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Abstract 

We present a schema-based model of a classic 
neuropsychological task, the Wisconsin Card Sorting Task 
(WCST), where competition between motor and cognitive 
schemas is resolved using a variation of a neuroanatomically 
detailed model of the basal ganglia (Gurney et al., 2001). We 
show that the model achieves a good fit with existing data at 
the group level, and correctly identifies two distinct cognitive 
mechanisms held to underlie two distinct types of error. 
However, at the individual level, the correlations amongst 
other error types produced by the model differ from those 
observed in the human data. To address this, we cluster 
participant performance into distinct groups and show, by 
fitting each group separately, how the model can account for 
the empirically observed correlations between error types. 
Methodologically, this demonstrates the importance of 
modelling participant performance at the sub-group or 
individual level, rather than modelling group performance. 
We also discuss implications of the model for the WCST 
performance of elderly participants and Parkinson’s patients. 
 
Keywords: schema theory; contention scheduling; basal 
ganglia; Wisconsin Card Sorting Task; modelling individual 
performance 

Introduction 
Schema theory is a framework based on the idea that 
behaviour in many areas depends on abstractions over 
instances, i.e., schemas. In these abstract terms, schema 
theory is very general. It has been applied in domains 
ranging, for example, from event memory (Bartlett, 1932) to 
motor control (Schmidt, 1976). Norman and Shallice (1980) 
applied the theory in the domain of routine sequential 
action. Their theory proposes that action schemas work in a 
cooperative or sequential fashion, but also compete with 
each other for activation. While schema theory is helpful in 
representing functional interactions in the action-perception 
cycle, it is not committed to a specific neural 
implementation. However, at the neural level the basal 
ganglia have been proposed as a good candidate for 
resolving competition between schemas in order to carry out 
action selection (Redgrave et al., 2001). In part this is 
because of their recurrent connections with the cortex. 

In this paper we present a model of the Wisconsin Card 
Sorting Task (WCST) where competition between motor 
and cognitive schemas is resolved using a variation of a 
neuroanatomically detailed model of the basal ganglia. We 

use a genetic algorithm to search the model’s parameter 
space and obtain a good fit for the data. Further analysis of 
correlations between error types, however, suggests the need 
to model individual participant data. Yet for reasons of 
computational efficiency this is impractical. We therefore 
cluster participant performance into a small number of 
distinct groups (5) and run separate genetic algorithms to fit 
the groups individually. The results capture both group 
performance and correlations between error types across 
individuals.  

The Task and the Model 
In the WCST, participants are required to sort a series of 
cards into four categories based on binary (i.e., correct / 
incorrect) feedback. Each card shows one, two, three or four 
shapes, printed in one of four colours, and there are four 
shapes (triangle, star, cross, circle). It is therefore possible to 
sort cards according to colour, number or shape. To 
succeed, participants must match each successive card with 
one of four target cards (One Red Triangle, Two Green 
Stars, Three Yellow Crosses, Four Blue Circles), and use 
the subsequent feedback to discover the appropriate rule, but 
once they have discovered the rule (as indicated by a 
succession of 10 correct sorts), the experiment changes the 
rule without notice. The task yields a number of dependent 
measures, including the number of rules obtained (with a 
deck of 64 cards), the number of cards correctly sorted, the 
number of perseverative errors (where negative feedback is 
ignored) and the number of set-loss errors (where the 
participant fails to stick with a successful rule). 

The model comprises three cognitive schemas and four 
motor schemas (see Fig. 1).1 Cognitive schemas represent 
the selection rules (Sort by Colour, Sort by Number, Sort by 
Shape) while the four motor schemas represent the acts of 
putting the stimulus card below each of the four target cards. 
Each schema has an activation level that varies over time as 
a function of input from various sources. Cognitive schemas 
are fed by an external channel that changes by a fixed 
amount according to external positive/negative feedback. 
Motor schemas are fed by cognitive schemas, and this signal 
is rule-dependent. If, for instance, the stimulus card displays 

                                                
1Source code for the simulation, including a complete list of 
parameters and their values, is available from the first author on 
request. 
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three red circles, the colour schema will excite the fourth 
motor schema (Four Blue Circles), the shape schema will 
excite the third motor schema (Three Yellow Crosses), and 
the colour schema will excite the first motor schema (One 
Red Triangle). Motor schemas are also fed by 
environmental cues depending on the stimulus card feature. 
Thus, when cognitive schemas are not strong enough to 
influence motor schemas, action selection may be driven by 
stimulus features only. 

This simple model is complemented by a mechanism that 
implements and resolves competition between schemas 
within each hierarchical level: cognitive and motor schemas 
feed into two parallel computational mechanisms that each 
return a signal in the form of inhibition to the individual 
channels at each level (see Fig. 2 for an illustration at the 
cognitive level). In the brain, this competition between 
schemas is thought to be carried out by the basal ganglia 

(Gurney et al., 2001). Corticobasal loops are mostly 
segregated (Alexander et al., 1986) and this is reflected in 
the model through the independence of information 
processed in the basal ganglia units at the two levels 
(cognitive and motor). 

The model also implements a rudimental learning 
mechanism. This consists in a fixed change in signal to the 
cognitive schemas following a reward.  Its purpose is to 
analyse how baseline levels of signal influence schema 
selection and ultimately, performance on the WCST. 
Manipulation of the thresholds of saturation functions in 
cortical units and associated basal ganglia units represent 
dopamine signalling in the cortex and in the basal ganglia, 
respectively. Therefore, the mechanism underlying 
cognitive control is a feedback-driven signal to the cognitive 
schemas. 

Computation in Individual Units  
The model consists of 7 cortical units, 3 of which control 
cognitive operations and 4 of which control motor 
operations (see Fig. 1). These units correspond to schemas. 
Cognitive and motor units send their signal to their 
respective striatal units (see Fig. 3). Subthalamic units 
connect all units at the same hierarchical level (cognitive or 
motor), ensuring that the basal ganglia units act as a 
competitive suppressor of schemas as a function of the other 
schemas’ outputs. 

Individual units are connected as shown in Fig. 3. Their 
computations are shown below. In all cases, ui represents 
the entry signal to the unit, ai is the result of integration 
along the time domain, and oi represents the output of the 
individual units. The function σ computes the sigmoid 
function of the input, ensuring output values are bounded 
between 0 and 1. Sigmoid functions have a fixed slope and 
threshold. Varying the threshold of cortical or striatal units 
alters the way competition between units is carried out, and 
can be considered a function of tonic dopamine present in 
the circuit. (In a separate simulation it has been shown that 
the level of external dopamine from the substantia nigra pars 
compacta (SNpc) unit can be simulated by varying the 
threshold of the saturation curve in the striatum (βctx), 
without making use of an additional unit.) 

Cortical Units: 

𝐮𝐢 ⟸  𝐰𝐢,𝐣 ∙ 𝐮𝐣
𝐣

+  𝐨𝐞𝐱𝐭,𝐢 + 𝐨𝐭𝐡𝐚𝐥,𝐢 

𝐚𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐢 𝐭 − 𝟏  

𝐨𝐢 ⟸ 𝛔 𝐚𝐢  

Striatum (D1 and D2): 

𝐮𝐢 ⟸  𝐨𝐜𝐭𝐱,𝐢 

𝐚𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐢 𝐭 − 𝟏  

𝐨𝐢 ⟸ 𝛔 𝐚𝐬𝐭𝐫𝐃𝟏/𝐃𝟐,𝐢  

 
Figure 1: Schematic of the model, not showing 
competition between schemas. Cognitive schemas (top 
row) send signals to the motor schemas (bottom row) 
 

 
Figure 2: Schematic of the competition between 
schemas. The basal ganglia units compute the amount of 
inhibition that each schema receives given the activation 
of the others. 

 
Figure 3: Schematic of the basal ganglia. Legend: 
Cortex-Thalamic complex (CTX-THAL), Striatum 
(STR), Subthalamic nucleus (STN), Globus Pallidus 
Internal/External Segment (GPi and GPe) 
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Subthalamic Nucleus: 

𝐮𝐬𝐭𝐧,𝐢(𝐭)⟸  𝐰𝐬𝐭𝐧 ∙ 𝐨𝐜𝐭𝐱,𝐢 +  𝐰𝐠𝐩𝐞_𝐬𝐭𝐧 ∙ 𝐨𝐠𝐩𝐞,𝐢 (𝐭 − 𝟏) 

𝐚𝐬𝐭𝐧,𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐬𝐭𝐧,𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐬𝐭𝐧,𝐢 𝐭 − 𝟏  

𝐨𝐬𝐭𝐧,𝐢 ⟸ 𝛔 𝐚𝐬𝐭𝐧,𝐢  

Globus Pallidus (External Segment): 

𝐮𝐠𝐩𝐞,𝐢 ⟸  𝐰𝐬𝐭𝐧_𝐠𝐩𝐞 ∙ 𝐨𝐬𝐭𝐧,𝐢 
𝐢

+  𝐰𝐬𝐭𝐫𝐃𝟐_𝐠𝐩𝐞 ∙ 𝐨𝐬𝐭𝐫𝐃𝟐,𝐢  

𝐚𝐠𝐩𝐞,𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐠𝐩𝐞,𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐠𝐩𝐞,𝐢 𝐭 − 𝟏  

𝐨𝐠𝐩𝐞,𝐢 ⟸ 𝛔 𝐚𝐠𝐩𝐞,𝐢  

Globus Pallidus (Internal Segment): 

𝐮𝐠𝐩𝐢,𝐢 𝐭 ⟸  𝐰𝐬𝐭𝐧_𝐠𝐩𝐢 ∙ 𝐨𝐬𝐭𝐧,𝐢 
𝐢

+  𝐰𝐠𝐩𝐞_𝐠𝐩𝐢 ∙ 𝐨𝐠𝐩𝐞,𝐢 𝐭 − 𝟏

+  𝐰𝐬𝐭𝐫𝐃𝟏_𝐠𝐩𝐢 ∙ 𝐨𝐬𝐭𝐫𝐃𝟏,𝐢 𝐭 − 𝟏  

𝐚𝐠𝐩𝐢,𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐠𝐩𝐢,𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐠𝐩𝐢,𝐢 𝐭 − 𝟏  

𝐨𝐠𝐩𝐢,𝐢 ⟸ 𝛔 𝐚𝐠𝐩𝐢,𝐢  

Thalamus: 

𝐮𝐢 ⟸  𝐨𝐠𝐩𝐢,𝐢 

𝐚𝐢 𝐭 ⇐ 𝛅 ∙ 𝐚𝐢 𝐭 − 𝟏 + (𝟏 − 𝛅) ∙ 𝐮𝐢 𝐭 − 𝟏  

𝐨𝐢 ⟸ −𝛔 𝐚𝐢  

Feedback 
Feedback takes place after each trial. If the selected 
response is correct, the external signals oext,i to the cognitive 
units2 that correspond to the matched features are increased 
by a fixed amount bl. If the selected response is incorrect, 
inputs to those units that correspond to the matched features 
are decreased by a fixed amount bl.  

Simulation of Wisconsin Card Sorting Test 

Simulation of an Individual Task 
To simulate the WCST, a virtual deck of 64 cards is 
produced, shuffled and presented to the model. All the units 
perform the computation outlined in the previous section. 
The first motor unit to reach a fixed activation value 
(measured as the area under the time-curve, rather than 
simply as a threshold) is selected. After the selection and 
feedback, a new card is presented. The resulting plot for 
activation of the cognitive units is shown in Fig. 4.  

As can be seen in Fig. 4, when the first card is presented 
the system must work out that ‘colour’ is the first correct 

                                                
2That is, those cortical units that represent cognitive schemas. 

sorting criterion. Feedback alone is not sufficient, as the 
selected card may match more than one feature. Basal 
ganglia units intervene by supressing the inappropriate 
cognitive schemas, enabling the correct schema to be 
permanently selected. When the sorting criterion changes 
(after 10 correct responses) the system tends to perseverate 
for a short period of time, before selecting the correct 
criterion again. Feedback-dependent external activation and 
resolution of competition both play a role in activating the 
correct cognitive schemas. Whereas the activation of 
cognitive schemas is regulated by feedback, the activation 
of motor schemas is regulated by cognitive schemas and 
environmental cues. 

Parameters 
The model has a number of parameters. One important 
parameter is the threshold of the saturation curve of the 
striatum, represented by the threshold of the sigma function 
applied to the striatal output (βstr). Extreme values of this 
parameter (substantially greater than or less than 0.5) disrupt 
the competition between schemas. When the threshold is too 
high schemas are driven by their input values and they 
undergo increasingly homogenous inhibition from the basal 
ganglia. This phenomenon is analogous to the Parkinson's 
disease dopamine depletion in the SNpc (Cooper & Shallice, 
2000).  

Dependent Measures  
Performance was scored according to a range of measures as 
indicated in Heaton (1981). Completed Categories (CC) and 
Total Errors (TE) measure the overall performance. A Set 

Figure 4: Activation of cognitive schemas during a 
complete run (involving sorting all 64 cards). Solid lines 
represent the actual activation while dashed lines 
represent the external input due to positive/negative 
feedback. Processing cycles are represented on the 
horizontal axis. 
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Loss Error (SL) is counted whenever an incorrect response 
is selected after 5 or more correct responses, where at least 
one is unambiguous (i.e., the card matches only one 
feature). A Perseverative response (PR) is counted 
whenever a response would have been correct under the 
previous rule. (A subject can score a perseverative response 
even before completing the first category: if three 
consecutive responses are made selecting the same sorting 
rule, that rule will be the criterion that the subject can 
perseverate to.) Those perseverative responses that are also 
incorrect responses are counted as Perseverative Errors 
(PE). Non-perseverative errors (NPE) are calculated as the 
Total Errors (TE) minus Perseverative Errors (PE).  

Results 
Results for two sets of 48 participants (48 healthy young 
adults and 48 simulated participants) are depicted in Fig. 5. 
The figure compares the aggregate results from the 
simulation (Sim) with the aggregate data from the human 
participants (Data).  

A genetic algorithm attempted to find the best parameters 
that produce low t statistics and low z statistics between data 
and simulation. Given the presence of a multitude of 
parameters that influence each other in a non-linear fashion, 
a perfect fit is unattainable. However, the model appears to 
do a good job in reproducing group mean and standard 
errors, as shown by the figure. 

Correlational Analysis 
Analysing aggregate data is not sufficient to assess model 
performance, since a model should also aim to dissociate 
between psychological constructs (Cassimatis et al., 2008). 
Therefore, correlational analysis between the most 
informative variables (TE, PE, SL) was also performed, 
using bootstrapping and sampling the mean value to obtain 
1000 points. Multiple runs of the sampling algorithm 
produce very similar results. Fig. 6 and Fig. 7 show the 

correlation matrices for these variables in both the human 
data and the simulation. 

The correlation matrices show that the simulation 
correctly identifies that the mechanism that produces set 
loss error can be dissociated from the process that causes 
other types or errors. However, the simulation fails to 
reproduce the high correlation (r = .91, p < .01) between 
Total Errors and Perseverative Errors. In addition, it 
displays a weak but significant negative correlation (r = -
.31, p < .01) that is not present in the empirical data. 

Discussion   
The model yields an adequate fit for young participants on 
the WCST. Computation in the model appears to be stable, 
in that minimal parameter variations do not disrupt 
functioning. The model also correctly reflects the 
independence between Set Loss Errors (SL) and Total 
Errors (TE) found in the human data, suggesting a 
dissociation in the cognitive processes that produce those 
errors.  

However, the model is subject to several limitations. The 
lack of positive correlation between PE and TE in the 
simulation is both puzzling and concerning. One possibility, 

 
Figure 5: Comparison between Simulation and Data from 
neurologically healthy young participants. Z values 
indicate the z score of the difference between human and 
simulated data for each dependent measure. 

 
Figure 6: Correlations – Neuropsychological Data 

 

 
Figure 7: Correlations – Simulation 
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however, is that this apparent failing reflects the implicit 
assumption that performance of the human participants can 
be modelled by a single set of parameter values (i.e., by a 
group of 48 virtual participants with identical cognitive 
characteristics). We explore this possibility in the following 
section.  

Grouping Data   

Introduction  
In the light of the failure of the model to reproduce the 
empirically observed correlations between TE and PE, we 
analyse how data from young participants can be clustered 
into a small number of groups based on the three critical 
dependent variables reflecting errors (TE, PE, SL).  

These three types of errors have been specifically chosen 
because they are most representative of performance 
failures. Data clustering was calculated using a k-means 
algorithm with k = 5 (purely for reasons of computational 
efficiency). Two points were excluded because they were 
outliers. The algorithm was initialised based on the 
observation of the spatial 3D distribution of points. The 
most distinctive features are the accumulation of points 
around the origin, the sparseness of points as total and 
perseverative errors increase, and an isolated cluster of 
points with SL equal to 1.  

Fig. 8 shows how the clustering of the groups and Table 1 
shows mean and standard deviation of the dependent 
variables in the individual groups.  

Simulation 
After clustering the groups, as outlined in Table 1, we run 
five genetic algorithms separately to determine best-fitting 
parameter values for each group. In each case, seven model 
parameters were initially randomised to values within their 
reasonable ranges, and model errors recorded. A t-value 
between the simulation’s and the original experimental data 
was computed and its mean used as the inverse of the GA’s 
fitness value. Table 1 shows performance errors of the 
simulation with the highest fitness and Fig. 9 shows a 3D 
representation of the individual values.  

Discussion   
Results from the simulation are shown in Table 2. In total, 4 
outliers have been excluded from the analysis (2, 1 and 1 
from categories 3, 4 and 5, respectively). These outliers may 
conceivably have been produced by the model’s unstable 
response to increasingly higher parameter values. Clustering 
the participant data into a small number of more 
homogenous groups greatly increases the correlation 
between TE and PE (r increases from .04 to .50, compared 
with the observed value of .92) and decreases the correlation 
between SL and TE/PE, improving the fit of the model in 
both respects. Fig. 10 displays the new correlation plots 
worked out combining all of the five simulations together.  

General Discussion 
The model we presented combines a variation of the Cooper 
and Shallice (2000) model of action selection and a 
variation of the Gurney et al. (2001) model of the basal 
ganglia. One of the strengths of this combined model is the 
possibility to generalise it to other cognitive control tasks 
(e.g. Stroop task, Probabilistic Reversal Learning, Eriksen 
Flanker Task, etc.) and to accommodate the presence of 

Table 1: Data Groups 

G N TE PE     SL 
1● 18 8.89 (SD = 2.03) 6.22 (SD = 2.03) 0 (SD = 0) 
2● 13 14.85 (SD = 1.77) 8.77 (SD = 1.92) 0 (SD = 0) 
3● 5 28.00 (SD = 1.73) 18.40 (SD = 2.30) 0 (SD = 0) 
4● 7 14.71 (SD = 2.63) 9.57 (SD = 0.53) 1 (SD = 0) 
5● 3 22.33 (SD = 2.08) 11.67 (SD = 1.15) 0 (SD = 0) 

 
Table 2: Simulation of the five clusters 

G N TE PE        SL 
1● 18 8.83 (SD = 1.38) 5.89 (SD = 1.08) 0.11 (SD = 0.32) 
2● 13 14.31 (SD = 1.55) 9.23 (SD = 1.17) 0.08 (SD = 0.28) 
3● 3 22.00 (SD = 5.00) 7.33 (SD = 0.58) 0.67 (SD = 1.15) 
4● 6 15.00 (SD = 2.53) 10.83 (SD = 1.72) 0.5 (SD = 0.55) 
5● 2 18.50 (SD = 2.08) 9.50 (SD = 0.71) 0.00 (SD = 0.00) 

 

 
Figure 8: Clustering of experimental data Figure 9: Simulated data with five clusters 
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units representing other brain areas where different 
computation is performed (e.g., amygdala, cerebellum), 
enabling the simulation of cognitive tasks in broader 
contexts (e.g. Emotional Stroop Task, WCST in cerebellar 
patients). In principle, this enhances the contention 
scheduling theory with neuroanatomical detail, allowing a 
more precise localisation of processes in a particular task, 
and integration with functional neuroimaging data. In 
addition, this implementation allows for the inclusion of two 
distinct learning mechanisms in the cortex and the basal 
ganglia: the current model can potentially be updated to a 
learning-based model by developing these mechanisms.  

With respect to cortical learning, in the model as it stands, 
the supervisory system that controls how subjects respond to 
positive and negative feedback is fixed and consequently 
performance tends to be too robust to basal unit 
dysfunctions. This might be addressed by incorporating 
dynamic learning that allows supervisory control to vary 
according to the schemas’ activations, resulting in low or 
high baseline levels of dopamine in the striatum having a 
greater impact on cognitive performance. 

The present paper makes the case for modelling sub-
group data (or, whenever possible, individual data), instead 
of aggregate results, and presents evidence of how data 
clustering improves the model overall fit.  Clustering is 
especially advisable for models of higher-order cognition, 
where subjects tend to have variable attention and may use 
qualitatively different cognitive strategies.  

A final conclusion emerges from two joint observations: 
First, fitting clusters with increasingly extreme error values 
becomes increasingly more problematic. Second, another set 
of simulations (not reproduced here) shows that damaging 
the cortical and subcortical units threshold does not seem to 
produce the level of decline in performance found in 
Parkinson's disease patients without dementia (Paolo et al., 
1996). Since healthy older controls have a different 
performance profile than the younger controls against which 
the current model was assessed, the loss of dopaminergic 

cells in SNpc does not alone explain the inferior 
performance in the elderly and PD patients3.  

These two joint findings suggest that the cognitive 
mechanisms producing perseverative and set loss errors 
might be independent only for a small number of errors. As 
that number increases, these two mechanisms might be 
correlated and possibly causally related. New experimental 
data to confirm this hypothesis is warranted. 
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Figure 10: Correlation between performance errors 
aggregating the values from five different set of 
parameters 
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