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•  Background and Aims  Many plant–pollinator interactions are mediated by floral scents that can vary among 
species, among populations within species and even among individuals within populations. This variation could 
be innate and unaffected by the environment, but, because many floral volatiles have amino-acid precursors, scent 
variation also could be affected by differences in nutrient availability among environments. In plants that have 
coevolved with specific pollinators, natural selection is likely to favour low phenotypic plasticity in floral scent 
even under different conditions of nutrient availability if particular scents or scent combinations are important for 
attracting local pollinators.
•  Methods  Clonal pairs of multiple seed-families of two Lithophragma bolanderi (Saxifragaceae) populations were 
subjected to a high and a low nutrient treatment. These plants are pollinated primarily by host-specific Greya moths. It 
was evaluated how nutrient treatment affected variation in floral scent relative to other vegetative and reproductive traits.
•  Key Results  Floral scent strength (the per-flower emission rate) and composition were unaffected by nutrient 
treatment, but low-nutrient plants produced fewer and lighter leaves, fewer scapes and fewer flowers than high-
nutrient plants. The results held in both populations, which differed greatly in the number and composition of 
floral scents produced.
•  Conclusions  The results reveal a strong genetic component both to scent composition and emission level, 
and partly contrasts with the only previous study that has assessed the susceptibility of floral volatile signals 
to variation in the abundance of nutrients. These results, and the tight coevolutionary relationship between 
Lithophragma plants and their specialized Greya moth pollinators, indicate that reproductive traits important to 
coevolving interactions, such as the floral scent of L. bolanderi, may be locally specialized and more canalized 
than other traits important for plant fitness.

Key words: Lithophragma bolanderi (Saxifragaceae), floral scent, canalization, adaptation, coevolution, environ
mental effects, floral volatiles, nutrients, phenotypic plasticity, local specialization, 1,4-dimethoxybenzene

INTRODUCTION

Much of the spectacular trait and species diversity of flowering 
plants can be attributed to the evolution of flowers and interac-
tions between plants and pollinators (Kay et al., 2006; Kay and 
Sargent, 2009; van der Niet and Johnson, 2012; Armbruster, 
2014). Floral trait variation is often conserved at the spe-
cies level, and is more canalized than variation in vegetative 
traits in response to environmental fluctuations (Berg, 1960; 
Armbruster et  al., 1999; Hansen et  al., 2007; Pélabon et  al., 
2011, 2013). Such canalization and reduced variation in floral 
traits implies that the plant–pollinator interaction often imposes 
strong selection for certain floral phenotypes (Cresswell, 1998; 
Rosas-Guerrero et  al., 2011; Pélabon et  al., 2013). Indeed, 
floral phenotypes are commonly reported as subject to polli-
nator-mediated selection (Galen, 1989; Campbell et al., 1997; 
Alexandersson and Johnson, 2002; Sandring and Ågren, 2009; 
Sletvold et al., 2010), which, when acting in different directions 
in different populations, could lead to speciation (Campbell, 
2003; Anderson et al., 2009; Kay and Sargent, 2009).

Most of our understanding of floral trait variation comes 
from studies of visual or morphological traits (e.g. colour, 
shape), and systematic studies of chemical trait variation have 
only recently become a focus of study (e.g. Dötterl et al., 2005; 
Raguso, 2008; Schiestl and Johnson, 2013; Parachnowitsch, 
2014; Parachnowitsch and Manson, 2015). Often, however, 
studies of floral scent variation are performed under field set-
tings, and thus focus on phenotypic variation (Parachnowitsch, 
2014). Hence, it can be difficult to distinguish variation due 
to differences in the genetic make-up of the target individuals, 
populations or species from environmentally induced varia-
tion such as shading, temperature or access to nutrients. The 
few studies that have experimentally evaluated plasticity in 
floral scent have typically focused on the impact of the daily 
(night/day) rhythm and/or temperature variation (Matile and 
Altenburger, 1988; Raguso et al., 2003; Hoballah et al., 2005; 
Majetic et al., 2009; Dötterl et al., 2012; Hu et al., 2013; Friberg 
et al., 2014; Farré-Armengol et al., 2014). A few studies have 
compared scent variation between natural sites and greenhouse 
common gardens (Majetic et  al., 2009; Friberg et  al., 2014) 
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and one recent study has found varying effects of drought on 
the floral scent of different plant species (Burkle and Runyon, 
2016). Also, only a single, very recent, study (Majetic et al., 
in press) has investigated a potential impact of nutrient varia-
tion on floral scent production and composition. This paucity 
of studies is quite surprising, because nutrient levels are known 
to affect other aspects of plant chemistry (Bryant et al., 1987; 
Mutikainen et  al., 2000; Ballhorn et  al., 2011; Miehe-Steier 
et al., 2015).

The access to nutrients can vary among populations and 
among microhabitats within populations. Many floral vola-
tiles are produced in synthetic pathways with nitrogen-con-
taining amino acid precursors (Weaver and Herrmann, 1997; 
Pichersky, 2006), and nitrogen is a common limiting factor for 
terrestrial plants (Chapin et al., 1987; Vitousek and Howarth, 
1991; Gruber and Galloway, 2008). Therefore, variation in 
nutrient environment could affect both the amount of vola-
tiles released and the composition of the scent signal, if certain 
volatile compounds are costlier to produce than others. Indeed, 
such effects have recently been reported from Petunia hybrida 
(Majetic et al., in press), where one compound, eugenol, which 
is attractive to their bee pollinators, is significantly affected by 
nitrogen availability. The emission of most floral compounds 
investigated in the Petunias was, however, not affected by the 
nitrogen treatment (Majetic et al., in press), suggesting that par-
ticular floral scent compounds, or combinations of compounds 
could be quite canalized and less plastic in response to nutrient 
environment than many other reproductive or vegetative traits. 
Such canalized variation is reported for many morphological 
floral traits (Mal and Lovett-Doust, 2005; Brock and Weinig, 
2007; Burkle and Irwin, 2009; Rosas-Guerrero et  al., 2011), 
indicating that the ability to present particular floral shapes 
could be tightly linked to fitness. Likewise, if certain floral scent 
combinations are largely unaffected by nitrogen treatment, that 
would suggest that a particular combination of compounds is 
important for attracting the local suite of pollinators and that 
divergence in scent composition among populations is probably 
shaped by local specialization.

In some cases, such as in pollinating floral parasites involved 
in nursery pollination systems, local canalization for floral scent 
may be particularly strong because plants attract single highly 
specialized pollinator species. At the extreme, some species of 
figs (e.g. Chen et al., 2009) have evolved particular compounds 
that attract their highly specialized and coevolved fig wasp pol-
linators. A similar ‘private channel’ of communication is sug-
gested but not yet determined between Yuccas (Asparagaceae) 
and Yucca moths (Prodoxidae), and the yucca scent bouquet 
varies little among the populations and species that have 
been studied (Svensson et  al., 2005, 2006, 2011). Similarly, 
Lithophragma (Saxifragaceae) plants are pollinated by other 
specialized prodoxid moths (Greya moths), but they differ from 
yuccas in producing a diverse array of floral volatile compounds 
within populations and strong scent divergence among species 
and populations (Friberg et al., 2013, 2014). The specificity of 
the Lithophragma–Greya interaction is known to be at least 
partially mediated by the floral scent, because moths are par-
ticularly attracted to the floral scent of the local Lithophragma 
species (Friberg et al., 2014, 2016). We can therefore predict 
that despite the great among-species and among-population 
diversity of compounds emitted by Lithophragma, these plants 

should be canalized locally in response to environmental varia-
tion in nutrient availability.

We experimentally tested the impact of nutrients on flo-
ral scent variation in two populations of woodland stars 
(Lithophragma bolanderi). We used a paired design, exposing 
different individuals of the same clones to a low- and a high-
nutrient treatment and investigated how population affiliation 
and nutrient treatment affect quantitative and qualitative vari-
ation in floral scent as compared with a set of vegetative and 
reproductive traits. Our results demonstrate that whereas the 
number of leaves, scapes and flowers, as well as the colour of 
the leaves, were all significantly affected by nutrient levels, flo-
ral scent was much more canalized and similar both in scent 
composition and in emission rate across treatments.

MATERIALS AND METHODS

Study system

Lithophragma bolanderi is distributed across the Sierra 
Nevada, CA, USA, and is pollinated by the prodoxid moth 
Greya politella. Adults mate on and take nectar from the flow-
ers, and females oviposit through the corolla into the ovary, 
during which pollen from other flowers adhering to the female 
abdomen pollinates the flower (Thompson and Pellmyr, 1992; 
Thompson and Cunningham, 2002; Thompson et  al., 2010, 
2013). In some populations plants are visited also by gener-
alized pollinators, and in some rare cases bombyliid flies or 
solitary bees can be sufficiently common to swamp the mutu-
alism between Lithophragma and Greya (Thompson and 
Cunningham, 2002; Thompson and Fernandez, 2006; Cuautle 
and Thompson, 2010). Several Lithophragma species show 
ample within-species divergence in the floral scent signal. This 
divergence is particularly evident in L. bolanderi; in some natu-
ral populations the scent bouquet of most (or all) individuals is 
dominated by the benzenoid ether 1,4-dimethoxybenzene (1,4-
DMB), whereas most or all plant individuals of other popu-
lations do not emit this compound (M. Friberg et al., unpubl. 
data). Populations of L. bolanderi also emit a variety of other 
floral volatiles, raising the question of whether the observed 
variation reflects environmentally caused differences in floral 
scent or genetic differences among populations. Here, we assess 
how nutrient levels affect floral scent variation in two popula-
tions of L. bolanderi: one in which field samples were domi-
nated by 1,4-DMB (Woody, CA: 35°43·176′N, 118°47·907′W; 
M. Friberg et al., unpubl. data), and one in which most indi-
viduals lacked this compound (Marble Falls, Sequoia National 
Park: 36°31·198′N, 118°48·024′W; Friberg et al., 2014).

Plant growth

Seeds from 20 maternal families, ten from each popula-
tion, were collected in the field and planted in the greenhouse 
to produce root bulbils (Table  1). Each bulbil is a vegetative 
reproductive root mass that Lithophragma plants produce at 
the end of the spring growing season and that then produces 
clonal leaves and scapes the next spring. Three bulbils derived 
from different seed individuals were planted from each seed 
family and cut with a razor blade into 4–6 clonal pieces. These 
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pieces were planted in individual 2·5-inch pots (Percival Model 
I36LLVL) in Pro-Mix ‘BX’ (Mycorise Pro) potting soil. Two 
plants (i.e. two individuals growing in different pots) (1) could 
belong to the same or different populations, (2) and within pop-
ulations could belong to the same or different seed families. 
Furthermore, (3) in some cases, two plants could belong to the 
same seed family but descend from different seed individuals 
(i.e. being half- or full sibs), and finally (4) two plants could 
descend from the same seed individual and thus be genetic 
clones.

Half of the pots with clones of each seed family individual 
were assigned to a high-nutrient treatment, and the other half 
was assigned to a low-nutrient treatment (Table 1). All plants 
were watered on Mondays, Wednesdays and Fridays, and ferti-
lized once per week with Dyna-Gro liquid 7-9-5 fertilizer con-
taining 7 % nitrogen (NH4 and NO3), 9 % phosphorous (P2O5) 
and 5 % potassium (K2O), beginning one week after planting 
and ending when the plants stopped producing photosynthetic 
pigments. The high-nutrient group was fertilized with 15 mL 
per 3 L water, and the low-nutrient group with 2·5 mL per 3 L 
water. Light, temperature and humidity were controlled at 
each growth stage. Plants were initially grown in an incubator 
(Percival, Boone, IA, USA), with 15 °C at day, and 10 °C at 
night (fluorescent lights set for a 14:10-h light–dark photoper-
iod) for 5 weeks, then moved to a growth chamber for 2·5 weeks 
(Conviron E-15, Pembina, ND, USA, 15 °C day, 10 °C night, 
fluorescent and incandescent lights set for a 14:10-h light–dark 
photoperiod, 70 % relative humidy), and finally transferred to 
semi-humid conditions in a greenhouse equipped with a swamp 
cooler (∼20 °C) and overhead lamps until senescence.

Data collection

Reproductive effort for each plant was measured as the num-
ber of scapes, the number of flowers and the height of scapes. 
The total number of leaves was recorded for each plant used 
for scent collection; the average foliage colour was recorded 
using an Ocean Optics USB2000 spectrophotometer with a 
PX-2 pulsed xenon lamp to measure the reflectance of five ran-
dom leaves from each plant, and analysed using the OOIBase 
software (Ocean Optics, Dunedin, FL, USA). The spectrum 
from each leaf was taken from the middle region of the adax-
ial surface of the leaf, and the spectral measurement area was 

2 mm2. We followed the protocol described by Friberg et  al. 
(2014) to calculate mean reflectance for each sample across 
colour spectra (ultraviolet: 300–380 nm wavelengths; violet: 
381–450 nm; blue: 451–475; cyan: 476–495 nm; green 496–
570 nm; orange: 571–590 nm; yellow: 591–620 nm; and red: 
621–700 nm), using the Excel-based programs BinR1.7 and 
ColoR 1.7 (Montgomerie, 2006). The reflectance values from 
these five leaves were then averaged for each colour spectrum 
for each plant.

Floral volatiles were collected using dynamic headspace fol-
lowed by hexane elution, using a sample of 5–10 flowers per 
plant, following the protocol described by Friberg et al. (2013). 
Scent was collected for 2 h, starting between 0930 and 1300 h 
in a designated room held at room temperature (∼20 °C), with 
fluorescent overhead lighting (see Friberg et al., 2013). From 
each plant, flowers attached to the scapes, were sealed in an 
8×14-cm Reynolds® oven bag with a small hole in the top and a 
scent trap containing a Tenax GR® (10 mg) filter. The trap was 
connected by vinyl tubing to a Cole-Parmer (Vernon Hills, IL, 
USA) 65-mm direct-reading flow meter, which was then con-
nected to a laboratory vacuum nozzle pulling air through the 
bag at a steady flow of 200 mL air per minute. Floral scent was 
collected in bouts of up to ten samples between 16 April and 5 
June 2015. Plants were chosen based on the number of flow-
ers available at the time of scent collection. When possible, we 
tried to include samples of both populations and nutrient treat-
ments in each bout to avoid any bout effects. For every collec-
tion bout, a negative control of ambient air was collected using 
the same equipment and techniques as for the regular samples. 
Then, scent traps were eluted with 300 µL of GC/MS quality 
hexane, and the samples were concentrated to 50 µL under a 
constant flow of nitrogen gas (N2). An internal standard of 5 µL 
of a 0·03 % toluene solution in hexane was added to each sam-
ple after concentration.

Scent samples were analysed using gas chromatography/
mass spectrometry (GC/MS) on a Hewlett-Packard (HP) 5890 
chromatograph connected to an HP 5971 spectrometer (elec-
tronic ionization). The gas chromatograph was equipped with a 
polar EC WAX column (30 m, 0·25 mm × 0·25 µm film thick-
ness; Grace, Deerfield, IL, USA). Helium was used as the car-
rier gas at a constant velocity of 1 mL min−1. Samples were 
analysed starting with a 3-min holding period (60 °C). Then the 
GC temperature was increased by 10°C min–1 for 20 min until 
it reached a maximum of 260 °C, at which it stayed for 7 min. 

Table 1.  The planting scheme and sample sizes in the experiment

Planted Sample sizes (sample size/clonal pairs/seed families)

Population Seed families Seed family individuals Clones Leaves Scapes Scape height Flowers Colour Floral scent

Marble Falls 10 3 per seed family 2–6 per seed family individual 32/16/10 36/18/10 32/16/8 32/16/10 34/17/10 36/18/10
Woody 10 3 per seed family 2–6 per seed family individual 16/8/6 22/11/6 22/11/6 18/9/6 18/9/6 18/9/6

Bulbils from three seed individuals (these are the bulbil ‘offspring’ of different seedlings from a field-collected seed family) of ten different seed families/popu-
lation were planted. Each bulbil was separated into two to six similarly sized pieces (depending on original size). Half of these bulbil pieces for each seed family 
individual were planted into the high- and the low-nutrient treatment, respectively. The sample sizes on the right-hand side of the table report the total sample sizes, 
i.e. the number of cases for when a clonal pair (from the same seed family individual) was flowering in both the high- and the low-nutrient treatment and data were 
available for number of leaves, number of scapes, scape height, number of flowers, colour of the leaves and floral scent. Hence, some of these clonal pairs came 
from different seed individuals from the same seed family and were thus at least half-sibs. For more information on flowering rates and planting scheme, please 
see Supporting Data, Table S1.
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Chromatograms were manually integrated using the MS manu-
facturer’s software (G1034 Version C.02.00; Hewlett-Packard 
1989–1993). Floral volatiles were identified by the combined 
use of MS library suggestions (NIST/Wiley), comparison 
with literature retention indices and co-chromatography with 
synthetic standards (Supplementary Data, Table S1). The flo-
ral scent data were prepared for analysis by estimating the 
standardized emission rate [(ng scent per flower) h−1; see e.g. 
Svensson et al., 2005; Friberg et al., 2013)], for all compounds 
in all samples. The standardized total scent emission (sum of 
all floral volatiles) was calculated for each sample. A handful 
of the floral scent samples (three of 54) included the common 
aliphatic wounding compounds 3-hexen-1-ol and 3 hexen-1-ol 
acetate. These compounds were not included in the statistical 
analysis.

Statistical analysis

All analyses were performed in the statistical software R 
(version 3.3.0). First, we tested whether the different nutri-
ent treatments affected sprouting and flowering, using the 
R-package lme4, with population and nutrient treatment as 
categorical predictors and logit as the link function. In total, 
80  % (202/252) of the planted bulbils produced leaves, and 
there was no significant effect of nutrient treatment or popula-
tion on sprouting frequency (mixed generalized linear model: 
population χ2

1 = 0·15, P = 0·70; nutrient treatment χ2
1 = 0·58, 

P = 0·44, population × nutrient treatment χ2
1 = 0·65, P = 0·42). 

Sixty-two per cent (n = 126) of the sprouting plants produced 
flowers. A higher percentage of plants from Marble Falls flow-
ered than plants from Woody, and a higher percentage of high-
nutrient plants flowered in both populations (mixed generalized 
linear model: population χ2

1 = 10·9, P < 0·001; nutrient treat-
ment χ2

1 = 7·07, P  =  0·0078, population × nutrient treatment 
χ2

1 = 0·004, P = 0·95). Of the flowering individuals, we were 
able to collect scent from a total of 18 clonal pairs from all ten 
Marble Falls seed families and nine clonal pairs from six of the 
ten Woody seed families planted (Table 1, Table S1). We used 
these clonal pairs of the same seed family individual as our sta-
tistical unit, and thus did not disentangle effects of relatedness 
at the level of seed family. The reason for this design was that 
the main target of this study was to compare effects of popu-
lation affiliation and nutrient treatment on plant trait variation 
(see Table 1 and Table S1 for more details on sample sizes).

We tested the impact of population origin and nutrient treat-
ment on the number of scapes, the number of leaves, the number 
of flowers, the scape height and the total floral scent emission 
rate in multiple linear mixed ANOVA (II) models in the R pack-
age nlme. Sample sizes differed slightly between the different 
response variables, depending on the availability of data from 
both treatments on each member of the pair (Table 1). Prior to 
analysis, all data were log-transformed to approach normality 
and homogeneous variances. In some rare cases, it was possible 
to obtain data from three or four clones derived from the same 
bulbil, in which case the values from the high-nutrient treated 
clones and the low-nutrient treated clones were averaged, 
respectively. The plant seed family individual (i.e. each clonal 
pair) was included as a random factor, and plant population 
(Marble Falls, Woody), nutrient treatment and their interaction 

were used as categorical (fixed) factors. We tested the effect 
of nutrient treatment on leaf colour by analysing the average 
reflectance in each colour spectrum (UV, violet, blue, green, 
yellow, orange, red) as a repeatedly measured response variable 
(repeated-measures ANOVA II), with population, treatment and 
their interaction as factors.

The multivariate variation in floral scent bouquet com-
position was explored using the vegan package in R. The 19 
detected floral scent compounds were used as variables, and a 
2-D multidimensional scaling plot based on Bray–Curtis simi-
larities (MDS; 200 restarts) was generated. The similarity of 
samples of different populations and nutrient levels was tested 
in a permutational multivariate (perMANOVA) with population 
and nutrient treatment as factors. Among-population differ-
ences in multivariate variance was tested using a permutation 
test (999 permutations) for homogeneity of multivariate disper-
sions generated by the function betadisper.

RESULTS

Plants in the low-nutrient treatment produced significantly fewer 
leaves, scapes and flowers (Table 2, Fig. 1A–C), but the treat-
ment did not affect scape height. Plants of the two populations 
showed similar variation in these traits in response to nutrient 
treatment, and the interaction effect of population and nutrient 
treatment was significant only for number of leaves produced, 
where only the Marble Falls population showed a reduced leaf 
set at lower nutrient levels (Table 2, Fig. 1A). Leaves of plants 
of the low-nutrient treatment were significantly lighter (higher 
reflectance) than the dark green leaves of the high-nutrient 
treatment in both populations (Table 1, Fig. 1D).

In contrast, nutrient level had no significant effect on the per-
flower floral scent emission (Table  2). Floral scent, however, 
did vary significantly among populations (Table 2) with Woody 
plants emitting significantly more scent than the samples from 
Marble Falls (Fig. 1E). The scent emission rates of the same 
clone in different treatments were strongly positively correlated 
(r2 = 0·73, F1,25 = 68·1, P < 0·001), but within populations the 
correlation was significant only for plants from Marble Falls 
(Marble Falls, r2 = 0·61, F1,16 = 25·4, P < 0·001; Woody r2  =  0·23, 
F1,7 = 2·11, P = 0·19) (Fig. 2A).

The floral scent bouquet consisted of a total of 19 com-
pounds. These were mainly aromatics, including several ben-
zenoid alcohols, esters and ethers (Supplementary Data, Table 
S2). All samples from Woody were dominated by 1,4-DMB, 
whereas only five of 18 Marble Falls seed family individuals 
emitted more than trace amounts of 1,4-DMB. In four of these 
cases, both clones emitted 1,4-DMB, but in one case (8869·1, 
Table S2) one clone in a pair emitted 1,4-DMB, whereas the 
other did not, implying either a developmental switch function 
where the same clonal type can generate different phenotypes 
(triggered by something other than nutrients), or a technical 
mishap during plant handling or scent analysis. The nine scent 
samples that emitted 1,4-DMB clustered closer to the Woody 
samples in multivariate space than the Marble Falls samples 
lacking 1,4-DMB (Fig. 2B). The multivariate distributions of 
the two populations were significantly different (Fig. 2B), but 
the scent composition was unaffected by nutrient treatment 
(perMANOVA: population r2 = 0·42, F1,50 = 36·4, P < 0·001; 
nutrient treatment r2 = 0·005, F1,50 = 0·45, P = 0·74; population 
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× nutrient treatment r2 = 0·008, F1,50 = 0·73, P = 0·50). The pres-
ence or absence of 1,4-DMB alone did not explain the entire 
among-population variation, as populations were significantly 
different also when this compound was removed from analysis 

(perMANOVA: population r2 = 0·15, F1,50 = 9·58, P < 0·001; 
nutrient treatment r2 = 0·006, F1,50 = 0·36, P = 0·91; population 
× nutrient treatment r2 = 0·031, F1,50 = 1·93, P = 0·08). Benzyl 
alcohol, dimethyl salicylate and cinnamyl alcohol were all 

Table 2.  Statistical output table, reporting the effect of high- and low-nutrient treatment on multiple plant traits of Lithophragma bolan-
deri tested in linear mixed models (ANOVA II) (a–d, f) or using repeated-measures ANOVA (II) (e)

df F P df F P

(a) No. of leaves (b) No. of scapes
Population (P) 1 1·06 0·31 Population (P) 1 0·18 0·67
Nutrient Treatment (NT) 1 24·8 <0·001 Nutrient Treatment (NT) 1 20·1 <0·001
P × NT 1 6·8 0·016 P × NT 1 1·06 0·31
Error 22 Error 27
(c) No. of flowers (d) Scape height
Population (P) 1 2·55 0·2 Population (P) 1 0·31 0·58
Nutrient Treatment (NT) 1 21·6 <0·001 Nutrient Treatment (NT) 1 2·57 0·12
P × NT 1 2·4 0·14 P × NT 1 1·68 0·21
Error 22 Error 25
(e) Reflectance (f) Floral scent
Population (P) 1 0·99 0·33 Population (P) 1 44·5 <0·001
Nutrient Treatment (NT) 1 43·6 <0·001 Nutrient Treatment (NT) 1 2·39 0·13
P × NT 1 1·33 0·26 P × NT 1 0·22 0·65
Error 24 Error 25
Colour Spectrum (CS) 6 688·6 <0·001
CS × P 6 1·11 0·36
CS × NT 6 7·14 <0·001
CS × P × NT 6 0·19 0·98
Error 288

Traits are vegetative (number of leaves; a), reproductive (scape height, number of scapes, number of flowers; b–d), visual (reflectance; e) and chemical (total 
per-flower volatile emission rate; f) in two Lithophragma bolanderi populations (Marble Falls and Woody) in the two nutrient treatments. All response variables 
were log-transformed prior to analyses. Significant effects are highlighted in bold.

Fig. 1.  The effects of population and nutrient treatment on Lithophragma bolanderi from Marble Falls (white circles) and Woody (grey circles) in terms of (A) 
the number of leaves [nMarble Falls = 32 (16 clonal seed individual pairs), nWoody = 16 (eight pairs)], (B) the number of scapes [nMarble Falls = 36 (18 pairs), nWoody = 22 (11 
pairs)] and (C) the number of flowers produced [nMarble Falls = 32 (16 pairs), nWoody = 9 (18 pairs)]. Also shown are (D) the reflectance of plants from the two popula-
tions grown under different nutrient conditions [white circles = high nutrient; black circles = low nutrients; nMarble Falls = 34 (17 pairs), nWoody = 18 (nine pairs)] and (E) 
the effect of population and nutrient treatment on the total standardized floral emission rates [(ng scent per flower) h−1; nMarble Falls = 36 (18pairs), nWoody = 18 (nine 

pairs)]. Error bars indicate 95 % confidence intervals around the mean.
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more common in Woody samples, whereas methyl salicylate 
was stronger in samples from Marble Falls (Table S2).

DISCUSSION

Ecological and evolutionary studies on floral scent have 
become a major topic in plant research, and several recent 
studies stress the importance of floral chemistry for fitness and 
diversification (e.g. Dötterl et al., 2005; Raguso, 2008; Schiestl 
and Johnson, 2013; Parachnowitsch, 2014; Friberg et al., 2014; 
Parachnowitsch and Manson, 2015; Suinyuy et al, 2015). We 
tested here a crucial assumption, by disentangling genetic and 
environmental components for explaining floral scent varia-
tion. The overall results suggest substantial canalization in the 
production of floral scent in L. bolanderi under divergent envi-
ronmental conditions. The same seed family individual grown 
under different nutrient levels did not differ in floral scent com-
position or per-flower scent emission rate, but differed strongly 
in vegetative and reproductive morphological characters. These 
results imply that floral chemistry just like floral morphology is 
weakly correlated with vegetative traits (Herrera, 2009; Conner 
et al., 2014), and is less susceptible to environmental factors 
than other reproductive or vegetative traits (Mal and Lovett-
Doust, 2005; Brock and Weinig, 2007; Burkle and Irwin, 2009; 
Pélabon et al., 2011). The results held for two populations that 
differ greatly in the number and composition of floral scents 
they produce.

Hitherto, not much is known about how costly it is for a plant 
individual to produce a strong floral scent signal. Previous work 
implies that the scent signalling could impose both ecological 
(Kessler and Halitschke, 2009; Theis and Adler, 2012) and 
energetic costs (Gershenzon, 1994). Many volatiles are pro-
duced in pathways that include amino-acid precursors (Weaver 
and Herrmann, 1997; Pichersky, 2006), which could imply that 
production costs are disproportionally high under low-nutrient 
conditions. Evidence from Abronia umbellata (Nyctaginaceae) 

suggests such costs of scent production, because selfing plants 
that do not need to attract pollinators produce substantially 
less scent than conspecific obligate outcrossing populations 
(Doubleday et al., 2013). Also, many plant species, including 
L. bolanderi, tailor their floral scent emission to the time of day 
when their pollinators are active (Matile and Altenburger, 1988; 
Raguso et al., 2003; Hoballah et al., 2005; Friberg et al., 2014), 
or terminate scent emission after pollination (e.g. Shiestl et al., 
1997; Negre et al., 2003). Such a shut-down of scent emission 
outside the period when pollination is likely further implies that 
unnecessary floral scent signalling is costly for the plant either 
energetically or ecologically through attraction of enemies. 
Still, the floral scent of L. bolanderi was not compromised even 
under low-nutrient conditions, whereas plants allocated less 
energy into leaf material, and flower and scape production. 

If scent emission is indeed costly, a largely canalized floral 
scent signal, like in L. bolanderi, could indicate that the floral 
scent is effectively mediating the interaction with pollinating 
insect mutualists in each population only when emitted at certain 
quantity and with particular compound combinations. Previous 
studies show that Greya females preferentially navigate toward 
the floral scent of their local Lithophragma plant species (Friberg 
et al., 2014, 2016), but the hypothesis that the moth females dis-
criminate also between populations of the same Lithophragma 
species remains to be tested. Furthermore, although the Greya 
moth mutualists are the most common pollinators and the only 
herbivores that consistently and abundantly attack L. bolanderi 
during egg-laying (Thompson and Pellmyr, 1992; Thompson 
et al., 2013), the Lithophragma plants are sometimes visited also 
by generalist pollinators such as solitary bees or bombyliid flies 
(Thompson and Cunningham, 2002; Thompson and Fernandez, 
2006). It is possible that geographical variation in the relative 
importance of the Greya specialists and the generalist pollinators 
could generate floral scent variation among populations.

Most of the few studies that assess phenotypic plasticity in 
floral scent have focused either on variation between natural 
conditions and greenhouse common gardens (Majetic et  al., 
2010; Friberg et al., 2013), or on variation in response to diur-
nal rhythm or temperature (Matile and Altenburger, 1988; 
Raguso et al., 2003; Hoballah et al., 2005; Majetic et al., 2009; 
Friberg et al., 2014). Only one previous study (Majetic et al., in 
press) has experimentally evaluated the effect of plant nutrient 
availability on floral scent variation, and very few studies have 
quantified genetic variation among individuals. Zu et al. (2016) 
established that floral scent was heritable in a focal population 
of the crucifer Brassica rapa (Brassicaceae), which responded 
significantly to artificial selection. The significantly different, 
and in multivariate space almost non-overlapping, floral scent 
composition of the two study populations offers the possibil-
ity for using L. bolanderi as a model system for future studies 
aimed at partitioning the heritability of floral scent among and 
within multiple populations. Furthermore, the strong concord-
ance in floral scent emission between L. bolanderi individuals 
of the same clonal pairs from Marble Falls targets this popula-
tion for studies that estimate how floral scent variation relates 
to plant fitness. None of the four studies that have estimated 
fitness in relation to floral scent in natural populations have 
identified such links between phenotypic and genetic variation 
(Schiestl et al., 2011; Parachnowitsch et al., 2012; Ehrlén et al., 
2012; Gross et al., 2016).

Fig. 2.  Floral scent variation in Lithophragma bolanderi. In (A) the positive 
relationship (r2 = 0·73) between the total scent production [(ng scent per flower) 
h−1] in clonal pairs subjected to the low- and the high-nutrient treatment indi-
cates a substantial genetic component on total emission rate. Note, however, 
that at the within-population level this relationship was significant for Marble 
Falls (white circles), but not for Woody (dark circles). In (B), the multivariate 
variation is presented as an MDS plot showing the multivariate distributions of 
samples from the two populations. Scent variation was larger among samples 
from Marble Falls (white symbols) than for Woody (dark symbols) (permuta-
tion test, F1,52 = 25·5, P < 0·001), but the high (circles) and low (squares) nutrient 

treatment did not affect the multivariate variation.
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In summary, this study is one of the first to test the effect of 
nutrient environment on floral scent emission rate and composi-
tion. The results suggest that the among-population variation in 
floral scent of L. bolanderi is largely genetically determined. The 
largely canalized floral scent emission contrasts starkly with the 
plastic responses to nutrient treatments by vegetative and other 
reproductive traits. Hence, our results suggest that some repro-
ductive traits important to coevolving interactions may be more 
canalized than other traits important for plant fitness.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.
oxfordjournals.org and consist of the following. Table S1. 
Details on sample sizes. Table S2. Floral scent data, and data 
on scape length and the number of leaves, scapes and flowers. 
Table S3. Reflectance data.
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