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1 Introduction

Computational models have played an important
role in cognitive science, giving researchers a pre-
cise, unambiguous language in which to express
theories of cognition. Early work in cognitive sim-
ulation focused on the collection of verbal proto-
cols for a small number of subjects, the detailed
analysis of those protocols, and the creation of
programs that simulated their behavior in con-
siderable detail. This approach, exemplified by
the work of Newell and Simon (1972), has led to
important insights about human cognition, par-
ticularly in the area of problem solving.

Another early approach, exemplified by Feigen-
baum’s (1963) work on EPAM, focused on robust
empirical generalizations, showing how such phe-
nomena arose as emergent properties of a compu-
tational model. Although originally less common
that the former approach, in recent years this re-
search paradigm has been gaining ascendancy. In
this paper, we consider theories of category learn-
ing that have taken this form. First, we sum-
marize several memory, reasoning, and learning
phenomena that models of category learning must
explain. Next, we give brief overviews of three
category learning models and indicate how these
models account for some of the empirical findings.
Finally, we discuss some open issues and consider
promising directions for future research.
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2 Empirical Generalizations about
Categorization

Theories attempt to explain empirical phenom-
ena, so we begin by reviewing some generaliza-
tions that have emerged from the experimental
study of human categorization. We have not at-
tempted to be exhaustive, but we believe the
statements that follow provide important con-
straints on theories of category learning.

1. People are able to represent, access, and
acquire concepts that involve logical ‘rules’
(Bourne, 1966), but they can also handle
‘fuzzy’ categories for which no ‘logical’ rules
exist (Smith & Medin, 1981; Barsalou, 1985).
For example, one might define birds as fly-
ing, beaked animals, but some birds cannot
fly and some have bills instead of beaks.

2. Categories are influenced by the informa-
tional structure of the environment (Rosch,
Mervis, Johnson, Gray, & Boyes-Braem,
1976), in that different experiences lead to
different concepts. However, they are also in-
fluenced by the goals of the perceiver (Barsa-
lou, 1983a, 1983b) and by intuitive beliefs and
theories of the world (Chapman & Chapman,
1969; for discussion, Murphy & Medin, 1985).

3. People can detect and exploit correlations
among features (Medin, Altom, Edelson, &
Freko), as well as information about the
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frequency of categories (Medin & Edelson,
1988; Gluck & Bower, 1988a). For instance,
feathers are positively correlated with beaks,
whereas fur tends to co-occur with teeth.
Further, correlations are learned more easily
when part of a coherent set of relations (Bill-
man, 1989; Billman & Jeong, 1989).

People divide categories into subcategories,
with some levels being more ‘natural’ than
others. These ‘basic’ categories tend to occur
at intermediate levels of abstraction. For in-
stance, the category ‘bird’ is more basic than
the categories ‘animal’ or ‘robin’. Research
with natural and artificial categories indicates
that such concepts are learned earlier devel-
opmentally and more rapidly in experiments
(Corter, Gluck, & Bower, 1988; Rosch et al.,
1976). Objects are often identified at the ba-
sic level most rapidly, though this interacts
with the typicality of the object (Murphy &
Brownell, 1985).

Some instances are more ‘typical’ of a cat-
egory than others (Rosch & Mervis, 1975).
These are named more frequently and ac-
cessed more rapidly than less typical ones.
For instance, robins are more typical birds
than are penguins, and pictures of the former
are recognized as birds more quickly than the
latter. However, typicality varies across indi-
viduals and contexts (Barsalou, 1985, 1987,
1989). Moreover, there is dissociation be-
tween membership and typicality in some cat-
egories (Armstrong, Gleitman, & Gleitman,
1983) but not in others (Fehr & Russell, 1984;
Hampton, 1987).

Just as category learning is influenced by
prior beliefs, recognition of items as category
members includes a top-down aspect: entities
are categorized faster in expected contexts
than in unexpected contexts (Palmer, 1975).
For example, a drawing of a loaf of bread is
recognized more rapidly when located in a
kitchen than in a street scene.

People can represent, access, and acquire cat-
egories that involve structural and conceptual
relations between components (Barsalou, in
press; Fodor & Pylyshyn, 1988). For instance,
the relative locations of the eyes and nose are
essential aspects of the concept ‘face’.
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8. People use categories to guide inference as
well as classification and recognition. Infer-
ences about new instances are guided by cat-
egory membership. For example, given that
a novel entity can be identified as a bird, one
can infer that it probably hatched from an
egg.

Categories are used in inferences about new
properties. Generalization of new properties
to individual instances and to sets of instance
is guided by category membership (Gelman
& Markman, 1987; Nisbett, Ross, Jepson,
& Kunda). Indeed, under some conditions,
people generalize properties of a single exem-
plar to an entire category (Osherson, Smith,
Wilkie, Lopes, & Shafir, in press; Macario,
Shipley, & Billman in press).

In sum, theories should eventually account for
category learning, for classification, and for use of
categories in inference. Both characteristics of the
input (e.g., correlations among attributes, feature
frequency) and background knowledge influence
all these processes. In the following sections, we
provide overviews of three computational models
of category formation. In each case, we describe
the model’s representation of conceptual knowl-
edge, the manner in which that knowledge is used,
and the learning mechanisms through which it is
acquired. We also examine each model’s ability
to explain some subset of the empirical general-
ization listed above.

3 Configural-Cue Adaptive Networks

Gluck and Bower (1988a, 1988b) describe an
adaptive network model of human learning that
extends Rescorla and Wagner’s (1972) theory
of classical conditioning to human classification
learning. The model represents knowledge as a
set of one-layer classifiers, one for each category.
Each network has a set of input that correspond
to features that may occur in an experience, a
set of weighted links, and a single output node.
Given a new experience, one outputs a classifica-
tion probability by adding the weights on matched
input features. Learning involves changing the
weights on links using Widrow and Hoff’s (1960)
least mean squares method. Briefly, this alters
weights so as to decrease the difference between
the actual and desired score for each classifier.



This adaptive network model has accurately ac-
:ounted for human behavior in experiments on
probabilistic classification learning with multiple
:ues, but it can only learn ‘linearly separable’ cat-
sgories, that is, ones that can be separated by a
hyperplane through the space of instances. How-
ever, one can extend the model to non-linearly
separable categories by letting conjunctions of el-
ementary stimulus features serve as ‘higher-order’
features of a stimulus pattern. Thus, given the
presentation of an experimental pattern consist-
ing of elementary features BCD, one assumes that
this is reflected not only through activation of in-
put nodes for the single elements B, C, and D, but
also through activation of the pair-wise conjuncts
BC, BD, and CD. In this approach, a domain
involving N elementary features would be repre-
sented using N2 + N input features for each cat-
egory, but the categorization and learning mech-
anisms would remain unchanged.

Gluck, Bower, and Hee (1989) have shown how
this extended model accounts for several aspects
of complex category learning by humans. More-
over, Corter, Gluck, and Bower (1988) have ap-
plied the configural-cue approach to model basic-
level effects in hierarchically organized categories.
For instance, when the network model is trained
on three levels of an artificial domain involving hi-
erarchical category structure, high levels of activa-
tion are reached sooner for the output nodes cor-
responding to the intermediate (basic) level cate-
gories. The predicted learning curves closely re-
semble the observed curves for humans, and the
model also correctly predicts a shift in relative
difficulty between the subordinate and superordi-
nate levels in different experimental conditions.

A key property of the configural-cue model is
that it embodies, implicitly, an approximate expo-
nential decay relationship between stimulus sim-
ilarity and psychological distance, a relationship
with considerable independent support in stud-
ies of stimulus generalization (Shepard, 1958) and
categorization (Nosofsky, 1984). This effect can
be seen by noting how the number of overlap-
ping active nodes (similarity) changes as a func-
tion of the number of overlapping component cues
(distance). If two triplet patterns share one fea-
ture (ABC, XYC), they will have only one active
node in common and five nodes nonoverlapping;
if they share two features (ABC, XBC), they will
have three active nodes in common (two compo-
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nent cues and one configural-cue node) and three
nonoverlapping nodes. In fact, the network model
can be viewed as an extension of Shepard’s (1987)
theory of stimulus generalization to classification
learning.

In addition to basic-level effects, the configural-
cue model is consistent with many of the phenom-
ena from Section 2. It can certainly acquire non-
logical categories, and its use of pair-wise features
lets it capture correlations. The concepts learned
by the model are certainly a function of the envi-
ronment it experiences, though this is represented
only in different weights. In summary, combining
the adaptive network model with a representation
of stimuli that includes pair-wise configurations
of features lets one account for a wider range of
learning results from both the animal and human
learning literatures.

The configural-cue model has several obvious
limitations, including the rapid growth of input
nodes with increasing pattern size. In addition,
the approach can only make predictions about
prelabeled classes, and it cannot handle struc-
tural representations of knowledge. Nevertheless,
the model is theoretically parsimonious, accounts
for a wide range of phenomena, and uses assump-
tions for which independent evidence already ex-
ists. Furthermore, its successes are instructive in
identifying empirical phenomena that can be ex-
plained as emergent from the same elementary,
associative processes found in lower species.

4 Representation Change in Concept
Formation

Although some concept-learning tasks involve su-
pervision, people also acquire conceptual knowl-
edge without explicit supervision. The research
described in this section takes the primary task
of category learning, particularly unsupervised
learning, to be recovery of the correlational struc-
ture of input. This produces coherent categories
useful in prediction and inference. Models devel-
oped in this framework directly represent correla-
tional structure as probabilistic patterns or rules.
Further, these models assume category forma-
tion is intimately linked to representation change,
and specifically to change in the attributes and
features used to represent input. Representa-
tion change is important, but little studied from
the perspective of concept learning. We distin-
guish between two types of representation change.



‘Weak’ representation change involves a change in
attention to or significance of a property. In con-
trast, ‘strong’ representation change involves the
introduction of new properties (a ‘limiting case’
of increase in attention).

Cari (Billman & Heit, 1988) and descendant
models (Chalnick & Billman, 1988) investigated
procedures for attention change in unsupervised
learning. In particular, increasing attention is
directed to attributes that prove predictive in
some relation; this facilitates the discovery of
other related predictive patterns when input ex-
hibits any of a broad class of coherent structures
(psychological motivation from Billman, 1989).
More recently, Billman and Martin have explored
a context-sensitive form of attentional learning.
The idea is derived from the philosopher Good-
man’s (1955, 1984) concept of overhypotheses (see
also Russell, 1986, on well-defined categories).
Categories of a particular type (jewels, animals,
ethnic groups) are homogeneous — or predictable
— with respect to some properties (crystal struc-
ture, diet, language) but not others (weight, age,
first name). Members of one category share val-
ues of the homogeneous attributes and contrast
with other categories on these attributes. This
information can be used to make inferences about
novel categories and attribute values. Seeing one
instance of a new kind of jewel, one would gen-
eralize its crystal structure but not its weight to
other category members. Further, people do seem
to make use of this information (Nisbett, Krantz,
Jepson, & Kunda, 1983; Shipley 1989).

In related work, Billman and Martin have in-
vestigated two types of ‘strong’ representation
change. One concerns the formation of new at-
tributes from previously uncoordinated features;
thus, someone may come to see legs, fins, and
wings as values of a new attribute ‘limbs’. The
second involves the formation of new features
from conjoining old features or attribute values.
Martin and Billman (in press; Martin, 1989) de-
scribe CORA, a computational model of this latter
process, which we now describe in some detail.

CoRA represents conceptual knowledge in
terms of probabilistic inference rules. For in-
stance, it might have the rule IF X HAS WINGS
AND X HAS FEATHERS, THEN INFER THAT X
FLIES WITH PROBABILITY 0.95. In this case, a
conjunction of two features predicts the presence
of a third, but simpler and more complex rules
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are possible. CORA does not represent concepts
as separate knowledge structures; rather, it orga-
nizes knowledge an interconnected network that
directly represents conditional probabilities be-
tween features and conjunctions of features. The
system also contains knowledge about features
which are mutually exclusive, that is, which are
alternative values of the same attribute.

Given a new experience with the values of some
attributes omitted, CORA uses its inference rules
to predict the missing values. For each attribute,
it applies all rules that infer a value for that
attribute and whose conditions match against
the new experience. The system then estimates
the overall probability for each possible value as
the geometric average of the individual predicted
probabilities. Finally, COrA predicts the value of
the attribute that has the highest overall proba-
bility.

Billman and Martin’s system begins with sim-
ple inference rules in which the condition sides
contain only one feature, and in which all rules
have the same associated probability. However,
CoRA augments this knowledge using two learn-
ing mechanisms. First, when the system is given
a new experience, it iterates through each ob-
served value, updating the conditional probability
of each rule that infers that value. After this, it
checks to determine whether the updated rules
— in combination — actually predict the observed
value over the alternatives. If they do not, this
suggests that there are interactions among fea-
tures which are not being taken into account, and
CORA creates a new inference rule whose condi-
tion side is the conjunction of two existing rules.
The component rules are those which have been
most frequently associated with errors in the past.
In this way, the system begins with simple in-
ference rules and incrementally constructs more
complex ones in which higher-order features are
present.

The basic approach shares several character-
istics with Gluck’s configural-cue model. Both
systems represent conjunctions of features, asso-
ciate weights with these higher-order terms, and
combine the relevant ‘rules’ to make predictions.
However, the configural-cue model assumes that
all pairwise conjunctions are present from the out-
set, whereas CORA begins with single features and
constructs higher-order terms as necessary. Thus,
Gluck’s learning method searches only the space



of weights on prespecified links, whereas Martin
and Billman’s system carries out a general-to-
specific search through the space of feature com-
binations. Another difference is that CORA is un-
supervised, in that it requires no labeled training
instances and predicts the value of any missing
attribute.

The CorA model is consistent with a number
of the phenomena given in Section 2. The system
can handle both logical ‘rules’ and more ‘fuzzy’
representations of knowledge, and it constructs
different inference rules depending on the infor-
mational structure of the environment. CoORA
predicts that some experiences are more typical
than others, but it makes no assumptions about
reaction times. The model can certainly exploit
correlations among features, and it emphasizes
the use of conceptual knowledge for prediction.
However, it provides no account of basic-level ef-
fects, and it fails to address the structural nature
of some knowledge. Nevertheless, the approach
provides a promising account of the representa-
tion, use, and acquisition of conceptual knowl-
edge, and future work may address these issues.

5 Hierarchical Concept Formation

Many models of concept formation construct
classification hierarchies over environmental ob-
servations. Perhaps the earliest such system
was Feigenbaum’s (1963) EpPAM, which incremen-
tally formed discrimination networks and used
them to classify new observations. Lebowitz’s
(1982) UNniMEM and Kolodner’s (1983) CYRUS
built more sophisticated, redundant classification
structures, but they sifted observations down al-
ternative paths in a hierarchy much like EPAM.

Here we will focus on Fisher’s (1987) Cos-
WEB, which was intended to synthesize ideas from
these earlier systems and thus will serve briefly
to highlight characteristics of the general hierar-
chical approach.! In particular, the system uses
a probabilistic representation of concepts (Smith
& Medin, 1981). Each concept specifies a set of
attributes and their possible values, along with
the conditional probability of that value given the
concept. COBWEB also stores the overall proba-
bility of occurrence for each concept. Moreover,
concepts are organized into a concept hierarchy

'We direct readers Gennari, Langley, and Fisher
(1989) for a review of hierarchical approaches to concept
formation.

993

that is partially ordered according to specificity,
with more abstract categories at higher levels,
more specific ones at lower levels, and specific ob-
servations as terminal nodes.

Like its predecessors, COBWEB sorts new ob-
servations downward through its hierarchy, select-
ing the best branch at each level. In making this
decision, it finds the ‘best match’ according to
category utility, an evaluation function proposed
by Gluck and Corter (1985) to account for ba-
sic levels observed in experimental studies of hu-
man categorization. They arrived at this function
through a rational analysis (Anderson, in press) of
the categorization task, in which basic-level con-
cepts are preferred because they facilitate more
accurate predictions about their members.

Like Martin and Billman’s model, COBWEB ac-
quires concepts incrementally, during the process
of categorization. As it sorts experiences down
the hierarchy, the system alters the probabilities
stored with each concept and its associated val-
ues. In some cases, COBWEB also changes the
structure of its hierarchy. If an experience differs
sufficiently from the children of a concept, the sys-
tem stores it as a new child at that level. In other
cases, COBWEB finds that merging or splitting ex-
isting concepts at a given level will improve the
match score. The structure of the resulting hi-
erarchy is a function not only of the experiences
given to the system, but of the order in which
they are presented.

Note that CoBWEB differs from CoRA in that
it does not explicitly compute correlations among
features. Category utility sums a function of in-
dividual feature probabilities, so that each node
in memory effectively represents a category as an
independent cue model (Smith & Medin, 1981).
Fisher and Langley (in press) have shown that
favoring the creation of categories that maximize
this function of individual features will tend to re-
ward categories that capture correlations. How-
ever, leaves of the concept hierarchy correspond
to specific observations (cases, exemplars), giving
representational power equivalent to that of ex-
emplar (Smith & Medin, 1981) or relational cue
(Medin, 1983) representations. In addition, hier-
archical systems offer a natural representation of
default and exceptional properties: one assumes
the most likely attribute value for a given cat-
egory, unless and the observed features warrant
deeper classification.



CoBWEB and most other hierarchical systems
assume that observations are represented as nom-
inal attribute-value pairs. However, recent work
has extended the basic framework to handle real-
valued attributes (Gennari, Langley, & Fisher,
1989) and structured descriptions (Thompson &
Langley, 1989), in which acquired concepts are de-
fined in terms of other acquired concepts and re-
lations among them. Moreover, some researchers
have adapted such relational representations for
use in concept formation over traces of problem-
solving experiences (e.g., Yang, Yoo, & Fisher,
in press). In this approach, previous experience is
organized in memory and accessed for use in guid-
ing behavior on novel problems. Such models may
explain the origin functional categories, as well as
predicting psychological phenomena in problem-
solving domains that are analogous to those found
in simple categorization tasks.

Despite its initial motivation in terms of com-
putational efficacy, COBWEB also accounts for
a variety of psychological phenomena (Fisher &
Langley, in press). Its account of basic-level ef-
fects follows from its use of category utility, but
with assumptions about retrieval rates, accounts
of typicality effects and fan effects (Anderson,
1976) also emerge. Like the other models we
have examined, COBWEB can represent and ac-
quire nonlogical categories, but it can handle log-
ical rules as a special case. The system takes ad-
vantages of correlations among features, though it
represents them only indirectly, and Fisher (1987)
has extensively tested its predictive ability. Ex-
tensions to the framework show promise for struc-
tural knowledge, and the model even makes cer-
tain predictions about interactions between typ-
icality and basic levels (Fisher, 1988). Thus, hi-
erarchical methods for concept formation provide
another promising framework for explaining the
nature of human categorization.

6 Conclusions

We have presented three models that account for
some empirical findings in category formation. No
one model claims to account for all of the com-
plexity of category formation. In some cases,
techniques used in one model can address short-
comings of other models. For example, CORA sug-
gests a way of going beyond pairwise conjunctions
in the configural cue model while avoiding the
enumeration of all possibilities. In some cases, the
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models provide contrasting accounts for the same
phenomenon. For example, both CoBWEB and
the configural-cue model propose different mech-
anisms to account for basic-levels effects.

Some phenomena are not addressed by any of
the models. In particular, none provide an ex-
plicit account for the priming effect (e.g., Palmer,
1975) of expected contexts, though the use of con-
ditional probabilities in CorA and COBWEB sug-
gest possible extensions. All of the current models
emphasize the role of the informational structure
of the environment, ignoring the role played by
the learner’s goals and theories of the world in
category formation.

We have focused on demonstrating that em-
pirical generalizations of human learning such as
basic-level and typicality effects can arise as emer-
gent properties of computational models. It is
equally important that these computational mod-
els make predictions and be used to formulate
hypotheses about human behavior that can be
tested empirically. Furthermore, the precision de-
manded by computational models often raises is-
sues that might have otherwise been overlooked.
Thus, we feel that experimentation and compu-
tational modeling play essential complementary
roles in understanding cognition.
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