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Abstract

PM2.5 exposure is associated with significant health risk. Exposures in homes derive from both outdoor 

and indoor sources, with emissions occurring primarily in discrete events. Data on emission event 

magnitudes and schedules are needed to support simulation-based studies of exposures and mitigations. 

This study applied an identification and characterization algorithm to quantify time-resolved PM2.5 

emission events from data collected during 224 days of monitoring in 18 California apartments with low-

income residents. We identified and characterized 836 distinct events with median and mean values of 12 

and 30 mg emitted mass, 16 and 23 minutes emission duration, 37 and 103 mg/h emission rates, and 

pseudo-first order decay rates of 1.3 and 2.0/h. Mean event-averaged concentrations calculated using the 

determined event characteristics agreed to within 6% of measured values for 14 of the apartments. There 

were variations in event schedules and emitted mass across homes, with few events overnight and most 

emissions occurring during late afternoons and evenings. Event characteristics were similar during 

weekdays and weekends. Emitted mass was positively correlated with number of residents (Spearman 

coefficient, ρ=0.10), bedrooms (ρ=0.08), house volume (ρ=0.29), and indoor-outdoor CO2 difference 

(ρ=0.27). The event schedules can be used in probabilistic modeling of PM2.5 in low-income apartments. 

Key Words: PM2.5, residential, exposure, multifamily, cooking

Practical Implications: The indoor emission events quantified in this study provide diurnal and weekly 

profiles that can be used to simulate PM2.5 concentrations and exposures in low-income apartments. The 

algorithm can be used to determine emission event characteristics and profiles for other types of homes 

for which time-resolved indoor and outdoor PM2.5 data are available. 

1 Introduction 

The U.S. Environmental Protection Agency’s most recent Integrated Scientific Assessment for Particulate 

Matter1 determined that both short-term and long-term exposures to elevated ambient PM2.5 cause 

increases in cardiovascular effects and mortality; robustly established associations with respiratory effects

were assessed as likely to be causal. Several recent studies have investigated health outcomes in relation 

to indoor particle exposures2-6.

The home environment is an important location of PM2.5 intake, owing both to the amount of time spent at

home7 and the high intake fraction for indoor PM2.5 sources8. The relative contributions of ambient and 

indoor-generated PM2.5 vary widely across homes9-14. Using concentration–response functions derived 



from analyses connecting ambient PM2.5 to health effects, Logue et al.15 found that intake of PM2.5 is likely

responsible for more chronic health impacts – measured in disability adjusted life years – than any other 

non-biological air pollutant in US residences. 

PM2.5 is emitted inside homes during events and activities including tobacco smoking, cooking and 

cooking burner use, burning of incense and candles, secondary aerosol formation from ozone-terpene 

reactions, and re-suspension, among other sources16-28. Numerous studies have reported elevated 

concentrations occurring during scripted or natural indoor activities in homes14, 17, 20, 27, 29-32.

Exposure to PM2.5 in homes can be reduced by limiting source activities, managing ventilation and/or 

filtering the outdoor air supply, using kitchen exhaust ventilation to remove cooking-related particles33, 

and filtering indoor air via a forced air system or standalone devices34-38. PM2.5 exposures and the 

effectiveness of controls can be investigated through measurements in intervention studies or under 

controlled conditions, or by applying simulation-based analysis to individual buildings or the building 

stock34-41. Simulation offers advantages over experimental or empirical evaluation, including the ability to 

investigate many more control alternatives under varying conditions.

Simulating residential PM2.5 concentrations requires quantitative and time-resolved introduction of 

material from both outdoors and indoor emission sources. One approach to simulating indoor sources is to

apply emission factors and frequency profiles for specific activities. Emission rates and emission factors 

for many sources have been reported from experiments conducted in laboratory test chambers or 

residences under controlled conditions. Emissions are calculated from the time concentration profile and 

knowledge of the air exchange rate, with the assumption of a well-mixed airspace 16, 18, 25, 28. A few studies 

have analyzed time-resolved particle measurements and occupant diary data to associate identified indoor 

peaks with specific occupant activities19-21, 42. However, modeling of PM2.5 emissions by probabilistically 

accounting for all relevant sources is still limited by the lack of data on source frequencies and schedules. 

An alternative approach is to use empirical emission event schedules developed from analysis of PM2.5 

data collected inside and outside of occupied homes.

The primary objectives of the present study were to demonstrate an algorithm-based technique to identify 

indoor emission events and quantify their characteristics from time-resolved particle data, and to apply 

the technique to determine event characteristics for data collected in 18 California apartments with low-

income residents. The secondary objective was to investigate relationships between emissions and 

household characteristics for these homes. The ultimate goal of this effort is to construct a database of 

indoor particle emission events that can be used in data-driven, probabilistic modeling of PM2.5 

concentrations in homes.  



2 Methods and Materials

2.1 Method to Identify and Characterize PM2.5 Events

The characterization algorithm is based on an idealized model of a PM2.5 emission event consisting of an 

emission period followed by decay. The model treats the source as constantly emitting into a completely 

and instantaneously well-mixed volume that is not simultaneously impacted by other indoor emission 

sources but has a baseline indoor concentration of particles from outdoors. The model treats each sharp 

increase above the baseline and subsequent decrease as a distinct event. All loss mechanisms are 

approximated as a pseudo-first order decay process. These are simplifications since actual PM2.5 emission 

events may have time-varying emission rates, coincident sources, non-ideal mixing, and combinations of 

loss mechanisms that do not follow first order dynamics throughout the decay. 

To characterize an event, we identify the beginning and end of the emission period, the peak 

concentration, and a suitable interval of decay to calculate a loss rate that is assumed to pertain throughout

the emission event. A smoothed time series of the indoor PM2.5 concentration measured during these 

periods is fitted to equations representing the idealized model to determine the pseudo-first order decay 

rate and emission rate for the event. 

Overview of Approach

The algorithm includes the following steps, described in detail in the subsections that follow: 

1. Start with time-resolved, indoor and outdoor particle concentration data. For this study we used 2-

minute data from a study of 18 low-income apartments in California.

2. Calculate baseline indoor concentration of outdoor particles using building-specific infiltration 

factor and time-resolved outdoor particle data.

3. Smooth indoor data and identify peaks using an analysis package developed for chromatograms.

4. Identify the start time for each emission event and the end time for each decay period.

5. Identify linked events for which the decay of the earlier event corresponds to the start of 

emissions for the later event. 

6. Visually review and add peaks that were missed by automatic algorithm. Repeat steps 4-6.

7. Determine pseudo-first order decay rate for each distinct event.

8. Calculate emission rate for each distinct event and for all events in series of linked events.



Step 1. Data Source: California Low-Income Apartment Study

This study analyzed data from an evaluation of synergistic energy and indoor air quality retrofits in 18 

California apartments with low-income residents43. Selection criteria for the study included: 1) subsidized 

housing for low-income residents, 2) apartment-level heating equipment, 3) no smoking allowed in home,

and 4) informed consent signed by tenants and participation agreement signed by building owners. Table 

1 presents summary characteristics for the apartments, which were spread equally among three 

complexes. All homes had gas heating and complexes 1 and 3 had air conditioning. Air quality parameters

were measured at a central location in each apartment – typically the living room or dining room – over 

two weeks pre-retrofit and another two weeks post-retrofit. For this study only the pre-retrofit data were 

analyzed so that the results reflect indoor emission events in low-income apartments without designed 

controls; several retrofits, including standalone air filter units and commissioning or replacing venting 

range hoods to ensure adequate exhaust airflow, may have reduced the apparent PM2.5 emission rates or 

accelerated particle removal following an event. 

The apartment study44 used light scattering monitors (DustTrak II 8530, TSI Inc., Shoreview, MN, USA) 

to obtain a surrogate measure of PM2.5 in 2-minute intervals. DustTraks have been shown to overestimate 

ambient and indoor PM2.5 concentrations by a factor of 1.9 to 5.6 in other studies45-47, with the central 

estimate of this factor between 2 and 3. The 2-minute average concentrations recorded in this study were 

multiplied by 0.4 based on these prior studies, and also based on comparisons of measurements made with

three of the DustTraks from the apartment study with co-located gravimetric measurements when the 

units were deployed in a coincident study48. Table 1 provides summary statistics for the indoor and 

outdoor measurements for each apartment. Time-series of analyzed data from all apartments are presented

in the SI. The adjusted indoor PM2.5 concentrations reported by Noris et al. are in line with published

PM2.5 data from other studies of low-income homes in the U.S.49, 50, as discussed in the SI. 

The data were analyzed to determine particle emission event characteristics including date, day of week, 

start and end time of emissions, identifier for linked events, estimated total removal rate including 

ventilation (h-1), estimated total mass emitted (mg) and emission rate (mg/min). The event characteristics 

were compiled into a database with other information including apartment and complex identifier, number

of residents, number of bedrooms, and home volume. In addition to PM2.5 concentrations, time resolved 

indoor and outdoor temperature, relative humidity (RH) and carbon dioxide (CO2) concentrations were 

measured in each of the 18 apartments and mean values of these parameters were calculated for each 

emission event. 



Step 2. Calculate Infiltration Factor and Baseline Indoor Concentration of Outdoor Particles 

A baseline representing the indoor concentration of outdoor PM2.5 was calculated with a variation of the 

method used by MacNeill et al.12 to determine contributions of indoor and outdoor sources to fine PM 

concentrations in Canadian homes. The indoor-from-outdoor (IFO) baseline was calculated as the product

of an infiltration factor (Finf) determined for each apartment and the time-varying outdoor concentration. 

The approach is described in detail and results, including sensitivity to the selected analysis parameters, 

are provided in the SI.

Step 3. Smooth Indoor Data and Identify Peaks Indicating Emission Events 

We used the R programming language MALDIquant package to smooth data and identify indoor 

PM2.5 peaks51. The MALDIquant package was developed for analysis of chromatograph peaks, which 

presents the same core analytical challenge: to identify the beginning and end of a perturbation to 

the baseline signal in the presence of data noise. Real-time PM2.5 concentrations, such as the 2-

minute average data used in this study (Figure S1), contain data noise because of imperfect mixing 

and other factors. 

An example application is shown in Figure 1. Figure 1a shows the 2-minute resolved PM2.5 raw and 

smoothed data. Data were smoothed with the MALDIquant Savitzky Golay method, using a 3rd order 

polynomial fit and half-window size of 5 (11-point averaging) to dampen noise while preserving 

peak shape. Peak maxima – shown as vertical red lines in Figure 1b – were identified with the 

Detectpeak function using a half-window size of 5 and a signal-to-noise ratio of 2 or less, as 

required to ensure that peaks >10 g/m3 above the baseline were identified. Each identified peak 

was assumed to represent the end of the emission period and the beginning of post-emission decay. 

Figure 1b also shows the calculated baseline. Events where the peak PM2.5 was <5 g/m3 above the IFO 

baseline were removed from the analysis because the small increase may not have resulted from indoor 

emissions. 

Step 4. Identify Emission Event Start Times and Decay Period End Times

An initial event start time was identified by looking back from the peak to identify the earliest set of three 

consecutive measurements with zero or positive change from the previous datum; the earliest was set as 

the start. The end of the decay was identified as the last three consecutive intervals with zero or negative 

change following the peak. The decay data were used to derive the loss rate of the event, as discussed 

below. The emission period is shaded in red in Figure 1b, and the decay period is shaded in gray.



In some cases, the initial event start and decay period end times were adjusted to more accurately define 

the period of sharp increase and subsequent decrease in concentrations. Adjustments were made only if 

the adjusted event start and/or decay period end times resulted in R2 > 0.8 from fitting of the emission rate

and loss rate (Steps 7 and 8). Emission event start times were adjusted to the time just prior to the first 

point in the event when the indoor concentration was at least 2 g/m3 above the IFO baseline. Decay end 

times were reset as the last point that was at least 2 g/m3 above the baseline. The R2
 > 0.8 condition 

resulted in start time adjustments of 310 peaks, of which the start time of 217 peaks was delayed to 

exclude concentrations <2 g/m3 above the IFO baseline when fitting the emission rate, and the start time 

of 93 peaks was moved forward to fully capture the entire emission period. Adjustments to decay period 

end time were made to 326 peaks, of which the decay period of 193 peaks was shorten to exclude 

concentrations <2 g/m3 above the IFO baseline when fitting the loss rate, and the decay period of 133 

peaks were prolonged to fully capture the entire decay period (for example, see Figure 1c). If the 

concentration did not increase by at least 5 g/m3 from the event start to the peak, the event was removed 

from the database. This resulted in removal of 138 peaks identified by the Detectpeak function (29 of 

these were added back on visual review, as described in Step 6). 

Step 5. Identify Linked Events 

Some peaks were close enough in succession that the end of the decay period of the first was the same 

point as the start of the next emission event; such peaks were considered “linked”. Linked events are 

identified because they may represent related emission sources. An example of two “linked” peaks is 

shown in Figure 1c. Peaks were de-linked if by the start of an event (i) the concentration dropped more

than 50 g/m3 below the prior peak concentration or (ii) the concentration dropped by more than 50% of 

the peak concentration minus the IFO baseline. 

Step 6. Visually Review and Add Peaks 

To facilitate visual review, we highlighted all indoor smoothed data that were >10 g/m3 above the 

baseline but not included in the emission or decay period of any identified event. There were 78 segments

of data meeting these criteria. Those that followed a pattern of a relatively steep rise followed by decay 

towards the baseline were added to the event database; this included 29 that were identified by Detectpeak

and removed because the peak was not >5 g/m3 above the starting concentration and another 17 small 

peaks that were missed entirely by Detectpeak. The remaining segments did not present as clear peaks or 

were too small to impact time-integrated PM in the home. Steps 4-5 were repeated for the added events.

In addition, we reviewed 10 peaks that had an emission duration lasting longer than 90 minutes for 

potential error made when adjusting the event start time. We restored the start time of 3 peaks to the 



earliest of three consecutive measurements with zero or positive change. Visual review confirmed that the

start time of the other 7 peaks were correctly identified so no correction was made.

In conducting the visual review, we also identified two cases of a saw-tooth pattern over a general decay 

that suggested removal through intermittent filtration. Peaks associated with the saw-tooth were removed.

Step 7. Determine Loss (Decay) Rates

Indoor PM2.5 loss processes include advection to outdoors through whole house and task ventilation, 

removal by filtration and deposition in mechanical air moving systems, and deposition and volatilization 

(sometimes associated with chemical transformations) in the indoor space52. Ventilation rates can change 

rapidly with operation of mechanical equipment – including exhaust fans, clothes dryers, and venting 

combustion appliances – or opening of windows and doors. Infiltration-driven air exchange generally 

changes over a time scale of hours with variations in outdoor temperatures and wind. The composite 

PM2.5 loss rate from deposition and transformation processes in a given home can vary over time as it 

depends on aerosol characteristics including size distribution and size-dependent chemical composition, 

and environmental factors including air temperature, relative humidity, interior surface temperatures, air 

velocities, and mechanical filtration. 

To calculate the emission rate for an event, we needed an estimate of the overall loss rate during the 

emission period. We determined the loss rate by fitting the smoothed PM2.5 time series during either the 

1st hour of the decay period or the entire decay period if it was shorter than 1 hour. 

The following first-order mass balance equation was used to solve for the event specific, composite PM2.5 

pseudo-first order loss rate (L):

dC ¿

dt
=−LC ¿+PA Cout+

E
V

(1)

In this equation, Cin is the indoor concentration, Cout is the outdoor concentration, P is the penetration 

factor (the net fraction of outdoor PM2.5 that is not removed as outdoor air enters the residence through all 

pathways), A is the air exchange rate, V is the mixing volume, and E is the PM2.5 emission rate indoors. 

During the decay period, with E = 0, the general solution is provided in Eq. 2,

         C¿ (t )−C ¿O
=(C ¿ (t d )−C¿O)∗exp  (−L (t−t d ))  (2)

where Cin(td) is the concentration at the beginning of the decay period. Cin_O is the indoor PM2.5 

concentration from the entry of outdoor PM2.5, taken as the average IFO baseline during the emission 

event. The loss rate L is determined by the slope of a linear fit to the data, as follows:



ln ( C ¿ (t )−C¿O

C ¿ (t d )−C ¿O
)=−¿ (3)

Step 8. Calculate PM2.5 Event Emission Rates 

Once the loss rate was calculated for each event, the emission rate was calculated using Eq. 4. 

C
C

(¿¿¿−C¿O
)

d
(¿¿¿−C ¿O

)

dt
=

E
V

−L¿

¿

(4)

The emission rate, E, is determined by fitting the measured data to a linear model corresponding to the 

general solution (Eq. 5), with the values of L and Cin_O determined as described above and taking Cin(

t 0 ) as the concentration at the beginning of the emission event.
 

(C¿ (t )−C ¿O)−(C ¿ (t 0 )−C ¿O )exp (−L( t−t0))⏞
y

=E⏞
m

[ 1
LV

(1−exp (−L(t−t 0))) ]⏞
x

(5)

The slope (m) determined from the linear model fit is the event emission rate, E. For example, Figure 1d 

shows the PM2.5 concentrations modeled using the calculated emission and decay rates. 

Equations 4-5 assume that the loss rate during the decay applies during the emission period. This induces 

an error in the calculated emission rate when the loss rate changes. Coagulation and gas-particle 

partitioning processes are of particular relevance to this concern as partitioning changes total aerosol mass

and both processes affect aerosol size distribution, which in turn affects the aggregate deposition rate.

Compare Simulated to Measured PM2.5 Concentrations During Events

To evaluate the degree to which the ideal model produced results consistent with the measurements, we 

calculated concentrations in each apartment using the values of E and L determined for each event and 

compared this simulated time series to the measured data. The simulated and measured time series are 

shown in Figure S1 of the SI.

Compare to Method Used by Wallace et al. (2006) 

As a point of comparison to prior work, the apartment data were also analyzed using the method 

described in an analysis of data from 37 homes in North Carolina 14. Wallace started by calculating a 4-

minute running average then set the event start as an increase of 7 g/m3 from one data point to the next. 



When the running average fell to <10 g/m3 above baseline concentration (determined as the indoor 

concentration immediately preceding the event start), the peak continued until the first minute when there 

was an increase in the concentration.

3 Results and Discussion

3.1 Identified event characteristics 

A total of 836 emission events were identified and quantified from 224 days of monitoring data. Summary

statistics for estimated PM2.5 mass emitted, event duration, emission rate, and pseudo-first order decay 

rate for all characterized events are presented in Table 2. Except for event duration, the parameters were 

approximately lognormally distributed (see Figure S5). Even with the thresholds to eliminate very small 

events, most quantified PM2.5 emission events were small in mass emitted (median = 12 mg) and 

relatively brief in duration (median = 16 minutes). 

The PM2.5 emission rates and emitted masses determined for events in this study fall within the very large 

range of residential, activity-related PM2.5 emissions reported in prior studies16, 19, 21, 24, 42, 53, as discussed in 

the SI. This literature indicates that certain cooking activities emit more PM2.5 per event and have higher 

emission rates than most of the non-cooking related particle-producing activities that have been studied, 

with the exception of smoking. The statistics for events analyzed in the current study are consistent with a

mix of cooking and non-cooking activities. 

The event statistics characterized from our analysis included all peaks that were identified, regardless if 

they were “linked” or not. For most apartments (2-1, 2-4, and 3-5 are the exceptions, see Figure S1), 80% 

or more of the identified emission events are isolated peaks. “Linked” peaks may represent multiple 

emission events generated by one larger activity, e.g. several distinct cooking activities as part of 

preparing one meal. Of the 836 peaks identified, 325 of them are characterized as linked peaks. All 

together, they formed 117 linked events. Linked events are important because with longer overall 

emission duration and more mass emitted in succession, linked events tend to result in higher peak indoor 

PM2.5 concentrations compared to events composed of isolated peaks. 

The distribution of first order decay rates determined for events in this study were similar to loss rates 

determined in a 13-home study in Australia54, but higher than those reported for large studies in North 

Carolina, USA42 and Edmonton, Canada55; details are presented in the SI. Our use of an overall first-order 

decay model to approximate the combined effect of all loss mechanism is supported by the high R2 that 

resulted from the fitting. About 95% of the identified emission events had R2 > 0.8. We considered that 

very high fitted loss rates could indicate that the monitor was close to the source and the rapid decay 

would then reflect mixing and dilution to the complete home volume. When this occurs, there should be 



an initial period of sharp decay followed by a period of much slower first order decay. We observed an 

inverse relationship between loss rate and duration of the decay period from which the loss rates were 

fitted. Among the 836 peaks identified, 11 peaks had a loss rate >10/h; all were determined from a very 

brief decay period (8 to 16 minutes, median = 10 minutes). There were 52 peaks that had a loss rate 

between 5/h and 10/h; their decay period also tended to be shorter (6 to 48 minutes, median = 15 minutes)

than peaks that had a loss rate <5/h (N=774), where the decay period ranged between 2 and 680 minutes 

(median = 48 minutes).  

Table 3 shows the calculated contributions of indoor events to overall PM2.5 concentrations. The time-

integrated indoor PM2.5 contributed by the characterized emission events varied from 15 to 86% with an 

average of 56% across apartments. At the low end of previously reported values, Allen et al.10 estimated 

that non-ambient (i.e., indoor) sources on average accounted for only 21% of indoor PM2.5 concentrations 

in 44 homes in Seattle, Washington; however, the authors indicated that the elderly residents who 

populated the majority of homes in that study were less active than residents of other studies, citing Liu et

al.56. Meng et al.57 reported non-ambient contributions of 33%, 30%, and 59%, respectively, to indoor 

PM2.5 measured in a total of 212 non-smoking homes in California, New Jersey, and Texas. Wallace et 

al.14 reported that ambient sources contributed about half of the total PM2.5 measured in the homes of 37 

health-compromised subjects in North Carolina. And Habre et al.13 found that 72% of the PM2.5 measured 

in the homes of 37 asthmatic children in New York City was attributable to indoor sources. 

Table 3 also shows that using the idealized parameters determined from the fitting algorithm to simulate 

events yields integrated concentrations similar to the actual measured time series. Table 3 presents the 

means of the event mean and highest 10-minute PM2.5 indoor concentrations during the characterized 

emission events for each apartment. Across all events identified, PM2.5 concentrations calculated using the

event parameters produced event means that were 3.0% higher on average (SD = 7.5%), and highest 10-

minute concentrations during events that were 6.1% lower on average (SD = 7.5%), compared with 

corresponding measurements during events. With just one exception, the means of the ideally modeled 

peaks agreed to within 15% of the measured values for each apartment. Figures S3 and S4 in the SI 

present modeled to measured comparison for each apartment. These comparisons show that the ideal 

model is able to quantitatively reproduce the measurements.  

3.2 Diurnal variability in event characteristics 

To assess the impact of time of day on event occurrence and emitted mass, each hour of the day was 

classified as either with or without indoor emissions. Figure 2 shows the fraction of all hours of available 

data that are classified as either having or not having an indoor emission event. Indoor emissions tended 

to occur most frequently in the afternoon and evening between 1400 and 2200 hours. The hours with the 



highest occurrence were 1700-2100, indicating the importance of dinner cooking. Hours between 0200 

and 0600 had the lowest occurrence of indoor emissions, as expected during the time when most people 

are asleep. The overall pattern was similar for weekdays and weekend days. There was a large variation in

the event occurrence across apartments, as described in Figure S6, likely reflective of differences in 

occupancy patterns and activity levels. This could not be confirmed because there are no occupancy or 

activity data. 

Figure 3 shows the mean emitted mass by hour of the day across all apartments. There are large 

differences in the time-of-day pattern and magnitude of emitted mass across the apartments. Two of the 

apartments had hours in which >50 mg of PM2.5 were emitted on average, while other apartments had no 

hours with >5 mg of PM2.5 emitted. Some apartments had emissions only during evening hours, while 

others had most emissions occurring in the middle of the day. These differences are consistent with 

variations in occupancy schedule and activities across homes.  

Figure 4 shows the range of event duration and loss rate for identified emission events, as a function of 

time of day. Loss rates are plotted during the hour when the emission event had just ended (i.e., at the 

time of the peak). The majority of the emission events (77%) lasted for 10 to 30 minutes. Emission events

lasting longer than 30 minutes tend to occur more frequently during hours that correspond to meal 

preparation times (0070 and 0080 for breakfast, 0012 and 0013 for lunch, and 0017 and 0018 for dinner). 

Hours with high loss rate (>5/h) tend to occur during early morning (0060 and 0070), early afternoon 

(0014 and 0015), and during evening hours (0017 to 0019).    

3.3 Events identified using method of Wallace et al. (2006)

Applying the analysis algorithm described by Wallace et al.14identified 312 emission events that 

accounted for an average of 36% of the time-integrated PM2.5 measured in the 18 homes, i.e. many fewer 

events and a much smaller fraction than identified by the approach of this study. Additional details are 

provided in the SI. In comparison, our method identifies more peaks, especially in apartments with many 

linked events (e.g., 2-1, 2-4, and 3-5) consisting of multiple distinct peaks that the method by Wallace et 

al. would combine as one continuing event. Our method also captures higher contributions of emission 

events to indoor PM2.5 in apartments (Complex 1) with smaller peaks that the method by Wallace et al. 

missed.  

3.4 Relationships between event characteristics

We used the non-parametric Spearman correlation to identify statistical associations for pairs of event 

characteristics and between event and household characteristics, with results presented in Table 4. We did 

not use the more common Pearson's correlation because the relationships are not necessarily linear and 



because the Pearson's correlation is very sensitive to outliers. The Spearman correlation statistic indicates 

the degree to which a monotonic function can describe the relationship between two parameters; positive 

values indicate two parameters increasing together, negative values indicate one parameter decreasing as 

the other increases. Table 4 shows six pairs of parameters with correlation coefficients above 0.2 and 

statistically significant at p<0.05. 

Emitted mass was positively correlated with event duration and loss rate. The first relationship is intuitive

and rational: longer events were associated with more PM2.5 being emitted. The association between 

emitted mass and loss rate results in part from the mass balance equation used to calculate the emission 

rate: a higher decay rate, which was determined first, directly translates to a higher emission rate. Emitted 

mass was positively correlated with house volume and the difference between the indoor and outdoor 

carbon dioxide, and also positively, if weakly correlated with the number of residents and number of 

bedrooms. These parameters are all related to actual or expected occupancy, suggesting that more people 

in the home translates to larger emission events. As with loss rate, the relationship to house volume – 

which had the highest correlation coefficient of the four – could be partly an artifact of the mass balance 

equation used to calculate mass. There were weak correlations between emitted mass and indoor RH and 

outdoor temperature. These associations could reflect differences across complexes, rather than just 

environment. Complexes 2 and 3 were measured in winter (mean outdoor temperature of 9 oC during 

emission events) and had much higher emissions (see Figure 3) than apartments in Complex 1, which 

were measured in the summer (mean outdoor temperature of 24 oC during events). Differences across 

complexes also likely explain the weak correlations between indoor temperature and event duration. More

data would be needed to assess seasonal effects independent of potential trends by building complex.

Loss rate was negatively correlated with event duration. This relationship is expected for short emission 

events that also tend to have a shorter decay period, with mixing throughout the home producing a sharp 

initial decay rate. The loss rate was positively correlated with indoor and outdoor temperature and 

negatively correlated with indoor and outdoor RH. But as with the relationships of these parameters with 

emitted mass, these associations could reflect differences across complexes, rather than just environment. 

A small, negative correlation with CO2 indoor-outdoor difference was seen. These environmental 

conditions correspond to warmer weather and may be associated with more window opening, which 

should produce higher loss rates than closed windows. We hypothesize that imperfect mixing more 

commonly impacted events in apartments with more bedrooms, as there would be a higher likelihood that 

some emission sources were not in the central zone where PM2.5 was measured. 



3.5 Limitations 

There are important limitations to both the general method presented for indoor PM2.5 emission event 

characterization and the specific application described here. The first is that the data analyzed in this study

– and most of the available time-resolved data on PM2.5 concentrations in homes – were obtained using 

light-scattering monitors that estimate, but do not directly measure PM2.5. Since these devices are 

commonly calibrated with standardized aerosols (e.g., Arizona Road Dust), which may have very 

different scattering properties compared to many indoor-generated aerosols, there is a need to adjust the 

measured data. Adjustments based on side-by-side measurements in residential environments, or in 

controlled experiments with residential sources, should provide mass emission rates much closer to those 

determined with a gravimetric reference or equivalent method. However, aerosols generated from gas to 

particle conversion processes – including candles, volatilization of organics from hot surfaces58, and many

cooking-related emissions – may have substantial mass below the minimal detectable particle size for a 

light scattering device, resulting in a biased measurement of such sources. For example, a study with the 

TSI Sidepak Model AM510 (www.tsi.com) reported ratios of gravimetric to scattering-based 

measurements for varied indoor sources59: 0.32 for cigarettes, 0.35 for stick incense, 0.44–0.47 for 

fireplace emissions, 0.41–0.70 for various cooking activities.

The data analyzed for this study did not include occupancy data or activity logs; as a result, the identified 

emission events could not be attributed to specific activities or occupancy at the time of the event. The 

results would be more valuable if the general ventilation conditions, e.g. windows open or closed, were 

included in the event database. Knowledge about the timing of any large increases in ventilation that 

correspond with an increase in indoor concentrations toward outdoor levels would distinguish those 

situations from indoor generation events. Ventilation targeted to source reduction, e.g., using a range 

hood, should produce lower estimates of emission rates and emitted mass than would occur without 

venting. This should not be regarded as an error since venting can actually reduces the amount of material

introduced into the mixing volume of the home. Any use of event data from the current study to assess 

potential benefits of mitigations options should consider this limitation. 

The method underestimates the total number and frequency of emission events because small magnitude 

deviations from baseline PM2.5 time-series trends are explicitly excluded. Two or more activities occurring

very close in time may appear as a single event. 

The assumption of instantaneous and uniform mixing produces biases when the PM source is close to the 

detector or there is directional airflow in the building that leads to removal of the source before complete 

mixing occurs. If the relevant mixing volume during an event is less than the total residence volume and 

both the source and measurement device are in that mixing volume, both the emission rate and emitted 

http://www.tsi.com/


mass will be biased high by the ratio of the total volume to the initial mixing volume. In such cases, 

mixing will present as a higher decay rate than would be appropriate to the entire residence. The ideal 

model also assumes constant emission and decay rates and does not examine the impact of variations in 

these parameters during an event. For cases in which concentrations begin to decrease because the source 

emission rate declined (with emissions continuing at a lower level), both the decay rate and event duration

would be underestimated. As long as the integral of the modeled concentration reasonably approximates 

the integral of the measured concentration over the course of the event, using the determined event 

characteristics in modeling should provide an accurate estimate of exposure. 

The analysis algorithm used in the present study specifies all parameters and thresholds needed to identify

and characterize events. Of the prior studies that analyzed emission event characteristics, only Wallace et 

al.14 reported the thresholds used to identify event start and end times. Olson et al.42 reported criteria for 

event identification but not precise start and end times. Other studies that reported on particle emission 

events19, 20 did not specify the criteria used. It is uncertain if the thresholds used to identify events in the 

current study will work for other data sets.

3.6 Predicting emission event characteristics for modeling indoor exposure

Identified event schedules and characteristics can be used to predict indoor PM2.5 concentration patterns in

residential modeling. The established diurnal frequency of events can be used as the probability that an 

event will occur during each hour of the day. Once it has been established that an event occurs, the 

characteristics of the event need to be simulated as well. For each event, the emitted mass, duration, and 

loss rate can be selected from fitted lognormal distributions for each parameter. Linked events can be 

modeled as sequences such that the simulation will capture the evaluated indoor PM2.5 concentrations 

resulting from indoor emissions occurring in succession. 

4 Conclusions 

This study demonstrated an approach to identify and characterize residential PM2.5 emission events that 

utilizes an automated analysis tool developed for chromatographic peak analysis, supplemented by visual 

review to confirm that all apparent events are identified. The approach was applied to characterize all 

emission events occurring over 5–14 days of monitoring in 18 California apartments with low-income 

residents. Average event frequencies across homes showed little weekday-weekend differentiation. 

Emitted mass was positively correlated with event duration and loss rate. Emitted mass was also 

positively correlated with number of residents, number of bedrooms, house volume, and the difference 

between indoor and outdoor CO2. Lognormal distributions of emitted mass, event duration, and loss rate 



can be used to model indoor PM2.5 exposures stochastically with probabilities derived from the diurnal 

frequency of events. 
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Figures and Tables

Table 1. Characteristics of 18 California apartments for which PM2.5 emission events were 
characterized.a

Complex-
Apartment

Stove
Type

Residents Bedrooms Floor Area
(m2)

Days of
PM2.5 Data

Mean PM2.5
 (g/m3)

Indoor Outdoor

1-1b Gas 4 4 92 13.6 5.4 2.2

1-2b Gas 3 3 85 13.8 1.6 2.2

1-3b Gas 6 4 92 13.8 4.1 2.2

1-4b Gas 4 3 85 13.8 1.8 2.2

1-5b Gas 5 4 92 13.8 1.9 2.2

1-6b Gas 5 3 85 7.0 2.5 2.1

2-1 Gas 1 1 67 13.0 16.4 10.4

2-2 Gas 2 2 76 12.7 5.6 10.4

2-3b Gas 4 3 125 10.7 42.5 10.4

2-4b Gas 3 3 125 13.8 29.4 10.2

2-5b Gas 3 3 125 12.9 14.0 10.5

2-6b Gas 7 4 139 5.2 39.4 11.1



3-1 Elec. 2 2 80 13.0 8.2 20.9

3-2 Elec. 1 2 80 13.9 17.7 22.1

3-3 Elec. 5 2 80 13.9 13.7 22.1

3-4 Elec. 3 2 80 12.8 52.5 20.8

3-5 Elec. 4 3 98 13.8 64.1 22.0

3-6 Elec. 4 3 98 12.8 13.6 20.9

a Complexes were located in Sacramento (1), Richmond (2), and Fresno (3). Statistics of PM2.5 (days of monitoring, 
mean concentrations) refer to the pre-retrofit period only.
b Indicates two stories; all other apartments are single story. 

Table 2. Summary statistics for the 836 fine particle emission events identified from time-resolved 
data collected in18 low-income apartments in California.

Mean Median Geometric
Mean

Geometric
Std. Dev.

5th to 95th

Percentile
Range

Emitted Mass (mg) 30 12 13 3.7 1.4 to 154

Event Duration (minutes) 23 16 19 1.7 8 to 66

Emission Rate (mg/h) 103 37 40 3.9 3 to 582

Loss Rate (1/h) 2.0 1.3 1.3 2.5 0.2 to 7.5





Table 3. Summary statistics for measured and modeled PM2.5 concentrations during identified 
emission events in each apartment. 

Complex

-Apt

Number
of

Events

Contribution
of Events to
Indoor PM2.5

Event Averaged PM2.5 During
Emission Events

Highest 10-Minute Average PM2.5

During Emission Events

Measured
Mean

(g/m3)

Modeled
Mean

(g/m3)

% Diff. Measured
Mean

(g/m3)

Modeled
Mean

(g/m3)

% Diff. 

1-1 38 69% 17.1 16.7 -3% 43.3 36.0 -17%

1-2 5 17% 10.9 10.9 -0.1% 19.9 18.5 -7%

1-3 20 60% 14.6 13.8 -5% 52.1 45.2 -13%

1-4 11 35% 11.4 13.1 15% 39.2 39.9 2%

1-5 14 21% 9.7 10.1 5% 21.0 20.2 -4%

1-6 11 36% 7.8 9.2 18% 19.7 19.9 1%

2-1 47 69% 44.2 44.3 0.3% 70.1 67.9 -3%

2-2 20 40% 31.0 31.5 1% 63.5 61.9 -3%

2-3 102 86% 76.7 78.1 2% 168.2 154.0 -8%

2-4 99 77% 55.4 56.0 1% 98.1 94.5 -4%

2-5 42 67% 29.4 31.1 6% 96.7 95.1 -2%



2-6 34 79% 80.0 90.5 13% 196.6 196.0 -0.3%

3-1 6 15% 18.7 15.9 -15% 45.9 32.4 -29%

3-2 36 75% 74.1 78.3 6% 145.3 136.3 -6%

3-3 20 56% 47.4 48.5 2% 115.5 114.4 -1%

3-4 132 73% 112.1 114.2 2% 188.9 177.3 -6%

3-5 159 82% 94.8 97.6 3% 134.0 132.0 -1%

3-6 40 43% 33.6 34.3 2% 71.8 65.5 -9%

Table 4. Spearman correlation coefficientsa between characteristics determined for indoor emission 
events and environmental conditions measured during the events. 

Emitted Mass Event Duration Loss Rate

Event Duration 0.17 (<0.005)

Loss Rate 0.29* (<0.005) -0.30* (<0.005)

Number of Residents 0.10 (<0.005) -0.03 (0.40) 0.05 (0.13)

Number of Bedrooms 0.08 (0.01) -0.04 (0.24) 0.11 (<0.005)

Home Volume 0.29* (<0.005) -0.02 (0.55) 0.03 (0.32)

CO2 Indoor-Outdoorb 0.27* (<0.005) -0.06 (0.16) -0.1 (0.02)



RH Indoor 0.08 (0.02) 0.03 (0.40) -0.25* (<0.005)

RH Outdoor -0.06 (0.10) 0.01 (0.86) -0.15 (<0.005)

Temperature Indoor -0.05 (0.15) -0.10 (0.009) 0.20* (<0.005)

Temperature Outdoor -0.14 (<0.005) -0.05 (0.13) 0.18 (<0.005)

a Correlation coefficients with significance (shown in parentheses) of p < 0.05 levels are in bold.
b During the event.
*Asterisk indicates pairs with a correlation coefficient above 0.2. 



Figure 1. Steps in the identification and characterization of indoor emission events using R 
programming language MALDIquant package. Adjustments of start and end time, and whether indoor 
events are considered “linked” (peaks labeled 1 and 3 in (c) are “linked”, peak 0 is not), were determined 
using the indoor baseline. Panel (d) shows the profile associated with the constant emissions and first 
order decay models used to determine event characteristics. 
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Figure 2. Fraction of hours with any identified emission events across 228 total days of monitoring 
in 18 California low-income apartments.
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Figure 3. Mean emitted mass of PM2.5 
for each hour of the day for the 18 California apartments.
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Figure 4. Duration and calculated loss rate for identified indoor emission events by hour of day. The
box shows median and the interquartile range (25th to 75th percentile), and the whiskers extend to 5th and 
95th percentiles. Circles present all data during hours with fewer than 10 events. For some events that 
started during Hour 7, the decays did not start until Hour 8.
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