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Abstract

We have studied the transverse coherent bunch instabilities for the Advanced
Light Source (ALS). We have in particular applied a Hamiltonian formalism
to obtain the linearized averaged equations of motion (i.e. the one turn map)
for the resistive wall effect to obtain the corresponding localized kick when
the beta function is varying along the lattice. We have also included a 2-
dimensional model for the transverse higher order cavity modes. In addition,
we have used power series maps to represent the lattice which enabled us
to include non-linear effects. These models have been implemented in a
computer code and numerical simulations have been carried out for ALS.
The model was successfully verified against analytical calculations in cases
where they overlap. The non-linear effects from the lattice proved to be
important, since they led to a qualitative change of the dynamics for the
stored beam. We also studied the injection process in some detail and found
that the non-linear effects also fundamentally change the injection dynamics.
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1 INTRODUCTION

Studies of wake fields have a long history in the area of accelerators see e.g.
[1, 2, 3, 4, 5]. The underlying reason is that a beam of charged particles
will interact electromagnetically with its environment and in particular, po-
tentially excite wake fields in any electrically or magnetically polarizable or
conductive material in the neighborhood of the beam. Since the design and
construction of accelerators is essentially a confinement problem, the question
then arises how this will affect the performance of the system, e.g. stability,
bunch dimensions, heating etc. Since one is in this case dealing with a sys-
tem of interacting particles it is ultimately on a microscopic level described
by quantum field theory, more specifically quantum electrodynamics. How-
ever, such an approach would not take us very far. For relevant studies a
macroscopic point of view is highly adequate, leading to Maxwell’s equations.

The wake fields excited by a charge are in general functions of the space-
time coordinates of both the exciting charge and the point of evaluation.
This general but complicated description can be simplified by introducing
wake potentials, obtained by integrating the Lorentz force at a certain dis-
tance behind the exciting charge. Note however, that this leads for a ring in
general to a perturbative treatment since the motion of the exciting charge
has to be known. Furthermore, if one only considers the effect of a given wake
field on other particles, neglecting the individual particles effect on the wake
field, i.e. external field approximation, one may use a Hamiltonian formula-
tion. This also allows for a straightforward introduction of lumped circuit
concepts such as impedance originating in electrical engineering from cir-
cuit analysis of linear, passive networks with periodic signals (e.g. electronic
circuit theory and microwave technology) by generalizing to linear, passive
electromagnetic systems with aperiodic signals replacing Fourier series with
Fourier transforms.

This paper consist of two parts. The first part outlines the theory from a
one turn map point of view using a Hamiltonian formalism. This allows for
a more straightforward and transparent formalism in the case of distributed
wake fields than direct averaging of the equations of motion as customary.
In particular, it allows us to develop a 6-dimensional computer model that
includes non-linear effects from the lattice. The second part describes a 2-
dimensional model for the higher order modes (HOMs) of a cavity as well as
the resistive wall effect and how these models have been implemented in a




tracking code used to study the transverse dynamics for the Advanced Light
Source (ALS). Related system parameters are presented and the injection
process is described in some detail. Results from the tracking code for various
cases are presented and compared against analytical formulas when possible.
Qualititave modifications of the dynamics due to non-linear effects from the
lattice are also presented. A third part in progress will address detailed
tracking studies of the dynamics including related feedback systems.

2 THE EQUATIONS OF MOTION

2.1 The Linear Transverse Equation of Motion

In the following we will replace the effect of a general wakefield distributed
along a periodic lattice by a localized kick. This is done by first determining
the action-angle variables for the unperturbed motion followed by averaging
the corresponding perturbed Hamiltonian with respect to s. This is equiva-
lent to determining the corresponding Lie operator to first order from a map
point of view [6]. Even though both methods are mathematically equivalent
and straightforward to first order, the latter approach is significantly simpler
if higher order calculations are needed. In the following we illustrate the
theory in the case of linearized equations of motion and, implicitly how it
has been generalized to the non-linear case.
The linear betatron motion is described by the Hamiltonian [7]

o x? gi
Hy (i, poi; 8) = 5 + Ko () 5+ =P (25 )= Ho(s) +V (s) (1)
2 2 mpmec

where V (s) will be treated as a perturbation. Hamilton’s equations leads to
the well known Hill’s equation

___q_i_8<1> (s) @)

"
"+ K ;= .
i =(s)2 poc Ox;

The action-angle variables (J;, @.;) for the unperturbed motion are

zi (8) = 1/2J5:if: (8)c0os ¢ui (5),

pui(s) = — %—) (i1 s (5) + vz (5) 08 s (5)] 3)




with the corresponding Hamiltonian

J:z:i T
Hy (Jyiy, ¢zi; 8) = m + pZ c(I) (\/2Jmﬂm (8) COS s s) . (4)

The unperturbed Hamilton’s equations are

8H, . 0H, 1

Ju B 6¢m - O, ¢xi - 3']301 - :81' (S)

so that J is a constant of motion. Integrating the equations of motion leads
to the well known definition of phase advance

(5)

in(s) = JO:m)
s du

¢:c1'. (3) = s ﬁz ( ) + ¢Oxz = Ug (3) + ¢0:m (6)
and tune
1 ds
Vg = '2—7; m (7)
Averaging over one turn leads to the averaged Hamiltonian
1 ,
i i) xi (I)
(s (s i ) = (55 ) o+ s (B ©®
where
_L _ < 1 >___1_ s0+C  dg :27er=LUﬁx0
—Ba: - ,8,;(8) _C S0 :Bx(s) C - C ’
1 so+C
(Q) (3)) (Jmi> d’xz) = 5 so (I)(J:m', ¢zi; 3) ds (9)

and (Jui, ¢zi) are given by eq. (6). The averaged equation of motion is then

2
W0 g 0(®(s))
;= 10

i +
averaging the potential rather than the force.
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2.2 Wake Fields and Wake Potentials

In this section we will introduce the concept of wake functions and wake
potentials. We will do this in some detail for two reasons. The first is
that we found exsisting litterature to be somewhat confusing, e.g. different
conventions used even by the same author in several cases. The second reason
is that the wake potentials are normally defined for straight line motion or
harmonic time dependence. This will in the next section be generalized to the
betatron motion, without assuming the beta function to be constant along
the lattice as is customarily assumed.

We found Chao'’s treatment of the definition of wake potentials 8] very
clear, but noted a change of sign conventions from an earlier publication [3].
This section closely follows his later treatment. However, we will use the
following slightly modified conventions and definitions, since they lead to a
formalism more transparent for generalizing to the case of e.g. varying beta
function along the lattice.

The wake function is defined so that W(As) = 0, As < 0 as in Chao’s
earlier publication. This leads to an impedance defined by the complex con-
jugate of the ”conventional” Fourier transform. In Chao’s later publication,
this is avoided by a change of convention: W(As) = 0, As > 0, but still
leading to the same explicit formulas for e.g. impedances. However, in this
case we find it more natural to let a beam current with time dependence
exp(—iwt) define the complex conjugate of the impedance. This leads to
more systematic conventions, in particular for cases where the beam current
and the fields are general Fourier transforms. Note that this convention is
compatible with Zotter’s [9], where the impedance is defined from a beam
current and corresponding fields with harmonic time evolution. The men-
tioned differences are easily confirmed by a quick inspection of the explicit
formulas for e.g. resistive wall in the references (3, 8, 9, 10].

The wake function is defined with respect to the wake potential per unit
length, as in the earlier work by Chao and later by Bane [11}, rather than
the total wake potential later used by Chao and earlier by Bane et al. [5].
This allows for a systematic distinction between impedance per unit length
and total impedance, which will clearify the general formalism. Note also
that we make a fundamental distinction between wake potential and wake
function, the latter being the corresponding Green function for the potential
problem. In addition we have as Chao taken care to avoid incorrect notations




like a scalar on the L.H.S. of an equal sign and a vector on the R.H.S. (1),
something that appears more than once in the existing litterature.

The Lorentz force due to a wake field, excited by a particle with charge g;
moving with velocity v, on a trailing test particle separated by As = s’ —s =
vt — s and with charge ¢; is given by

F(As, 5) = gi [Buake (B8, 5) + 7 X Buake (A5, 5)],  As>0.  (11)

Note that the wake fields are in general functions of the space-time coordi-
nates of both the exciting charge and the point of evaluation. This general
but complicated description of wake fields can be dramatically simplified by
introducing wake potentials [3, 8, 5, 12] obtained by averaging the force along
a structure. In the case of a ring, this leads in general to a perturbative treat-
ment since the motion of the charge has to be known (compare with the Born
approximation in quantum mechanics). This treatment can be further sim-
plified by neglecting the velocity dependence of the wake field by assuming
the particles to move with the speed of light c.
In cylindrical coordinates one finds for the Lorentz force

Fy = qkFE,, -
Fy = [0(Eo+cB,)+7(E. - cBy) (12)
which have to be simultaniously solved with Maxwell’s equations
19(rE;) + 10E, O0E; _ p

r Or r 00 ds &’

10B; 0By _ 1 0E,
A T
0B, 0B, ) 1 8FE,

ds  or ALO]G—FE—@?’
18(rBs) 10B, . - 10E,
r o rap | MrTEE

18(rB,) 10Bs 0B,

o trae Tas — Y

10E, 0B, , 0B, _

r o8 ds 8t

OE, O0E, 0By _

Os Or ot
la(rEg)__l_aEr+3Bs I (13)

r Or r 00 ot
5




The average force is defined by

(F(r, 6, As) —1/0 F(r, 1)

where L is large compared to the length of the wall structure. Similar expres-
sions holds for <E> and <B> The multipole expansion for a charge density
p(r, 8) moving with the speed of light along s is defined by

0, 0) = S pm(r, 6),

t-—-(s+As)/c (14)

m=0

= an=:() Lo A(s Ct)n(r) cos mé (15)

where I,,, is the mth moment of the beam defined by
oo 2w

— m+41

= /0 /0 o (r, 8) 1™ cosmfdrdd (16)
and normalized so that

L 0o
/ A(s)ds= N, / 2mr™n (r)dr =1 (17)
0 0

where N is the number of particles. In the case of an infinitesimaly thin ring
charge displaced by a following a straight line along s

Im
Pm (T', 0) = o+ (1 + 6m0)6 (S -

ct) § (r — a) cosmd (18)

with a total charge of @; = Ip. The current density inside the structure is
Jr=1J8 = 0, Js=cp (19)

and it follows for example that

O(Fy(r, 0, As)) 8 1 gk
5As = N L A F-,- (T> t)|t=(8+As)/cds
_ QZ (l aE" _ Q_’?ﬁ) ds
L c Ot Ot Jie(orns)/e
_ @& [F(cdB, 9By OBy ds
- L r 00 Os O )i (orns)/e

- _9;9 <B£S> (20)
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and the system of equations, egs. (12, 13) becomes remarkably simple (3, 8]

acd(B) _ 3Ry _9(F)
r 00 o0As — Or ’
O(B) _ _9(R) _19(F)
wC T oAs r 86
O(r(F) _ _9(F)
3(%’)) 0(ﬁ?§ |
T\L'e r
“or T~ o0 (21)

It follows that the averaged longitudinal and transverse wake forces are re-
lated by

V(i) = - 35 () @)

also known as the Panofsky-Wenzel theorem [13]. The solutions for a struc-
ture with axial symmetry are therefore of the form [3, 8]

—%@n (r, 8, As) = — <F|| (r, 6, As)> = @I,y W, (As) 7™ cos md,
%z _ /B
F8.(r, 6, As) = (Fi(r, 8, As))
= @lnWpn (As) mr™! (F cosmf — G sin m@) ,
gic (B, (r, 0, As)) = ¢l W, (As)r™sinmb (23)

where W,,(As) and its derivative are the transverse and longitudinal wake

functions whereas @ (r, 0, As) and &, (r, 6, As) are the corresponding
longitudinal and transverse wake potentials in the case of straight line motion.
Causality implies that

W, (As) =0, As<0. (24)

Note that the wake function is simply the Green function for a given struc-
ture, e.g. the transverse wake potential due to an arbitrary beam current

Jm (s, t) =cln (s, t) (25)




is given by superposition

- 1 oo /
D, (s, t)/L = —/ W (s —s)Jn (s, ¢ 2 s) ds’

CJs Cc

xmr™1 (? cosmb — 8 sinm@)

1 g As

= E/o W (AS) I, (s, t———-c-— dAs
xmr™ 1 (? cosml — O sin m&) (26)
since
/-——
tst— 2 - 2 (27)

Note that in the general case the moments also have skew components so
that

oo 27 .
Imz —tlpny, = /0 /0 p(r, ) r™+le™drd

- /_ Z /_ °; p(z, ) (x — iy)"dady. (28)

2.3 Transverse Equation of Motion with Wake Fields

The transverse dipole wake function W, (As) is the leading order contribution
to the average transverse Lorentz force due to a transverse wake field excited
by a macro particle with charge @Q; on a trailing particle separated by As
and with charge ¢;

(Fi(hs; 5)) = aQ; (25 () &+ (y; () ) Wi (As; 5)
+0(2), As>0 (29)

where s is used as independent variable as customary for the transverse
dynamics. Note that we allow for parametric variation of the wake function
with s. The unit of W (As; s) is V. C™! m™2 in the SI system.

A consistent averaging of the equations of motion is straightforward us-
ing a Hamiltonian formulation, i.e. averaging of the perturbation expressed in
action-angle variables for the unperturbed Hamiltonian. In fact, the Hamil-
tonian formalism was developed for this purpose in celestial mechanics. A

8




Hamiltonian formulation is possible (i.e. relativistic interacting particles)
since only the effect of a given wake field on other particles is considered,
neglecting the individual particles effect on the wake field (i.e. external field
approximation) [2]. It follows that

2 2 0. XN
Hy (zi, pzi; 8) = Pai | g (s) L _ th’xi > Wi (Asinj +nC; s)
2 2 DoC n=0
< (a5 (s — nO)) (30)

where As;_,; = s; — s;. The averaged Hamiltonian is obtained by transform-
ing to action-angle variables and averaging over one turn

<H2 (Jx) ¢x)> = (Uﬂmo*] L T <2quJﬁ )\/ :m xy COS(ﬁm (3)

C

X % W (Asi_.; + nC; s)cos (¢z; (s — nC’))>

n=0
n_O
X €os (¢O.m' - <¢0xj> + n27”/m) (31)
so that the effective transverse wake function is given by
\Y%
W, (As) = f B, (s) Wi (As; s)ds [C—m] (32)

This result differs from e.g. ref. [14] where the analysis is only valid in the
limit the beta function does not vary along the structure.

The corresponding initial Hamiltonian, with the effect of the wake field
averaged and lumped into a single kick at some location in the lattice, is then
given by

22
Hs (x5, pzi; ) = p“ + K, (s ) q’Q’B’”m, > Wi (Asi; +nC)

CIB:L'O n=0
x <xj <s_nc>>5,, (s~ 50) (33)
where
6p(s—so)zi5(s—so—n0’). (34)




The corresponding Hamilton’s equations are

o = O0H;
- apx - p.’l?)
y _?ﬂ _ QzQJIBm
Pe = Oz = Ka )z Poclo 1, Z Wi (Bsimj + nC)
X (z; (s —nC)) by (s — s0) - (35)

2.4 Equation of Motion for a Bunch

In the case of a beam, one has to consider a distribution of particles with
varying initial conditions. Higher order terms in the equation of motion will
lead to a spread in betatron frequencies, contributing to Landau damping.
This effect will for simplicity be neglected in the following treatment (i.e. we
consider the worst case for growth rates). However, it can be included as a
straightforward generalization.

The Hamiltonian for the bunch motion is obtained by integrating over
the bunchs’ charge distribution

Hy (zx, pzx; 8) = /_oo [pg + K. (s )x, (ZQJ: z;| p (z) dx

X Z Wi (Asi—; +nC)

< (2 (5 —nC)) 6, (5 — 50) (36)
The Hamiltonian for the rigid bunch motion is obtained with the distribution

p(z) =6 (x— (x)) (37)
leading to

QkQ jBx
pOCﬂxO

Hiwo ps ) = Ll 4 g (o L QB

2
X Z Wi (Asg—; +nC)

n=—oo

x (z; (s — nC)) 6, (s — s0) (38)
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when N goes to infinity. Note that the sum can be extended to —oo since the
wake potential is causal. Also note that in this case the wakefield is excited
by the center of charge for bunch j. The corresponding Hamilton’s equations
are

! 8H4 )

(xk) = m = (ka) )
, _ _ OH,

<p1k) - _a (xk>

K (o) o+ 2P S (A 4 n0)

pOCIBﬂ'JO n=—oco

X (z; (s = nC)) & (s = o) - (39)

It should be realized that Hamilton’s equations allow for a straightforward
application of one turn maps for the lattice, e.g. its power series represen-
tation. This can easily be generalized to the non-linear case by considering
a map that includes the necessary non-linear dynamics to faithfully repre-
sent the lattice. However, one has to keep in mind that a power series map
has a finite radius of convergence and is not symplectic. Calibration of the
model, e.g. determination of limits for betatron amplitudes and number of
turns against a symplectic integrator (i.e. tracking code) should therefore as
always be carried out. Alternatively, for more flexibility, one may consider
using a fitted generating function (i.e. a fitted map) since such a map may
be tailored to a certain area of phase space. The map is still approximate
but has the additional advantage of being symplectic.

From the previous analysis the effect of the wake field has been reduced
to a single local kick, easy to implement in any standard tracking code. Note
however that since each excitation is acting over several turns, each individual
excitation has to be kept and applied for a sufficient number of turns. This
applies in particular to the resistive wall case, since the field is only damped as
1/ VAs. To avoid this complication, which dramatically reduces the efficiency
in the case of many bunches, one may consider Fourier transforming and
only keep track of a sufficient number of harmonics of the total wake field.
However, such an approach breaks down since frequencies in a neighborhood
of the harmonics also significantly contribute to the dynamics [15]. This is
particularly apparent in the derivation of the Poisson sum formula [16], used
in the following to introduce the impedance in the dispersion relations.

11




2.5 Transverse Impedance

In the case of a beam with a current of the form
Im (s, t) = T gitks=et) (40)

where * stands for complex conjugate and J,,, is the Fourier transform of the
current, the transverse wake potential is given by eq. (26)

— 1 o0
Bu/L = —mrm [T W (Bs) T (3, t— -A—s) dAs
C 0 C

X (? cosmf — fsin mH)

1 ~ 0 .
= Emrm‘lJme’(k’“‘”‘) / Wi (As) e“4/°dAs
—00

X (? cosmf — Gsin mH)
= mrml]) eftksmetiz Lt () (? cosmé — Gsin mt9) . (41)

The transverse local impedance (i.e. the transverse impedance per unit length)
is therefore defined as the Fourier transform of the transverse wake function

Zt(w; s) = e Wi, (As; s) e™ AN S . (42)
CJ-—x m?2m

Correspondingly, the transverse wake function is given by the inverse Fourier
transform

1 e .
Wi (As; s) = 5 /_oo ZE (w; s) e edw. (43)

It is clear from eq. (42) that the transverse impedance has the following
symmetry

Zy (w; 8) = —Z5 (—w; ) (44)

since the wake field is real. Furthermore, one can prove that eq. (22) implies
the following relation between longitudinal and transverse local impedance

2l (W) = %z; (W), m>0. (45)
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Alternatively the transverse local impedance may be defined as the trans-
verse average force per unit charge along the beam trajectory divided by the
moment of the beam

Zi(—w; s) = —=ZX (w; 8)
i®, /L
mrm=1J (w, s)eilks—wb) (F cosmb — B sin m0)
i<[E(w) + 8 x E(w)];>

mrm™1J. (w, s) (T” cosmb — Bsin m0)

(46)

where we have Fourier expanded the fields.
Similarly, we define the total transverse impedance for the dipole case as
the Fourier transform of the effective wake function
o ’
Ziw) = / Wi (As) e “8/edAs
C °S)

- ﬁl_ f B, (5) 21 (w; s)ds [—fﬂ (47)

Note that in the case of a general current rather than ring charges, it
follows from eq. (41) that the corresponding transverse wake potential is
given by the product of the local impedance and the Fourier transform of the
current

&, /L= —-2—1;mr’""1 /OO I (W) ZE (w; s) €“tdw (?cosm() - gsinmﬁ) .(48)
For example, in the case of resistive wall the wake potential for a point

charge is [3, 17]

W1 (AS = 1; S)

Wi (A ’ - / 3 As>0 49
) (As; s) = (19)
with the corresponding transverse local impedance
Zi (W s) = \/1WI (As =1, s).s_g_r.l__(ﬁ))_j__z
2c o]
= Re(Z (w=1 9)) ig_ﬂ_%ﬂ (50)
w
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2.6 Dispersion Relations

The numerical simulations have been checked against analytical calculations
in the case of a linear map for the lattice. In particular, the dispersion
relation for initially displaced bunches (e.g. injected or kicked bunches) is
obtained from the eigenmode ansatz

(xk) = (xkO) e—iWﬁImS/c: m = 07 17 2) Tty M-1 (51)

where M is the number of bunches. Substitution into the averaged equation
of motion with the wake potential distributed uniformly around the lattice

,8:1:0< D = QtQJ Z E Wi (Asg—; +nC)

(x )II +

pOCC j=1ln=-—0o0
X (z; (s — nC)) (52)
leads to
2 2 s QkQJ A C
(wﬁxm - wﬂxo) (Tro) = 2oC (;0) Z Z W1 (Asg—j +nC)
Jj=1n=—c0
Xei(Ask_,j-}—’nC)uJﬁ,m/c (53)
so that using
ngm - w%xo g 2(“)5230 (wﬁxm - wﬁxo) (54)
one obtains
Wazm (Tko) = Wpxo (Tko) — k@ (zjo f: i Wy (Ask—j +nC)
Bzm \TkO) — Bx0 \TkO 2P0 gm0 C’ =, —j
Xei(Ask—-»j‘HlC)wﬁzm/C (55)

leading to the eigenvalue problem

M <§7_0) = Wazm (TO> (56)
with
QeQic =
o L _XkwgT Wi (ASk—; C
Mi; Wpz00ks 2IDOWBacoC n:Z—:oo (B i )
¢ (B +nC)wpzo/c (57)
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where wg,m has been approximated by wg,o thereby implying a perturbative
treatment. Solving the eigenvalue problem determines the eigenfrequencies.

Alternatively, the impedance is introduced by the Poisson sum formula
16}

> flom) = —é—pﬁ:wF () (58)
with the Fourier transform defined by
Fl)= /_ ‘: £ () e tdi (59)
and observing that
ft+to) = Fw)e™,  f(t)e*" o F(w—wp). (60)

and it follows that

_ iQkQ;ic* & ipwoAs—;/c
Mi; = wpz00k; — Wp_;w Zi (pwo — wpgo) €P0R =3/ (61)
where
2r  27c
=== —. 62
W == | (62)
The corresponding growth rate for each eigenmode is then given by

1

Tm

which is positive in the unstable case, with a tune shift
Avem = Re (Wgzm — Wpzo) - (64)

Note that in the case of resistive wall, the sum in eq. (61) for the frequency
shift is not well defined and the limit As is delicate [3].
A dispersion relation for initially non-displaced bunches (e.g. stored bunches)

is obtained from the ansatz

S —iw s/c
(ze) = —e szos/e, (65)
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Substitution into the averaged equation of motion determines the linear
growth rate

1 1QrQjc A & Li( B8k +nC Ywpzo/c
T 2powpz0C Z E 14} (A.Sk._,j + nC) (.’L‘jo) e . (66)

j=1n=-—o0
For completeness we would like to point out that the general initial value
problem may be solved by Laplace transform [14].

3 THE FACILITIES

3.1 The Advanced Light Source

The ALS is a 1.5 GeV Synchrotron Radiation Source. Tab. 1 and 2 summa-
rize the parameters needed in our study [18]. The storage ring design is based
on a triple bend achromat (TBA) lattice. Wigglers and undulators occupy a
sizable part of the circumference. Theoretical and computational studies of
their magnetic field effects on the beam dynamics has been done and are sum-
marized in the conceptual report. The 11 straight sections for wigglers and
undulators provide greatly enhanced proton-photon performance compared
with bending magnets. A particular feature of the storage ring is the very
small design value of the horizontal emittance of the electron beam, which
has been minimized to maximize the spectral brightness of the undulator
photon beams.

The injection system is illustrated in Fig. 1. It consists of a high-intensity
electron gun, a 50 MeV travelling wave linac, and a 1 Hz, 1.5 GeV booster
synchrotron. The injection system is designed to be able fill the storage ring
to its design current of 400 mA in 2.1 minutes.

3.2 Description of the Injection Process

There are two different modes of operation for the storage ring, multibunch
and few bunch mode. Each with special needs from the injection system
[18]. The multibunch mode requires the storage ring to be filled to a current
of 400 mA in approximately 250 consecutive bunches (out of 328). For the
few-bunch mode, one expects a current of 7.6 mA per bunch and the bunches
are filled one at a time. The beam transfer into and out of the booster are
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Nominal energy (GeV) 1.5

Maximum circulating current, multibunch (mA) 400
Number of stored electrons, multibunch | 1.64 10*

Maximum circulating current, single bunch (mA) 7.6
Number of stored electrons, single bunch | 3.12 10%

Natural emittance (m.rad) | 4.08 10~°

Natural energy spread, rms | 7.01 10~

Energy spread, rms, at max. current (multibunch) | 0.8 1073
Energy spread, rms, at max. current (single bunch) | 1.48 10~
Bunch length, rms, natural (mm) 3.7

Bunch length, 20, natural 24

Bunch length, 20, maximum current (multibunch, ps) 28
Bunch length, 20, maximum current (single bunch, ps) 47
Peak energy (GeV) 1.9

Filling time, multibunch, to 400 mA (min) 2.1

Filling time, single bunch, to 7.6 mA per bunch (s) 16
Circumference (m) 196.8

Orbital period (ns) 656.4

Harmonic number 328

Radio frequency(MHz) | 499.654

Peak effective rf voltage (MV) 1.5

Number of superperiods 12

Insertion straight section length (m) 6.75

Mean radius (m) 31.32

Bending field (T) 1.248

Bending radius (m) 4.01

Injection energy (GeV) 1.5

Injection field (T) 1.248

Table 1: ALS parameters.
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Number of dipoles per superperiod 3
Number of quadrupoles per superperiod 6
Hor. betatron tune 14.277
Vert. betatron tune 8.179
Synchrotron tune 0.0082
Hor. natural chromoticity -24.1
Vert. natural chromaticity -28.5
Hor. betatron function at insertion symmetry points (m) 11.0
Vert. betatron function at insertion symmetry points (m) 4.0
Hor. beam size at insertion symmetry points (rms) | 201 um
Vert. beam size at insertion symmetry points (rms) 201
10 % emittance ratio ( um)
Momentum compaction | 1.43 10~°
Hor. damping time (ms) 13.1
Vert. damping time (ms) 17.6
Long. damping time (ms) 10.7
Number of sextupole families (ms) 2

Table 2: ALS lattice parameters.
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Figure 1: Diagram of the injection system layout.
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done in a single turn, using a full aperture fast kicker, requiring only a single
kicker pulse per cycle.

In the multibunch mode, the electron gun is triggered with a long (about
100 ns) pulse. Before entering the linac, the beam is chopped at 500 MHz to
minimize subsequent losses at higher energies. The beam from the linac is
injected into the booster at 50 MeV during a single turn, using of a septum
magnet and a full aperture kicker. The incoming beam fills 50 (out of 125)
500-MHz booster rf buckets, is accelerated to 1.5 GeV in the booster and
extracted in a single turn, with a slow beam bump, a fast kicker, and two
(thin and thick) septum magnets. By careful timing the storage ring is
repetively filled with the required 250-bunch pattern.

In the few-bunch mode, the electron gun and linac are triggered to pro-
duce a single, short (about 0.5 ns), high-intensity pulse, injected at 50 MeV
into a single booster rf bucket. The single bunch is accelerated in the booster
to 1.5 GeV and extracted as before. The single bunch is transferred into a
single rf bucket in the storage ring. The same storage ring bucket is filled
repetitively, every booster cycle, until the desired current is reached.

Prior to injection, for both modes, a local bump is shifting the storage
ring’s closed orbit to the end of the injection septum, using four bump mag-
nets as shown in Fig. 2. These magnets can displace the orbit up to 15 mm.
The beam is ejected from the booster and transported through the injection
septa into the storage ring. These produce deflections of 8.0° (thick) and 2.5°
(thin). The horizontal position of the thin injection septum is adjustable for
best match to the dynamic aperture. Fig. 3 shows the position of the closed
orbit and the injected beam, in the horizontal phase space, at the end of the
septum magnet. The bump magnets are turned off in a time correspond-
ing to about three revelution times to prevent the new beam from colliding
with the septum. The injected beam is rapidly damped due to synchrotron
radiation. The injection process is repeated at 1 Hz until the desired beam
current is reached.

4 THE TRACKING CODE

The tracking code originates from a code developed at SLAC [19]. The code
was restructured into independent subroutines, in order to allow for better
portability. From two transverse dimensions (z, p:), we extended it to four
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(z, pz» ¥, Py), with the possibility to generalize to the full 6-dimensional
case (Z, Pz, Y, Py, 0, ct). The force due to the wake field is represented
by a localized kick at one point in the lattice. The motion of a bunch at a
given turn is divided into two parts. The first part describes the lattice by a
one turn map, i.e. from just after the location of the wake kick all the way
around the ring. The second part models the effect of the wake field by a
thin kick in both transverse planes. The code allows the user to insert any
map relevant to the lattice being studied. It may be a linear as well as a
non-linear map expanded up to some arbitrary order n. The non-linear map
is obtained from TRACY-2 [20] and DESPOT |21}, i.e. the machine file is
obtained from TRACY-2 and used as input file for DESPOT to extract the
non-linear map for ALS. In the discussion of the results we will describe the
importance of using a non-linear map to study the beam dynamics for ALS.

5 THE CAVITY MODEL

5.1 The Radio Frequency System

Tab. 3 summarizes the radio frequency parameters. Assuming that both rf
cavities have been damped by a factor =~ 30 to a transverse shunt impedance
of 2 MQ)/m (maximum), we study the effect on the beam dynamics for HOMs
with a shunt impedance larger than this value. The HOMs of the rf cavity
have been measured [22] and Tab. 4 summarize the ones we used, either for
program checking or beam dynamics studies.

5.2 Cavity Wakefield and Computer Implementation

The bunches of the beam interact with each other through the electromag-
netic fields they induce in the accelerator vacuum chamber. The effects of
these fields, loosely referred to as wake fields, must therefore be included in
the equations of motion.

In the case of an ultra-relativistic exciting particle of charge ¢ moving in
the s direction, the transverse wake potential per unit charge @, (As)/q, is
defined as the transverse momentum kick experienced by a trailing unit test
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Number of cavities 2

iris radius (m) 0.035

cavity length (m) 0.28

Frequency (MHz) | 499.654

Harmonic number 328

Peak effective volatge, VT (MV) 1.5

Transit time factor, T' 0.683

Total efective shunt impedance, ZT“L (M) 16.0

Beam current, multibunch mode (mA) 400
Power loss (kW):

Synchrotron radiation, dipoles 45

Synchrotron radiation, insertion devices 20

Fundamental-mode dissipation 140

Parasitic modes 2

Waveguide and other losses 20

Total rf power installed (kW) 300

Table 3: ALS radio frequency parameters.

Frequency | Polarization | Quality factor | Shunt impedance
[MHz] [MS2/m]
810.08 H 48000 14.8

1121.77 \Y 7000 3.7
1122.72 H 17000 9.0
1801.61 v 2000 1.1

Table 4: Studied higher order cavity modes.
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charge [4, 8]

- C - -
B.(80)/g = - [ dslB+7x By (67)
where C is the circumference and where the unit of &, (As) is V/C. The
accelerating structure is approximated by a periodic, symmetric disk-loaded
structure with period p and iris radius b. For an axially symmetric structure
all the modes depend on the azimuthal angle 6 as exp (#mf#) where m is an
integer. The modes corresponding to m = 0, 1,2 are refered to as: longitudi-
nal, dipole and quadrupole modes. In a periodic structure the modes appear
in frequency bands. A charged particle travelling through the structure will
excite a discrete set of these modes. Each mode mn is characterized by a
frequency wmn/2m (eigenvalue) and a modal loss factor k., (eigenfunction).
The modal loss factor for an infinitely short bunch is, using the ”circuit

definition” [4]

wmanlnn

kmn = 0 v (68)
with Rl the longitudinal shunt impedance in Ohm and Qmn the quality
factor. The modal loss factor has the unit L=2™~!. The coordinate system
is arranged so that the transverse position of the exciting charge 7/ is in the
horizontal plane, i.e. § = 0. The test charge moves in the s direction at a
transverse position (r = r’, 8) and a distance As behind the exciting charge.
The m-pole component of the wake potential per unit charge experienced by
the test particle is a sum over all the m-pole modes [5, 11]

- ® ¢RI w BWAY] Wrn A8
A _ m_m—1 ClpnWmn . ( r ) ‘ _ Wmn
&, (As)/q mr’ T 20 sin { — exp | =5, O
X (? cosm@ — Osin ma)
> 2ck w,\s WS
. m_m—1 mn . T _mn
= mr'r z::l o sin ( c ) exp ( e an)
X (Fcos mé — fsin m@) , As>0 (69)

where

1

T (70)

Wr = Wmn 11—
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and note that

=

The total wakefield is a sum over all the multipole contributions excited by
the leading charge. Normally bunches remain near the axis and the diplace-
ments r’ and r are small. The transverse wakefield is then dominated by the
dipole modes and we can approximate the total wake potential by

> chnwln . wrAs ( wmAs)
sin( ) ex

P (As)/qg =~ z)
L As Win\s
~ I % gin wr e (___m
'r; an ( ) *P 2Can

so that the wake potential is linear in the transverse displacement of the
exciting charge. Note that the total wake function, i.e. the transverse wake
potential per unit displacement and unit charge W, is given in units of
V/pC/m. The change of potential experienced by a unit test particle in
Volts &, , is obtained by multiplying by the charge ¢ and the position 7’ of
the exciting charge.

The code keeps track of the wake potential for each transverse dipole
mode n. The potential increases just after a bunch passes through the cavity,
since in the transverse case the bunch does not see its own local wake field.
The wake potential advances in phase and attenuates (since wy, is complex)
between each bunch passage.

The complex transverse wake potential for mode n, just after bunch j—1
has passed through the cavity is denoted by ®.(j — 1). The next bunch j
will experience the following complex wake potential from mode n during its
passage [8, 14]

QC(Q in

) As > 0(72)

®.(j) = ®(-Dexpli——" ) exp ( 2ch) (73)

where wy, is the frequency of the mode and As;_;_; is the longitudinal
distance between bunch j — 1 and j. Just after the passage of bunch j the
contribution to the exitation of mode n is superimposed

8,(j) — ®(j) — iNjez;Win (74)
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since

. (WinAS\ b Asfe —iwnBs/c
sm( A )—_5(61 — e ! ) (75)

where W1y, is the effective wake function for mode n in the expression of the

transverse wake potential

P 26‘9 in

This is the contribution per cell and the unit of Wi, is V/C/m. The real
total change of transverse wake potential seen by bunch j from all modes is

(I)x,total (.7) = Re Z o, (.7) (77)

®,.(As)/qg = zWissin( ). (76)

The formalism in the vertical plane is the same as the one shown for the
horizontal plane.

5.3 Dimensional Analysis

The modal loss factor is

so that
wi= 3] 3]

The transverse wake potential is

WinS

o) (30)

o0
B.(As)/g =Y Winsin(
n=0
with 7 the radial position (7 = z£+yg) and Wy, the effective wake function,
i.e. the coefficient of the wake potential

N 2C’C1n

b2wy,

Win (81)
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and the dimension is

TLV 1%
| Win = [LQTC} a [C’m} ' (82)
The unit of the wake potential is
[8.] = V] (83)

as expected. Note that the transverse kick experienced by a unit test charge

from the exciting charge g is
qT’Wln

with 7/ the displacement of the exciting charge.

5.4 Growth Rate

To test the program, we detuned the cavity onto the betatron sideband. For
a single bunch we find for the growth rate

_ N6202 cav Raa
S __ﬁa%_pgwRe(Zi"(pr'—wﬁ)) (84)

with C the circumference and c the speed of light. We assume that the beta
function is constant within the cavity. In this case the impedance has a
simple expression

-1 _ __Neczﬁca'u
2E [eC?

with R, the transverse shunt impedance.

We checked the code with a cavity mode detuned on the first lower side-
band using a single macro particle (5 x 10° part/bunch). The horizontal
growth rate was estimated by tracking 4096 turns with an initial horizontal
displacement of 5.0 mm. The HOM at 810.08 MHz was detuned to the lower
sideband f_ = 809.993 MHz. The calculated growth rate is 9.65 msec and
we found 9.76 msec from tracking. Similarly the HOM at 1122.72 MHz was
detuned to f_ = 1122.277 MHz. The calculated growth rate is 15.9 msec and
we found 16.0 msec from tracking. The discrepancy in the first case is due to
the fact that the dispersion relation only gives the first order perturbations.
We proved this by a simple scaling test, i.e. we reduced the impedance to 10.0
M€ /m and found 14.4 msec from tracking compared to 14.3 msec calculated.

Ry (85)

T

27




time constant | quality factor
[msec] Q
16.2 136000
16.0 68000
16.0 34000
16.0 17000
16.1 8500
16.7 4250 -
19.4 2125

Table 5: Scaling of the quality factor.

5.5 Filling Time
The filling time is given by [12]

_ 29
Te = o0+ (86)

with Q the quality factor and 8 = 0 the coupling factor. A numerical evalu-
ation for the mode 1122.72 MHz (@ = 17000) gives a filling time of 4.8 usec.
As the period Tp is 0.66 usec, it means that the cavity reaches steady state
after roughly 10 turns.

5.6 Scaling of the Quality Factor

For the same mode a scaling of Q) was done to observe the limit of the validity
of the analytical growth rate formula versus the value of Q. As expected,
we found that the time constant starts to increase when the quality factor
becomes sufficiently small as shown in Tab. 5.

We also addressed the possibility of overlaping sidebands. For the same
mode (at 1122.72 MHz and a quality factor of 17000) the bandwidth (given by
Aw = w1 /2Q) is 33 kHz compared to the distance between the two sidebands
(given by Af = f, — f-) is 844 kHz. In addition, to check for a possible
overlap between the first upper ( f14) and the second lower sideband (fo_), we
computed the distance between these two sidebands which is A f14/2- = 679
kHz.
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6 THE RESISTIVE WALL PARAMETERS

6.1 Definition

In the following we present a breif background of the formulas for the re-
sistive wall effect following Zotter [9] in order to get some insight into the
driving mechanism. The betatron motion of the beam drives a differential
wall current I,, that flows in opposite directions on either side of the vacuum
chamber. This leads to a longitudinal electric field E, that varies in strength
across the aperture, and a transverse magnet field B;. The longitudinal elec-
tric field extracts energy from the beam that drives the wall currents. These
excites a dipole magnetic field that deflects the beam. The beam current
density is given by

, 0J )
Jo (x + ae™t, vy, s) ~ Jo(z, v, s)+ —6-—xgae“"t (87)
with the beam current
I ——-//Jo (z, y, s)dxdy. (88)
The fields in the median plane are
_ zEy i, . _i_E_O iwt
E, = e B, = — (89)
since
B
V x E+ 8__ = 0. (90)

ot

The wall current I,, is obtained from the power lost per unit length by
the beam due to the E, field, which for Harmonic fields is

P:%//Re(f.ﬁ)dxdy::—an// ajodvd _“E‘zf (91)

which is equal to the power flow into walls

P =—I,Eo (92)
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so that

al ‘
L, = ——.
P =g (93)
The wall current is related to the electric field at the wall Ey by the lon-
gitudinal wall impedance Z(',l. It can be shown that, in the case of a round
pipe with a current distribution cos#, by assuming I, to be concentrated in
about 1/4 the pipe circumference on either side, one gets the correct result

[8]. The effective impedance is therefore 47} and

V=417 = CE, (94)
or
41, 7]
Ey =
) = (95)
with a deflecting magnetic field
2201 .,
B, ——b—z';j"é—e . (96)
When this is inserted into the definition of Zi-
N i JE [E" (s, w) +c5 x B (s, w)]ids )
7)== - B ©o7)
Ji (w) (r cosmf — @sin m@) m
one finds
2cZ)
L 0
Zl = bgw - (98)

It follows that any structure that allows for a varying longitudinal electric
field across the aperture or correspondingly, the forming of wall current loops
that produce a dipole magnet field, will increase Zi.
The transverse coupling impedance of a smooth beam pipe of radius b
and resistivity p is given as a function of the frequency w by [§]
cC [ pop

Zi(w) = e m(sgﬁeri) (99)
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Figure 4: The resistive wall impedance as a function of frequency.

or

Wi(As) = ,/%C;Re[zf(wzl)] (100)

= iClAu; Re[Zi(w = w1)). (101)

This function is illustrated in Fig. 4 together with the frequency lines of
the coherent modes. If the tune is just below an integer, there is one slow
wave close to the origin where the value of the resistive wall impedance is
large, leading to a large growth rate of the instability. When this effect
is dominant, it is preferable to choose a tune just above an integer, since
this moves the frequency of the most dangerous mode to higher values and
reduces its growth rate.
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6.2 Resistive Wall Parameter for the ALS and Com-
puter Implementation

We used the following value for the ALS total impedances at the first side-
band [23]: 0.355 M/m in the horizontal plane and 0.883 M{2/m in the
vertical plane. The resistive wall subroutine bas been checked by studying
the growth rate. The calculated growth rate is obtained from

1
p = Im(ws — wo)
Nec? &2 N
B _szz_:wRe(Zx (pwo — wg)) (102)
Nedd & o
= e S Im(W. inwsC/ey
5By fewnC 2 (W1 (RC)e™ ) (103)

By tracking a single macro particle and by only considering the resistive
wall effect (no cavity), we obtain a horizontal growth time of 2.00 sec and a
vertical growth time of 0.627 sec. The calculated horizontal is 2.00 sec and
the calculated vertical is 0.625 sec, showing excellent agreement.

The computer implementation is based on the wake field. To be able to
include effects due to the rather slow decay of the wake field in this case, we
decided to keep track of the wakefield over several turns. After each turn, the
new value of the wake field is shifted into a finite queue of preceding ones.
The kick due to the wakefield is

(a) = g 3 Wa(Bsiy+nC)

n=--0

X (x; (s — Asgj —nC)) bp (8 — s0) . (104)

If we consider a bunch k on turn n, we have to consider three different con-
tributions

- the kick on the current bunch from previous turns.

- the kick due the leading bunches j from previous turns.
- the kick due to the trailing bunches j from previous turns.
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The first contribution is expressed by

() (0 i <n. (105)

(Pzk) (n) ~ \/(T———_z’)_c’

The second contribution is expressed by

(z;)(4)

(Pat)' (n) , i<n. 106
(= i)C+ Ase; (100)

The third contribution is expressed by
(pax)' () () (1) i < n. (107)

Jo—i+1)C—As;

7 PRODUCTION AND ANALYSIS

7.1 The Task

We studied the dynamics of the beam at injection and obtained the growth
rates of the different bunches in both transverse planes. The study was done
as guidance for the design of a transverse feedback system.

First we checked if tracking based on a 7:th order map was representing
the correct transverse dynamics, in particular by comparing with a symplectic
integrator, i.e. Tracy-2. Fig. 5 is shown as a reference and represents the
transverse phase space of a particle tracked with the symplectic integrator.
We also tracked the particle using a 7:th order map for different values of
the betatron amplitudes. Fig. 6 shows the results for a particle with 5 mm
horizontal amplitude and 1 mm in the vertical plane. The agreement with
the result from the symplectic integrator is good. Fig. 7 is obtained for
a 10 mm oscillation amplitude in the horizontal plane and 1 mm in the
vertical plane. The horizontal phase space is expanding whereas the vertical
is contracting. However, the symplectic integrator gives stable motion in both
planes, proving that the truncated power series map fails to approximate the
dynamics in this case.

The non-linear motion will therefore be studied by using a 7:th order
map and a particle with a maximum of 5 mm oscillation amplitude in the
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Figure 7: 7:th order map: 10 mm horizontal and 1 mm vertical amplitude.

horizontal plane. We tried to reduce the map to 5:th order but the dynamics
were not consistant with the symplectic integrator. In our case, a 7:th order
map is therefore needed to study the transverse dynamics of the beam.

7.2 Linear Map

Using a linear map, we modeled 4 injected bunches with 6 bunches already
stored, assumed to have damped down to zero betatron amplitudes. The
bunches are equally spaced around the machine circumference. In both
planes, the resistive wall is switched on as well as the HOMs of the cavi-
ties. The parameters for the studies are summarized in the following output

file:
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Particle energy: 1.5 GeV

Tune: v, = 14.277, v, = 8.179

Beta functions at the kick point: £, = 11.296 m, 3, = 4.231 m
Total number of bunches: 10

Particles per bunch: 5 x 10°

Ring circumference: 196.8 m

Harmonic number: 10

Number of resistive wall kicks: 1

Revolution frequency: 1.52334 MHz

Revolution period: 0.656454 us

RF frequency: 499.654 MHz

Bucket spacing: 0.60 m

RF wavelengths between bunches in a train: 1

Bunch spacing within a train: 0.60 m

Initial offset the first displaced bunch ”1” is x: 5.0 mm, y: 1.0 mm
First bunch to be displaced: 1

Last bunch to be displaced: 4

Total number of turns: 4096

In order to study the particle growth rate, we examined the following cases

- Result on the tune which is resonant with the first horizontal HOM.

- Result on the tune which is resonant with the second horizontal HOM.
- Result on the tune which is resonant with the third horizontal HOM.

- Result on the tune which is resonant with the fourth horizontal HOM.

Tab. 6 presents the result for bunches experiencing the maximum ampli-
tude growth and Fig. 8 shows the amplitude growth for bunches 1, 5 and 10
in the second case. The amplitude growth of the stored bunches, excited by
the injected bunches, is linear with time. The injected bunches are slowly
growing exponentially.

We now present the results of a study of the resistive wall effect and

compare it with the effect of the cavity HOMs on the beam dynamics. As
before, 10 bunches were used, i.e. 4 injected bunches displaced by x = 5
mm and ¥ = 1 mm and 6 stored bunches assumed to be damped down to
zero betatron amplitudes. A linear map was used and the macro particles
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Figure 8: Linear map: Amplitude
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growth of bunch 1, 5 and 10.




hor. tune | ver. tune | HOM Ti_4 Y14 | Ts—10 | Ys—10
[MHz] | fmm] | fom] | [mm] | fmm]
14.21971 | 8.17900 | 810.08 | 12.6837 | 1.0031 | 8.3734 | 0.2351
14.98591 | 8.17900 | 1122.72 | 5.0505 | 1.0032 | 0.3176 | 0.2367
14.27700 | 8.60954 { 1121.77 | 5.1203 | 1.0185 | 0.4046 | 0.2239
14.27700 | 8.32582 | 1801.61 | 5.1198 | 1.0064 | 0.4041 | 0.2276

Table 6: Max. amplitude growth due to HOMs.

bunch number | Res. Wall + Cavity | Res. Wall (1 kicks) Cavity
[mm] [mm] [mm]

bunch 1-4 5.1196 1.0031 5.0000 1.0044 | 5.1378 | 1.0037

bunch 5-10 | 0.4039 0.2351 0.3422 | 0.2363 | 0.1665 | 0.0268

Table 7: Max. amplitude growth due to resistive wall and HOMs.

were tracked for 4096 turns. The results are shown in Tab. 7 Comparison
was also done between a single thin kick for the resisitive wall effect and 500.
Tab. 8 shows the resulting amplitude for 500 thin kicks using the same initial
conditions as before.

7.3 Non-Linear Map

Tab. 9 shows a comparison between linear and non-linear map for the second
horizontal HOM. Fig. 9 represents the growth of the first bunch (the injected
one) and the successive bunches. The amplitudes of these bunches are now
beating and the FFT shows a double peak around each tune. In order to
understand this behavior, a driven anharmonic oscillator was modeled and
the result is presented in Fig. 10. This leads to the conclusion that the

bunch number | Resistive Wall (500 kicks)
[mm]
bunch 1-4 5.0000 1.0000
bunch 5-10 0.3312 0.2308

Table 8: Max. amplitude growth due to resistive wall.
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Map HOM | 14 Yi-4 | Ts—10 | Ys-10
[MHz] | [mm] | [mm] | [mm] | [mm]

Linear 1122.72 | 5.0505 | 1.0032 | 0.3176 | 0.2367
Non-linear | 1122.72 | 5.3246 | 1.1911 | 0.0546 | 0.0013

Table 9: Max amplitude growth for linear vs non-linear map.
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Figure 10: Driven anharmonic oscillator.

beating is a consequence of the amplitude dependent tune shift induced by
the sextupoles. In other words, the amplitude dependent tune shift makes
the particle slip out of phase relative to the driving field.

In order to compare the simulated linear growth rates with the analytical
expression in chapter 1, we again used 10 bunches, 4 injected with x = 5 mm
and y = 1 mm and 6 stored assumed to have damped down to zero betatron
amplitudes. Only the resistive wall effect was included, using 10 thin kicks.
Tab. 10 shows the simulation results for the stored bunches experiencing
linear amplitude growth due to the injected beam.

We also studied the growth time for a particular eigen mode of the 4 in-
jected bunches, with only resistive wall effect using 10 wake kicks. For each
plane we computed analytically the 4 eigenmodes using LINPACK [24]. One
unstable mode was selected and we obtained the corresponding eigenvector
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hor. [sec] ver. [sec]

Tracking | Calculated | Tracking | Calculated
0.122 0.116 0.0902 0.0842
0.0963 0.0918 0.0727 0.0673
0.0826 0.0788 0.0631 0.0579
0.0736 0.0702 0.0516 0.0516
0.0668 0.0638 0.0470 0.0470
0.0616 0.0589 0.0479 0.0435

Table 10: Linear amplitude growth.

hor. [sec] ver. [sec]
Tracking | Calculated | Tracking | Calculated
0.532 0.215 0.0916 0.0605

0.193 0.215 0.0538 0.0605
0.199 0.215 0.0567 0.0605
0.233 0.215 0.0638 0.0605

Table 11: Growth times for a single eigenmode.

defining the initial conditions in (z, ps, ¥, py) for the 4 bunches. Tracking
with these initial conditions gaven the growth times for the two planes. The
results are shown in Tab. 11. The discrepancy between tracking and ana-
lytical results is due to numerical roundoff errors, since tracking of a single
eigenmode will be particularly sensitive. Note that the resistive wall kick is
roughly 6 magnitudes smaller than the average kick from the betatron mo-
tion. The expected results were obtained by a scaling test and agreement
was found when the impedance was scaled by a factor of 10% — 10°.

8 MORE ON THE INJECTION PROCESS

The beam is injected from the booster to the storage ring with very large
transverse oscillation amplitudes: 13 mm in the horizontal plane and 1 mm
in the vertical plane. We studied the behavior of the beam just after the
injection without taking the resistive wall effect into account. Fig. 11 shows
the results. The tracking was done using a symplectic integrator perturbed

41




Hor. phrose spoce

p

720 -0 09
e

T T
2.0 -1.0 0.0 1‘.0 .0E—~Q2

Ver. phaose spoce

1.06-03

03

005 00

-.0 —_—2.0 0.0 2.0 “4“.0DE—-0O3

Figure 11: Phase space just after injection.

by synchrotron radiation (damping time 10 msec) by tracking one damping
time, i.e. 15 000 turns (with Tracy-2). Initially we observe damping in both
planes due to synchrotron radiation and a fair amount of beating due to lin-
ear coupling. However, after a few thousand turns there is a sudden increase
of amplitude, especially in the vertical plane, after which the particle con-
tinues to damp. This is explained by the rather large amplitude dependent
tune shift for ALS, originating from a sextupole scheme based on only two
families. A particle will therefore cross resonances during its path towards
zero amplitude. When this happen, the amplitude will grow until amplitude
dependent tune shift moves it away from the resonance. If the resonance
is strong enough, the particle may become unstable and hit the beampipe.
Otherwise, it continues to damp towards zero but now following a different
path in the tune diagram. If no strong resonances are crossed it eventually
makes it down to zero. It is clear that the dynamics of the damped motion is
very complex and quite different from the naive model that injected particles
are smoothly damped to small amplitudes in a few damping times.
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Figure 12: Tune diagram.

9 OTHER APPLICATIONS

The code is structured around independent subroutines. It can easily be used
for other accelerators by simply changing the input files with the appropriate
ring characteristics. Similarly, relevant parameters for resistive wall effect and
cavity HOMs are defined in corresponding input files.

In parallel, work has been pursued to develop a computer code [25] for the
full 6-dimensional dynamics based on power series maps for the lattice, in-
cluding models for longitudinal as well as transverse feedback systems. This
code has its origin in an early effort to simulate the longitudinal feedback
system currently being constructed for the B-factory to be tested at ALS. For
easy implementation and support of a powerful user interface, this code has
applied modern programming techniques like object oriented programming,
in particular Objective-C has been applied. However, the presented Fortran
implementation allowed us to reuse and significantly extend the initial For-
tran code developed at SLAC. This led to fast prototyping and consistency
checks of the dynamical model before migration of the relevant dynamics to
the final code.
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An interesting possibility [26] is to add the current model to a general tool
like Matrix-X [27] used to study feedback systems in general. The possibility
to call C routines allows for a straightforward integration of the presented
model to this environment. This would allow for easy modeling of the whole
system, including possible feedback systems, to study limitations due to e.g.
quantization noise, saturation effects as well as suitable gain coefficients and
overall system performance. Independently, straighforward analytical work
[28] has been done by applying classical control theory to study the dynamics
of the transverse feedback system currently being tested at ALS. This work
is currently being extended to study saturation effects using Matlab [29, 30].

10 SUMMARY AND CONCLUSIONS

We have derived the linearized transverse equations of motion for the rigid
bunch motion in the case of wake fields. A map approach was persued by
averaging the equations of motion, in particular by lumping distributed wake
fields into a thin kick. This was straightforward using a Hamiltonian formal-
ism. The final equations of motion allows us to consider one turn maps,
in particular their power series representation on a computer, to represent
the lattice. This allowed for a straightforward generalization to include the
non-linear dynamics, synchrotron radiation as well as generalizing to the full
6-dimensional case. In addition, we have also implemented a 2-dimensional
wake field model for the HOM in a cavity. The computer implementation
was successfully checked against analytical calculations. The tracking code
was used to study the non-linear transverse dynamics for ALS as a guide
in the design of a related transverse feedback system. These studies showed
qualitative changes in the dynamics of the injection process as well as the
stored beam due to non-linear effects from the lattice.
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