LF curves agree closely and even overlap up to ω ≈

18, showing that the WKB approximation works well. The blue/cyan curve comes from a

solution of the full PDE eigenvalue problem without using a low frequency approximation of

the base state. The WKB solution increases in accuracy at lower frequencies, as expected,

and even at higher frequencies is not far off in predicting the transition points between

synchronous and subharmonic critical instabilities.
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5.6 Difficulties posed by other boundary conditions

Treating other boundary conditions is nontrivial. The key factor that allows the

no-stress conditions to be treated with relative ease is the ability to use sine functions,

which have the following three key properties:

1. Meet boundary conditions

2. Eigenfunctions of L

3. Mutually orthogonal

The first property of meeting the boundary conditions is important because it is numer-

ically preferable to use basis functions that meet the boundary conditions. The second

property, that sine functions are eigenfunctions of L, means that the equation for each n

involves only its own basis function, sin (nπz), rather than sprawling out to involve other

basis functions. Tied together with the third property of orthogonality, which allows us

to move from an infinite sum to a single equation for each n, we get an entirely decoupled

system.

With different boundary conditions, we can no longer use sine functions, and we

therefore attempt to use Chebyshev polynomials. However, we immediately must face the

fact that, while we can combine Chebyshev polynomials in order to meet the new boundary

conditions, the resulting functions will not necessarily be eigenfunctions of the operator

L, and they will not necessarily be orthogonal to each other, though we can always make

them orthogonal using Gram–Schmidt. Alternatively, we could simply use Chebyshev

polynomials on their own as the basis, which would give us orthogonality, but we would

then sacrifice meeting the boundary conditions, and the basis functions still would not

be eigenfunctions of L, meaning we would have a coupled system. In sum, moving from

no-stress conditions to other conditions means we must move away from sine functions,
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and that we must therefore sacrifice two of the three important properties possessed by

the sine functions in the no-stress case.

5.7 Matrix WKB for other boundary conditions

To attempt to carry out the WKB analysis for other boundary conditions, we use

Chebyshev polynomials combined to meet the boundary conditions. In general, for r

boundary conditions, we define

φn(x) = T(n+r−1)(x) +
r−1∑
k=0

ankTk(x), (5.43)

and for each φn solve for the {ank} that make φn meet the boundary conditions. We use

these functions to represent the solution as

ŵ(z, t) =
∞∑
n=1

wn(t)φn(z). (5.44)

We use this approach on both the noncanonical and canonical form of the equations because

it is not clear in advance which form might be better suited for numerical computation.

We are not able to construct full solutions in either case, but we record the results here for

future work to build on. The various issues preventing the finding of a complete solution

are discussed in the section treating the canonical form of the differential equation.

5.7.1 Noncanonical Form

The governing differential equation can be written as

[
ω2a2L∂

2
t − ωa1L

2∂t + (L3 + a0 cos t)
]
ŵ(z, t) = 0, (5.45)
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where

a2 = Pr−1, a1 = 1 + Pr−1, a0 = k2Ra. (5.46)

Using the form (5.44) in the differential equation leads to

∞∑
n=1

(
ω2a2Lφnw

′′
n − ωa1L

2φnw
′
n + L3φnwn + a0 cos tφnwn

)
= 0. (5.47)

At this point, we truncate the solution expansion at N and then use either a

pseudospectral method or a Galerkin projection method to remove the spatial dependence.

For the pseudospectral method, we would simply evaluate the equation at N Chebyshev

grid points, and for the Galerkin projection method we would take the inner product of

the first N basis functions with the equation, being left in both cases with N coupled

ODEs in time. In both cases, we can write the equation in matrix form as

ω2A2w
′′ + ωA1w

′ + (Aα +Aβ cos t)w = 0. (5.48)

We now use the WKB approximation and write

w(t) = eΩ(t)/ω

∞∑
k=0

ωkwk(z, t). (5.49)

Using this in (5.48) shows that at leading order Ω′(t) satisfies the quadratic eigenvalue

problem

O(1) :
[
(λ)2A2 + λA1 + (Aα +Aβ cos t)

]
w0 = 0 (5.50)

where we have defined

λ = Ω′. (5.51)

The vector w0 is a right eigenvector. We define the right and left eigenvectors for this
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problem through

[
(λn(t))2A2 + λn(t)A1 + (Aα +Aβ cos t)

]
vn = 0, (5.52)

u†n
[
(λn(t))2A2 + λn(t)A1 + (Aα +Aβ cos t)

]
= 0, (5.53)

and we assume the eigenvectors to be normalized to have length 1. We note that the

left and right eigenvectors are not necessarily orthogonal for generalized or polynomial

eigenvalue problems. For each of the 2N eigenvalues, we have a solution for Ω′. Writing

Ω′n = λn, the corresponding w0 must be proportional to vn, so we write w0 as

w0 = fn(t)vn, (5.54)

with the understanding that we will find 2N viable w0 as long as all eigenvectors are

independent.

At the next order, we find

O(ω) : A2(2w′0λn +w0λ
′
n) +A1w

′
0 + (λn)2A2w1 + λnA1w1 + (Aα +Aβ cos t)w1 = 0

(5.55)

We multiply this equation on the left by u†n to eliminate all terms involving w1, leaving

u†nA2(2w′0λn +w0λ
′
n) + u†nA1w

′
0 = 0 (5.56)

Using (5.54) then leads to

f ′n(t)
(
u†nA2vn2λn + u†nA1vn

)
+ fn(t)

(
u†nA2v

′
n2λn + u†nA2vnλ

′
nu
†
nA1v

′
n

)
(5.57)
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If we assume

u†n (2λnA2 +A1)vn 6= 0, (5.58)

then we have the solution

fn(t) = exp

(
−
∫ t u†n (2λnA2 +A1)v′n + u†nA2vnλ

′
n

u†n (2λnA2 +A1)vn
dt′
)
. (5.59)

Our complete WKB approximation to the solution is then

w(t) =
2N∑
n=1

cnfn(t)vn(t)e
ω−1

∫ t
t0
λn(t′)dt′

. (5.60)

Unfortunately, evaluating the failure condition in (5.58) must be done numerically, and it

is not clear how to connect solutions around failure points for N > 1.

For N = 1, we recapture standard WKB. In this case if we set A2 = 1, A1 = 0,

and Aα +Aβ cos t = −Q(t), the leading order eigenvalue problem reduces to λ(t)2 = Q(t).

For fn(t), we find

fn(t) = exp

(
−
∫ t λ′n

2λn
dt′
)

= λ−1/2
n , (5.61)

so that the solution is

w(t) =
c1e

∫ t√Q(t′)dt′ + c2e−
∫ t√Q(t′)dt′

Q1/4
. (5.62)

The solution fails when λ = 0 and therefore when Q(t) = 0.

5.7.2 Canonical Form

By using a suitable Chebyshev discretization, we can let the solution become a

vector ŵ(z, t) → w(t), and then let w(t) = U(t)v(t), and find the necessary U(t) to
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eliminate the first derivative term to arrive at the canonical second order ODE

ω2v̈ −Q(t)v = 0. (5.63)

While this equation is certainly possible to write down, it is not at all clear that it will be

numerically useful. The matrix function Q(t) is defined as

Q(t) = −U−1(t)
(
ω2Ü(t) + ωA−1

2 A1Ü(t) +A−1
2 A0(t)U (t)

)
(5.64)

and U is

U(t) = exp

(
− t

2ω
A−1

2 A1

)
, (5.65)

from which it can be shown that Q does not depend on ω.

It is possible to construct WKB approximations to solutions of this system of ODEs.

We assume a solution of the form

v(t) =

(
∞∑
n=0

v̂n(t)εn

)
eω
−1Ω(t) (5.66)

The leading order shows that

O(1) : Q(t)v̂0(t) = (Ω′(t))2v̂0(t), (5.67)

showing that (Ω′(t))2 is an eigenvalue of Q(t), and v̂0(t) is the corresponding eigenvector.

If we define

Q(t)ηn(t) = λn(t)ηn(t), (5.68)

where ηn(t) is normalized so that η†nηn = 1, then for each eigenvalue of Q we have two
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working possibilities for Ω′(t), namely

Ω′n(t) = ±
√
λn(t). (5.69)

We can write the nth possibility for v̂0 as

v̂n0 = fn(t)ηn(t) (5.70)

If each of the eigenvalues λn is distinct, then each eigenvalue yields two solutions,

so that if v(t) has N components, we find N eigenvalues and 2N solutions, exactly as

we would expect for a problem that is second order in time. If any of the eigenvalues

are repeated, however, then two of the Ω′n are the same, and we may no longer have

2N linearly independent solutions. Repeated eigenvalues λn with different eigenvectors

ηn will still yield linearly independent solutions, but repeated eigenvalues with the same

eigenvector mean that there is no longer a full set of linearly independent solutions.

Proceeding to the next order, we find

O(ω) : Ω′′n(t)v̂n0(t) + 2Ω′n(t)v̂′n0(t) = Q(t)v̂n1(t)− Ω′n(t)2v̂n1(t). (5.71)

Using (5.70) leads to

Ω′′nfnηn + 2Ω′n(f ′ηn + fη′n) = Q(t)v̂n1(t)− Ω′n(t)2v̂n1(t). (5.72)

We can eliminate the terms on the right side of the equation by multiplying from the left

side by a left eigenvector of Q, where the left eigenvectors satisfy

ζn(t)†Q(t) = λn(t)ζn(t)†, ζ†mηn = δmn. (5.73)

85



Multiplying on the left by ζ†m turns the O(ω) equation into

Ω′′nfnδmn + 2Ω′n(f ′nδmn + fnζ
†
mη
′
n(t)) = 0, (5.74)

For m 6= n, this simply reduces to ζ†mηn = δmn, while for m = n we have

Ω′′nfn + 2Ω′n(f ′n + fζ†nη
′
n(t)) = 0, (5.75)

Solving for fn(t) we find

fn(t) = exp

(
−
∫ t Ω′′n(s) + 2Ω′n(s)ζ†n(s)η′n(s)

2Ω′n(s)
ds

)
, (Ω′n 6= 0). (5.76)

Here we find an extra condition for our solution to be valid, namely that Ω′n not be

zero. We can simplify the solution for fn by writing Ω′′n/Ω
′
n = λ′n/λn as the derivative of

log Ω′n = log
√
λn, leading to

fn(t) = (λn(t))−1/4 exp

(
−
∫ t

ζ†n(s)η′n(s)ds

)
. (5.77)

The general WKB solution to (5.63) can then be written as

v(t) =
N∑
n=1

(
ane

ω−1
∫ t
t0

√
λn(s)ds

+ bne
−ω−1

∫ t
t0

√
λn(s)ds

)
λn(t)−1/4e

−
∫ t
t0
ζ†n(s)η′n(s)ds

ηn(t),

(5.78)

provided that there are N independent eigenvectors at each point in time and that there

are no zero eigenvalues.
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Turning point issues

This breaks down when λn(t) = 0 or when two eigenvectors coincide (implying two

eigenvalues coincide), and we will refer to these points as turning points. At turning points,

we can attempt to examine the differential equation close to the turning points and hope

to diagonalize things and arrive at decoupled equations that we know asymptotic results

for, as happens in the scalar case with Airy equations. Unfortunately this does not seem

to be possible in general. Expanding the equation ω2v̈ −Qv = 0 near a turning point at

t = t0 gives Q(t) ≈ Q(t0) + (t− t0)Q′(t0) and therefore

ω2v̈ − (Q(t0) + (t− t0)Q′(t0))v = O((t− t0)2). (5.79)

In the scalar case, the eigenvalue λ(t) is simply Q(t) and the eigenvector is 1. This

means that Ω′ = ±
√
Q(t). Therefore Q(t0) must be zero for there to be a turning point,

leaving us with an Airy equation for which we know asymptotic relations. However, in the

vector case, Q(t0) is not itself zero but rather has at least one zero (or repeated) eigenvalue.

We can attempt to diagonalize and decouple by using the eigenvectors of Q(t0) as our new

basis, but the system does not decouple, and it is unclear how to connect solutions around

turning points.

Attempt to decouple using left and right eigenvectors

We can let the left and right eigenbases of Q(t0) be

Q(t0)Y = Y Λ, X†Q(t0) = ΛX†, X†Y = I, (5.80)

and then switch into the eigenbasis with

v(t) = Y v∗(t) (5.81)
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and use this in (5.79) to find

v̈∗ −Λv∗ − (t− t0)
(
X†Q′(t0)Y

)
v∗ = 0. (5.82)

Unless X†Q′(t0)Y is diagonal, this equation is coupled, and there is no reason it would

necessarily be diagonal. The same issue occurs if one tries to use Jordan canonical form.

Attempt to construct integral solution

By analogy with scalar WKB, where connection formulas can be found using the

Airy equation near turning points, we would like to construct the equivalent of Airy func-

tions near our turning points. One way to do this would be to find an integral representa-

tion of the solution and then investigate the asymptotic values of the integral away from

the turning point, just as can be done in the scalar case to find Airy asymptotics.

We start from (5.82), which we write as

u′′(t)−Λu(t)− tBu(t) = 0, (5.83)

so that the turning point is at t0 = 0. To find an integral solution, we start by assuming

u(t) =

∫
C

estû(s)ds, (5.84)

where the path of integration C is chosen so that û is zero at the end points. Substituting

this into the ODE leads to

Bû′(s) = Λû(s)− s2û(s). (5.85)

Assuming we can invert B, we have

û′(s) = B−1
(
Λ− s2I

)
û(s). (5.86)
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We would like to solve this with a matrix exponential, so that the solution would simply

be

û
?
= exp

(
B−1

(
Λs− s3

3
I

))
b, (5.87)

with a constant vector b determined from given conditions, but from the definition of the

matrix exponential and the product rule for differentiation we know that

d

dt
eA(t) =

∞∑
n=1

1

n!

(
n∑
k=1

AkA′(t)An−k−1

)
, (5.88)

which is only equal to A′(t)eA(t) if A′(t) commutes with A(t), in which case it is also

equivalent to eA(t)A′(t). From (5.87) we have

A(s) = B−1

(
Λs− s3

3
I

)
=⇒ d

ds
A(s) = B−1

(
Λ− s2I

)
. (5.89)

The matrices in parentheses are diagonal, but unless B−1 is also diagonal (or some other

special form), we do not have the desired commutation property, and therefore the matrix

exponential solution written in (5.87) is not valid.
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Chapter 6

Linear Stability: High-Frequency

Limit

A very deep lake can be represented by letting d → ∞ and using the resulting

base state in the linear stability analysis. The Rayleigh number by itself loses meaning

for infinite d, and the combinations Ra∞ = Raω−3/2 for temperature modulation and

Ra∞ = Raω−2 for heat-flux modulation are used instead so that d is no longer present.

This is the parameter that naturally appears if the length scale is chosen as the Stokes

layer
√
κ/ω∗ instead of d, In this limit, the nondimensional frequency goes to infinity and

ceases to be a useful parameter, so that in addition to Ra∞, the most important parameter

remaining is Pr.

The nondimensional equations in this case are (2.24)–(2.26) but with length scaled

by
√
κ/ω∗ instead of d, leading to

∂tu+ u · ∇u = −∇p+ Ra∞ Pr Tez + Pr∇2u, (6.1)

∇ · u = 0, (6.2)

∂tT + u · ∇T = ∇2T +
S(t)

γ
ez/γ. (6.3)
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The vertical domain is z ∈ (−∞, 0].

6.1 Boundary forcing

For temperature or heat-flux modulation at the boundary, S(t) in (6.3) is zero. For

zero-mean modulation, a single cosine with frequency ω∗ is used for the forcing profile,

with maximum f0 for the temperature forcing and maximum g0 for the flux forcing. We

solve the problem on the domain z ∈ (−∞, 0], so that the forcing is at the top. The

boundary conditions on the temperature after nondimensionalization are therefore

Top (z = 0) :


T = cos t specified temperature

∂zT = cos t specified flux

(6.4)

Bottom (z = −∞) :


T = 0 specified temperature

∂zT = 0 no flux.

(6.5)

Solving these equations for the base state temperature profile results in considerable sim-

plification from the general base state for modulated-flux forcing in a finite domain in

(4.14), namely

TB(z, t) =


ez/
√

2 cos
(
t+ z/

√
2
)

specified temperature at top

ez/
√

2 cos
(
t+ z/

√
2− π/4

)
specified flux at top.

(6.6)

91



10−2 10−1 100 101 102
Pr

101

102

103

Ra
∞c

r

Temp, No slip
Flux, No slip
Temp, No stress
Flux, No stress

Figure 6.1: Critical Rayleigh number as a function of Pr for all combinations of top
boundary forcing and boundary conditions in a semi-infinite domain. The designations
“temp” and “flux” indicate temperature and heat flux modulation, respectively. The
forcing profile is single-cosine modulation in all cases.

These base states are the same whether the bottom boundary condition has the tempera-

ture or flux going to zero. The Rayleigh numbers are

Ra∞ =


αgf0

√
κ
(
νω

3/2
∗

)−1

specified temperature at top

αgg0κ (νkω2
∗)
−1

specified flux at top

(6.7)

Linear stability results are shown in figure 6.1. The critical Rayleigh number was

found to always result from a Floquet exponent with an imaginary part of one half. The

dependence of the critical Rayleigh number on the Prandtl number is the same as that

observed for linear stability in a finite domain, as shown in Figure 4.3.

For low Pr, Ra∞cr demonstrates a power law dependence on Pr. The difference

between a no-slip and no-stress boundary at the top diminishes, with the main difference

at low Pr being between modulated temperature and modulated flux at the top boundary.

A low Pr indicates high heat diffusivity relative to momentum diffusivity, and therefore

it is expected that as Pr goes to zero, the Rayleigh number needed for instability should

increase without bound, which is seen in the results. We note, however, that as shown in
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Figure 4.3 this logic does not hold for nonlinear stability.

For high Pr, Ra∞cr appears to asymptotically approach a different constant value for

each case. The dependence of Ra∞cr on Pr starts to level out beyond a Prandtl number

of one. As expected, the two no-slip cases require a higher Rayleigh number for linear

instability than the two no-stress cases in this high-Pr regime.

6.2 Radiative heating

The governing equations for modulated radiative heating are the full equations in

(6.1)–(6.3). To model radiative heating, we use a zero-mean modulated heat generation

term in the form of an exponential that decays with depth, as discussed in 2.3. We will use

a Newtonian boundary condition at z = 0, the same surface the radiative heating enters.

The Newtonian boundary condition in dimensional terms is

k∂z∗T∗ = h(f∗(t∗)− T∗), (6.8)

where f∗(t∗) is the ambient temperature of the atmosphere above the water surface. After

the first step of nondimensionalization, we have

∂T

∂z
=
hL

k

(
f0

Tsc

f(t)− T
)
. (6.9)

Using (2.23) to substitute for Tsc, we find

∂T

∂z
=
hL

k

(
kf0

S0L
f(t)− T

)
. (6.10)
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We define

H ,
hL

k
, χ ,

kf0

S0L
(6.11)

and arrive at

∂T

∂z
= H (χf(t)− T ) . (6.12)

The boundary conditions become

Top (z = 0) : ∂zT = H (χf(t)− T ) (6.13)

and

Bottom (z = −1) :


T = 0 specified temperature

∂zT = 0 no flux.

(6.14)

Because we are considering a semi-infinite domain, we once again find that ω disap-

pears into Ra∞, leaving Pr as a key parameter. In this case, however, we must incorporate

the three additional parameters H, χ, and γ, while also choosing an ambient tempera-

ture profile f(t) for the Newtonian boundary condition at the top to go along with the

modulation from S(t) in the radiative-heating term.

We use zero-mean modulation with a single cosine with frequency ω∗ for the radia-

tive heating term. Choosing the time scale for the semi-infinite domain to be ω−1
∗ we then
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Figure 6.2: Critical Rayleigh number as a function of the e-folding scale γ for radiative
heating in a semi-infinite domain. The modulated-flux result is shown as a dotted line,
and the results for both top boundary conditions indicate that the radiative case reduces
to the flux case in the limit of a low e-folding scale.

have

S(t) = cos t (6.15)

f(t) = cos t. (6.16)

We also use (2.21), where the length scale for a semi-infinite domain is chosen as
√
κ/ω∗

rather than d, the additional parameters become

H =
h
√
κ

k
√
ω∗
, χ =

f0kω∗
S0κ

, γ =
drad
√
ω∗√
κ

. (6.17)

We now consider a scenario in which (i) the convection coefficient H between the

atmosphere and the water goes to zero, so that a no-heat-flux condition results, and (ii)

the e-folding scale γ of the radiative heating goes to zero, so that the incoming heat is

completely dispensed in a very thin boundary layer at the surface. We also set χ equal to

one, meaning the maximum of the ambient temperature is equal to the temperature scale

from radiative heating. Figure 6.2 shows that when these conditions hold, we recapture
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the results of modulated heat flux, as expected. Furthermore, the critical Rayleigh number

does not change appreciably for γ of O(1), and we can therefore be confident that results

using modulated flux capture the essence of radiative heating with a small e-folding scale.

All critical disturbances were found to be subharmonic, meaning the Floquet exponent

has an imaginary part of one half.

One problem with using simple sinusoidal modulation with radiative heating is that

the symmetric nature of the term brings cooling throughout half the period along with

the heating in the other half. While this is physically unrealistic, the results show that

mathematically the inclusion of radiative heating has no dramatic effect in this case and

does in fact reduce to an imposed heat flux in the appropriate limit mentioned above.
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Chapter 7

Bounding Flow Quantities

7.1 Introduction

Investigations of the linear and nonlinear stability of modulated convection con-

figurations go back at least to Gershuni and Zhukhovitskii (1963) for linear stability and

to Homsy (1974) for nonlinear stability. The review in Davis (1976) describes the work

to that time, and work has continued steadily to the present day, including recent linear

stability calculations such as Hazra, Kumar, and Mitra (2020) and numerical simulations

such as Yang et al. (2020).

Work on bounding flow quantities, where an upper bound is sought on a flow

quantity of interest, has its roots in Malkus (1954) and Howard (1963). The method of

bounding known as the background flow technique was pioneered by Doering and Con-

stantin (1992). We are not aware of any work on bounds for modulated convection. To

our knowledge, the only bounding analysis dealing with modulation is Marchioro (1994),

who found a bound on energy dissipation in shear flow between horizontal parallel plates

with one plate modulated horizontally.

In this paper, we use the background flow technique to find an upper bound on
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the temperature dissipation for the standard Rayleigh–Bénard configuration but with one

boundary temperature that can vary in time. We follow Marchioro (1994) closely, but we

frame the analysis in the notation of Doering and Gibbon (1995).

7.2 Setup

We work with two parallel plates extending infinitely far in the x- and y-directions

containing fluid satisfying the Boussinesq equations,

∂t∗u∗ + u∗ · ∇∗u∗ = − 1

ρ0

∇∗p∗ + αgT∗ẑ + ν∇2
∗u∗, (7.1)

∇∗ · u∗ = 0, (7.2)

∂t∗T∗ + u∗ · ∇∗T∗ = κ∇2
∗T∗, (7.3)

where asterisks represent dimensional quantities, u∗ is the velocity, T∗ is the temperature

measured with respect to the reference temperature at the upper boundary, ρ0 is the

density at the reference temperature, g is the acceleration due to gravity, ν is the kinematic

viscosity, κ is the thermal diffusivity, α is the thermal expansion coefficient, and p∗ is the

pressure. The boundary conditions are

u∗ = 0 at z∗ = 0, d, (7.4)

T∗ = f∗(t∗) at z∗ = 0, (7.5)

T∗ = 0 at z∗ = 1, (7.6)

where d is the domain size in the z-direction. On the horizontal boundaries, we take u∗

and T∗ to be periodic (this can be relaxed to e.g. the no-slip adiabatic conditions u∗ = 0
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and ∂nT∗ = 0). We nondimensionalize using

t ≡ κt∗
d2
, x ≡ x∗

d
, u ≡ du∗

κ
, T ≡ T∗

∆T
, f(t) ≡ f∗(t∗)

∆T
(7.7)

and an appropriate scaling for pressure. The temperature scale ∆T is left unspecified

for now. The most convenient choice for ∆T will in general depend on the boundary

temperature profile f∗(t∗). This is discussed further below.

Using the nondimensional variables in (7.7), the nondimensional governing equa-

tions become

∂tu+ u · ∇u = −∇p+ RaPrT ẑ + Pr∇2u, (7.8)

∇ · u = 0, (7.9)

∂tT + u · ∇T = ∇2T. (7.10)

The boundary conditions become

u = 0 at z = 0, 1, (7.11)

T = f(t) at z = 0, (7.12)

T = 0 at z = 1. (7.13)

The Rayleigh number, Ra, and Prandtl number, Pr, are defined as

Ra ≡ αg∆Td3

νκ
, Pr ≡ ν

κ
. (7.14)

For later use in the bounding argument, we introduce the following two dimensionless
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parameters, both assumed to be finite,

M = sup |f(t)|, ω = sup |f ′(t)|. (7.15)

7.3 Finding the bound

We decompose using the background flow technique by writing the temperature as

T (x, t) = τ(z, t) + θ(x, t), (7.16)

where τ satisfies the boundary conditions on T so that

τ(0, t) = f(t), τ(1, t) = 0, θ(0, t) = 0 = θ(1, t). (7.17)

We now find appropriate power integrals. We begin by taking the inner product of

u with the momentum equation (7.8) and integrating over the volume. The power integral

for velocity is

d

dt

(
‖u‖2

2

2

)
= RaPr

∫
V

wθdV − Pr ‖∇u‖2
2 , (7.18)

where we have integrated by parts. The usual norms will be employed for scalars, vectors

and tensors:

‖f‖2
2 =

∫
V

f 2dV, ‖a‖2
2 =

∫
V

|a|2dV, ‖∇u‖2
2 =

∫
V

(
∂ui
∂xj

∂ui
∂xj

)
dV. (7.19)

For the temperature, we use the background decomposition (7.16) in (7.10), multi-
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ply the result by θ, and integrate to find

d

dt

(
‖θ‖2

2

2

)
=−

∫
V

θ∂tτdV −
∫
V

θw∂zτdV − 1

2
‖∇T‖2

2 +
1

2
‖∂zτ‖2

2 −
1

2
‖∇θ‖2

2 . (7.20)

Noticing that each of the power integrals has an integral involving the product wθ,

we divide (7.18) by RaPr and combine the two integrals to get

1

2

d

dt

(
‖θ‖2

2 +
‖u‖2

2

RaPr

)
= −

∫
V

θ∂tτdV − ‖∇T‖
2
2

2
+
‖∂zτ‖2

2

2
−H[θ, τ,u], (7.21)

where we have defined the quadratic-form functional

H[θ, τ,u] =

∫
V

(
|∇θ|2

2
+
|∇u|2

Ra
+ θw(∂zτ − 1)

)
dV. (7.22)

We now take a time average, denoted by the operator 〈·〉 = T−1
∫ T

0
(·)dt, to get

〈
‖∇T‖2

2

2

〉
=

〈
‖∂zτ‖2

2

2

〉
−
〈∫

V

θ∂tτdV

〉
− 〈H[θ, τ,u]〉

− 1

2T

(
‖∇θ‖2

2 +
‖∇u‖2

2

RaPr

)∣∣∣∣∣
t=T

+
1

2T

(
‖∇θ‖2

2 +
‖∇u‖2

2

RaPr

)∣∣∣∣∣
t=0

, (7.23)

which allows us to write

〈
‖∇T‖2

2

2

〉
≤

〈
‖∂zτ‖2

2

2

〉
−
〈∫

V

θ∂tτdV

〉
− 〈H[θ, τ,u]〉+

1

2T

(
‖∇θ‖2

2 +
‖∇u‖2

2

RaPr

)∣∣∣∣∣
t=0

.

(7.24)

If the initial state is finite, we take T → ∞ from now on, so that the last term goes to
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zero, leading to

〈
‖∇T‖2

2

2

〉
≤

〈
‖∂zτ‖2

2

2

〉
−
〈∫

V

θ∂tτdV

〉
− 〈H[θ, τ,u]〉 . (7.25)

Now if we impose H ≥ 0, which we shall follow Doering and Gibbon (1995) in calling the

“spectral constraint,” then we are left with a bound on the temperature dissipation, albeit

with a dependence on the fluctuation θ that we will have to work to eliminate.

With the spectral constraint enforced, we have

〈
‖∇T‖2

2

〉
≤
〈
‖∂zτ‖2

2

〉
− 2

〈∫
V

θ∂tτdV

〉
, (7.26)

which corresponds to the solution of the variational problem

〈
‖∇T‖2

2

〉
≤ inf

{〈
‖∂zτ‖2

2

〉
− 2

〈∫
V

θ∂tτdV

〉∣∣∣∣
H[θ, τ,u] =

∫
V

(
|∇θ|2

2
+
|∇u|2

Ra
+ θw(∂zτ − 1)

)
dV ≥ 0,

τ(0, t) = f(t), τ(1, t) = 0,

θ(x, y, 0, t) = 0 = θ(x, y, 1, t),

∇ · u = 0,

u(x, y, 0, t) = 0 = u(x, y, 1, t)

}
. (7.27)

In theory, we could use Lagrange multipliers to enforce the constraints, find the Euler–

Lagrange equations, and thereby solve the problem. In practice, because an exact solution

is difficult, we simply try different background profiles. Any background profile satisfying

the constraints will provide an upper bound on the temperature dissipation.

The guiding principle in choosing the background profile will be to satisfy the

spectral constraint, and to do that we need the term θw(∂zτ −1), to be as small as we can
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make it because it is the only term in the spectral constraint that can be negative. From

the boundary conditions, we know that the velocity, u, and the temperature fluctuations,

θ, are small near the boundaries but possibly large away from the boundaries. To neutralize

this, we try to make (∂zτ − 1) small away from the boundaries.

The simplest profile to try is a piecewise linear profile with two sections. From

the above discussion, we make ∂zτ = 1 away from the bottom boundary while enforcing

τ(0, t) = f(t) at the bottom boundary, which gives us

τ(z, t) =


f(t)− zδ−1(f(t)− δ + 1) 0 ≤ z ≤ δ

z − 1 δ ≤ z ≤ 1.

(7.28)

In order to make progress on the bound in (7.26), we use the inequalities listed in

7.6. First we ensure that we meet the spectral constraint, H[θ, τ,u] ≥ 0, or

(∫
V

|∇θ|2

2
+
|∇u|2

Ra
+ θw(∂zτ − 1)

)
dV ≥ 0, (7.29)

which clearly requires us to work on the last term. Using our definition of the linear

piecewise profile leads to

∫
V

θw(∂zτ − 1)dV = −f(t) + 1

δ

∫ δ

0

(∫
A

wθdA

)
dz, (7.30)
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where A is the nondimensional horizontal area of the system. This allows us to find

∣∣∣∣∫
V

θw(∂zτ − 1)dV

∣∣∣∣ ≤ (M + 1)

δ

∫ δ

0

∣∣∣∣∫
A

wθ dA

∣∣∣∣ dz (7.31)

≤ (M + 1)δ

2
‖∂zw‖2 ‖∂zθ‖2 (7.32)

≤ (M + 1)δ

4

(
η ‖∂zw‖2

2 +
1

η
‖∂zθ‖2

2

)
(7.33)

≤ (M + 1)δ

4

(
η ‖∇u‖2

2

4
+
‖∇θ‖2

2

η

)
, (7.34)

for any positive η. Here we used (7.58) to go from (7.31) to (7.32); Young’s inequality,

2ab ≤ ηa2 +η−1b2 (η > 0), to go from (7.32) to (7.33); and the incompressibility inequality

(7.62) and the definition of the two-norm to go from (7.33) to (7.34).

We use this result to find the necessary δ and η to enforce the spectral constraint,

H[θ, τ,u] =

(∫
V

|∇θ|2

2
+
|∇u|2

Ra
+ θw(∂zτ − 1)

)
dV

≥ ‖∇θ‖
2
2

2
+
‖∇u‖2

2

Ra
− (M + 1)δ

4

(
η ‖∇u‖2

2

4
+
‖∇θ‖2

2

η

)
(7.35)

= ‖∇u‖2
2

(
1

Ra
− (M + 1)ηδ

16

)
+ ‖∇θ‖2

2

(
1

2
− (M + 1)δ

4η

)
, (7.36)

which means that we require

1

Ra
≥ (M + 1)ηδ

16
,

1

2
≥ (M + 1)δ

4η
(7.37)

to satisfy H ≥ 0. Provided that

δ ≤ 4
√

2

(M + 1)
√

Ra
, (7.38)

any value of η satisfying (M + 1)δ/2 ≤ η ≤ 16/(Ra(M + 1)δ) can be used to satisfy (7.37).
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From (7.26) we work towards the desired bound. We use (7.59) to get

〈
‖∇T‖2

2

〉
≤
〈
‖∂zτ‖2

2

〉
+

8

15
ωδ3/2

√
A 〈‖∇θ‖2〉 . (7.39)

Next we use the convexity inequality (7.60) to obtain

〈
‖∇T‖2

2

〉
≤
〈
‖∂zτ‖2

2

〉
+

8

15
ωδ3/2

√
A
〈
‖∇θ‖2

2

〉1/2
, (7.40)

and (7.61) to eliminate the temperature fluctuation, leaving

〈
‖∇T‖2

2

〉
≤
〈
‖∂zτ‖2

2

〉
+

8
√

2

15
ωδ3/2

√
A
(〈
‖∇T‖2

2

〉
+
〈
‖∂zτ‖2

2

〉)1/2
, (7.41)

which we can write as

εT ≤ a+ b
√
εT + a. (7.42)

Solving inequality (7.42) results in

εT ≤ a+
b2

2
+
b

2

√
8a+ b2. (7.43)

We have

εT ≡
〈
‖∇T‖2

2

〉
, (7.44)

a ≡
〈
‖∂zτ‖2

2

〉
= A

(
〈f 2〉+ 2〈f〉+ 1

δ
− 2〈f〉 − 1

)
, (7.45)

b ≡ 8
√

2

15
ωδ3/2

√
A, (7.46)
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Written out, the bound becomes

‖∇T‖2
2

A
≤ F

δ
− 2〈f〉 − 1 +

(
8

15

)2

ω2δ3

+
4
√

2ωδ3/2

15

(
2

(
8

15

)2

ω2δ3 + 8

(
F

δ
− 2〈f〉 − 1

))1/2

, (7.47)

where F = 〈f 2〉+ 2〈f〉+ 1, and the bound is valid for all δ ≤ δmax, with

δmax ≡
4
√

2

(M + 1)
√

Ra
≤ 1 =⇒ Ra ≥ 32

(M + 1)2.
(7.48)

Let us denote the right-hand side of the bound in (7.47) as h(δ). It now remains to choose

an optimal δopt ≤ δmax in order to obtain the smallest bound in (7.47). This leads to an

optimization problem for δopt that in general must be solved numerically. We note that

Ra does not appear in h explicitly, instead serving only to restrict the maximum value of

δ. For large ω and Ra, we can find asymptotic representations for δopt, and therefore for

the bound.

7.4 Limits and examples

7.4.1 Large-ω limit

Examining the order of the terms in (7.47) shows that δopt ∼ ω−1/2 provides the

optimal bound for large ω. Calculating h′(δ) with ω = Ωδ−2
opt and expanding for small δ

leads to a quadratic for Ω2. The appropriate solution leads to

δopt = C0F
1/4ω−1/2 (7.49)
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where C0 = (
√

15/4)(13−5
√

19/3)1/4 ≈ 0.78. To leading order we find that the minimum

bound corresponds to

‖∇T‖2
2

A
≤ D0F

3/4
√
ω − E0(2〈f〉+ 1) +O(ω−1/2), (7.50)

where D0 ≈ 2.26 and E0 ≈ 1.32. The large ω bound depends on Ra only through the

restriction that ω � Ra, as Ra does not appear explicitly in the bound. The bound breaks

down when δopt ∼ δmax, which, from equating (7.49) with the expression for δmax in (7.48),

corresponds to

ω =
C2

0

32
(M + 1)2F 1/2Ra ≈ 0.02(M + 1)2F 1/2Ra. (7.51)

7.4.2 Large-Ra limit

With no time dependence, ω = 0 and the bound in (7.47) looks like δ−1, so that

choosing the largest value for δ gives the best bound. Furthermore, from consideration of

the large ω limit, we know that δopt = δmax when Ra ∼ ω as in (7.51) and for larger Ra.

We therefore take δopt = δmax for large Ra. The bound on the temperature dissipation in

(7.47) is then

‖∇T‖2
2

A
≤(M + 1)F

4
√

2

√
Ra− 2〈f〉 − 1 +

c2ω2Ra−3/2

2(M + 1)3

+
cωF 1/2Ra−1/2

23/4(M + 1)

(
1 +

c2ω2Ra−2

(M + 1)4
√

2
− 8(2〈f〉+ 1)Ra−1/2

√
2(M + 1)F

)1/2

,

(7.52)
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where c = 2(29/4)/15 and Ra must satisfy the restriction in (7.48). Expanding this for

ω � Ra and Ra� 1, we can write the bound as

‖∇T‖2
2

A
≤(M + 1)F

4
√

2

√
Ra− 2〈f〉 − 1 +

cω
√
FRa−1/2

23/4(M + 1)

− 23/4cω(2〈f〉+ 1)

(M + 1)2
√
F

Ra−1 +O(ωRa−3/2, ω2Ra−3/2).

(7.53)

Note that ω does not appear at leading order in this expansion. We again see the crossover

to the high-ω limit when
√

Ra ∼ ωRa−1/2, so that the first and fourth terms are of the

same order.

7.4.3 Bound in terms of M

The use of 〈f 2〉 and 〈f〉 in (7.43) is more general than the approach of Marchioro

(1994), but the resulting bound is more complicated. We can obtain a simpler result by

bounding a using 〈f 2〉 ≤M2 and |〈f〉| ≤M , and using the resulting bound on a in (7.43),

since the form of (7.43) means that it is satisfied when a is replaced by an upper bound.

The result is simpler but less precise, and takes the form

‖∇T‖2
2

A
≤(M + 1)2

δ
+ 2M − 1 +

(
8

15

)2

ω2δ3

+
4
√

2ωδ3/2

15

(
2

(
8

15

)2

ω2δ3 + 8

(
(M + 1)2

δ
+ 2M − 1

))1/2

.

(7.54)

7.4.4 Examples

We now consider specific example profiles. When the average temperature at the

top and bottom is different, one can define ∆T to be the difference in average temperature,

which is the usual approach in steady Rayleigh–Bénard convection. For example, we can

consider the sinusoidal profile f∗(t∗) = ∆T0 + ∆T1 cosω∗t∗. For this case we choose to
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define ∆T as ∆T0, so that

f(t) = 1 + α cos (ω1t), (7.55)

with α = ∆T1/∆T0 and ω1 = ω∗d
2/κ. For this profile, we have M = 1 + α, ω = αω1,

〈f〉 = 1 and 〈f 2〉 = 1 +α2/2. For ω � Ra, the bound on temperature dissipation is (7.50)

with the appropriate values of 〈f〉 and 〈f 2〉. For any fixed ω1 and small enough α so that

ω � Ra, the bound for large Ra in (7.53) becomes

‖∇T‖2
2

A
≤ (1 + α/2)(1 + α2/8)

√
2
√

Ra− 3 +O(ωRa−1/2). (7.56)

As α → 0 we recover a bound for the standard setup with no modulation, namely

‖∇T‖2
2 /A ≤

√
2
√

Ra− 3.

If instead we take the bottom boundary temperature to have the same mean as the

top boundary temperature, then ∆T0 = 0. Hence we take ∆T = ∆T1, the maximum of

the difference between the top and bottom temperatures. This leads to f(t) = cos (ω1t),

with M = 1, ω = ω1, 〈f〉 = 0, and 〈f 2〉 = 1/2. As in the previous case, the bound on

temperature dissipation for ω � Ra is (7.50) with the appropriate values of 〈f〉 and 〈f 2〉.

For large Rayleigh numbers with ω � Ra, the bound (7.53) becomes

‖∇T‖2
2

A
≤ 3

4
√

2

√
Ra− 1 +O(ωRa−1/2). (7.57)

7.5 Discussion

Using the background method, we have found a bound on the temperature dis-

sipation rate for a Rayleigh–Bénard-like setup with a modulated bottom boundary. We

have investigated the bound for large Ra and ω, and we have considered specific simple

examples of modulated temperature profiles.
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The resulting bound is expressed in terms of the maximum of the temperature on

the boundary, M , as well as its maximum rate of change, ω, mean, 〈f〉 and mean square,

〈f 2〉. The spectral constraint must be satisfied at all times, so that it involves M , which

hence is present in the bound. However, the inequalities used to obtain the final bound

itself use the mean and mean square, resulting in a sharper bound than using M alone.

The calculation of the bound may also be carried out with an additional boundary

layer of thickness δ at the top. If the interior profile for τ(z, t) is chosen simply as z to make

(∂zτ − 1) equal zero, then it turns out that δmax is the same as in the single boundary

layer case. The only difference in (7.47) is that F now becomes F = 〈f 2〉 + 1. When

〈f〉 = 0, there is therefore no difference between using one or two boundary layers in the

background profile. For the example with different average temperatures, this leads to an

improvement in the small-α limit of the prefactor with ‖∇T‖2
2 /A ≤

√
Ra/2− 3.

The Nusselt number, which is the ratio of the total to conductive heat transfer,

is commonly used as the quantity to bound in convection problems in Rayleigh–Bénard

convection, because with no time dependence the Nusselt number is proportional to the

temperature dissipation, meaning that the bound on temperature dissipation yields a

bound on heat transport. The time dependence in more complicated problems, such as

the one considered here, makes the relationship between the Nusselt number and the

temperature dissipation more complicated, and therefore the Nusselt number is not as

useful in these cases as the temperature dissipation. The latter appears naturally in

the bounding process. Furthermore, the temperature dissipation can be shown to be

directly proportional to entropy production from heat conduction under the Boussinesq

approximation, as discussed in Howard (1963) and also more recently in the context of

horizontal convection in Rocha et al. (2020).

Besides the background flow technique, more recent bounding methods include

polynomial sum-of-squares, as reviewed in Chernyshenko et al. (2014), and the auxiliary
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functional method, as applied in Fantuzzi (2018) to fixed-flux convection with free-slip con-

ditions. These other methods have the potential for finding better bounds, while generally

reducing to the background flow technique if certain parameter choices are made.

7.6 Inequalities

We make use of the following inequalities:

∣∣∣∣∫
A

wθ dA

∣∣∣∣ ≤ z ‖∂zw‖2 ‖∂zθ‖2 (7.58)∣∣∣∣∫
V

θ∂tτ dV

∣∣∣∣ ≤ 4

15
ωδ3/2

√
A ‖∇θ‖2 (7.59)

〈‖∇θ‖2〉 ≤ 〈‖∇θ‖
2
2〉

1/2 (7.60)

‖∇θ‖2
2 ≤ 2 ‖∇T‖2

2 + 2 ‖∂zτ‖2
2 (7.61)

‖∂zw‖2
2 ≤

1

4
‖∇u‖2

2 (7.62)

(7.58) is a consequence of the fundamental theorem of calculus, the Cauchy–Schwarz in-

equality, extending the domain of integration and the definition of the two-norm, in that

order. It also holds with z replaced by 1 − z. Inequality (7.59) is equivalent to (19) in

Marchioro (1994), but with the prefactor improved from 1/2 to 4/15. Jensen’s inequality

leads to (7.60), while (7.61) is obtained using Young’s inequality or the AMGM (arith-

metic mean–geometric mean) inequality. A derivation of (7.62) can be found in Doering

and Constantin (1996), equations (5.13)–(5.16).

7.7 Two boundary layers

Here we further discuss the use of two boundary layers to find a bound. An example

background profile is shown in Figure 7.1. For simplicity, we take the additional boundary
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f(t)
τ(z, t)

0
δ0

1− δ1

1

z

Figure 7.1: Background profile with two boundary layers.

layer to have the same thickness as the original boundary layer. If the interior profile for

τ(z, t) is chosen simply as z to make (∂zτ − 1) equal zero, the profile is

τ(z, t) =


z
(
δ−f(t)
δ

)
+ f(t) 0 ≤ z ≤ δ

z δ ≤ z ≤ 1− δ

(1−z)(1−δ)
δ

1− δ ≤ z ≤ 1.

(7.63)

Enforcing the spectral constraint leads to the same restrictions on η and δ as in (7.37), so

that δmax is the same as in the single boundary layer case.

The additional boundary layer only makes a difference in the bound through ‖∂zτ‖2
2,

which appears as a in the bound (7.43). Calculating 〈‖∂zτ‖2
2〉 leads to

〈‖∂zτ‖2〉 =
〈f 2〉+ 1

δ
− 2〈f〉 − 1 (7.64)

Comparing with (7.45) and the previous definition of F shows that for two boundary layers
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we simply redefine F as

F =


〈f 2〉+ 2〈f〉+ 1 1BL

〈f 2〉+ 1 2BL.

(7.65)

If 〈f〉 = 0, there is therefore no difference between using one or two boundary layers in the

background profile. For the example with different average temperatures, so that 〈f〉 6= 0,

using two boundary layers leads to an improvement in the small-α limit of the prefactor

with ‖∇T‖2
2 /A ≤

√
Ra/2 − 3. The one and two boundary layer cases are compared in

Figure 7.2, which shows the bounds for the example with different average temperatures

where f(t) is defined in (7.55) with α = 0.1. There are two clear regimes in the figure

corresponding to the limits ω � Ra and ω � Ra. We expect the transition point between

the limits to occur when the optimal δ becomes δmax, which from (7.51) is

ω ≈ 0.02(2 + α)2F 1/2Ra. (7.66)

For Ra = 104, as shown in figure 7.2 the transition point is expected to be at ω ≈ 1700 for

one boundary layer and ω ≈ 1200 for two boundary layers, which both correspond with

the transition points seen in the figure.

7.8 Relationship of Nu to 〈‖∇T‖2
2〉

The Nusselt number is

Nu = 1 +
〈J〉
〈f(t)〉A

, (7.67)

where

J =

∫
V

wTdV. (7.68)
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Figure 7.2: Comparison of bound with one and two boundary layers at Ra = 104 with
f(t) defined as in (7.55) and α = 0.1.

We would like to trade 〈J〉 for the temperature dissipation rate. To do this, we first find

d(zT )

dt
= wT +∇ · (z∇T )− ∂zT. (7.69)

Integrating over the volume, averaging over time, and assuming the volume integral of zT

is finite leads to 〈∫
V

wTdV

〉
= −〈f(t)〉A−

〈∫
Atop

∂zTdA

〉
. (7.70)

From the temperature equation power integral we have

1

2

d

dt
‖T‖2

2 =

∫
S

T∇T · dS − ‖∇T‖2
2 (7.71)

Only one term survives in the surface integral, and taking a time average of the result

leads to 〈
‖∇T‖2

2

〉
= −

〈∫
Abot

f(t)∂zTdA

〉
(7.72)

It is unclear how to use this in a bounding argument for general f . For f constant, this

can be related to the above expressions to derive a relation between Nu and 〈‖∇T‖2
2〉. For
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a statistically stationary flow, the heat in the bottom must equal the heat out the top,

and therefore 〈∫
Abot

∂zTdA

〉
=

〈∫
Atop

∂zTdA

〉
. (7.73)

This allows us to combine (7.70) and (7.72) with f = 1 to find

〈
‖∇T‖2

2

〉
=

〈∫
V

wTdV

〉
+ A. (7.74)

Recalling the definition of Nu in (7.67), we find that

〈
‖∇T‖2

2

〉
A

= Nu. (7.75)

7.9 Anti-turbulence

In Paparella and Young (2002), the authors prove what they call the anti-turbulence

theorem for horizontal convection. The name stems from the law of finite energy dissipation

in Frisch (1995), which states that for a flow to be turbulent, the energy dissipation per

unit mass must tend to a finite limit even as the viscosity tends to zero. Anti-turbulence

is said to occur when the law of finite energy dissipation is violated, meaning the energy

dissipation goes to zero along with the viscosity. In this section, we will show that the

anti-turbulence argument also applies to zero-mean modulated convection.

We start from the dimensional equations (7.1)–(7.3), set b = αgT∗ for ease of com-

parison with Paparella and Young (2002), and drop the asterisks with the understanding
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that all variables are still dimensional. This gives us

∂tu+ u · ∇u = − 1

ρ0

∇p+ bẑ + ν∇2u, (7.76)

∇ · u = 0, (7.77)

∂tb+ u · ∇b = κ∇2b, (7.78)

Taking the inner product of (7.76) with the velocity, integrating over the entire volume,

and taking a time average leads to

〈∫
V

wb dV

〉
= ν

〈
‖∇u‖2

2

〉
, (7.79)

Now we use (7.78) to find another expression for 〈
∫
V
wbdV 〉. Taking a time average

of (7.78) and using the divergence theorem leads to

〈∫
S

bu · dS
〉

= κ

〈∫
S

∇b · dS
〉
. (7.80)

We take the volume enclosed by these surfaces to be the fluid between the top surface,

a surface at height z, and four side surfaces perpendicular to the horizontal directions.

Assuming periodicity or no-flux/no-penetration conditions in the horizontal directions,

only the surfaces perpendicular to the vertical survive from this equation, and we have

〈∫
A(d)

bw dA

〉
−
〈∫

A(z)

bw dA

〉
= κ

〈∫
A(d)

∂zb dA

〉
− κ

〈∫
A(z)

∂zb dA

〉
. (7.81)

No penetration of fluid through the top eliminates the A(d) integral on the left-hand side,

and a no-flux condition at the top eliminates the A(d) integral on the right. We then have

〈∫
A(z)

(bw − κ∂zb) dA

〉
= 0. (7.82)
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This shows that the time-averaged net heat flux through any horizontal surface in the

domain is zero.

We now find another expression for the total volume integral of wb to go along with

that in (7.79) by integrating (7.82) in z from the bottom to the top, resulting in

〈∫
V

bw dV

〉
= κ

〈∫
A(d)

b dA

〉
− κ

〈∫
A(0)

b dA

〉
. (7.83)

Eliminating the wb term between (7.79) and (7.83) leads to

ν
〈
‖∇u‖2

2

〉
= κ

〈∫
A

(b(d)− b(0)) dA

〉
. (7.84)

Physically, we assume that the time average of the average buoyancy difference between

the top and bottom is bounded. We therefore bound the right-hand side of (7.84) with

κ

〈∫
A

(b(d)− b(0)) dA

〉
≤ κA(bmax − bmin), (7.85)

Letting b0 ≡ bmax − bmin, we then have

ν
〈
‖∇u‖2

2

〉
≤ κb0A. (7.86)

The energy dissipation per unit time and mass is defined as

ε ≡ ν

V

〈
‖∇u‖2

2

〉
, (7.87)

so we divide (7.86) by the volume, V , to find

ε ≤ κb0

d
. (7.88)
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Letting κ → 0 shows that the energy dissipation also goes to zero in this limit, violating

the law of finite energy dissipation. We can also use Pr = ν/κ and let ν and κ both go to

zero while Pr tends to a finite constant, and in this case as well the law of finite energy

dissipation is violated. Hence we conclude that RB convection with zero-mean temperature

modulation at one boundary and a no-flux condition at the other is anti-turbulent.

Chapter 7, in part, has been published in Physical Review Fluids, “Bounding tem-

perature dissipation in time-modulated Rayleigh Bénard convection” by T. W. Christopher

and S. G. Llewellyn Smith, 2021, 6, L051501 (American Physical Society). The disserta-

tion author was the primary investigator and author of this material.
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Chapter 8

Conclusion

In this dissertation, we have considered the fundamental fluid dynamics scenario

of convection between two surfaces with time-modulated heating either at the boundary

or in the bulk of the fluid through radiative heating. The modulation profile is generally

taken as one in which the mean of the heat flux or temperature difference between the

surfaces is zero, which we call zero-mean modulation, and which has not received as much

attention as nonzero-mean modulation in the literature. The different facets of convection

dealt with have been linear stability, nonlinear stability, and bounding of flow quantities.

Here we summarize the results from each line of investigation, and we finish by discussing

the application of these results and potential future work.

For linear stability, we have found critical Rayleigh numbers for setups with mod-

ulated boundary temperature, modulated boundary heat flux, and modulated radiative

heating. Our analysis led to the key parameter of the nondimensional frequency ω, which

compares the Stokes layer depth to the liquid depth, or equivalently the time scale from

diffusion to the time scale of the forcing frequency. In general, a higher nondimensional fre-

quency leads to a larger critical Rayleigh number, though at lower frequencies, the critical

Rayleigh number increases non-monotonically with increasing frequency, with the critical
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disturbance alternating between being synchronous and subharmonic.

At a certain O(10) frequency for each case considered, the disturbance at the crit-

ical threshold ceases switching and remains subharmonic for all higher frequencies. At

this point, an asymptotic balance is found between the critical Rayleigh number and the

frequency such that an appropriate combination of the two approaches a constant value at

higher frequencies, with the specific combination depending on the type of heating under

consideration.

This high-frequency regime can also be accessed mathematically by considering

a semi-infinite domain. The results found from the semi-infinite domain agree with the

results from the finite domain with high forcing frequency. We also address modulated

radiative heating in a semi-infinite domain, specifically investigating what happens to the

critical Rayleigh number as the penetration depth of the radiative heating is decreased

towards zero. We find that the modulated heat flux results are recaptured.

The low frequency limit also proves interesting in the linear stability analysis. As

opposed to the high-frequency limit, which becomes easier numerically, the low-frequency

limit becomes much more difficult numerically, becoming too ill-conditioned to find results

below a certain O(1) frequency. We make progress below that frequency using a WKB

approximation, though only in the case of symmetric no-stress boundary conditions with

temperature modulation can the analysis be carried out in full. For other conditions, we

have derived the appropriate WKB solutions without being able to continue them through

turning points, and therefore without being able to find linear stability thresholds.

For nonlinear stability, we have found critical Rayleigh numbers for setups with

modulated boundary temperature and heat flux. Two types of nonlinear stability are con-

sidered, asymptotic and global. For all cases studied, the thresholds for nonlinear stability

fall below the linear stability threshold. This means that the potential for subcritical in-

stabilities exists. While the window of Rayleigh numbers that could create a subcritical
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instability is small at low frequencies with an O(1) Prandtl number, at very high frequen-

cies the window grows very large, as it also does at very low Prandtl numbers with a fixed

frequency.

The nonlinear stability results do not indicate noticeable low and high frequency

regimes. At high frequencies, a specific balance between the critical Rayleigh number and

frequencies is expected to emerge, as it does in the linear stability results. The balance

is the ratio between the Rayleigh number and frequency that appears naturally in the

consideration of a semi-infinite domain. This balance does not emerge in the nonlinear

stability results, indicating that the scaled critical Rayleigh numbers for nonlinear stability

go to zero in the high-frequency/deep-water limit.

For bounding of flow quantities, we have used the background method to derive

the first exact mathematical bound on temperature dissipation in modulated convection.

The specific setup investigated has a boundary temperature that can vary arbitrarily in

time, and we have also looked at the form the bound takes for specific example profiles.

For fixed frequency with the Rayleigh number much larger than the frequency, the bound

grows with the square root of the Rayleigh number. For fixed Rayleigh number with the

frequency much larger than the Rayleigh number, the bound grows with the square root of

the frequency. The specific factors in the bound depend on properties of the modulation

profile.

8.1 Applications and Future Work

The inspiration for this study was lake convection, and that is also the main appli-

cation envisioned. The stability results all indicate that conditions at Lake Superior during

springtime warming place the lake solidly above all Rayleigh number stability thresholds.

Though the lake is likely to be well above the stability threshold, the critical wavenumbers
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at instability might provide a length scale for the resulting instability. Future work could

include an investigation of the flow just beyond stability, though even in that case the re-

sults may not apply to a situation with a Rayleigh number far above the critical Rayleigh

number.

Throughout the dissertation, we have used a cosine modulation profile. Daily heat-

ing from the sun clearly results in a more complicated heating profile at the surface of

a lake, and future work could take a specific profile and expand it in a Fourier series to

easily incorporate it into the analysis we have performed here. A more realistic heating

profile tailored to measurements could be used in place of the simple cosine used here.

Complication arises if a modulation profile is used that leads to a net input or output

of heat, and therefore a base state temperature whose mean over one period changes from

period to period. It would likely be possible to account for this growth or decay with a

linearly growing or decaying term in the base state, but care would have to be taken to

check that the fluid would not change its state or properties drastically before transient

terms became unimportant enough to be ignored.

In the low frequency regime, the linear stability calculation as carried out in this

dissertation becomes numerically difficult. For this reason, we have carried out an asymp-

totic analysis using the WKB method, but we were only able to find results with this

method for the case of symmetric no-slip boundary conditions with temperature modu-

lation. For all other cases, a matrix WKB problem results, and it was not clear how to

connect solutions through turning points, meaning we could not find linear stability re-

sults. Future work on the matrix WKB method building off of Wasow (1985) could lead

to success for these more difficult cases.

Though rotation has been discussed, we have not included rotation in the calcu-

lations in this dissertation. It is possible that rotation plays an important role in the

formation of convection in the lake. In that case, the stability threshold would likely be
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higher, as that is the effect rotation has in standard RB, but only future work incorporat-

ing rotation could show the exact effects of rotation on stability. Incorporating rotation

into the linear stability analysis is straightforward conceptually and analytically, but the

resulting numerical problem does not yield solutions with the numerical methods used

in this dissertation. Future work on adjusting the numerical methods to lead to better-

conditioned numerical problems could allow rotation to be successfully treated in the linear

stability analysis.

Incorporating rotation into the nonlinear stability analysis is fraught with difficul-

ties from the very beginning. The standard energy used in the energy method is blind to

rotation. Only by using a more complicated energy can one hope to capture the effects of

rotation. In the literature to date, all methods using a more complicated energy appear

to have to settle for conditional stability results dependent on the size of the initial energy

rather than being able to find unconditional nonlinear stability results like those in this

dissertation. This is discussed in Straughan (2013). Until an appropriate energy is found

for steady RB with rotation, it will likely be difficult to treat time-modulated convection

with rotation.

The bound found on temperature dissipation applies to a configuration with sur-

face temperature modulation. Future work includes carrying out the bound analysis for

configurations with surface heat flux modulation and radiative heating modulation. Be-

cause temperature dissipation is not an easy quantity to measure, establishing a clearer

connection between the temperature dissipation and the Nusselt number in modulated

scenarios would make comparison with experiments and observations easier. Internally

heated convection has received attention in the bounding literature, (for example in Lu,

Doering, and Busse (2004), Goluskin (2016), and Arslan et al. (2021)), and methods such

as those used in Arslan et al. (2021), in which the background method with a quadratic

auxiliary function is used, might also work for modulated radiative heating.
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Appendix A

Hollow Vortex in a Corner

A.1 Introduction

A point vortex in a corner in the presence of a straining flow will move in a periodic

orbit Suh (1993). In particular there is an equilibrium position at which it will remain at

rest. A special case of this behaviour is that of a point vortex moving parallel to a straight

boundary. This solution was generalized to the case of a hollow vortex by Pocklington

(1894). Pocklington’s hollow vortex solution was expressed in terms of the Schottky–Klein

(hereafter SK) prime function Crowdy, Llewellyn Smith, and Freilich (2013), opening the

way to further generalizations. The present work uses the SK prime function to extend

the previous results to find equilibrium solutions for a hollow vortex in a corner.

The standard conformal mapping approach for free boundary value problems in

inviscid flow that goes back to Michell (1890) is used to find the shape of the hollow

vortex. Conformal maps are constructed between the corner, a half-plane, and a concentric

annulus as shown in figure A.1. An image vortex in the non-physical portion of the half

plane allows the boundary condition of no normal flow on the solid walls to be satisfied.

The boundaries of the hollow vortex and its image correspond to circles in the annulus.
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Figure A.1: (a) The physical z-plane with the corner; (b) the auxiliary ξ-plane; (c) the
ζ-plane containing the annulus. (Here ρ = 0.3 and θc = π/3; stagnation points along the
wall are denoted by black circles.)

A.2 Problem formulation

A sketch of the physical domain is shown in figure A.1(a). We consider flow inside

a corner with interior angle θc. The fluid lies between a solid wall along positive x and a

solid wall making the angle θc with the positive real axis. We have 0 < θc < 2π; the case

θc = π recovers the Pocklington dipole.

A hollow vortex is a steady-state constant-pressure region of finite area with non-

zero circulation around it. The boundary of a hollow vortex is a streamline. For two-

dimensional inviscid, incompressible, irrotational flow, Bernoulli’s equation on the bound-

ary gives

p+
|u|2

2
= constant. (A.1)

The pressure on the hollow vortex boundary is constant, and therefore Bernoulli’s equation

shows that the speed of the flow must be constant on the boundary as well. This shows

that the boundary of a hollow vortex is a vortex sheet, and hollow vortices can be thought

of as steady vortex sheets. As this is a two-dimensional incompressible and irrotational

flow, the solution can be written in terms of a complex potential, w, with a corresponding

complex velocity dw/dz.

The flow describing a stationary point vortex in a corner gives insight into the

hollow vortex solution, because as the area of a hollow vortex goes to zero the point vortex
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Figure A.2: Streamlines for a point vortex in equilibrium in a corner. The point vortex
is denoted by an asterisk. The two stagnation points of the flow on the walls are denoted
by filled circles. The speed of the flow is also zero at the origin.

flow field should be recovered. In particular the flow for a hollow vortex in a corner is

therefore expected to have the same number of stagnation points as a point vortex in a

corner. Furthermore, the flow far away from the hollow vortex must be the same as the

flow far away from the point vortex. Streamlines for a point vortex in equilibrium in a

corner are shown in figure A.2, where it can be seen that the flow has three stagnation

points: one at the origin and one on each boundary. Note that the flow is self-similar: one

can rescale using the distance from the corner to the stagnation points as a unit of length,

and then there is a unique flow.

The complex potential for a point vortex in a corner is found using conformal

mapping and the method of images and is

wpv(z) =
Γ

2πi
[log (zπ/θc − zπ/θc0 )− log (zπ/θc − z̄0

π/θc)]− Szπ/θc , (A.2)

where S is a real number with the same sign as Γ that describes the strength of the

background generalized straining flow and z0 is the position of the vortex. The potential

(A.2) behaves like −Szc for large |z|, where c = π/θc. This behavior will also hold for the

hollow vortex. The condition for the vortex to be stationary comes from requiring ż0 = 0,
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where

˙̄z0 =
Γ

2πi

[
c− 1

2z0

− czc−1
0

zc0 − z̄0
c

]
− Sczc−1

0 . (A.3)

The result is z0 = (iΓ/4πSc)1/c, so that z0 is along the bisector of the corner (when π = θc

the position parallel to the boundary is arbitrary and can be taken to be on the y-axis).

A.3 Conformal mapping

The solution for the hollow vortex is constructed using conformal maps between

the three planes shown in figure A.1. The physical z-plane (a) is related to the ξ-plane

(b) via

z = f(ξ) = (−iξ)θc/π, (A.4)

where θc is the interior angle of the corner. The function f(ξ) has a branch point at the

origin, and its branch cut is taken to be in the right half-plane, i.e. outside the physical

domain. The ξ-plane is essentially the same as the physical plane in Crowdy, Llewellyn

Smith, and Freilich (2013). An extension of the Riemann Mapping Theorem shows that

any doubly connected domain can be mapped onto a concentric annulus. We take g to be

the unknown map from the circular annulus ρ < |ζ| < 1 in the ζ-plane (c) to the ξ-plane

with the interiors of the vortex and of its unphysical image removed. The flow region will

correspond to the region ρ < |ζ| < β, where β will be found. The map from the annulus

to the corner is written as h(ζ) = f(g(ζ)).

In terms of the variable ζ, we write the complex potential describing the flow around

the hollow vortex in the corner as W (ζ) and the complex velocity in the physical z-plane

as dw/dz = R(ζ).

We require the map g to be one-to-one, and take the point at infinity in the ξ-plane
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to correspond to the simple pole β in the ζ-plane. Hence

g(ζ) =
b

ζ − β
+ · · · (A.5)

near ζ = β, where b is chosen to be a positive real number. This means that the inner

circle |ζ| = ρ maps to the image of the vortex boundary in the left half-plane in ξ, while

the circle |ζ| = β maps to the imaginary axis in the ξ-plane. The outer circle |ζ| = 1 maps

to the reflection of the vortex boundary image about the imaginary ξ-axis, which is not in

the physical domain.

From the above, we see that the complex potential W (ζ) satisfies the following

conditions. The kinematic boundary condition requires Im W (ζ) to be constant on the

boundaries and on the vortex boundary. The circulation of the vortex, which is the change

in the multivalued function W (ζ) around the vortex, is Γ. Large |z| corresponds to large

|ξ|, so that

W (ζ) ∼ −Szπ/θc = iSξ ∼ iSb

ζ − β
(A.6)

near ζ = β.

In turn, the complex velocity, dw/dz = R(ζ), satisfies the following conditions.

From differentiating the asymptotic conditions of the complex potential in the physical

plane, we have

R(ζ) ∼ −Sπ
θc

(
−ib

ζ − β

)1−θc/π

(A.7)

near ζ = β. The hollow vortex property of constant speed on the boundary from (A.1)

leads to |R(ζ)| = q0 on the vortex boundary. Finally R(ζ) = 0 at the two stagnation

points. Its behaviour near the origin depends on the angle: it vanishes for 0 < θc < π, it

is finite for θc = π, and it has an algebraic singularity for π < θc < 2π.

We seek a hollow vortex that is symmetric about the real and imaginary axes in
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the ξ-plane. These symmetries should persist in the ζ−plane, and we now use them to

determine which points in ζ correspond to the important points in z: the origin, infinity,

and the stagnation points.

In the ξ-plane, the vortex boundaries are symmetric under reflection about the

vertical axis. In the annulus, the boundaries are concentric circles, and mapping them

onto each other is carried out by inversion. Hence to retain the symmetry of the vortex,

the vortex boundaries should be inverse circles about the image of the axis in the annulus.

The boundary circles have radii ρ and 1, so the axis between the vortices in the ξ-plane

must correspond to a circle with radius β ≡ √ρ inside the annulus. The stagnation points

are on this circle.

In the ξ-plane, the vortex boundaries are also symmetric about the real axis which

runs through the centroids of the vortices. From (A.4) we map the real ξ-axis to the real

axis in the ζ-plane. The images of the ξ-axes meet at 0 and∞, and these map to −β and β

respectively in the ζ-plane. The two stagnation points on the walls are complex conjugates

of each other in the annulus, so that we can write them as α and ᾱ with |α| = β.

A.4 Solution

A.4.1 Complex potential and complex velocity

The conformal mapping solution is constructed using the SK prime function. SK

prime functions exists for higher connectivity domains (i.e. with larger genus). For genus

2, i.e. the annulus, the SK prime function can be written explicitly as Crowdy (2020)

ω(ζ, a) = (ζ − a)
∞∏
k=1

(1− ρ2kζ/a)(1− ρ2ka/ζ)

(1− ρ2k)
, (A.8)
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where ζ lies inside the annulus, 0 ≤ ρ ≤ 1, and a can be any complex number. For the

annulus, the following prime function identities hold:

ω(ζ, a) = −ζa ¯ω(1/ζ̄, 1/ā), ω(ρ2ζ, a) = −a
ζ
ω(ζ, a). (A.9)

The conditions on the conformal map W (ζ) characterize it as a map that takes

circular vortex boundaries in ζ to horizontal lines in W . This type of map is called a

parallel slit map, and can be written using the SK prime function as

φθ(ζ, a) =

(
∂

∂a
− e2iθ ∂

∂ā

)
log

(
ω(ζ, a)

|a|ω(ζ, 1/ā)

)
(A.10)

The map φθ(ζ, a) takes concentric circles in the annulus to parallel lines making an angle

θ with the real axis, with a simple pole at ζ = a. This allows us to write the complex

potential as

W (ζ) = De−iθpφθp(ζ, β) +
Γ

2πi
log ζ. (A.11)

The form of the parallel slit map ensures that W has constant imaginary part along the

images of the vortex boundaries as long as D is real and θp is π/2. The logarithm term

ensures the correct circulation. It does not affect the kinematic boundary condition, since

the logarithmic term has constant imaginary part on constant |ζ|. The potential (A.11) is

the same as that in Crowdy, Llewellyn Smith, and Freilich (2013) and does not depend on

the angle θc. The relations between the notation used in Crowdy, Llewellyn Smith, and

Freilich (2013) and that used here are discussed in A.8.

Starting with the prime function product representation in (A.8) and carrying out

the operations in the definition of a parallel slit map in (A.10), the parallel slit map for
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the present domain can be written as

φθ(ζ, a) =− 1

ζ − a
+
∞∑
k=1

(
ρ2kζ

a2(1− ρ2kζ/a)
− ρ2k/ζ

1− ρ2ka/ζ

)
+

1

2

(
aei2θ − ā
|a|2

)
+

ei2θ

ā2(ζ − 1/ā)
− ei2θ

ā2

∞∑
k=1

(
ā2ρ2kζ

1− ρ2kζā
− ρ2k/ζ

1− ρ2k/(ζā)

)
, (A.12)

showing that φθ(ζ, a) has a simple pole with residue −1 at ζ = a. Condition (A.6) then

implies that

D = Sb. (A.13)

The constants S and b are both real, and θp is π/2. The zeros of dw/dz are the same as

those of W ′(ζ). Hence W ′(α) = 0, which leads to a relationship between the constants of

the problem, which is same as (24) of Crowdy, Llewellyn Smith, and Freilich (2013).

The condition of constant speed, |R(ζ)|, on the boundary of the vortex leads us to

view R(ζ) as a conformal map that takes the circular vortex boundaries in ζ to circular

arcs in R. This type of map is called a circular slit map, and can be written using the

Schottky–Klein prime function as

wa(ζ) =
ω(ζ, a)

|a|ω(ζ, 1/ā)
, (A.14)

which has a simple zero at ζ = a and a simple pole outside the domain at ζ = 1/ā.

This allows us to write the complex velocity as

R(ζ) =
A

ζ
wα(ζ)wᾱ(ζ)

(
w−β(ζ)

wβ(ζ)

)1−θc/π

. (A.15)

This function has zeros at the stagnation points and has the appropriate pole at ζ = β

to satisfy the behavior in (A.7). Any power of ζ can be considered as a circular slit

map because |ζ| is constant along arcs of constant radius. The complex velocity R(ζ)
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is therefore a product of circular slit maps, since each individual circular slit map has

constant magnitude on the circular boundaries of the domain. The inverse power of ζ

in (A.15) ensures that the speed on the two boundaries in the ξ-plane is the same as in

Crowdy, Llewellyn Smith, and Freilich (2013); this is essentially the method of images.

The branch cut is the same as discussed previously.

One can use the definition of the prime function in (A.8) to obtain an expression

for A in terms of the other quantities from

R(ζ) ∼ A

β
wα(β)wᾱ(β)

(
w−β(β)βω(β, 1/β)

(ζ − β)
∏∞

k=1 (1− ρ2k)

)1−θc/π

(A.16)

as ζ → β. Using this in (A.7) gives

A = − Sπβθc/π

θcwα(β)wᾱ(β)

(
−ia

∏∞
k=1 (1− ρ2k)

w−β(β)ω(β, 1/β)

)1−θc/π

. (A.17)

The details of this expression are not needed below, because there is still an arbitrary

scaling in the solution that will be determined a posteriori. It is useful however to note

the argument of A above in the numerical calculations.

A.4.2 Determining parameters

For each angle θc, we expect a one-parameter family of solutions parameterized by

ρ. We require the map to be single-valued, which means that

∫
C

dz

dζ
dζ = 0, (A.18)
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Figure A.3: Normalized stagnation point phase, 3Θ/π, as a function of ρ for θc = π/4,
π/2, 3π/2, π, 5π/4, and 3π/2. Smaller values of θc correspond to smaller Θ.

where C is any closed loop in the domain. Note that the branch cuts lie outside the interior

of the annulus with ρ < |ζ| < β. We have

dz

dζ
=

dW/dζ

R(ζ)
, (A.19)

where dW/dζ can be obtained explicitly from (A.11). This leads to the relation

z(ζ) =

∫ ζ

−β

dW/dζ ′

R(ζ ′)
dζ ′. (A.20)

Given ρ and θc, we solve (A.18) to obtain Θ, the argument of the stagnation point α, as in

Crowdy, Llewellyn Smith, and Freilich (2013). Results of Θ for a variety of corner angles

are shown in figure A.3. In this and all subsequent figures, the values θc = π/4, π/2, 3π/2,

π (the Pocklington dipole), 5π/4, and 3π/2 are used. One can show that

Θ = tan−1

√
4θcπ − θ2

c

2π − θc
(A.21)

for ρ = 0. The integrand in (A.18) is independent of the constants D and A.

This calculation leaves an undetermined parameter. This can be used to set the
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overall scale of the vortex. We choose it so that |z(α)| = 1, so that the distance to the

stagnation points is unity. Alternatively we can take the distance of the centroid of the

vortex to the corner to be the unit of distance. As a result, the plots below do not have

axes.

Once the condition (A.18) has been enforced, the boundary of the hollow vortex is

found by evaluating (A.20) along the circle |ζ| = ρ. We first integrated from −β to −ρ

to move from the corner to the closest point of the vortex to the corner (which is along

the bisector of the angle by symmetry). This integrand has an algebraic singularity at

ζ = −β, since R(ζ) is singular at a corner with π < θc < 2π. The integral however can be

carried out numerically with no trouble.

A.5 Results

Figure A.4 shows the boundaries of a number of stationary hollow vortex solutions

for different values of ρ and different angles. The hollow vortices in each plot have been

individually normalized so that the stagnation points are the same for all vortices. Fig-

ure A.5 shows the same solutions normalized so that their centroids are at unit distance

from the corner. The point vortex solution is plotted as a filled circle in each figure. As

ρ → 0, the hollow vortex boundary shrinks to the point vortex, as expected. For θc > π,

the vortex boundary intersects itself for large enough ρ, as shown in figure A.6(b). This is

similar to what happens for the hollow vortex in strain examined by Llewellyn Smith and

Crowdy (2012), which self-intersects if the strain is too large.

A.6 Discussion

As shown in figure A.6(b), we find numerically that, as ρ increases for θc > π,

the vortex boundary ends up being tangent to itself at a point along the bisector of the
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Figure A.4: The five vortices in each corner correspond to five equally spaced values of
ρ in 0.01 ≤ ρ ≤ 0.5. Each vortex is scaled individually so that the stagnation points are
at distance unity from the corner.

Figure A.5: As for figure A.4, but normalized so that the geometric centroid is at distance
unity from the corner. The stagnation points of the point vortex are in red.
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Figure A.6: (a) For θc ≤ π and large ρ, the vortex conforms to the shape of the corner
boundary. Here θc = π/4 and ρ = 0.8. (b) For θc > π and large ρ, the vortex boundary
can become tangent to itself, which is unphysical because the speed is constant along
the boundary and would therefore have two different values at the tangency point. Here
ρ = 0.64 and θc = 3π/2.

corner, by symmetry. This solution is not physically acceptable. It is possible to find the

corresponding critical value ρc numerically, and as θc increases, ρc decreases. One can find

further solutions for ρ > ρc; these self-intersecting solutions are not physically acceptable

either. Presumably another solution family branches off at the critical value of ρc, with the

solution beyond it consisting of two symmetric vortices with near-cusps. Finding it will

be difficult, since the flow domain now has genus 2, which requires a completely different

analysis.

Figure A.6(a) shows that as ρ→ 1 for θc < π, the vortex starts to conform to the

shape of boundaries and take the shape of a curvilinear triangle. While there do not seem

to be any discussions in the literature of the asymptotics of the prime function as ρ→ 1,

we see physically that the solution takes the form of two narrow flows of constant velocity

along the boundary, connected by a stagnation point flow near the apex of the corner, with

the outer side slightly curved. The velocity profile in the jets is parallel to the boundary

and uniform, and the speed is just the speed of the fluid on the vortex boundary, which

is given exactly by q0 = |A|ρ−1. The width of the jet d can be obtained from the relation

2q0d = −Saβ−1(1 + µ log ρ), resulting from the difference in streamfunction between the

two vortices. We find numerically that µ = m(1− ρ)−1 as ρ→ 1 with m depending on θc,
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but the form of m does not seem to be available from analysis. We are hence led to the

leading-order result

d ∼ −
Sa
√
ρ

2|A|

(
1 +

m log ρ

1− ρ

)
. (A.22)

We have only examined symmetric solutions, as in CSLF. We do have some evidence

that no asymmetric solution exists in this problem: if one can be found in the same form

as above, but with asymmetric stagnation points on the circle |ζ| = β, then the condition

that W ′(ζ) vanish at the stagnation points becomes four equations in two unknowns and

is found numerically to have no solution except for the symmetric case. This is not a fully

rigorous proof however.

One could also generalize to multiple vortices along the bisector of the angle. A

counting argument shows that this configuration has (multiple) solutions in the point

vortex case, and then an approach such as that in Llewellyn Smith (2014) indicates that

desingularized versions will exist. Finding them numerically will be a challenge, requiring

higher genus SK functions.

The stability of the family of vortices could be examined using the same approach

as in Crowdy, Llewellyn Smith, and Freilich (2013). The nondimensional growth rate is

σ = λΓ/2πq2
0, where λ is the dimensional growth rate. The general stability problem

combines stability of the interface shape and stability associated with displacements of the

centroid. In the point vortex limit, one finds σ ∼ λρd2/Γ (up to multiplicative factors),

where d is the distance to the point vortex. Hence the spectrum of neutral modes found

in CLSF has high dimensional frequency when expressed in terms of variables relevant to

the point vortex pair. This is consistent with the fact that in the point vortex limit the

equilibrium solution obtained from (A.3) is neutrally stable with non-zero frequency for

θc < π, has 0 growth rate for θc = π and is unstable for θc > π (this does not appear to have

been mentioned in the literature). Hence for θc > π the system is unstable for arbitrary

small ρ, and there is not much sense examining it for general ρ. As ρ increases, one can no
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longer separate displacement and shape instability. The stability problem is formulated in

the complex w-plane, in which the vortex takes a simple shape, which is then transformed

to the ζ-plane. An important difference is that there is now only one vortex, along with

a solid boundary at |ζ| = β, at which, in the notation of CLSF, δ̂ = ∂Φ/∂r = 0, where

δ̂ now designates the streamfunction perturbation along the solid boundary. We do not

pursue the calculation further. It now contains θc-dependence, and preliminary indications

suggest that as θc approaches 0 or π, the calculations become numerically delicate. Away

from this range, one can find a critical instability threshold ρc(θc), with indications of

multiple bubbles of instability (typical of Hamiltonian stability problems) in the system.

The current stability problem, which has one free surface and one solid boundary, seems

to have fewer degrees of freedom than that of CLSF; the values obtained for ρc do seem

larger, of the order of 0.08–0.12. More work is required to understand the stability problem

fully.

A.7 Conclusion

A stationary hollow vortex surrounded by irrotational flow has been found inside a

wedge of fluid bounded by a corner of arbitrary angle using a conformal mapping approach.

This is the first combined use of the SK prime function with algebraic functions to the

authors’ knowledge. For special values of θc, namely divisors of π such as π/2, π/3, π/4

and so on, it should be possible to construct the solution using higher-genus SK prime

functions and symmetries. The algebra would rapidly become unmanageable, however,

although presumably the final form of the solution would lead to identities between SK

functions of different genus.

The problem of a steady vortex patch in a corner does not seem to have been

investigated in detail, although the propagating vortex patch dipole has been examined
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Deem and Zabusky (1978), Pierrehumbert (1980), and Saffman and Tanveer (1982). The

Sadovskii dipole (or patch sheet), a vortex patch bounded by a vortex sheet, is a general-

ization of both Sadovskii (1971) and Tanveer (1986). Similarly one could examine patch

sheet equilibria in a corner.

Perturbing the point vortex equilibrium with potential (A.2) leads to periodic mo-

tion for θc < π. The general case of a point vortex in a right-angle corner was investigated

by Suh (1993), and its transport properties provide an interesting model problem for non-

periodic transport (authors’ unpublished observations). The case of the point vortex in

the corner could be examined similarly. For the hollow vortex, the problem is much more

difficult, since the vortex sheet would evolve and would have to be obtained using a nu-

merical approach similar to those used for water waves in e.g. Vanden-Broeck (2010) or

Baker and Xie (2011).

A.8 Formulation using P , K and L

For ease of comparison with Crowdy, Llewellyn Smith, and Freilich (2013), we

provide here the relevant formulas in terms of the definitions of the SK functions used

in that work. For the annulus, the SK prime function and required related functions are

defined by

P (ζ, ρ) = (1− ζ)
∞∏
k=1

(1− ρ2kζ)(1− ρ2kζ−1) = −a−1

∞∏
k=1

(
1− ρ2k

)
ω(aζ, a), (A.23)

and

K(ζ, ρ) =
ζP ′(ζ, ρ)

P (ζ, ρ)
, L(ζ, ρ) = ζK ′(ζ, ρ). (A.24)
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Primes indicate derivatives with respect to ζ. Below we will suppress the ρ in the argument

list. Then

W (ζ) =
iSb

β
[K(ζ/β) +K(ζβ)] +

Γ

2πi
log ζ =

iSb

β
[K(ζ/β) +K(ζβ)− µ log ζ] , (A.25)

which is formally the same (with U replaced by S and a replaced by b) as in Crowdy,

Llewellyn Smith, and Freilich (2013), and

R(ζ) =
A

ζ

P (ζ/α)P (ζ/ᾱ)

P (ζᾱ)P (ζα)

(
P (−ζ/β)P (ζβ)

P (−ζβ)P (ζ/β)

)1−θc/π

, (A.26)

where we have used the fact that β is real. Equation (24) of Crowdy, Llewellyn Smith,

and Freilich (2013) is

L(eiΘ) + L(ρeiΘ) = µ. (A.27)

Appendix A, in full, has been published in the Journal of Fluid Mechanics, “Hollow

vortex in a corner” by T. W. Christopher and S. G. Llewellyn Smith, 2021, 908, R2

(Cambridge University Press). The dissertation author was the primary investigator and

author of this material.
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