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Comprehensive and Integrative Genomic Characterization of 
Hepatocellular Carcinoma

The Cancer Genome Atlas Research Network, David A. Wheeler, and Lewis R. Roberts

SUMMARY

Liver cancer has the second highest worldwide cancer mortality rate and has limited therapeutic 

options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole exome sequencing and 

DNA copy number analyses, and 196 HCC also by DNA methylation, RNA, miRNA, and 

proteomic expression. DNA sequencing and mutation analysis identified significantly mutated 

genes including LZTR1, EEF1A1, SF3B1, and SMARCA4. Significant alterations by mutation or 

down-regulation by hypermethylation in genes likely to result in HCC metabolic reprogramming 

(ALB, APOB, and CPS1) were observed. Integrative molecular HCC subtyping incorporating 

unsupervised clustering of five data platforms identified three subtypes, one of which was 

associated with poorer prognosis in three HCC cohorts. Integrated analyses enabled development 

of a p53 target gene expression signature correlating with poor survival. Potential therapeutic 

targets for which inhibitors exist include WNT signaling, MDM4, MET, VEGFA, MCL1, IDH1, 

TERT, and immune checkpoint proteins CTLA-4, PD-1, and PD-L1.
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Multiplex molecular profiling of human hepatocellular carcinoma patients provides insight into 

subtype characteristics and points toward key pathways to target therapeutically.

Keywords

Liver cancer; hepatocellular carcinoma (HCC); TERT; TP53; CTNNB1; CDKN2A; promoter 
hypermethylation; IDH1/2; miR-122; immune checkpoint proteins; HCC subtyping

INTRODUCTION

Liver cancer is the second most common cause of death from cancer worldwide, with 

700,000 annual deaths recorded globally in recent years (Ferlay et al., 2015). Hepatocellular 

carcinoma (HCC), the predominant form of liver cancer, has several known risk factors 

including chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, alcohol 

abuse, autoimmune hepatitis, diabetes mellitus, obesity, and several metabolic diseases. In 

developed nations, there has been a rise in HCC incidence partly attributed to HCV, obesity 

and diabetes (Yang and Roberts, 2010). The liver injury induced by these risk factors 

produces a progressive inflammatory milieu that results in a cycle of necrosis and 

regeneration and the development of chromosomal instability (Karagozian et al., 2014). 

Genetic and epigenetic alterations that progressively accumulate in a background of 

increased reactive oxygen species, inflammatory cytokines and fibrosis likely lead to the 

initiation of HCC (Dhanasekaran et al., 2016). Initiation and progression of HCC is 

considered a multi-step process but the precise molecular events that underlie HCC 

formation remain only partially understood (Zucman-Rossi et al., 2015).

Recent studies have explored HCC genomic alterations and have identified frequently 

mutated genes, including TERT promoter, TP53 and CTNNB1 (β-catenin) (Schulze et al., 

2015; Totoki et al., 2014). Despite many potential therapeutic targets, sorafenib, a 
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multikinase inhibitor, is currently the only drug approved for advanced HCC management 

(Llovet et al., 2008). More than ten drugs have failed to meet clinical end points in phase III 

trials, indicating a need for new drug discovery for HCC (Llovet and Hernandez-Gea, 2014).

As part of The Cancer Genome Atlas (TCGA) network we have performed the first large 

scale multi-platform analysis of HCC, including evaluation of somatic mutations and DNA 

copy number in 363 patients, and examination of DNA methylation, mRNA expression, 

microRNA (miRNA) expression and protein expression in 196 patients to understand the 

molecular landscape of HCCs (Table S1A–C). The integrated analyses of multiple data 

platforms in conjunction with clinical data (Table S1A,B) has facilitated biological insights, 

identification of therapeutic targets, and the characterization of robust subclasses with 

prognostic implications that may influence HCC clinical management.

RESULTS

Somatic Mutations

Whole exome sequencing was performed on 363 HCC cases for a mean coverage of 95% of 

targeted bases with a minimum of 20-fold coverage. In total, 12,136 genes had non-silent 

mutations, and 26 genes were determined to be significantly mutated genes (SMGs) by the 

MutSigCV algorithm (Lawrence et al., 2014) (Figure 1, Table S2A–B, Supplemental 

Methods). Of these 26 genes, 18 were reported as SMGs in at least one previous HCC 

genome sequencing study (Table S2B). These included the tumor suppressor genes TP53 
(31%), AXIN1 (8%) and RB1 (4%) that were inactivated by mutation, the WNT pathway 

oncogene CTNNB1 (27%), and the chromatin remodeling genes ARID1A (7%), ARID2 
(5%) and BAP1 (5%) (Figure 1, Table S2A–B). NFE2L2 and its interactor KEAP1, 

important in cellular anti-oxidant defenses, were significantly mutated in 3% and 5% of 

HCC, respectively. Albumin (ALB) and APOB mutations were observed in 13% and 10% of 

tumors, consistent with previous HCC sequencing studies (Figure 1, Table S2B) (Fujimoto 

et al., 2016; Schulze et al., 2015). ALB and APOB RNA expression were decreased in HCC 

relative to normal tissues. HCC stratified by low ALB and APOB expression were 

associated by Gene Set Enrichment Analysis (GSEA) with increased cell cycle progression, 

ribosome biogenesis and nucleotide synthesis, and reduced oxidative phosphorylation (data 

not shown). Because ALB expression accounts for 20% of cellular mRNA (Uhlen et al., 

2015) and APOB consumes large amounts of cellular energy by facilitating VLDL secretion 

(Egusa et al., 1985), there may be selection for ALB or APOB inactivating mutations to 

divert energy into cancer-relevant metabolic pathways (Fernandez-Banet et al., 2014).

Among the 26 MutSigCV-identified SMGs were 8 genes not previously considered 

candidate HCC drivers (Table S2B). LZTR1, encoding an adaptor of CUL3-containing E3 

ligase complexes, was mutated in 10 of 377 HCC (3%). Eight LZTR1 mutations were 

inactivating splice site mutations at codon 217, a mutation observed in adrenocortical and 

pancreatic cancers (Witkiewicz et al., 2015). LZTR1 germline mutations have been 

associated with inherited segmental schwannomatosis and somatic LTZR1 mutations are 

identified as driver mutations in glioblastoma (Frattini et al., 2013; Piotrowski et al., 2014). 

The translation elongation factor gene EEF1A1 was significantly mutated in 10 tumors and 

five tumors contained S432I/S mutations, a codon mutation observed in HCC and other 
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cancers (Ahn et al., 2014). Other genes identified as significantly mutated by MutSigCV 

included AZIN1, RP1L1, GPATCH4, CREB3L3, AHCTF1, and HIST1H1. None of these 

six genes have been reported as drivers in HCC or other cancers.

In addition to algorithmically curated SMGs, we manually curated two genes with 

MutSigCV q values close to 0.1 as likely driver genes due to recurrent mutations. SF3B1, a 

splicing factor gene, was mutated in 10 patients, with mutations in codons N626 and K666 

occurring twice each in our HCC tumor set and 11 and 21 times, respectively, across other 

tumor studies (Cerami et al., 2012). SF3B1 mutations have been reported as likely driver 

mutations in hematopoietic malignancies (Bonnal et al., 2012). SMARCA4, encoding a 

chromatin modifier of the SWI/SNF family, was mutated in 11 HCC patient tumors. 

Mutations at codons 1160 and 1192 occurred twice and were observed at this codon in 6 and 

14 other non-HCC tumors, respectively (Cerami et al., 2012). Mutations in SMARCA4 have 

been observed in some cancer types, including 4 of 36 HCC (Endo et al., 2013).

TERT promoter mutations were the most common somatic mutation, found in 87 of 196 

(44%) HCCs analyzed in the TERT promoter region (Figure S1A, Table S3). Two 

independent TERT promoter mutations (chr5, 1,295,228 G>A (C228T) and 1,295,250 G>A 

(C250T) were found, consistent with activating mutations previously reported (Horn et al., 

2013). Further analysis revealed a germline TERT promoter mutation (C228T) in the blood 

and tumor of an HBV-positive 29-year-old Asian male with no recorded family history of 

HCC. Germline TERT mutations (1,295,161 T>G at the transcription start site) were 

associated with familial melanoma (Horn et al., 2013), but germline mutation at position 

C228T has not been reported.

Patients with a TERT promoter mutation were older (p=0.0006), predominantly male 

(p=0.006), more likely to be HCV positive (p=0.04) and less likely to be HBV positive 

(p=0.02) than patients without the mutation. Molecular correlates of TERT promoter 

mutation included a strong co-occurrence with CDKN2A silencing by promoter 

hypermethylation (p = 8.1 × 10−5) (Figure S1A). The CDKN2A gene encodes the tumor 

suppressor p16INK4A, and downregulation of p16INK4A expression in conjunction with 

enhanced TERT expression has been shown to be essential for epithelial cell 

immortalization, a cancer hallmark (Kiyono et al., 1998). TERT RNA was significantly 

upregulated in the HCC cohort overall (p<0.001) but TERT promoter mutation did not 

significantly correlate with increased TERT RNA expression.

Mutational Signatures

We performed mutational signature analysis on the core set of 196 HCC applying a Bayesian 

variant of the non-negative matrix factorization (NMF) algorithm (Tan and Fevotte, 2013) to 

mutation counts of single nucleotide variants (SNVs) stratified by 96-trinucleotide contexts. 

This analysis identified three independent mutational signatures (“A”,”B” and “C”, 

Supplemental Methods) of which two correspond to reported mutation signatures 

(Alexandrov et al., 2013) (see also http://cancer.sanger.ac.uk/cosmic/signatures). To further 

identify samples with a significant enrichment of each mutational process we performed a 

hierarchical clustering of normalized signature activity (Figure S1B). Nine samples 

significantly associated with the plant-derived carcinogen aristolochic acid (AA) signature 
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had a predominance of A:T-to-T:A transversions at [C|T]AG tri-nucleotide motifs and these 

samples had a significant enrichment of splice-site mutations (P=10−6 by Wilcoxon rank-

sum test) due to overlap of the motif with the canonical splice acceptor site. Seven samples 

were significantly correlated with mutational signature B (Sig B), associated with Aflatoxin 

B1 exposure, characterized by an excess of G:C-to-T:A transversions. Aflatoxin B1 

exposure is a risk factor for HCC, associated with hotspot mutation R249S. Recurrent TP53-

R249S mutant samples had significant enrichment of AFB1 signature activity in comparison 

to other TP53 mutants (p=0.005 by Wilcoxon rank-sum) or WT samples (p=0.0001) (Figure 

S1C). HBV-positive samples had much higher AFB1 activity than HBV negative HCC 

(P=0.005 by Wilcoxon rank-sum), indicating a likely synergistic interaction between 

Aflatoxin B1 exposure and HBV.

Copy Number Changes

Somatic copy number alterations (SCNA) were determined by profiling HCC on Affymetrix 

SNP 6.0 arrays and analysis by GISTIC 2.0. Overall patterns of broad and focal alterations 

across the entire cohort were similar to earlier reports (Guichard et al., 2012; Totoki et al., 

2014) (Figure S2A). Most frequent chromosomal arm alterations included copy number 

gains in 1q and 8q and copy number losses in 8p and 17p (Figure S2A, B). GISTIC 2.0 

analysis of all tumors identified 28 significantly reoccurring focal amplifications including 

those containing well characterized driver oncogenes such as CCND1 and FGF19 (11q13.3), 

MYC (8q24.21), MET (7q31.2), VEGFA (6p21.1), and MCL1 (1q21.3). Moreover, TERT 
(5p15.33) was amplified in 10% of HCC. Among 36 deletion events, 13q14.2 (RB1) and 

9p21.3 (CDKN2A) were prominent (Figure S2B). Also seen was a 1p36.23 focal deletion 

peak that includes the tumor suppressor ERRFI1, recently described in gliomas and HCC 

(Park et al., 2015). We noted a 17p11.2 focal deletion that contained the tumor suppressor 

NCOR1, which functions as a suppressor of beta catenin expression (Song and Gelmann, 

2008).

Methylation Profiling

Comparison of genome-scale DNA methylation profiles in normal tissue and HCC revealed 

significant amounts of both hypo- and hypermethylation in the tumors. Unsupervised 

clustering of HCC using CpG sites that showed cancer-specific DNA hypermethylation 

identified four hypermethylation clusters (Figure 2A). Two clusters (3 and 4) exhibited 

elevated hypermethylation. Cluster 3 in particular contained all of the tumors with IDH1/2 
mutations and exhibited a distinct DNA hypermethylation profile (Figure 2A), consistent 

with previous data that IDH1/2 mutations are gain of function lesions that increase levels of 

cellular D-2-hydroxyglutarate that regulate genomic methylation rates (Lu et al., 2012). 

Cluster 4 HCC were disproportionately enriched for CDKN2A epigenetic silencing, TERT 
promoter mutations and CTNNB1 mutations (Figure 2A). Asian ethnicity and HBV 

infection was significantly associated with Cluster 1, while HCV infection was significantly 

associated with Cluster 4.

Two approaches (see Supplementary Methods) were used to identify those genes with high 

levels of tumor-specific hypermethylation in conjunction with reduced RNA expression 

(Table S4A). Seven representative genes frequently hypermethylated in our HCC sample set 
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are shown in Figure 2B–H. These genes displayed significantly reduced RNA expression 

correlated with high frequency promoter hypermethylation. CDKN2A epigenetic silencing 

was found in 53% (102/191) of samples whereas CDKN2A mutations were observed in 4% 

of HCC, indicating that DNA methylation is the predominant mechanism for CDKN2A 
inactivation (Figure 2B, Table S4A) in HCC. Other highly hypermethylated and 

downregulated genes included HHIP, a suppressor of hedgehog signaling, a pathway 

important in hepatocarcinogenesis (Zheng et al., 2013) (Figure 2C, Table S4A), 

prostaglandin reductase 1 (PTGR1), shown to inhibit lung cancer growth (Zhao et al., 2010) 

(Figure 2D, Table S4A), and TMEM106A, encoding a pro-apoptotic protein downregulated 

in gastric cancer (Xu et al., 2014) (Figure 2E, Table S4A). Members of the metallothionein 

family, MT1M and MT1E, have been implicated as tumor suppressors in HCC and other 

cancers (Mao et al., 2012) (Figure 2F,G, Table S4A).

Hypermethylation-mediated downregulation of CPS1 (carbamoyl phosphate synthase I), a 

liver-specific rate-limiting enzyme of the urea cycle reported as a HCC-hypermethylated 

gene (Liu et al., 2011), may favor glutamine usage in HCC by CAD (carbamoyl phosphate 

synthase II), which initiates the de novo pyrimidine synthesis pathway, thus favoring cell 

division (Figure 2H, Table S4A). Consistent with this hypothesis, mean CAD RNA levels 

were 2.8-fold increased in HCC relative to normal liver tissues (p = 6.7 × 10−34), while 

mean CPS1 RNA levels were 2.1-fold reduced in HCC compared to normal liver tissue.

Of the 298 genes exhibiting significant HCC-specific hypermethylation, 81 have been 

reported to be hypermethylated and another 28 have been reported to be downregulated 

(methylation status unknown) in HCC or other cancers relative to normal tissues (Table 

S4A). Gene Set Enrichment Analyses (GSEA) of these 298 hypermethylated genes had an 

enrichment for pathways related to differentiation, stem cell maintenance and targets of the 

Polycomb repressive complex, a phenomenon previously reported (Widschwendter et al., 

2007) (Table S4B).

HBV and HCV Infection

Chronic HBV and HCV infection are major viral risk factors for HCC. In the core TCGA 

dataset, 44 of 196 (22.4%) patients displayed clinical and molecular evidence of HBV 

infection. HBV infection was significantly associated with Asian ethnicity, younger age at 

initial diagnosis, and male gender (Table S5A). HBV+ HCCs were significantly more likely 

to be mutated in TP53 and significantly less likely to harbor TERT promoter mutations than 

HBV− HCCs.

Most (37/44, 84%) HBV-infected HCCs exhibited evidence of HBV DNA integration into 

the host genome by analysis of RNA sequence reads for HBV-chromosomal gene fusion 

transcripts. Such integrated viral genomes raise the possibility of cis-activation or 

inactivation of cancer regulatory genes, believed to be an occasional source of driver 

mutations in HCC. RNA fusion-based HBV integration sites identified by two methods are 

shown in Table S5B. Roughly 50% of HBV integration sites were within genes, though only 

two genes had recurrent mutations: MLL4, a histone methyltransferase that regulates 

proliferation and reported as a frequent HBV integration site (Saigo et al., 2008) and TERT. 

The five tumors with MLL4 insertions and one of the two TERT insertions displayed the 
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highest levels of MLL4 and TERT RNA expression among all HCC, suggesting an HBV cis-

activating event (Table S5C). Among the non-recurring HBV insertional events associated 

with very high levels of RNA transcription, potential driver events were observed. These 

include known oncogenes CCND1, CCNE1, and GLI2 (a sonic hedgehog transcription 

factor). Thus, the effect of HBV on transcriptional levels of key oncogenes demonstrated 

potential driver events affecting a number of patients.

In our HCC samples, 35 of 196 (17.9%) patients exhibited serological and/or molecular 

markers of HCV infection, by presence of HCV antibody or HCV RNA as determined by 

commercial HCV RNA testing or by sequence analysis. HCV infection was significantly 

higher in white and black patients than Asian patients and in patients with cirrhosis (Figure 

1). HCV+ tumors displayed significantly increased frequency of CDKN2A promoter 

silencing (p = 0.0061) and TERT promoter mutation (p = 0.014).

Multi-Platform Integrative Molecular Subtyping

Unsupervised clustering of data from five platforms (DNA copy number, DNA methylation, 

mRNA expression, miRNA expression and RPPA) gave a collection of discordant 

subgroupings specific to each data platform. To reconcile these disparate data types we used 

a joint multivariate regression approach (see Supplemental Methods) to simultaneously 

cluster data from the five platforms. This comprehensive approach resolved three major 

subtypes (Figure 3A and S3A, B). The majority of individual platform cluster solutions 

concentrated preferentially in one or another of the 3 integrated iCluster solutions with p 

<0.0001 (Figure S3A, S3C) lending confidence that the aggregate solution captured the main 

features of each platform. The association of the three iClusters with demographic, 

pathologic and molecular features of the HCC patients strengthened the clinical relevance of 

the subtypes defined by the iCluster procedure.

The first integrated cluster, iClust 1 (n=65), was characterized by clinical associations with 

younger age, Asian ethnicity, female gender and normal body weight (Table S6, Figure 

S3B). These tumors exhibited features such as higher tumor grade and presence of 

macrovascular invasion, and the lowest fraction of differentiated samples by Hoshida 

classification (Hoshida et al., 2009) (Table S6, Figure 3B, S3B). Molecular correlations with 

iClust1 included a low frequency of CDKN2A silencing (32%) as compared to iClust2 and 

iClust3 (69% and 63%, respectively, low frequency of CTNNB1 mutation (12% in iClust1 

vs 38% and 43% in iClust2 and iClust3, respectively), low frequency of TERT promoter 

mutation and low TERT expression (Figure 3A, Table S6). iClust1 tumors exhibited specific 

changes in miRNA expression, including high expression of miR-181a (a lipid metabolism 

regulator) and epigenetic silencing of miR-122 (Figure S3D). This subclass was associated 

with over-expression of proliferation marker genes such as MYBL2, PLK1, and MKI67 
(Figure S3D).

In contrast, iClust2 (n=55) and iClust3 (n=63) exhibited a high frequency of CDKN2A 
silencing by DNA hypermethylation, high frequency of TERT promoter mutation, CTNNB1 
mutation, and enrichment for HNF1A mutation. Correlation with clinical variables revealed 

association of iClust2 with low-grade tumor (P=0.0006) and less microvascular invasion 

(P=0.01) (Table S6, Figure S3B). iClust3 was characterized by a higher degree of 
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chromosomal instability with distinct 17p loss, high frequency of TP53 mutation and 

hypomethylation of multiple CpG sites.

To compare the iCluster classification to previous molecular subclasses we assigned each of 

our patients to one of the three mRNA expression-based subclasses from Hoshida and 

collaborators (Hoshida et al., 2009), using prediction signatures developed from their 

expression data. We found correspondence between the iClusters and Hoshida subclasses 

(C1–C3) (Table S6). iClust1 consisted predominantly of Hoshida C2 patients whereas 

iClust3 consisted predominantly of Hoshida C3 (Figure 3B).

We further tested the clinical relevance of the iCluster groupings by constructing a subclass 

prediction model based on the 200 most variably expressed genes compared across the 3 

iClusters (Supplemental Methods). We then tested the predictor on three published data sets 

of three external clinically annotated HCC patient cohorts, with long term follow-up (Lee et 

al., 2006; Roessler et al., 2010; Sohn et al., 2015). Among all three external cohorts iClust1 

had significantly worse prognosis than iClust2 and iClust3 (Figure 3C). There was no 

difference in overall survival between the three clusters in the TCGA cohort (P=0.561) 

possibly due to the relatively short follow-up times in this data set (median follow-up 18 

months) (Table S1A). Nonetheless, robust replication of poor survival in iCluster 1 in three 

independent data sets suggests it is a reliable clinical predictor of outcome.

IDH1/2 Mutations AND miR-122 Expression

Analysis of the mutation data revealed two mutations in IDH1 (R132C, R132G) and two 

mutations in IDH2 (R172K, R172S), in four different tumors. These specific IDH1/2 
mutations, seen in multiple human cancers, result in a neomorphic isocitrate dehydrogenase 

that produces an oncometabolite believed to alter cellular epigenetic programs and block 

normal differentiation (Lu et al., 2012). IDH1/2 mutations are more frequent in intrahepatic 

cholangiocarcinomas (CCA) than in HCC, hence the possibility that these tumors actually 

represented mixed HCC-CCA was considered. We carefully reviewed the histopathology of 

these tumors and all of them exhibited features of HCC and not of mixed tumor or 

cholangiocarcinoma.

When the Bayesian compound covariate predictor (BCCP) algorithm (Radmacher et al., 

2002) was applied to the mRNA expression data, 11 samples with gene expression patterns 

similar to the IDH1/2-mutated samples were identified; however, these samples did not have 

IDH1/2 mutations (Figure 4A). When compared with other molecular subtypes of HCC, the 

IDH mutant and IDH-like samples exhibited the highest similarity to an hepatic stem cell-

like subtype (Lee et al., 2006). These samples were all classified with the poor prognosis 

iCluster 1 subclass and exhibited similarity to non-differentiated RNA clustering phenotypes 

(Hoshida C2) (Hoshida et al., 2009), cholangiocarcinoma-like (CCL-HCC) (Woo et al., 

2010), silencing of the Hippo pathway (Hippo) (Sohn et al., 2015), and had high Risk Scores 

based on a gene expression signature of 65 genes (RS65) (Borger et al., 2012) (Figure 4A), 

suggesting that HCC with the IDH-like gene expression signature represent a poor 

prognostic subtype of HCC. The IDH-like gene expression signature was present in similar 

proportions in the followup TCGA extended HCC cohort, and in four other published HCC 

cohorts with extended follow-up data (Figure 4B). It was associated with significantly worse 
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survival (Figure 4C) in the aforementioned three external cohorts with survival data (see 

above and also Figure 3C).

Genes and microRNAs that were differentially expressed in IDH-mutant and IDH-like 

tumors were also identified (Figure S4A). Intriguingly, miR-122, which is liver-specific and 

the most abundant miRNA in liver (Figure S4B), was significantly downregulated in some of 

the IDH-mutant and IDH-like tumors by promoter DNA hypermethylation (Figure S4C). 

miR-122 dysregulation has been observed in HCC studies and has been associated with poor 

survival (Coulouarn et al., 2009). miR-122 regulates the expression of multiple genes 

including PKM2 (Figure S4D), and is implicated in metabolism as well as HCC progression 

(Liu et al., 2014). The four IDH-mutant samples had a distinct DNA hypermethylation 

profile, as seen in other cancer types, while the IDH-like samples lacked the characteristic 

DNA hypermethylation profile.

P53 Signature

Mutations involving TP53 were found in 31% of patients. We used an alternate method to 

determine p53 functional status by assessment of p53 transcriptional target expression (p53 

signature). The degree of p53 target gene upregulation is used as a surrogate for p53 

functionality (See Supplemental Methods “TP53 Signature”). Tumors were stratified based 

on p53 target gene expression (Figure 5A). While only one HCC with high p53 target 

expression had a TP53 mutation, 11 out of 48 (23%) samples in the low p53 expression 

quartile were TP53 wildtype. Thus, many HCCs without TP53 mutations appear to have 

inactive p53, consistent with the existence of non-mutational p53 inactivating mechanisms 

(Soussi, 2014). We examined specific inhibitors of p53 function and found that MDM4, a 

p53 inhibitory protein, was significantly increased in copy number and expression in low 

signature WT TP53 HCCs relative to other HCCs (p=3.6 × 10−4 and p=5.4 × 10−4, 

respectively) (Figure 5A–C), providing one possible mechanism for low p53 signatures in 

non-TP53 mutated HCCs.

Tumors having low p53 target expression exhibited significant associations with increased 

copy number instability (including high frequency chromosome 4q loss (Rashid et al., 

1999)), higher pathological grade, reduced expression of mature hepatocyte marker genes, 

and increased risk of tumor recurrence (Figure 5A). HCC within the lowest quartile p53 

expression displayed a significantly reduced overall survival relative to their high p53 

signature counterparts (P = 0.0018) (Figure S5A). Of three external HCC cohorts tested, two 

showed significantly reduced overall survival of the low p53 signature patients (Figure S5B–

D).

Among the p53-regulated HCC target genes PTCHD4 had a 28-fold increased expression in 

the high relative to the low p53 expression quartiles (Figure 5A). PTCHD4 suppresses sonic 

hedgehog (SHH) signaling in colorectal cancers (Chung et al., 2014) and SHH signaling is 

important in liver regeneration. SHH pathway gene expression was significantly upregulated 

in low p53 signature tumors by GSEA analysis. Another p53-repressed target gene, EZH2, 

was significantly upregulated in low p53 signature HCC (Figure 5A). EZH2 encodes a 

histone methyltransferase that epigenetically regulates stem cell maintenance (Volkel et al., 

2015) and its enhanced expression in low p53 signature HCC coincides with increased stem/
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progenitor gene expression (Figure 5A). The low p53 signature HCC had increased 

expression of the p53-repressed cell cycle positive regulatory genes CCNB1/2, E2F2/3, and 

FOXM1. We hypothesize that p53 regulates HCC phenotypes in part through the sonic 

hedgehog pathway via upregulated PTCHD4, the Polycomb repressive complex 2 via 

downregulated EZH2, and downregulation of S/G2/M promoting cell cycle genes.

Other Signaling Pathways

While most gene and pathway alterations were evenly distributed with respect to iCluster 

classification, some mutations, such as TERT and CTNNB1, were underrepresented in 

iCluster1 (Figure 6, Figure S6A,B). As described in previous HCC genomics studies, WNT 

pathway members were frequently mutated or subject to copy number alterations. Overall, 

44% of HCC displayed gene alterations in the WNT signaling axis. Other key pathways 

included cell cycle regulatory pathways driven by mutations and copy number changes in 

RB1, CCND1, CDKN2A and RTK/PI-3 kinase signaling driven by PTEN, PIK3CA, MET, 

and VEGFA copy number/mutational changes. Chromatin modifiers such as BAP1, 

ARID1A, and ARID2 were significantly mutated genes.

As an alternative to using significantly mutated genes, we employed a computational method 

to identify signaling pathways that displayed enhanced mutation frequencies across all 

component genes of that pathway, though each individual gene might not be significantly 

mutated (Supplemental Methods, Pathway-Associated High Impact Gene Mutations). We 

tested Reactome pathways for a bias toward evolutionarily conserved nonsynonymous 

mutations. We identified for each pathway the set of genes that maximized bias toward high 

Evolutionary Action (EA) mutation scores (a measure of relative evolutionary conservation) 

compared to the cohort background (q<0.05; Figure S7A–H) (Katsonis and Lichtarge, 

2014). Sets that exhibited significant bias after FDR correction, and were more significant 

than 95% of simulations of similar sized pathways, were considered to be of interest and to 

point toward cellular functions whose disruption may be advantageous to the tumor (Table 

S7). Seven of the ten highest-ranked pathway groups contained RAS, RAF, MAPK, PI3K, 
SOS, and SHC genes and implicated pathways downstream of receptor tyrosine kinases 

(Figure S7C–H, Table S7). The over-representation of pathways related to receptor tyrosine 

kinase (RTK) signaling may be related to the sensitivity of HCC to the RTK inhibitor 

sorafenib.

Immune Phenotyping

Histopathological analyses of our core set of 196 HCCs revealed that 22% displayed high or 

moderate levels of lymphocyte infiltration. Given the recent success for targeted therapies 

against immune checkpoint genes such as CTLA-4, PD-1 (PDCD1), and PD-L1 (CD274), 

we characterized the immune microenvironment in HCC. We first performed unsupervised 

hierarchical clustering of gene expression using a curated list of sixty-six immune markers 

that encompass cell surface markers of different immune cell populations (Figure 7A). 

Expression of the immune markers varied greatly across HCC and tumor adjacent normal 

tissues. Unsupervised clustering identified six clusters of tumor samples, with the “High 1” 

and “High 2” clusters exhibiting high expression of the 66 immune markers, including the 

immune checkpoint genes CTLA4, PDCD1 (PD-1), and CD274 (PD-L1). No significant 
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association was observed with HBV/HCV infection status. Likewise, overall survival was 

not significantly related to immune clustering.

We further investigated the cellular composition of immune infiltrates in LIHC using the 

CIBERSORT (Newman et al., 2015) inferred relative fractions of different immune cell 

types. The immune compositions varied largely across samples (Figure 7B). We observed 

similar pattern of immune composition between HBV+ and HCV+ tumors (p>0.05), and 

between HBV/HCV infected and virus negative tumors (p>0.05). Significant differences in 

immune cellular composition between tumor and tumor-adjacent normal samples were 

detected, regardless of virus infection status (Figure 7C). In tumors we observed depletion of 

naïve B cells, activated mast cells (virus+ tumors only), neutrophils, monocytes, gamma 

delta T cells, and the activated (M2) macrophages (virus+ tumors only), and a significant 

enrichment of memory B cells, suppressive regulatory T cell (Treg), resting mast cells, 

resting dendritic cells, and undifferentiated (M0) macrophages (Figure 7C). The ratios of 

CD8/Treg were significantly decreased in LIHC tumors (p=1.9e-7). These results indicated a 

transformation of the immune microenvironment in HCC tumor tissues from activating/

effector cells to resting/suppressive immune cells.

DISCUSSION

This comprehensive integrated analysis of HCC enhances our understanding of the 

molecular events relevant to this cancer. The utilization of six distinct data platforms in the 

current study has facilitated integrated solutions not possible with single platform studies. 

The robust statistical power provided by a relatively large patient set of 363 HCC enabled us 

to identify 26 significantly mutated genes through use of the MutSigCV algorithm. Eight of 

these 26 SMGs had not been identified in previous HCC genomic sequencing studies (Table 

S2B). Two, LZTR1 and EEF1A1, contained somatic mutations identical to those recurrently 

observed in other cancers. Two genes, SF3B1 and SMARCA4, exhibited near significance 

by MutSigCV analysis, and displayed mutations identical to those identified as driver 

mutations in other cancers (Table S2A,B).

Among the SMGs identified in our HCC dataset were the ALB and APOB genes, key 

mediators of hepatocyte function in the secretion of blood factors albumin and VLDL. These 

functions demand a high fraction of hepatocyte transcriptional, translational, and energy 

resources and thus these processes might be suppressed by the malignant hepatocyte to 

support cell division requirements. We also noted that a high fraction of HCC exhibited 

CPS1 hypermethylation accompanied by decreased RNA expression. CPS1 encodes a rate-

limiting enzyme for the urea cycle, allowing more efficient removal of ammonia from the 

body. Reduction of CPS1 could result in shunting of glutamine to initiation of de novo 

pyrimidine synthesis, consistent with increased CAD and decreased CPS1 expression levels 

observed in HCC relative to normal hepatocytes. Thus, a key component in the progression 

of hepatocytes to malignant HCC cells may be metabolic reprogramming through either 

genetic (ALB, APOB), epigenetic (CPS1) or other mechanisms, converting a cell committed 

to normal organismal support functions to a cell that supports only its own requirements for 

growth and division.
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These mutation and pathway analyses provide potential directions for future therapeutic 

efforts. We showed that WNT or p53 signaling or the telomerase promoter are altered in 

77% of HCC. WNT pathway small molecule inhibitors are currently in preclinical and 

clinical development (Pez et al., 2013). Because p53 can be rendered dysfunctional by 

alterations in upstream regulator function (e.g. MDM2, MDM4), p53 signature analysis may 

provide a more accurate representation of p53 functional activity and may better predict 

clinical outcomes than mutation-based studies. A fraction of HCC with WT TP53 have 

elevated MDM4 expression and currently available MDM4 small molecule inhibitors might 

be efficacious in these HCC (Jochemsen, 2014). The high frequency of TERT promoter 

mutations suggests that upregulated TERT expression in HCC might be targeted with 

telomerase inhibitors currently in development (Ruden and Puri, 2013).

Finally, IDH1/2 mutations were observed in four HCC. The recent development of IDH1 

small molecule inhibitors suggests these drugs may be useful in that minority of HCC with 

IDH mutations (Okoye-Okafor et al., 2015). Although these tumors histopathologically most 

closely resemble HCCs, they exhibit clinical and genetic features of both 

cholangiocarcinomas and HCCs, signifying their possible origin from biphenotypic stem 

cells and suggesting that cholangiocarcinoma and HCC represent two ends of a continuum. 

Hence, the presence of IDH1/2 mutation in HCC may be associated with a shift towards a 

biliary phenotype, molecularly, even when the tumors do not resemble mixed tumors by 

histopathology. The discovery of an expression signature associated with this mutant, found 

in varying intensity in approximately 10% of the patients in several independent cohorts, 

supports this view.

Focal HCC amplification events also revealed potential therapeutic targets. Amplification of 

MET and VEGFA loci indicates that other RTK inhibitors in addition to sorafenib may be 

effective in HCC. MCL1, frequently amplified in HCC as well as in many other tumor types, 

encodes an anti-apoptotic protein that induces resistance to several chemotherapeutic agents 

(Belmar and Fesik, 2015). Numerous small molecule MCL1 inhibitors have been developed 

and might be tested in corresponding MCL1 amplified HCC patients (Belmar and Fesik, 

2015).

Immune phenotyping of HCC by histopathology and gene expression analyses of immune 

cell markers revealed that a subset of HCC had high levels of immune cell infiltration. The 

transformation of the immune microenvironment in some HCC from activating/effector cells 

to resting/suppressive immune cells suggests that therapies targeting the immune checkpoint 

inhibitors (e.g. CTLA4, PD-1, PD-L1) in HCC might lead to robust responses in those HCC 

with moderate to high levels of immune cell infiltration (Prieto et al., 2015).

In conclusion, integrated analytic approaches have been applied to multiple data platforms 

from a large set of clinically annotated HCC to provide a better understanding of molecular 

targets that may lead to improved therapeutic strategies. The many identified targets indicate 

that it may be unlikely that one agent can effectively target all or most HCC, and the most 

effective treatments may entail multiple agents that specifically attack different identified 

targets.
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STAR METHODS TEXT

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, David Wheeler (wheeler@bcm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample Acquisition—The Tissue Source Sites (TSS) contributing biospecimens included 

in this manuscript include: ABS, Asterand, Inc., Baylor, St. Joseph’s Medical Center Cancer 

Institute, Christiana Care Health Services, Inc., Emory University, Fox Chase Cancer Center, 

Hartford Hospital, International Genomics Consortium, ILSbio, LLC., Mayo Clinic, 

Montefiore Medical Center, Ontario Institute for Cancer Research - Ottawa, Roswell Park 

Cancer Institute, Saint Mary’s Health Care, St. Joseph - Arizona, University of Calgary 

Alberta Health Services, University of California San Francisco, University of Florida, 

University of Michigan, University of Minnesota, University of North Carolina, University 

of Pittsburgh, and University of Utah.

Approximately 86% of hepatocellular carcinoma cases (consisting of a primary tumor and a 

germline control) submitted to the BCR and processed passed quality control metrics. 

Tumor tissue from 184 cases was submitted for reverse phase protein array analysis. The 

data freeze included 196 cases from LIHC batches 100, 131, 153, 173, 203, 231, 275, 287, 

303, 314, 327, 341, 345, and 365.

A descriptive table of clinical features, histological features, and molecular features for the 

196 case cohort as well as a patient level summary are shown in Supplemental Table 1A and 

1B. A post-freeze set of 167 HCC cases were also examined by exome sequencing and DNA 

copy number analysis and these are listed in Supplemental Table 1C.

Sample inclusion criteria—Surgical resection of biopsy biospecimens were collected 

from patients diagnosed with hepatocellular carcinoma (HCC), and had not received prior 

treatment for their disease (chemotherapy or radiotherapy). Institutional review boards at 

each tissue source site reviewed protocols and consent documentation and approved 

submission of cases to TCGA. Cases were staged according to the American Joint 

Committee on Cancer (AJCC). Each frozen primary tumor specimen had a companion 

normal tissue specimen (blood or blood components, including DNA extracted at the tissue 

source site). Adjacent tissue was submitted for some cases. Specimens were shipped 

overnight using a cryoport that maintained an average temperature of less than −180°C.

Pathology quality control was performed on each tumor and normal tissue (if available) 

specimen from either a frozen section slide prepared by the BCR or from a frozen section 

slide prepared by the Tissue Source Site (TSS). Hematoxylin and eosin (H&E) stained 

sections from each sample were subjected to independent pathology review to confirm that 

the tumor specimen was histologically consistent with the allowable hepatocellular 

carcinomas and the adjacent tissue specimen contained no tumor cells. Adjacent tissue with 

cirrhotic changes was not acceptable as a germline control, but was characterized if 

accompanied by DNA from a patient-matched blood specimen. The percent tumor nuclei, 
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percent necrosis, and other pathology annotations were also assessed. Tumor samples with 

≥60% tumor nuclei and ≤20% or less necrosis were submitted for nucleic acid extraction.

METHOD DETAILS

Sample Processing—RNA and DNA were extracted from tumor and adjacent normal 

tissue specimens using a modification of the DNA/RNA AllPrep kit (Qiagen). The flow-

through from the Qiagen DNA column was processed using a mirVana miRNA Isolation Kit 

(Ambion). This latter step generated RNA preparations that included RNA <200 nt suitable 

for miRNA analysis. DNA was extracted from blood using the QiaAmp blood midi kit 

(Qiagen).

RNA samples were quantified by measuring Abs260 with a UV spectrophotometer and DNA 

quantified by PicoGreen assay. DNA specimens were resolved by 1% agarose gel 

electrophoresis to confirm high molecular weight fragments. A custom Sequenom SNP 

panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify that tumor 

DNA and germline DNA representing a case were derived from the same patient. Five 

hundred nanograms of each tumor and normal DNA were sent to Qiagen (Hilden, Germany) 

for REPLI-g whole genome amplification using a 100 μg reaction scale. RNA was analyzed 

via the RNA6000 nano assay (Agilent) for determination of an RNA Integrity Number 

(RIN), and only analytes with RIN ≥7.0 were included in this study. Only cases yielding a 

minimum of 6.9 μg of tumor DNA, 5.15 μg RNA, and 4.9 μg of germline DNA were 

included in this study.

Samples with residual tumor tissue were considered for proteomics analysis. When 

available, a 10 to 20 mg piece of snap-frozen tumor adjacent to the piece used for molecular 

sequencing and characterization was submitted to MD Anderson for reverse phase protein 

array analysis.

Contributors: Lisa Iype, Renumathy Dhanasekaran, Tara M. Lichtenberg, Jay Bowen, John 

A. Demchok, Carmen Helsel, Chad Creighton.

Pathology Review

Standard Review of HCC: Each case had a single digital image of a full scan of an H&E 

slide available for review. The digital image had a magnification tool that allowed 

examination of the image at various magnifications. The background liver was not 

consistently available for review. Each case was reviewed independently by at least 3 liver 

pathologists, with no clinical or molecular information. Each pathologist has specialty 

training in liver pathology and extensive experience in diagnostic pathology research. 

Pathologists had as much time as they needed to review the digital images. The histological 

data collection sheet had been previously designed and discussed by the participating 

pathologists. Prior to case review, representative examples of tumor grade and other select 

histological parameters were circulated in a PowerPoint as a reference guide. Each image 

was first reviewed to ensure the tumor was consistent with a hepatocellular carcinoma; 

tumors inconsistent with hepatocellular carcinoma were not further reviewed. After that, the 

histological data outlined below was collected and submitted through a web based interface. 
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After data submission, the data was reviewed and finalized. For numerical data, the median 

score was used. For classification data, the majority pathology opinion was used. Tumor 

grade was scored for both the predominant grade and the least differentiated grade using the 

following definitions:

• Very well differentiated hepatocellular carcinoma: the cytological findings 

resemble non-neoplastic liver and the H&E differential includes hepatic 

adenoma, with no more than focal and minimal cytological atypia, and with no 

architectural atypia.

• Well differentiated hepatocellular carcinoma: the tumor shows unequivocal 

hepatic differentiation on H&E. There is mild but definite cytological atypia and 

mild architectural atypia.

• Moderately differentiated hepatocellular carcinoma: the tumor is clearly cancer 

based on H&E and the cytological evidence for hepatic differentiation is clear, or 

hepatic differentiation is strongly suspected from H&E. Moderate cytological 

and or architectural atypia is present.

• Poorly differentiated hepatocellular carcinoma: hepatic differentiation is only 

suspected or is unclear from the H&E findings. There is marked cytological and 

or architectural atypia.

Hepatocellular carcinomas have a number of different growth patterns, but most fall into the 

categories of solid, pseudoacinar, trabecular, or macrotrabecular (trabeculae at least 10 cells 

in thickness). The predominant pattern was chosen, as well as all other patterns that made up 

at least 5% of the tumor image.

The tumors were also extensively characterized by their cytological findings. The percent of 

the tumor with macrovesicular steatosis, glycogen accumulation (clear cell change), hyaline 

bodies, and Mallory-Dank bodes were estimated to the nearest 10%. Ballooned hepatocytes 

were scored as none, few, or many. Lymphocytic and neutrophilic intratumoral inflammation 

was scored separately. Tumors with no or minimal inflammation were scored as 0. Greater 

degrees of inflammation were scored as mild, moderate, or marked, with marked 

inflammation defined as tumors with more inflammatory cells than tumor cells. When 

cholestasis was present, it was scored as mild (less than 5% of tumor area), moderate (6–

50% of tumor area), or marked (greater than 50% of tumor area). When scoring intratumoral 

fibrosis, broad bands of fibrosis that occasionally transverse tumors were not scored and 

scoring instead focused on capturing “pericellular” or intratumoral patterns of fibrosis. 

These areas were then scored as none or minimal, mild (intratumoral fibrosis less than 5–

25% of surface area), moderate (26 to 50% of surface area), or marked (fibrosis is equal to 

or greater than the amount of tumor cells)

Tumors were evaluated, on a yes/no basis, for the presence of clearly distinct nodules of 

HCC with different morphological patterns. The goal was to capture those tumors that have 

multiple, clearly distinct morphologies on the submitted image. The distinct morphologies 

are found as separate tumor nodules with clearly delineated borders and this finding is a 

separate observation from growth pattern.
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Finally, tumors were classified into specific subtypes, when possible, using the definitions 

below. Hepatocellular carcinomas that did not fit into any of these categories were classified 

as “No Specific Subtype”:

1. Biphenotypic hepatocellular carcinoma (combined hepatocellular and 

cholangiocarcinoma). There should be a portion of the tumor that 

morphologically shows cholangiocarcinoma and a separate component that 

clearly shows hepatocellular carcinoma.

2. Cirrhotomimetic hepatocellular carcinoma. This tumor is defined by its growth 

pattern with tumor nodules that mimic cirrhotic nodules.

3. Clear cell hepatocellular carcinoma. This subtype was defined as carcinomas 

with at least 50% clear cell change.

4. Fibrolamellar carcinoma. This tumor is defined as having large polygonal 

eosinophilic cells with prominent nucleoli and intratumoral fibrosis. It’s 

recognized that cases need immunostains to confirm this diagnosis in clinical 

practice, but the goal was to identify cases with the classic morphological 

findings.

5. Granulocyte colony stimulating factor hepatocellular carcinoma. These are 

moderately to poorly differentiated hepatocellular carcinomas with generally 

solid growth patterns and striking neutrophilic infiltrates. It is recognized that 

clinical correlation with the white blood cell count is needed to confirm the 

diagnosis in clinical practice, but the goal was to identify cases with the classic 

morphological findings.

6. Lymphocyte rich hepatocellular carcinoma. This subtype was defined as 

hepatocellular carcinoma having intratumoral lymphocytes with a density where 

the lymphocytes are similar or greater in number than tumor cells, and this 

finding is present in more than 50% of the tumor image

7. Myxoid hepatocellular carcinoma. This tumor has sinusoids distended by 

myxoid material. At least 10% of the image should show this finding.

8. Sarcomatoid hepatocellular carcinoma. The spindle cell component should make 

up at least 10% of the tumor image.

9. Scirrhous hepatocellular carcinoma. Intratumoral fibrosis makes up greater than 

50% of the tumor image.

10. Steatohepatitic hepatocellular carcinoma. This subtype is defined by at least 33% 

fat, plus ballooned tumor cells that resemble ballooned hepatocytes in 

steatohepatitis, plus at least mild tumor inflammation. Intratumoral fibrosis may 

be present but is not required.

The pathology review has limitations imposed by the logistics of this study. One major limit 

stems from examining a single digital image of a single tumor section, which has risk of 

sampling effects. This limit is particularly relevant to tumor sub-classification. As one 

example, fibrolamellar carcinomas can have histological heterogeneity, and the classic 
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findings may not be evident on the scanned slide. As a second example, the requirement for 

50% clear cell change to qualify for a clear cell hepatocellular carcinoma is typically applied 

to the composite percentage of the sections from the entire tumor, and not a single slide. An 

additional limitation was the inability to consistently collect data on the background, non-

neoplastic liver tissues. Finally, diagnostic pathology in clinical practice relies on the 

combination of morphology and immunohistochemical stains to render the final tumor 

classification. Immunohistochemical were not available in this study.

Review of IDH1/2 mutated patients: IDH1/2 mutations are frequent in intrahepatic 

cholangiocarcinomas (CCA) but rare or possibly noexistant in HCC; hence the possibility 

that these tumors actually represented mixed HCC-CCA or intrahepatic CCAs was 

considered. First, we reviewed the original pathology report from the tissue source site. The 

tissue source sites performed the initial pathologic review on the tumor slides and also the 

surrounding normal liver tissue. They had access to the whole tumor and examined multiple 

sections before making a diagnosis. They only submitted tissue to the TCGA LIHC project 

after confirming the diagnosis of HCC. All four of them had been histologically diagnosed 

as hepatocellular carcinoma and not as mixed HCC-CCA or cholangiocarcinoma. One of the 

tumors was poorly differentiated; the tissue source site performed albumin in situ 

hybridization, which was positive, and hence they leaned toward diagnosis of HCC. 

Subsequently, our TCGA pathology review committee of experienced liver pathologists 

reviewed submitted images of the H&E slides to independently confirm the diagnosis of 

HCC. Due to the constraints of the TCGA project process, the pathology review committee 

did not have access to all slides and blocks from the tumor and were unable to perform 

additional immunohistochemical analyses of the tumors. Based on the diagnosis of HCC 

from the tissue source site and its concordance with our independent pathology review we 

believe that these 4 tumors are likely to be HCC.

Contributors: Michael Torbenson, David Kleiner, Hala Makhlouf, Dhanpat Jain, Sanjay 

Kakar, Matthew Yeh.

DNA Sequencing and Analysis

Primary DNA Sequencing: Primary DNA exome sequencing was carried out at the Human 

Genome Sequencing Center at Baylor College of Medicine using approaches standard to 

TCGA and identical to those described by Totoki et al. (2014). Paired-end DNA sequence 

libraries were generated following the standard HGSC protocol (https://hgsc.bcm.edu/sites/

default/files/documents/Illumina_Barcoded_Paired-End_Capture_Library_Preparation.pdf). 

Exome capture was performed by pooling 4 samples together into pre-pooled libraries and 

then capturing with the HGSC VCRome 2.1 capture reagent (42Mb, NimbleGen). Library 

capture, amplification conditions, and quality control were identical to those described in 

Totoki et al. (2014). Sequencing was performed on the Illumina HiSeq 2000 platform with 

one pool perlane following standard protocols identical to those in Totoki et al. (2014). 

Sequence runs generated between 300–400 successful reads per lane.

Initial sequence analysis was performed by aligning reads to the human genome reference 

sequence hg19 using the Mercury Pipeline (https://www.hgsc.bcm.edu/software/mercury) 
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exactly as described by Totoki et al. (2014). Once aligned and following base quality 

recalibration and indel realignment via the Mercury Pipeline, sequence alignment files 

(BAM files) were checked for contamination by testing the concordance between SNPs in 

the tumor/normal pairs to the genotypes in the matching SNP Array from the Broad Institute 

copy number platform. Samples with greater than 5% contamination are annotated and not 

used for subsequent analyses. Sequence coverage averaged 100× for the cohort, with >90% 

of target bases covered at 20× or greater in all samples. All BAM files were submitted to 

CGHub.

Validation Sequencing: Validation sequencing was performed using the Ion Proton 

platform targeting 3865 amplicons using the AmpliSeq targeted sequencing approach 

exactly as described by Totoki et al. (2014). Library construction, sequence generation, 

sequence alignment, and validation criteria were identical to those used by Totoki et al. 
(2014).

Multi-Center Mutation Calling: Mutations were called by five production or analysis 

centers within the TCGA Network: Human Genome Sequencing Center (Comprehensive 

And Reproducible Nucleotide Alterations in Cancer–CARNAC), UCSC (RADIA), BCGSC 

(Strelka), MD Anderson-Baylor College of Medicine (MuSE), and Broad Institute (MuTect) 

as described below.

HGSC CARNAC: Mutations were called as described for the HGSC in Totoki et al. (2014).

UCSC RADIA: Single nucleotide somatic mutations were identified by RADIA (RNA AND 

DNA Integrated Analysis) (Radenbaugh et al., 2014), a method that combines the patient 

matched normal and tumor DNA whole exome sequencing (DNA-WES) with the tumor 

RNA sequencing (RNA-Seq) for somatic mutation detection (software available at: https://

github.com/aradenbaugh/radia/). The inclusion of the RNA-Seq data in RADIA increases the 

power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating 

the DNA and RNA, mutations that would be missed by traditional mutation calling 

algorithms that only examine the DNA can be rescued back. RADIA classifies somatic 

mutations into 3 categories depending on the read support from the DNA and RNA: 1) DNA 

calls – mutations that had high support in the DNA, 2) RNA Confirmation calls – mutations 

that had high support in both the DNA and RNA, 3) RNA Rescue calls – mutations that had 

high support in the RNA and weak support in the DNA. Here RADIA identified 32,113 

DNA mutations, 6,315 RNA Confirmation mutations, and 741 RNA Rescue mutations.

BCGSC Strelka (Saunders et al., 2012) (v1.0.6) was used to identify somatic single 

nucleotide variants, and short insertions and deletions from the TCGA LIHC exome dataset. 

All parameters were set to defaults, with the exception of “isSkipDepthFilters”, which was 

set to 1 in order to skip depth filtration given the higher coverage in exome datasets. 202 

pairs of libraries were analyzed. When a blood sample was available, it served as the 

matched normal specimen; otherwise, the matched normal tissue was used. The variants 

were subsequently annotated using SnpEff, and the COSMIC (v61) and dbSNP (v137) 

databases.
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MD Anderson- Baylor College of Medicine. MuSE: We developed a novel approach to 

mutation calling based on the Markov substitution model for molecular evolution, which 

models the evolution of the reference allele to the allelic composition of the matched tumor 

and normal tissue at each genomic locus. To improve overall accuracy, we further adopt a 

sample-specific error model to identify cutoffs, reflecting the variation in tumor 

heterogeneity among samples.

Broad Institute: The Firehose pipeline (http://www.broadinstitute.org/cancer/cga/Firehose) 

performed additional quality control (QC) on the BAM files, mutation calling, small 

insertion and deletion detection, and annotation of point mutations and indels as follows:

1. QC on BAM files: The sample cross-individual contamination levels were 

estimated using the ContEst program (Cibulskis et al., 2011). Tumor normal 

pairs of samples with contamination less than 4% were used further downstream 

for analysis.

2. Somatic mutation Calling and Significantly Mutated Genes: The MuTect 

algorithm (Cibulskis et al., 2013) was used to detect somatic single nucleotide 

variants (SSNVs).

3. Small insertion and deletion detection: The Indelocator algorithm (https://

www.broadinstitute.org/cancer/cga/indelocator) was used to detect small indels.

4. Mutations and indels annotations: Point mutations and indels detected by 

respective MuTect and Indelocator were annotated using utility named Oncotator 

(Ramos et al., 2015). Oncotator mapped somatic mutations to respective genes, 

transcripts, and other relevant features. These annotations correspond to the 

fields in the Mutation Annotation Format (MAF) files version 2.4: (https://

wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)

+Specification).

Integrating Mutation Calls: Mutation calls from each center were integrated by matched 

allele aggregation into a multi-center MAF file. The variant and reference coverages for each 

allele were normalized by direct lookup in the respective BAM files for the samples. 

Coverages from RNA data were also added for matched samples. Annotation was performed 

using the CARNAC annotation tools.

The final mutation set validation criteria were:

1. Accept Tumor validation based on RNA data if greater than two variant alleles 

observed in RNA and RNA variant allele fraction was greater than 1%.

2. Accept Normal validation based on RNA data if greater than two variant alleles 

observed in RNA and RNA variant allele fraction was greater than 0.2%.

3. Accept Tumor validation based on Proton data if greater than two variant alleles 

observed in validation sequence and validation variant allele fraction was greater 

than 1%.
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4. Reject Tumor validation based on Proton data if allele not Accepted by Proton 

data and the binomial test of allele fraction for validation is significantly less 

than the allele fraction for the primary sequence.

5. Accept Normal validation based on Proton data if greater than two variant alleles 

observed in validation sequence and validation variant allele fraction was greater 

than 0.2%.

6. Accept Tumor validation if the allele was called by the Ion Variant Caller in 

tumor.

7. Accept Normal validation if the allele was called by the Ion Variant Caller in 

normal. 8. Final mutation and validation calls were made by integrating the 

above cases (1–7).

Mutation Significance Analysis

MutSig Suite: MutSig 2CV v3.1 (Lawrence et al., 2014), was applied to the consensus 

mutation call set filtered by the DNA allelic fraction >= 0.025, to identify 12 significantly 

mutated genes (Figure 1), including TP53, CTNNB1, ALB, RB1, AXIN1, BAP1, ARID1A, 
TSC2, IL6ST, APOB, HNF1A, and RPS6KA3 (False Discovery Rate < 0.2). A list of all 

non-silent gene mutations is shown in Supplemental Table 2A.

Inactivating SMG Analysis: For inactivating SMG analysis the raw MAF file was first 

filtered using the following filtering strategy; 1) variants were removed if they appeared in a 

cohort of normal samples, 2) variants were removed if they were observed greater than 2 

times in the matched normal sample, had a variant allele fraction less than 0.04, if the gene 

had greater than 3 variants in the matched sample, or if the base coverage of the normal 

sample was less than 6. From the filtered data, we compared the rate of inactivating variants 

(nonsense, frame-shift, splice-site) to all other variation. We report the Chi-squared and 

Binomial test p-values for the difference in the ratio of inactivating variation in each gene 

compared with the background rate of the entire cohort (Supplemental Table 2B).

TERT Promoter Sequencing: TERT promoter sequencing was performed by the Sanger 

sequencing method exactly as described by Totoki et al. (2014). Two amplicons were 

attempted for each subject and the subject was considered to harbor a TERT promoter 

mutation if either amplicon generated a positive SNP call. Both automated (via 

SNPDetector) and manual calling were employed. Cases that failed in amplicon generation 

are encoded as NA for mutation status of the TERT-promoter. Samples with TERT-promoter 

status are present in Supplemental Table 3.

Mutation Signature Analysis: The mutation signatures discovery is a process of de-

convoluting cancer somatic mutations, stratified by mutation contexts or biologically 

meaningful subgroups, into a set of characteristic patterns (signatures) and inferring the 

contributions of discovered signature activity across samples. The common classification of 

SNVs is based on six base substitutions within the tri-nucleotide sequence context including 

the bases immediately 5′ and 3′ to each mutated base. Six base substitutions (C>A, C>G, 

C>T, T>A, T>C, and T>G) with 16 possible combinations of neighboring bases result in 96 

et al. Page 20

Cell. Author manuscript; available in PMC 2018 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



possible mutation types. Thus the input data for the mutation signature discovery is given as 

96 by M mutation matrix (M= # of sample). Here we applied the Bayesian non-negative 

matrix factorization algorithm (BayesNMF) (Kasar et al., 2015) to infer the number of 

mutational signatures and their sample-specific contributions. The mutation count matrix 

was ingested as an input for the BayesNMF and factored into two matrices, W′ (96 by K) 

and H′ (K by 2M), approximating X by W′H′. Out of 50 Bayesian NMF runs with a half-

normal prior for W′ and H′ seven runs converged to the 2-signature solution, while 43 runs 

converged to the 3-signature solutions. We used the 3-signature solution (K=3) in 

downstream analyses (Sig A, Sig B, and Sig C in Supplemental Figure 1a).

To enumerate the number of mutations associated with each mutation signature we 

performed a scaling transformation, X ~ W′H′ = WH, W = W′U−1 and H= UH′, where U 
is a K by K diagonal matrix with the element corresponding to the 1-norm of column vectors 

of W’, resulting in the final signature matrix W and the activity matrix H. Note that the kth 

column vector of W (wk) represents a normalized mutability of 96 tri-nucleotide mutation 

contexts in the kth signature and the kth row vector of H (hk) dictates the estimation of 

mutations associated to the kth signature across samples.

We used cosine similarity to compare our three signatures with thirty signatures (http://

cancer.sanger.ac.uk/cosmic/signatures) previously reported. Signature A of this study 

corresponds most closely with published signature 22 and B with 24. A/22 is associated with 

exposure to aristolochic acid (AA) and B/24 with exposure to Aflatoxin B1 (AFB1). The 

etiology of signature C, which corresponds to published signature 5 is unknown.

To identify samples with a significant enrichment of the activity of each mutational process 

we performed a hierarchical clustering of a normalized signature activity (Supplemental 

Figure 1B) using the standard R package with a “Euclidean” distance and a “ward.D” 

linkage option. Nine samples (Red in Supplemental Figure 1a) were tightly clustered with a 

significantly higher activity of Sig A (aristolochic acid). Twenty-five samples (Blue in 

Supplemental Figure 1B) were clustered together with the increased activity of Sig B 

(aflatoxin B1). Interestingly, six of the top seven samples with the highest activity of Sig B 

were the same as the AFB1-affected samples identified by the independent mutation 

signature analysis for the 198 TCGA samples.

The enrichment analysis of splice site mutations on nine samples with a high activity of 

aristolochic acid (AA) signature (Supplemental Figure 1b) and aflatoxin B1 (AFB1) 

mutations in TP53 R249S mutant samples (Supplemental Figure 1c) was accomplished by 

two-sided Wilcoxon rank-sum tests.

Contributors: Kyle Covington, Jaegil Kim, Eve Shinbrot, Liu Xi, Amie Radenbaugh, Yu 

Fan, Wenyi Wang, Katayoon Kasaian, Carrie Cibulskis, Juok Cho.

Identification of Pathogens

Microbial detection in RNA-Seq data

BioBloom Tools – BC Cancer Agency: Our microbial detection pipeline is based on 

BioBloomTools (BBT, v1.2.4.b1), which is a Bloom filter-based method for rapidly 
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classifying RNA-seq or DNA-seq read sequences (Chu et al., 2014). We generated 43 filters 

from ‘complete’ NCBI genome reference sequences of bacteria, viruses, fungi and protozoa, 

using 25-bp k-mers and a false positive rate of 0.02. We ran BBT in paired-end mode with a 

sliding window to screen FASTQ files from RNA-seq libraries (49-bp PE reads), and whole 

exome libraries (49-bp PE reads). In a single-pass scan for each library, BBT categorized 

each read pair as matching the human filter, matching a unique microbial filter, matching 

more than one filter (multi-match), or matching neither human nor microbe (no-match). For 

each filter, we then calculated a reads-per-million (RPM) abundance metric as: We applied a 

threshold of 2 RPM for identifying samples that were positive for hepatitis B.

PathSeq - Broad Institute: The PathSeq algorithm (Kostic et al., 2011) was used to perform 

computational subtraction of human reads, followed by alignment of residual reads to a 

combined database of human reference genomes and microbial reference genomes (which 

includes but is not limited to Hepatitis B virus (HBV), Hepatitis C Virus (HCV) genomes), 

resulting in the identification of reads mapping to HBV and HCV genomes in RNA 

sequencing data.

Subjects were classified as HBV-positive by RNA sequencing if at least 1 HBV read in 1 

million human reads were present; otherwise, subjects were classified as HBV-negative. In 

addition, subjects were classified as HCV-positive by RNA sequencing if at least 1 HCV 

reads in 1 million human reads were present; otherwise, subjects were classified as HCV-

negative.

Using PathSeq, human reads were subtracted by first mapping reads to a database of human 

genomes using BWA (version 0.6.1), Megablast (version 2.2.23), and Blastn (version 

2.2.23). Only sequences with perfect or near perfect matches to the human genome were 

removed in the subtraction process. To identify HBV/HCV reads, the resultant non-human 

reads were aligned with Megablast to a database of microbial genomes that includes 

multiple HBV and HCV reference genomes. HBV/HCV reference genomes were obtained 

from the NCBI nucleotide database (downloaded in June 2012).

Mayo Clinic: To identify viral insertions in these LIHC TCGA DNA-seq and RNA-seq 

samples, we implemented a workflow with BWA-mem that aligns pair-end reads to viral 

genomes. An in-house database of viral genomes was built from NCBI RefSeq viral 

sequences. A set of custom scripts was written to identify reads pairs where one read 

mapped to the human genome and the second read mapped to a viral genome. The workflow 

includes the following steps:

a. Read pairs with at least one read unaligned to the reference genome were 

extracted from the TCGA GRCh37 aligned BAM files for each sample.

b. The extracted read pairs were re-aligned to the human genome using BWA-mem. 

Read pairs where both reads mapped to the human genome were filtered out.
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c. The remaining reads were aligned to the viral genomes in our database using 

BWA-mem.

d. Concordant reads that mapped to viral genomes were extracted to compute 

coverage. Discordant and, if available, softclipped read pairs where only one 

mate aligned to the human genome were combined and clustered based upon 

their proximity within the human genome. The cluster cutoff was set to the 

average insert size of the library. Each cluster was reported as one viral insertion 

event. The softclipped reads were further used to provide a more precise genomic 

location of the insertion.

Finally, insertion events with less than 10 supporting reads were filtered out before visually 

curating the remaining events using IGV.

Consensus virus calls: We deemed a sample positive for Hepatitis B or C if the calls from 

Broad, BC and Mayo were all above their respective thresholds, or if the clinical data from 

the tissue source site identified the sample as Hepatitis positive. We chose to maintain the 

clinical verdict even in cases for which no HBV or HCV was detected by computational 

methods due to the potential for the virus to have cleared spontaneously or in response to 

antiviral therapy before the onset of cancer. Using the thresholds determined by each center, 

44 tumors and 8 adjacent normals were identified as HBV positive, while 31 tumors and 5 

adjacent normals were deemed HCV positive. In every case where an adjacent normal 

sample was identified as HBV or HCV positive, the matched tumor was also positive.

Viral integration sites inferred from RNA-Seq data

BC Cancer Agency: To detect genomic integration of specific viruses we performed de novo 

assembly of RNA-seq and DNA-seq sequence data with ABySS v1.3.4 (Simpson et al., 

2009), using for each library the reads classified by BBT as human, the virus, multi-match, 

and no match. We then merged the k-mer assemblies for each library with Trans-ABySS 

v1.4.8 to generate the working contig set. We re-ran BBT on these contigs, applying only 

human and specific virus filters, identifying contigs that matched to both filters. We 

identified any integration breakpoints in such multi-matched contigs by using BLAT v34 to 

align each contig to the human GRCh37/hg19 reference sequence, and to virus reference 

sequences. We retained contig alignments in which: a) the aligned human and viral 

sequences summed to at least 90% of the contig length, and b) the human and viral aligned 

overlapped by less than 50%. Human breakpoint coordinates were annotated against RefSeq 

and UCSC (Kuhn et al., 2013) gene annotations (downloaded from the UCSC genome 

browser on 30-Jun-2013). Breakpoints that had at least 3 spanning mate-pair reads or 5 

flanking mate-pair reads were considered potential integration sites.

We identified 27 tumors and 7 adjacent normals as having at least one HBV integration 

event. In contrast, we detected no HCV integration events. HBV integrated into the human 

genome in approximately 77% of the samples in which HBV was detectable. In two 

additional samples, TCGA-CC-A3MA and TCGA-ED-A7PZ, an integration event was 

detected despite HBV being below threshold. The results are summarized in Supplemental 

Table 5B.
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Broad Institute: An HBV-positive sample was considered integration positive if there were 

at least 5 spanning read pairs or 10 flanking reads supporting an integration event. In case of 

HBV-positive, flanking read pairs were defined as having one end of the paired-end read 

mapped to the HBV genome and its mate pair mapped to the human genome. Spanning 

reads were defined as having one end of the paired end read spanning the integration 

junction and its mate pair mapped to either the human or HBV genome. Once HBV reads 

were obtained, we extracted all mate pairs and used Tophat-2.0.8 (Trapnell et al., 2009) with 

fusion option enabled to map these paired end reads to a combined database containing the 

human genome and an HBV genome. Next, spanning reads and flanking reads are identified 

from the aligned BAM file.

Human genes involved in the integration are identified using the breakpoint coordinates 

based on RefSeq and UCSC gene annotations (last modified on 30-Jun-2013) from the 

UCSC genome browser. Similar approach is followed for identification of HCV integration 

from RNAseq data. These results are summarized in Supplemental Table 5B.

Contributors: Reanne Bowlby, Sara Sadeghi, Karen Mungall Chandra Sekhar Pedamallu, 

Akinyemi I Ojesina, Matthew Meyerson, Daniel O’Brien, Jean-Pierre Kocher, Betty L. 

Slagle, Kyle Covington, Lawrence A. Donehower.

Gene Fusion Detection

BCM HGSC: TCGA RNA sequencing data (RNA FastQ files) were downloaded for the 196 

patients on this freeze list set from CGHub. deFuse version 0.6.1 (McPherson et al., 2011) 

with default settings detected a large list of candidate fusion genes. The deFuse results were 

filtered by removing events identified as “read through” transcription of adjacent genes, 

requiring coding regions, in-frame (ORF) genes and samples with a defuse confidence score 

of >80%. Our sample set included 11 tissue adjacent normal (TAN) samples; any fusions 

that were also identified in the TAN sample set were removed from analysis. To characterize 

the resultant candidate fusion genes we did the following checks:

• Each read spanning a fusion junction was aligned to the reference genome using 

BLAT in the UCSC Genome Browser to confirm their map locations. The 

fusions that mapped with 100% identity to each part of the identified fusion 

(gene1 or gene2) were selected for further analysis. Genes that mapped to 

multiple locations were discarded.

• Each RNA BAM from candidate fusion genes was examined in IGV, to verify the 

presence of stacked soft clipped reads and changes in coverage at the identified 

fusion breakpoints. The sequence of each soft clipped read was brought into the 

UCSC genome browser and mapped using BLAT.

• The CBio data portal (http://www.cbioportal.org/) was used to examine copy 

number data and gene expression data for the gene partners in each fusion 

identified.

• We also utilized copy number data, loading a given patient’s Affymetrix 6.0 .seg 

files into IGV in tandem with their RNA Seq BAMS, to evaluate the DNA 

et al. Page 24

Cell. Author manuscript; available in PMC 2018 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cbioportal.org/


coverage along with soft clipped reads at the identified the mRNA break points. 

When whole genome sequence BAMS were available for a given patient, we also 

included those in the evaluation.

MD Anderson: We used the Pipeline for RNAseq Data Analysis (PRADA) to preprocess 

RNA Seq data and detect gene fusions (Torres-Garcia et al., 2014). PRADA aligns short 

reads to a composite reference database composed of whole genome sequence (hg19) and 

transcriptome sequence (Ensembl64). By default, PRADA uses two criteria to select 

candidate fusions:

1. a minimum of two discordant read pairs mapping to a candidate gene pair, i.e. 

two distinct protein coding genes;

2. a minimum of one junction spanning read mapping to a hypothetical junction 

constructed from the candidate gene pair.

To construct a hypothetical junction, we used 40 base pairs from either side of two 

connecting exons, considering the RNAseq read length is 48 base pairs in this data set. All 

junction spanning reads and discordant reads allowed one mismatch. From these candidate 

fusions, we filtered out those fusions that had significant sequence similarity (BLASTN, 

Expect value required to be >0.01). We then calculated the transcriptional allelic fraction 

(TAF) for each fusion partner. TAF was defined as the fraction of fusion-associated junction 

spanning reads over all reads that spanned the involving exon boundaries. We required the 

minimum TAF to be 0.1 for at least one partner gene. Six fusions were included in the final 

list for their established roles in this cancer type or other cancers despite their lower TAFs. 

These six fusions included two TCF7L2-VTI1A fusions, three DNAJB1-PRKACA fusions 

and one FGFR3-TACC3 fusion. Prediction of fusion functional consequence (in-frame, out-

of-frame, UTR-CDS, etc.) was performed by PRADA using the Ensembl64 defined gene/

transcript model. Only fusions that involved coding regions (in-frame and out-of-frame) 

were retained for further analysis. More details of the PRADA pipeline were described 

(http://sourceforge.net/projects/prada/).

We analyzed 196 samples from the freeze list, from which we detected a total of 236 

fusions. The number of fusions in each case ranged from 0 to 18. We compared fusions to a 

list of kinases from Uniprot (http://www.uniprot.org) and cancer genes from the Cancer 

Gene Census. Out of the 236 fusions 26 involved a kinase gene, and 27 involved a cancer 

gene. We further aligned the fusions to copy number data. We were able to find a copy 

number breakpoint for 201 fusions at the vicinity of 500 Kb using the copy number cutoff 

0.1 (log ratio). One in-frame SLC12A7-TERT fusion, which had corroborating exon 

expression pattern and DNA breakpoints near both partner genes.

Mayo Clinic: We converted the TCGA LIHC RNASeq BAM files into FASTQ files and 

realigned them using the Mayo Analysis Pipeline for RNA Seq (MAP-RSeq) (http://

bioinformaticstools.mayo.edu/research/maprseq/). MAP-RSeq uses tophat, a splice-junction 

aware aligner to map paired-end RNA sequencing reads. Tophat uses bowtie, a memory 

efficient short read aligner, to quickly map reads to a reference genome and transcriptome, 

and then uses those alignments to identify known and novel transcript elements within each 
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sample. MAP-RSeq reports 2 fusion events lists, one that displays all possible fusion events 

detected by tophat-fusion, and a second enriched in confident fusion events using tophat-

fusion’s default filtering strategy. Tophat-fusion’s default filtering strategy involves 

evaluating the number of supporting reads, the genes involved, the mapping uniqueness, and 

the dissimilarity of the sequence around the fusion breakpoints to detect credible fusion 

events. The list that includes all possible fusion events was combined with fusions reported 

by other institutions to establish a consensus set of fusions. The filtered fusions list was used 

to suggest events for further validation. All fusion events were bioinformatically visualized 

and curated with IGV and circos plots.

Blueprint Medicines: Gene fusions in the LIHC dataset were discovered using methods 

previously described (Stransky et al., 2014). Briefly, the RNAseq fastq files were 

downloaded from CGHub and aligned using the STAR algorithm v2.3.1q (Dobin et al. 2012. 

doi:10.1093/bioinformatics/bts635) with options described previously. Version hg19 of the 

human genome, as well as transcriptome and splice junction annotations from the Gencode 

project v17 were provided to the STAR algorithm as an alignment reference. Next, fusions 

between any two genes were identified based on the number of chimeric reads (sequencing 

paired ends mapping to different genes) and split reads (spanning a fusion breakpoint), 

concordance between the strands of the reads and the genes involved in the putative fusion, 

and a number of filtering criteria to flag false positive and non-functional fusions. In 

addition, recurrent kinase fusions observed in a panel of 600 normal samples from TCGA 

and 1,800 normal samples from the Genotype–Tissue Expression (GTEx) project were also 

excluded from further analysis. Finally, all recurrent kinase fusions (n≥2) were manually 

reviewed to identify putative oncogenic drivers with distinctive characteristics of functional 

kinase fusions. In particular, the following features were required: presence of an intergenic 

junction between two exons, a predicted in-frame coding sequence and conservation of the 

complete kinase catalytic domain. Conversely, we excluded false positives from further 

analysis according to two main criteria: the presence of a homologous or repetitive sequence 

shared by the two fusion partners causing an alignment artifact, or the very high expression 

of one or both fusion partners.

Research Center for Advanced Science and Technology (RCAST): Recent observations of 

structural rearrangements involving TERT prompted us to specifically investigate TERT 

mRNA for evidence of fusion transcripts. We extracted all reads that mapped in 5p13.33 

(chr5:1–2Mb) from the RNA-seq BAM files. Within this interval we searched for any 

paired-end reads that mapped more than 100kb apart or mapped to other chromosomes. 

Anomalous read pairs, which aligned within 10kb of TERT were extracted from RNAseq 

BAM file, and assembled. TERT-fusion candidates found in four samples were manually 

checked in Integrative Genomics Viewer (IGV).

Contributors: Eve Shinbrot, Frederick M. Lang, Siyuan Zheng, Roeland G.W. Verhaak, 

Daniel O’Brien, Jean-Pierre Kocher, Nicolas Stransky, Hiroyuki Aburatani, Yamamoto 

Shogo.

SNP-Based Copy Number Analysis—DNA from each tumor or germline sample was 

hybridized to Affymetrix SNP 6.0 arrays using protocols at the Genome Analysis Platform 
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of the Broad Institute as previously described (McCarroll et al., 2008). Briefly, from 

raw .CEL files, Birdseed was used to infer a preliminary copy number at each probe locus. 

For each tumour, genome-wide copy number estimates were refined using tangent 

normalization, in which tumour signal intensities are divided by signal intensities from the 

linear combination of all normal samples that are most similar to the tumour. This linear 

combination of normal samples tends to match the noise profile of the tumour better than 

any set of individual normal samples, thereby reducing the contribution of noise to the final 

copy-number profile. Individual copy-number estimates then underwent segmentation using 

Circular Binary Segmentation (Olshen et al., 2004). As part of this process of copy number 

assessment and segmentation, regions corresponding to germline copy-number alterations 

were removed by applying filters generated from either the TCGA germline samples from 

the ovarian cancer analysis or from samples from this collection. Segmented copy number 

profiles for tumour and matched control DNAs were analyzed using Ziggurat 

Deconstruction, an algorithm that parsimoniously assigns a length and amplitude to the set 

of inferred copy-number changes underlying each segmented copy number profile (Mermel 

et al., 2011). Significant focal copy number alterations were identified from segmented data 

using GISTIC 2.0 (Mermel et al., 2011). For copy number based clustering, tumours were 

clustered based on thresholded copy number at reoccurring alteration peaks from GISTIC 

analysis (all_lesions.conf_99.txt file). Hierarchical clustering was done in R based on 

Euclidean distance using Ward’s method. Purity, ploidy and whole genome doubling 

estimates were calculated using the ABSOLUTE algorithm (Carter et al., 2012).

Contributors: Andrew D. Cherniack, Bradley A. Murray, Juliann Shih, Carrie Cibulskis.

DNA Methylation

Assay platform: DNA methylation data were generated using the Illumina Infinium DNA 

methylation platform (Bibikova et al., 2011), HumanMethylation450 (HM450). The HM450 

assay analyzes the DNA methylation status of up to 482,421 CpG and 3,091 non-CpG 

(CpH) sites throughout the genome. It covers 99% of RefSeq genes with multiple probes per 

gene and 96% of CpG islands from the UCSC database and their flanking regions. The assay 

probe sequences and information for each interrogated CpG site on Infinium DNA 

methylation platform are available from Illumina (www.illumina.com).

The DNA methylation score for each assayed CpG or CpH site is represented as a beta (β) 

value (β = (M/(M+U)) in which M and U indicate the mean methylated and unmethylated 

signal intensities for each assayed CpG or CpH, respectively. β-values range from zero to 

one, with scores of “0” indicating no DNA methylation and scores of “1” indicating 

complete DNA methylation. A detection P value accompanies each data point and compares 

the signal intensity difference between the analytical probes and a set of negative control 

probes on the array. Any data point with a corresponding P value greater than 0.05 is 

deemed not to be statistically significantly different from background and is thus masked as 

“NA” in the Level 3 data packages as described below. Further details on the Illumina 

Infinium DNA methylation assay technology have been described previously (Bibikova et 

al., 2011).
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Sample and data processing: We performed bisulfite conversion on 1μg of genomic DNA 

from each sample using the EZ-96 DNA Methylation Kit (Zymo Research, Irvine, CA) 

according to the manufacturer’s instructions. We assessed the amount of bisulfite-converted 

DNA and completeness of bisulfite conversion using a panel of MethyLight-based quality 

control (QC) reactions. All the TCGA samples passed our QC tests and entered the Infinium 

DNA methylation assay pipeline. Bisulfite-converted DNAs were whole-genome-amplified 

(WGA) and enzymatically fragmented prior to hybridization to BeadChip arrays. 

BeadArrays were scanned using the Illumina iScan technology to produce IDAT files. Raw 

IDAT files for each sample were processed with the R/Bioconductor package methylumi. 

TCGA DNA methylation data packages were then generated using the EGC.tools R package 

which was developed internally and is publicly available on GitHub (https://github.com/

uscepigenomecenter/EGC.tools).

TCGA Data Packages: The data levels and the files contained in each data level package 

are described below and are present on the TCGA Data Portal website (http://tcga-

data.nci.nih.gov/tcga/). Please note that as continuing updates of genomic databases and data 

archive revisions frequently become available, the data packages on TCGA Data Portal are 

updated accordingly.

Level 1 data contain raw IDAT files (two per sample) as produced by the iScan system and 

as mapped by the SDRF. These IDAT files were directly processed by the R/Bioconductor 

package methylumi. We provided a disease-mapping file (LIHC.mappings.csv) in the AUX 

directory to facilitate this process. Level 2 data contain background-corrected methylated 

(M) and unmethylated (U) summary intensities as extracted by the R/Bioconductor package 

methylumi. Detection P values were computed as the minimum of the two values (one per 

allele) for the empirical cumulative density function of the negative control probes in the 

appropriate color channel. Background correction was performed via normal-exponential 

deconvolution. Multiple-batch archives had the intensities in each of the two channels 

multiplicatively scaled to match a reference sample (sample with R/G ratio of the 

normalization control probes closest to 1.0). Level 3 data contain β-value calculations with 

annotations for HGNC gene symbol, chromosome, and genomic coordinates (UCSC hg19, 

Feb 2009) for each targeted CpG/CpH site on the array. Probes having a common SNP 

(Minor Allele Frequency > 0.01, per dbSNP build 135 via the UCSC snp135common track) 

within 10 bp of the interrogated CpG site or having a 15 bp from the interrogated CpG site 

which overlapped with a repetitive element (as defined by RepeatMasker and Tandem 

Repeat Finder Masks contained in the BSgenome.Hsapiens.UCSC.hg19 R package) were 

masked as “NA” across all samples, and probes with a detection P-value greater than 0.05 in 

a given sample were masked as “NA” on that array. Probes that were mapped to multiple 

sites on hg19 were annotated as “NA” for chromosome and 0 for CpG/CpH coordinate.

The following data archives were used for the analyses described in this manuscript.

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.1.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.2.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.3.13.0

et al. Page 28

Cell. Author manuscript; available in PMC 2018 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/uscepigenomecenter/EGC.tools
https://github.com/uscepigenomecenter/EGC.tools
http://tcga-data.nci.nih.gov/tcga/
http://tcga-data.nci.nih.gov/tcga/


jhu-usc.edu_LIHC.HumanMethylation450.Level_3.4.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.5.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.6.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.7.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.8.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.9.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.10.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.11.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.12.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.13.13.0

jhu-usc.edu_LIHC.HumanMethylation450.Level_3.14.13.0

Unsupervised clustering analysis: We removed probes which had any “NA”-masked data 

points and probes that were designed for sequences on X and Y chromosomes.

To capture cancer-specific DNA hypermethylation events, we first selected CpG sites that 

were not methylated in normal tissues (mean β-value <0.2). To minimize the influence of 

variable tumour purity levels on a clustering result, we dichotomized the data using a β-

value of >0.3 as a threshold for positive DNA methylation. The dichotomization not only 

ameliorated the effect of tumour sample purity on the clustering, but also removed a great 

portion of residual batch/platform effects that are mostly reflected in small variations near 

the two ends of the range of β-values. We also removed CpG sites that were methylated in 

leukocytes, a major source of contamination present in a tumour sample (mean β-value 

>0.3). We then performed unsupervised hierarchical clustering on 37,848 CpG sites that 

were methylated with that threshold in at least 5% of the tumours using a binary distance 

metric for clustering and Ward’s method for linkage. The cluster assignments were 

generated by cutting the resulting dendrogram. Figure 2a displays a heatmap of the original 

β-values for randomly selected 15,000 CpG sites used in the hierarchical clustering. The 

CpG sites were displayed based on the order of unsupervised hierarchal clustering of the β-

values using the Euclidean distance metric and Ward’s linkage method.

To investigate subgroups based on cancer-specific DNA hypomethylation, we first identified 

CpG sites that were highly methylated in normal tissues (mean β-value >0.8). We 

dichotomized the data using a β-value of <0.7 as a threshold for loss of DNA methylation. 

We then performed unsupervised hierarchical clustering based on CpG sites that had 

hypomethylation in at least 10% of the tumours. We identified three major clusters. The 

cluster assignments were generated by cutting the dendrogram. To a great extent, these three 

clusters correlated well with three molecular subtypes defined using iCluster (Supplemental 

Figure 3c). Of particular interest is approximately one-third of tumours (largely 

corresponding to iCluster 3) which appear to have an extreme DNA hypomethylation.
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Identification of epigenetically silenced genes: We first removed DNA methylation probes 

overlapping with SNPs, repeats or designed for sequences on X or Y chromosomes or non-

CpG sites. The remaining probes were mapped against UCSC Genes using the 

GenomicFeatures R/Bioconductor package. Probes that were located in a promoter region 

(defined as the 3 kb region spanning from 1,500 bp upstream to 1,500 bp downstream of the 

transcription start site) were identified. Level 3 mRNA expression data were log2 

transformed (log2 (RSEM+1)) and used to assess the gene expression levels associated with 

DNA methylation changes. DNA methylation and gene expression data were merged by 

Entrez Gene IDs. We used two different approaches to identify genes epigenetically silenced 

in HCC, as described below.

In the first method, we removed the CpG sites that were methylated in normal tissues (mean 

β-value >0.2). We then dichotomised the DNA methylation data using a β-value of >0.3 as a 

threshold for positive DNA methylation and eliminated CpG sites methylated in fewer than 

5% of the tumor samples. For each probe/gene pair, we applied the following algorithm: 1) 

organize the tumors as either methylated (β ≥0.3) or unmethylated (β <0.3); 2) compute the 

mean expression in the methylated and unmethylated groups; 3) compute the standard 

deviation of the expression in the unmethylated group. We then selected probes for which 

the mean expression in the methylated group was less than 1.64 standard deviations from the 

mean expression of the unmethylated group. We labeled each individual tumor sample as 

epigenetically silenced for a specific probe/gene pair if: a) it belonged to the methylated 

group and b) the expression of the corresponding gene was lower than the mean of the 

unmethylated group of samples. If there were multiple probes associated with the same 

gene, a sample that was identified as epigenetically silenced at more than half the probes for 

the corresponding gene was also labeled as epigenetically silenced at the gene level. The 

complete list of 171 genes identified as epigenetically silenced using this method is provided 

in Supplemental Table 4A.

In the second approach to identify genes silenced by DNA methylation, we applied a 

previously described method (Noushmehr et al., 2010). Briefly, Student’s t-tests for 

significant differences in DNA methylation between tumor and adjacent normal tissue were 

conducted across all CpG loci located in gene promoter regions. Separately, a t-test was used 

to identify genes that were expressed at significantly different levels between tumor and 

adjacent normal tissue. The resulting P values were corrected using the Benjamini-Hochberg 

procedure. We identified 132 genes significantly hypermethylated (FDR-adjusted P < 0.0001 

and mean β value difference >0.1) and down-regulated (FDR-adjusted P < 0.0001 and 

reduced more than twofold) in tumors. For each gene, we selected the DNA methylation 

probe with the greatest mean expression difference between methylated (β ≥0.3) and 

unmethylated (β <0.3) groups. We then estimated the frequency of epigenetic silencing for 

each gene by counting the number of tumors belonging to the methylated group.

CDKN2A (p16INK4A) epigenetic silencing: CDKN2A epigenetic silencing calls were made 

using the exon level RNA-seq data. CDKN2A DNA methylation status was assessed in each 

sample based on the probe (cg13601799) located in the p16INK4 promoter CpG island. 

p16INK4 expression was determined by the log2(RPKM+1) level of its first exon 

(chr9:21974403-21975038). The epigenetic silencing calls for each sample were made by 
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evaluating a scatter plot showing an inverse association between DNA methylation and 

expression.

Leukocyte Methylation Signature: The leukocyte methylation signature was calculated as 

described in Carter et al. (Carter et al., 2012).

Statistics: Statistical analysis and data visualization were carried out using the R/

Biocoductor software packages (http://www.bioconductor.org). Cancer-specific DNA 

methylation was assessed based on unpaired analyses, since matched normal tissues were 

available for fewer than 25% of the tumour samples.

Contributors: Toshinori Hinoue, Peter W. Laird.

miRNA sequencing—We generated microRNA sequence (miRNA-seq) data for 189 

tumor samples and 47 normals using previously described methods (Cancer Genome Atlas, 

2012). To identify miRs that were differentially abundant, we ran unpaired two-class 

SAMseq analyses, with an FDR threshold of 0.05. We assessed potential miRNA targeting 

for all 189 samples by calculating miR-mRNA Spearman correlations with MatrixEQTL 

v2.1.1, using gene-level normalized abundance RNAseq (RSEM) data from Firehose 

(gdac.broadinstitute.org). We calculated correlations with a P-value threshold of 0.05, then 

filtered the resulting anticorrelations at FDR<0.05. We then extracted miR-gene pairs that 

corresponded to functional validation publications reported by MiRTarBase v4.5, for 

stronger (luciferase reporter, qPCR, Western blot) and weaker experimental evidence types.

We identified groups of samples with similar abundance profiles using unsupervised non-

negative matrix factorization (NMF) consensus clustering of reads-per-million (RPM) data 

for the ~300 (25%) most-variant 5p or 3p miRBase v16 mature strands. We chose a 5-cluster 

solution based on the peaks of the cophenetic and average silhouette width scores.

Contributors: Reanne Bowlby, Gordon Robertson, Denise Brooks.

S8. mRNA Sequencing

Sequencing and quantification: One g of total RNA was converted to mRNA libraries 

using the lllumina mRNA TruSeq kit (RS-122-2001 or RS-122-2002) following the 

manufacturer’s directions. Libraries were sequenced 48×7×48bp on the Illumina HiSeq 

2000. FASTQ files were generated by CASAVA. RNA reads were aligned to the hg19 

genome assembly using MapSplice 0.7.4 (Wang et al., 2010). Gene expression was 

quantified for the transcript models corresponding to the TCGA GAF2.1 (http://tcga-

data.nci.nih.gov/docs/GAF/GAF.hg19.June2011.bundle/outputs/TCGA.hg19.June2011.gaf), 

using RSEM and normalized within-sample to a fixed upper quartile. For further details on 

this processing, refer to Description file at the DCC data portal under the 

V2_MapSpliceRSEM workflow (https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/

distro_ftpusers/anonymous/tumor/lihc/cgcc/unc.edu/illuminahiseq_rnaseqv2/rnaseqv2/

unc.edu_LIHC.IlluminaHiSeq_RNASeqV2.mage-tab.1.15.0/DESCRIPTION.txt). FASTQ 

and BAM files are at CGHUB (https://cghub.ucsc.edu). Quantification of genes, transcripts, 
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exons and junctions can be found at the TCGA Data Portal (https://tcga-data.nci.nih.gov/

tcga/).

mRNA expression clustering: Transcription levels quantified by RSEM were filtered to 

remove genes whose expression was quantified as zero by RSEM in more than 75% of the 

tumor samples, reducing the set of genes from 20,531 to 15,951. Gene quantifications were 

subsequently log2 transformed, with zero values set to missing. To identify genes whose 

expression was variable, the gene set was filtered to remove genes that demonstrated a 

standard deviation below 2.0 across all tumor samples, resulting in a set of 1,868 genes with 

high variability in expression. The log2 transformed expression values were then median 

centered prior to clustering analysis. Cluster analysis was performed using 

ConsensusClusterPlus (Wilkerson and Hayes, 2010), using agglomerative hierarchical 

clustering with a 1-Pearson correlation distances and resampling 80% of the samples for 

1000 repetitions. The optimal number of clusters was determined using the empirical 

cumulative distribution function plot.

Contributors: Eric Seiser, Katherine A. Hoadley.

Reverse-Phase Protein Array

RPPA experiments and data processing: Protein was extracted using RPPA lysis buffer 

(1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 150 mmol/L NaCl, 1.5 mmol/L MgCl2, 1 

mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% glycerol, 1 mmol/L 

phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and aprotinin 10 ug/mL) from human 

tumors and RPPA was performed as described previously (Hu et al., 2007). Lysis buffer was 

used to lyse frozen tumors by Precellys homogenization. Tumor lysates were adjusted to 1 

μg/μL concentration as assessed by bicinchoninic acid assay (BCA) and boiled with 1% 

SDS. Tumor lysates were manually serial diluted in two-fold of 5 dilutions with lysis buffer. 

An Aushon Biosystems 2470 arrayer (Burlington, MA) printed 1,056 samples on 

nitrocellulose-coated slides (Grace Bio-Labs). Slides were probed with 202 validated 

primary antibodies followed by corresponding secondary antibodies (Goat anti-Rabbit IgG, 

Goat anti-Mouse IgG or Rabbit anti-Goat IgG). Signal was captured using a 

DakoCytomation-catalyzed system and DAB colorimetric reaction. Slides were scanned in 

CanoScan 9000F. Spot intensities were analyzed and quantified using Microvigene software 

(VigeneTech Inc., Carlisle, MA), to generate spot signal intensities (Level1data).The 

software SuperCurveGUI (Hu et al., 2007), available at http://

bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate the EC50 values 

of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve (“supercurve”) 

was plotted with the signal intensities on the Y-axis and the relative log2 concentration of 

each protein on the X-axis using the non-parametric, monotone increasing B-spline model. 

During the process, the raw spot intensity data were adjusted to correct spatial bias before 

model fitting. A QC metric was returned for each slide to help determine the quality of the 

slide: if the score is less than 0.8 on a 0–1 scale, the slide was dropped. In most cases, the 

staining was repeated to obtain a high quality score. If more than one slide was stained for 

an antibody, the slide with the highest QC score was used for analysis (Level 2 data). Protein 

measurements were corrected for loading as described (Hu et al., 2007) using median 
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centering across antibodies (level 3 data). In total, 202 antibodies and 184 samples were 

used. Final selection of antibodies was also driven by the availability of high quality 

antibodies that consistently pass a strict validation process as previously described 

(Hennessy et al., 2010). These antibodies are assessed for specificity, quantification and 

sensitivity (dynamic range) in their application for protein extracts from cultured cells or 

tumor tissue. Antibodies are labeled as validated and use with caution based on degree of 

validation by criteria previously described (Hennessy et al., 2010).

Two RPPA arrays were quantitated and processed (including normalization and load 

controlling) as described previously, using MicroVigene (VigeneTech, Inc., Carlisle, MA) 

and the R package SuperCurve (version-1.3), available at http://

bioinformatics.mdanderson.org/OOMPA (Hu et al., 2007). Raw data (level 1), SuperCurve 

nonparameteric model fitting on a single array (level 2), and loading corrected data (level 3) 

were deposited at the DCC.

Data normalization: We performed median centering across all the antibodies for each 

sample to correct for sample loading differences. Those differences arise because protein 

concentrations are not uniformly distributed per unit volume. That may be due to several 

factors, such as differences in protein concentrations of large and small cells, differences in 

the amount of proteins per cell, or heterogeneity of the cells comprising the samples. By 

observing the expression levels across many different proteins in a sample, we can estimate 

differences in the total amount of protein in that sample vs. other samples. Subtracting the 

median protein expression level forces the median value to become zero, allowing us to 

compare protein expressions across samples.

Consensus clustering: We performed consensus hierarchical clustering on the RPPA data. 

1-Pearson correlation was used as the distance metric and Ward was used as a linkage 

algorithm. The consensus clustering method clustered the samples and counted how 

frequently two samples were in the same cluster. The bootstrap resampling analysis 

identified two robust sample clusters. A total of 184 samples and 202 antibodies were used 

in the analysis.

Contributors: Rehan Akbani, Shiyun Ling, Zhenlin Ju, Yiling Lu, Gordon Mills.

Integrative Clustering using iCluster—To understand the subgroups formed by 

integrating various molecular platforms of HCC, we utilized iCluster, which formulates the 

problem of subgroup discovery as a joint multivariate regression of multiple data types with 

reference to a set of common latent variables that represent the underlying tumor subtypes 

(Mo et al., 2013).

Data processing: Five molecular platforms, DNA copy number, DNA methylation, mRNA 

expression, miRNA expression and RPPA were provided as input to iCluster. Data were pre-

processed using the following procedures. Copy number alteration data was derived from 

CBS segmented data from the Affymetrix SNP6.0 platform, and further reduced to a set of 

non-redundant regions as described (Mo et al., 2013). For the methylation data (Illumina 

Infinium 450k arrays), the median absolute deviation was employed to select the top 1000 
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most variable CpG sites after beta-mixture quantile normalization. Methylation probes with 

>20% or more missing data and those corresponding to SNP and autosomal chromosomes 

were removed. For mRNA and miRNA sequence data, lowly expressed genes were excluded 

based on median-normalized counts, and variance filtering led to 1266 mRNAs and 258 

miRNAs for clustering. mRNA and miRNA expression features were log2 transformed, 

normalized and scaled before using as an input to iCluster.

Model selection: The optimal combination of clusters was determined minimizing a 

Bayesian Information Criterion (BIC). An ‘elbow’ point was noted at K=3, beyond which 

the BIC kept increasing and thus the 3-class solution was chosen.

Supplemental Figure 3C shows that the results were highly comparable for individual 

unsupervised clustering versus integrative clustering, indicating that the iCluster groupings 

represented the combined information of all platforms and lacked bias to a particular data 

type.

To compare the resultant iCluster groupings to the molecular subclasses developed by 

Hoshida (Hoshida et al., 2009), we assigned each of our patients to one of the three Hoshida 

subclasses using their transcriptional predictors. We found strong concordance between the 

iClusters and the Hoshida subclasses (see Supplemental Table 6).

Clinical Significance of iClusters: We sought to compare the TCGA iClusters to the 
subtypes found by Hoshida (Hoshida et al., 2009). To accomplish this, we used gene the 

expression signatures from Hoshida et al. and used K-mean clustering to group TCGA 

tissues and assigned membership of tissues according to subtype signature from the original 

study. Of 619 genes defined by Hoshida et al., expression of 610 genes were available in 

TCGA mRNA RNA-seq data. TCGA tissues were subgrouped by K-mean cluster (k = 3) 

and subclasses were assigned according to their expression patterns of subclass signature. 

These assignments stratified each iCluster grouping to one of 3 Hoshida et al. subclasses 

(Figure 3B).

To compare the TCGA iClusters to other published studies, we constructed a subtype 

prediction model using data from the TCGA cohort. For selection of subtype-specific gene 

sets, multiple 2-class t tests were performed for all possible combinations of the 3 subtypes. 

Gene expression differences were considered statistically significant if the P value was less 

than 0.001. Only genes with significant differences in expression in all 2 possible 

comparisons were considered subtype-specific genes, yielding 1442 significant genes for the 

iCluster1 subtype, 128 for the iCluster2 subtype, and 329 for the iCluster3 subtype. The top 

200 significant genes in iCluster1 and iCluster3 subtypes and 128 genes for the iCluster2 

subtype were further selected for development of the prediction model.

To develop a subtype prediction model, we adopted a previously developed model using 

Bayesian compound covariate predictor algorithms. Briefly, gene expression data for each 

subtype gene signature (i.e., the 200 significant genes for each subtype, as described above) 

were used to generate the Bayesian probability of each tissue sample belonging to a 
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particular subtype, generating 3 probability scores for each tumor. Samples in the test 

cohorts were assigned to 1 of the 3 subtypes according to the highest probability scores.

When the prediction model was applied to the MDACC cohort (n = 100), the iC1 subtype 

was associated with the worst prognosis and the iC2 and iC3 subtype was associated with 

the better prognosis (Figure 3C). Consistent with the MDACC, the iC1 subtype was 

associated with worst prognosis in NCI and Fudan cohorts (see Figure 3C).

Contributors: Arshi Arora, Ronglai Shen, Ju-Seog Lee.

IDH1/2 and IDH1/2-like Mutant Signature

IDH1/2 mutation signature: Four tissues (TCGA-CC-5260, TCGA-DD-A4NA, TCGA-

ED-A82E, and TCGA-G3-A25T) had mutations in IDH1 or IDH2 (two mutations in IDH1 
(R132C, R132G) and two mutations in IDH2 (R172K, R172S)). Two-sample t-test were 

carried out to uncover mRNAs differentially expressed between mutant and wildtype HCC 

tissues and identified 1009 genes (P < 0.0001). Interestingly, several tissues without IDH 

mutations had highly similar mRNA expression patterns (Figure 4A). When Bayesian 

compound covariate predictor (BCCP) algorithm (Radmacher et al., 2002) was applied to 

mRNA expression data to stratify the HCC tissues according to similarity to IDH mutation 

expression signature, 11 tissues without IDH1/2 mutations were classified into IDH-like 

subtype (Probability < 2 in range from 0 to 4 in log2 scale).

Stratification of TCGA HCC tissues by known molecular subtypes: To assess 

concordance between TCGA subtypes and previously identified molecular subtypes, HCC 

tissues in TCGA cohort were stratified according to molecular signatures from previous 

studies. Eight tumor-derived prognostic signatures were used to comparison: NCI 

proliferation (NCIP) signature (Lee et al., 2004), hepatic stem cells (HS) signatures (Lee et 

al., 2006), Seoul National University recurrence (SNUR) signature (Woo et al., 2008), 

cholangiocarcinoma-like (CCL) signature (Woo et al., 2010), hepatoblastoma 16 gene 

(HB16) signature (Cairo et al., 2008), Hippo pathway signature (Sohn et al., 2015), Hoshida 

signature (Hoshida et al., 2009), and 65-gene risk scores for recurrence (RS65) (Kim et al., 

2012). Except for Hoshida signature and RS65 scores, BCCP algorithm was applied to 

stratify TCGA tumor tissues by using previously defined gene sets and original gene 

expression data as training set. For stratification according to Hoshida signature, 

ConsensusClusterPlus package in R (v2.13.2) (Wilkerson and Hayes, 2010) was used to 

group tissues into three subtypes. RS65 risk scores were was calculated by using recurrence 

score algorithms as described in a previous study (Kim et al., 2012). Briefly, the risk score 

for each patient was derived by multiplying the expression level of a gene with its 

corresponding coefficient (Risk score = sum of Cox coefficient of Gene Gi X expression 

value of Gene Gi). The risk scores were rescaled 0 to 100 to make 0 as the lowest risk score. 

Patients were then stratified into two prognostic subtypes (high risk >40). Significance of 

association between molecular subtypes with IDH1/2 signature was estimated by χ2-test 

(Figure 4A).

IDH1/2 mutation signature and clinical significance: We next tested the clinical relevance 

of patients with IDH1/2 mutant and IDH-like HCC by applying IDH mutation expression 
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signature to gene expression data from three independent human HCC cohorts. Gene 

expression data of 100 HCC tumors generated from a University of Texas MD Anderson 

Cancer Center (MDACC) (Kim et al., 2012; Sohn et al., 2015) were first used for this 

analysis. Briefly, a BCCP algorithm was applied to generate probability of IDH mutation 

signature in each of the human HCC tumors as previously described (Lee et al., 2006; Sohn 

et al., 2015). When the HCC patients were dichotomized according to IDH1/2 mutation 

signature probability (Figure 4B), patients with IDH1/2 mutation signature (IDH-like) had 

significantly worse prognosis than those without IDH1/2 mutation signature (WT) (P = 1.0 × 

10−4, Figure 4C), strongly indicating that IDH1/2 mutations or their activation in HCC may 

dictate clinical outcome and is associated with poor prognosis. The significant association of 

IDH1/2 mutation signature with worse prognosis was further validated in two independent 

cohorts (National Cancer Institute (NCI) cohort and Fudan University cohort) (Figure 4C).

miR-122-5p in IDH-like/mut and miR-122 gene targets: We identified miRs that were 

differentially abundant between IDH-like/IDH-mutant samples and IDH wild type by 

nonparametric unpaired two-class analysis (Supplemental Figure 4a). Liver-specific 

miR-122-5p (Supplemental Figure 4B), which is known to be downregulated in HCCs, was 

strikingly less abundant in the IDH-like/IDH-mutant group (Supplemental Figure 4A). We 

assessed potential gene targets of this miR through miR-mRNA anticorrelations for n=189 

samples (FDR<0.05). The table shows the top 30 significant (FDR<0.05) anticorrelations 

with miR-122-5p that have been published as validated targets (Supplemental Figure 4D). 

We noted that miR-122-5p was strongly anticorrelated to PKM2, the M2 isoform of the 

pyruvate kinase (PK) (rho=−0.62).

Also of note is miR-885-5p with the second largest negative fold change. miR-885-5p is 

significantly anticorrelated with a number of functionally validated direct targets including 

CCDC46 (also known as MCM5) (rho=−0.40, FDR=1.2e-06), TP53 (rho=−0.30, 

FDR=6e-04), CDK2 (rho=−0.29, FDR=0.001) and CTNNB1 (rho=−0.27, FDR=0.003). 

Alternately, a number of miR-200 family members (miR-200a-5p, 200b-3p and 429) were 

significantly more abundant in the IDH-like/IDH-mutant group.

Contributors: Lisa Iype, Reanne Bowlby, Toshinori Hinoue, Jae-Jun Shim, Bo Hwa Sohn, 

Ju-Seog Lee.

p53 Signature—The TCGA HCC tumors with complete exome sequence data, copy 

number data, and expression data (n=191) were initially stratified by TP53 mutation status. 

All HCC with TP53 non-synonymous missense, frameshift, nonsense, splice sites, and 

indels (n = 60) were compared to HCC without TP53 mutations (n = 131) for RNA 

expression of 20,531 analyzed genes. An unpaired t test was then performed on the 

expression values for each gene in the two TP53 categories. T test p values for each gene 

were then ranked from lowest to highest and the gene list cross-indexed with a manually 

curated list of 155 experimentally validated p53 transcriptional target genes. We identified 

30 known p53 target genes that were significantly upregulated (p < 0.005) in WT TP53 HCC 

compared to MUT TP53 HCC. From these 30 genes we chose 20 p53 target genes that were 

known to be frequently upregulated in other cancer types with WT TP53 relative to MUT 
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TP53, as described in a previous publication(Parikh et al., 2014). These 20 genes composed 

the p53 signature.

The HCC were then segregated by p53 signature. To do this, the RNA expression values for 

each of the 20 target genes were ranked from 1 to 191 across the HCC samples. The 

expression ranks for all 20 target genes were then summed and the HCC ranked by 20 gene 

score totals. For many analyses, the HCC quartile with the lowest summed scores (low p53 

signature) were compared to the quartile with the highest summed scores (high p53 

signature). The ranking of the HCC by signature score and expression of each of the p53 

target genes is shown in Figure 5A. We also examined 10 p53 repressed target genes for 

each of the HCC and the relative expression levels of these 10 genes are also shown in 

Figure 5a.

For the log-rank survival analyses in Supplemental Figure 5 we utilized the available 

followup survival data on the TCGA HCC dataset and stratified the HCC by high and low 

p53 signature quartiles and an intermediate quartile composed of the second and third 

ranked p53 signature quartiles. The same analysis was performed in three external cohorts: a 

242 HCC patient cohort from Fudan, China; a 100 HCC patient cohort from M.D. Anderson 

Cancer Center; a 113 HCC patient cohort from the National Cancer Institute.

To examine the association of p53 signature status and molecular/clinical correlates we 

performed unpaired t tests comparing the high and low p53 signature quartile values that had 

parameters measured by continuous variables (e.g. recurrence risk score, MDM4 expression, 

MDM4 copy number). For discrete variables we used a chi-square test to compare the values 

in the high and low p53 signature quartiles (e.g. ploidy, HBV status, tumor grade). P values 

are shown for individual clinical and molecular parameters at the top of Figure 5A.

Contributor: Lawrence A. Donehower.

Pathway-Associated High Impact Gene Mutations—For all mutations in the HCC 

cohort, the Evolutionary Action (EA) method1 was applied to predict the functional impact 

of missense mutations. Nonsense mutations received a heuristic score of maximal EA 

impact. To identify individual genes with a strong EA mutational bias, we compared the 

distribution of each gene’s EA scores to that of the cancer as a whole using a one-sided two-

sample Kolmogorov Smirnov test. Genes with an FDR-corrected q-value<0.05 were deemed 

significant single-gene results.

We used the Reactome pathway database (v49) to define groups of functionally related 

genes. Reactome is hosted by the European Bioinformatics Institute, encompasses 7,498 

genes across 1580 pathways, and represents high-quality, manually-curated pathway 

information. Using all mutated genes that were not significant in single-gene analysis, we 

identified for each Reactome pathway the set of genes that maximized bias toward high EA 

mutations using leave-one-out analysis. Sets that exhibited significant bias (q<0.05) after 

FDR correction and were also more significant than at least 95% of 1,000 size-matched 

pathway simulations were considered to be of interest. Sets of interest were then ranked by 
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their fold improvement over the threshold set by the simulations (Supplemental Figure 7, 

Supplemental Table 7).

Contributors: Amanda Koire, Panagiotis Katsonis, Teng-Kuei Hsu, Olivier Lichtarge.

Immune Signature—The normalized RNA-seq gene expression data and the 

CIBORSORT cellular composition data was downloaded from TCGA Synapse 

(Syn4976369 and Syn7337221, respectively). The unsupervised hierarchical clustering of 

gene expression was done using the Next-Generation (Clustered) Heat Maps (NG-CHM, 

http://bioinformatics.mdanderson.org/chm).

Contributor: Linghua Wang.

Interactive Exploration—To gain greater insight into the development and progression of 

hepatocellular carcinoma, we have integrated all of the data types produced by TCGA and 

described in this paper into a single “feature matrix”. From this single heterogeneous 

dataset, significant pairwise associations have been inferred using statistical analysis and can 

be visually explored in a genomic context using Regulome Explorer, an interactive web 

application (http://explorer.cancerregulome.org). In addition to associations that are inferred 

directly from the TCGA data, additional sources of information and tools are integrated into 

the visualization for more extensive exploration (e.g., NCBI Gene, miRBase, the UCSC 

Genome Browser, etc).

Feature Matrix Construction: A feature matrix was constructed using all available clinical, 

sample, and molecular data for 196 unique patient/tumor samples. The clinical information 

includes features such as age and tumor size; while the sample information includes features 

derived from molecular data such as single-platform cluster assignments. The molecular data 

includes mRNA and microRNA expression levels (Illumina HiSeq data), protein levels 

(RPPA data), copy number alterations (derived from segmented Affymetrix SNP data as well 

as GISTIC regions of interest and arm-level values), DNA methylation levels (Illumina 

Infinium Methylation 450k array), and somatic mutations. For mRNA expression data, gene 

level RSEM values from RNA-seq were log2 transformed, and filtered to remove low-

variability genes (bottom 25% removed, based on interdecile range). For miRNA expression 

data, the summed and normalized microRNA quantification files were log2 transformed, and 

filtered to remove low-variability microRNAs (bottom 25% removed, based on interdecile 

range). For methylation data, probes were filtered to remove the bottom 25% based on 

interdecile range. For somatic mutations, several binary mutation features indicating the 

presence or absence of a mutation in each sample were generated. Mutation types 

considered were synonymous, missense, nonsense and frameshift. Protein domains 

(InterPro) including any of these mutation types were annotated as such, with nonsense and 

frameshift annotations being propagated to all subsequent protein domains.

Pairwise Statistical Significance: Statistical association among the diverse data types in 

this study was evaluated by comparing pairs of features in the feature matrix. Hypothesis 

testing was performed by testing against null models for absence of association, yielding a 

p-value. P-values for the association between and among clinical and molecular data types 
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were computed according to the nature of the data levels for each pair: categorical vs. 

categorical (Chi-square test or Fisher’s exact test in the case of a 2×2 table); categorical vs. 

continuous (Kruskal-Wallis test) or continuous vs. continuous (probability of a given 

Spearman correlation value). Ranked data values were used in each case. To account for 

multiple-testing bias, the p-value was adjusted using the Bonferroni correction.

Exploring significant feature associations: Regulome Explorer allows the user to 

interactively explore significant associations between various types of features – associations 

between molecular features (like methylation and gene expression), associations between 

molecular features and derived numeric features (like RS65 Score), and associations 

between molecular features and categorical features such as clinical features or clusters 

derived from prior analysis (like iCluster).

Contributors: Lisa Iype, Sheila M. Reynolds.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification methods and statistical analysis methods for each of the various data 

platforms and for integrated analyses are described and referenced in their respective 

Method Detail subsections.

DATA AND SOFTWARE AVAILABILITY

The TCGA HCC (LIHC) clinical data and raw data from the individual platform data (DNA 

exome sequencing data, RNA expression data, miRNA expression data, DNA methylation 

data, copy number data, and RPPA proteomics data) are archived in the Genomic Data 

Commons https://portal.gdc.cancer.gov/legacy-archive/search/f. At this web page select 

from the Project listing the “TCGA-LIHC”. Results files generated from these archives can 

be found in at the Synapse archive web site in ID syn2318326 found at the following URL: 

https://www.synapse.org/#!Synapse:syn2318326/files/.

Access to patient genetic data is controlled by dbGaP. Permission to access is granted 

through the https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login. Software used for the 

analyses for each of the data platforms and integrated analyses are described and referenced 

in the individual Method Detail subsections and listed in the Key Resources Table.

KEY RESOURCES TABLE

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Analysis of hepatocellular carcinomas integrates data of multiple genomic 

platforms

• Mutated genes reveal oncogenic processes altering hepatocyte energy balance

• Multiplex analyses suggest a key role for Sonic hedgehog signaling in HCC

• IDH mutations point to a HCC subgroup molecularly similar to 

cholangiocarcinoma

et al. Page 45

Cell. Author manuscript; available in PMC 2018 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. The genomic landscape of liver hepatocellular carcinoma and mutational signatures
Top panel shows individual tumor mutation rates while the middle panel details ethnicity, 

tumor grade, age, gender, hepatitis C virus (HCV) and hepatitis B virus (HBV) infection 

status, and cirrhosis for 363 HCC. Bottom panel shows genes with statistically significant 

levels of mutation (MutSig suite, false discovery rate, 0.1) and mutation types are indicated 

in the legend at the bottom. The bottom six rows display significant DNA copy number 

alterations in likely cancer driver genes.

et al. Page 46

Cell. Author manuscript; available in PMC 2018 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Liver cancers show distinct gene hypermethylation patterns
(A) Unsupervised clustering analysis of gene hypermethylation in HCC relative to normal 

tissue reveals four distinct subgroups. Roughly 15,000 CpG sites showing significant 

hypermethylation in 196 HCC were analyzed and are shown in heat map format with normal 

tissues and tumors organized in columns according to cluster designation. Intensity of 

methylation for each CpG site is indicated by row. Above the heat map the four distinct 

hypermethylation clusters are shown, and below are bars indicating the distribution of 

clinical and molecular attributes of the individual tumors by cluster. To the right, P values 
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indicate significant non-random distributions for each attribute. (B–I) Scatter plots of 

representative CpG sites in gene promoters shown to be frequently hypermethylated in HCC, 

where gene RNA expression (y axis) is plotted against relative promoter site 

hypermethylation (x axis). Gray dots are results from tumor samples, blue dots normal 

tissues, and red dots tumors with mutations in the gene. (B) CDKN2A (cg13601799). (C) 

HHIP (cg23109129). (D) PTGR1 (cg13831329). (E) TMEM106A (cg21211480). (F) 

MT1M (cg15134649). (G) MT1E (cg02512505). (H) CPS1 (cg21967368).
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Figure 3. Multiplatform clustering analysis identified three integrated molecular subtypes of 
liver cancer
(A) Heat maps organized by iCluster groupings for DNA copy number, DNA methylation 

status, mRNA expression, and miRNA expression, and correlated with selected molecular 

features (top tracks). Tumors are in columns, grouped by the iCluster membership. (B) 

Relative proportions in each iCluster of Hoshida et al. (2009) subtypes defined by RNA 

expression profiling of a separate HCC cohort. (C) Patient survival outcome fitting three 

external clinically annotated HCC patient cohort sets of RNA expresson data to the TCGA 

iClusters (NCI, Lee et al. 2006; Fudan, Roessler et al. 2010; MDACC, Sohn et al. 2016). See 

also Figure S3.
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Figure 4. HCC with IDH1/2 mutations and with IDH-like gene expression share miRNA and 
RNA expression profiles and worse clinical outcomes
(A) Integrated analysis of IDH1/2 mutations (bottom), mRNA and miRNA expression data 

(middle), and iCluster and molecular subtypes of HCC (top). HS, hepatic stem cell subtype; 

CCL, cholangiocarcinoma-like subtype; Hippo, Hippo pathway subtype; RS65, 65-gene risk 

score subtype; NCIP, National Cancer Institute proliferation subtype; SNUR, Seoul National 

University recurrence subtype; HB16, 16-gene hepatoblastoma subtype; Hoshida, HCC 

RNA expression subtype profiling category. (B) Comparison of mRNA expression profiles 

of two TCGA HCC cohorts and four other HCC cohorts showing subsets of tumors with 

IDH-like gene expression. (C) Clinical significance of IDH-like subtype in HCC. Patients in 

three external cohorts were stratified according to IDH-like gene expression signature. See 

Figure S4.
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Figure 5. P53-induced gene target expression signature for improved clustering of HCC 
molecular and biological attributes
(A) Clustering of 191 HCC by composite expression of known p53 target genes. An 

expression heat map of 20 p53-induced target genes is shown above that of 10 p53-repressed 

target genes. To the right are shown mean expression ratios of top quartile p53 target genes 

relative to bottom quartile. Asterisks indicate level of significance. ***P<1E-10, **P<1E-07, 

*P<1E-04. Above the p53 target heat map asterisks indicate tumors with a TP53 mutation. 

Top bars show molecular and clinical attributes and correlation (p values) with high and low 

p53 target gene expression. MDM4 copy number and expression are significantly increased 

in those HCC with wildtype TP53 and with low p53 target expression relative to all other 

HCC (p values with asterisks). (B) Frequent copy number amplification of MDM4 gene in 
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HCC. A segment of chromosome 1 centered on the MDM4 locus (in black box) is shown. 

The intensity of red bars corresponds to degree of copy number gain. Each horizontal line 

corresponds to a single tumor. (C) MDM4 copy number gain and amplification correlates 

with increased RNA expression. RNA expression for each tumor is represented by a red dot 

(mutant TP53) or blue dot (WT TP53) according to MDM4 copy number (−1 = deletion, 0 = 

diploid, 1 = copy number gain, 2 = amplification).
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Figure 6. Integrated molecular comparison of somatic alterations in signaling pathways across 
iCluster groups
Each gene box includes 3 percentages representing the frequency of activation or 

inactivation in iCluster 1, 2 and 3 based on the core 196 sample HCC dataset. All somatic 

changes are tallied together in calculating the percentages of altered cases within each of the 

iCluster sample groups. Somatic alterations include mutations and copy-number changes 

(homozygous deletion and high-level amplifications), as well as epigenetic silencing of 

CDKN2A. Missense mutations are only counted if they have known oncogenic function, 

have been reported in COSMIC, or occur at known mutational hotspots. Genes are grouped 

by signaling pathways, with edges showing pairwise molecular interactions.
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Figure 7. Characterization of LIHC immune microenvironment using RNA-seq data
(A) Unsupervised hierarchical clustering of gene expression identifies immune profiles 

within HCC patients. Sixty-six manually curated immune cell markers were used for 

clustering. (B) The CIBERSORT-inferred relative fractions of different immune cell types 

varied across tumor and tumor adjacent normal samples and were not associated with virus 

status. (C) CIBERSORT cellular composition analysis revealed striking differences in 

relative compositions of immune cell populations between tumor and tumor-adjacent normal 

tissues. P values were calculated by Wilcoxon rank-sum test and adjusted for multiple 

testing (q value). The red dotted lines on the y axis indicate q value of 0.01. The red dotted 

lines on × axis indicates Z score of 0. The analysis was performed for all CIBERSORT 

immune cell types but only the significant ones are labeled on the plot.
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