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.. 
Generating Functions for the Nuclear Spin Statistics 

of Non-rigid Molecules 

K. Balasubramanian 

Department of Chemistry and Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

Abstract 

Generating functions are developed for the nuclear spin species and 

nuclear spin statistical weights of non-rigid molecules as the trace of 

spin projection operators. These generating functions are obtained in 

terms of the GCCI's (Generalized Character Cycle Indices) of the PI 

groups of non-rigid molecules which are expressible as generalized wreath 

products. The GCCI's of generalized wreath products can be obtained in 

terms of the GCCI's of the composing groups. Thus the method d~veloped 

here does not require the character table of the P group of non-rigid 

molecules. From these generating functions the nuclear spin statistical 

weights of the rovibronic levels and nuclear spin species of non-rigid 

molecules can be obtained easily. The method is illustrated with several 

examples of non-rigid molecules containing up to 3601989 nuclear spin 

functions. Application to molecular electric beam deflection studies of 

weakly bound complexes such as ammonia dimer is also discussed. 

This manuscript was printed from originals provided by the author. 
( 



1. Introduction 

A molecule is said to be non-rigid if its electronic state has several 

potential minima separated by barriers. The symmetry groups of non-rigid 

molecules should contain permutations induced by not only rigid rotations 

but also torsions. Longuet-Higgins1 formulated the symmetry groups of 

non-rigid molecules as Permutation-Inversion Groups. In order to obtain 

information on the intensity of the various allowed rovibronic transitions 

and the hyperfine structure of torsionally split rovibronic levels. it is 

necessary to obtain the nuclear spin statistical weights of the rovibronic 

levels and the nuclear spin species. The conventional method generally 

employed to obtain the nuclear spin statistical weights is to find the 

character of the nuclear spin functions under the non-rigid symmetry group 

and break it into irreducible components. The order of the PI (Permutation= 

Inversion) groups of non-rigid molecules increases exponentially with respect 

to the number of rotors. Further. the number of nuclear spin functions for 

a molecule containing b
1 

nuclei with a
1 

spin states, b2 nuclei with a 2 spin 

. . bl b2 
states etc., 1s a

1 
a 2 .••••• Consequently, the conventional technique 

outlined above is quite difficult. Even for a simple non-rigid molecule 

such as triphenyl whose PI group is of order 32, there are 16,384 nuclear 

spin functions. Hence a systematic and general technique is warranted for 

the non-rigid molecules. 

The statistical weights of the rotational levels of the rigid molecules 

2 
in the rotational subgroup have been discussed by Placzek and Teller, 

Wilson, 3- 4 Schafer5 and Mizushima. 6 7 . 
Hougen correlated these to the point 

groups of molecules. When the permutation inversion (PI) group of a mole-

cule is not a direct product of the Permutation and Inversion groups, one 

has to use the PI group instead of the permutation group for obtaining the 

2 
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nuclear spin statistical weights of the rovibronic levels. A review of 

several works related to the nuclear spin statistical weights can be found 

8 9 in the books by Herzberg and more recently by Bunker. Galbraith10 

obtained the nuclear spin statistical weights of molecules of the type 

XY4 , XY5 and XY6 belonging to Td, n3h and Oh symmetries, respectively, 

using the unitary group approach and Schur's theorem. 
11-12 

Recently Weber 

proposed a method for obtaining the characters of nuclear spin functions 

and hence the statistical weights of symmetry top molecules belonging to 

the D nd and D nh (n ~ 6) point groups. 
13 

The present author recently developed 

a general method for the nuclear spin species and nuclear spin statistical 

weights of any rigid molecule belonging to any point group. 

In this paper we develop generating function techniques for the nuclear 

spin species and the nuclear spin statistical weights of non-rigid molecules. 

The method presented here for non-rigid molecules is different from the 

treatment of rigid molecules in that this method does not require the 

character tables of the symmetry groups of non-rigid molecules. This is a 

consequence of the fact that the symmetry groups of non-rigid molecules 

14-15 16 17 
can be expressed as generalized wreath products. Klemperer, Read, 

Robinson et a1. 18 and Klein and Cowley19 have used the wreath product 

groups for enumerating isomers and isomerization reactions of non-rigid 

molecules. Thus the generating functions for nuclear spin species of non-

rigid molecules can be obtained in terms of the generalized character cycle 

indices of generalized wreath products which in turn are obtained by 

composing the generalized character cycle indices of the composing groups. 

Consequently, we need to know only the character tables of the symmetry 

group of the rigid frame and the torsional groups to obtain these generating 

functions provided the inversion operation is present in the PI group of 

3 



the molecule. If the inversion operation is not present in the PI group 

of the molecule then the generalized character cycle indices of the 

permutation group are obtained. Then one adds the inversion operations 

as additional terms in the generalized character cycle indices. In this 

· case the characters which correspond to inversion operations are needed 

and they can be obtained using the well-known theorems on semi-direct 

20 
product of two groups. The generating functions developed here facilitate 

the computer generation of nuclear spin species and statistical weights 

as we will show in a future publication. 

13 This paper uses the concepts outlined in an earlier paper where a 

method is developed for the nuclear spin statistics of rigid molecules. 

21-22 
The present author introduced operator methods in combinatorial 

applications to chemical problems. Even though this paper itself contains 

preliminaries and definitions, a more detailed account of these can be 

found in the text b~oks. 23-28 This paper uses a theorem of Williamson29- 30 

with which GCCI's of generalized wreath products are obtained. Further we 

use another theorem of Williamson33 for abelian characters, recently 

generalized by Merris 34 for nonabelian characters. 

2. Generating Function Tech~iques 

A. Definition and Preliminaries 

Let G be a permutation group acting on a set ~. Let the set ~ 

be partitioned into mutually disjoint sets Y
1

, Y2 , .... Yt. Further assume 

that any gsG permutes elements in ~ such that it does not permute elements 

of different Y sets. Let H1 , H2 , •.. ,Ht bet permutation groups. Then the 

generalized wreath product G[H
1

, H2 , ... ,Ht] is defined as
15 

the set 

{(g; TI
1

, TI 2 , .... ,'TT )/gsG, TI.:Y. -+H.}, with 
t 1 1 1 

4 
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\ ") 
4 

I 1 I I 

(g; nl, 'IT2,' ·' ,nt) (g 1
; Til, n2,''' ,nt) (gg l., 'TTl 'IT 'IT 'IT 'IT 'IT ) lg' 2 2g'''''' t tg 

where 

'IT. (j) 
1g 

I -1 
'IT.(g j), 

1 

-1 
with j, g j € Y .. T~e symmetry group of any non-rigid molecule which 

1 

exhibits internal rotation can be expressed as a generalized wreath product 

G[H
1

, H2 , ..• ,Ht] with G being the PI group of the rigid nuclear frame work 

5 

and H
1

; H2 , •.• ,Ht being the permutation groups representing internal rota­

tions in the molecule. To illustrate, consider the non-rigid ethane molecule. 

The rotational subgroup of this molecule is c 2 [c
3
]. c

2 
acts on the rigid 

framework and c
3 

is the group which corresp9nds to three~fold internal 

rotation. The set Q contains the two carbon atoms. In this case there is 

just one Y-set Y
1 

containing the two carbon atoms. Any element in c2 [c
3

] 

can be denoted by (g;n) with g€C
2 

and n:Y
1 
~ H = c

3
• For example, one 

such element is shown below. 

g 

n(l) c3 € c3 

2 
n(2) = c

3 
€ c

3 

Equivalently, rotate the three hydrogen atoms on carbon 1 by 2n/3 in the 

anticlockwise direction, rotate the three hydrogen atoms on carbon 2 by 

4n/3 in the anticlockwise direction and then switch the carbon atoms, 

which in turn switches the hydrogen atoms. If one denotes the hydrogen 

atoms on carbon 1 by 1,2 and 3 and the hydrogen atoms on carbon 2 by 4, 

5 and 6 then the result of this operation can be seen to be the permu-

tation (163425). 



The representation theory of generalized wreath product groups has been 

outlined in detail in reference 15. In this paper we shall review briefly 

the important concepts in this representation theory since this is needed 

for the present paper. 
m. 

Let m. denote the number of elements in Y .• Let H. 1 denote the m.-fold 1 1 1 1 

direct product of m. 
1 

m. 
copies of the group H .• 

1 

isomorphic to (H
1

1 x 
mz mt 

Hz x ••• xHt ). G' with 

1H. is the identity of the group H .• 
1 1 

direct product, the irreducible representations of this group are given by 
ml* mz* m * 

r = Fl II Fz 11 ••• 11 Ftt , where II denotes the outer tensor product and 
m.* 

F 1 
i 

is the outer product Fil II F iZ tl • • • II Fin. with F. . being an irreducible 
1 1] 

representation of the group H .. 
1 

For a definition of the outer tensor 

d f Z5. M "h 31 pro uct, see re erence or essa1 • The representation matrices of 

outer tensor products are given by Kronecker products. For a r of the 

above form, the inertia group which corresponds to this r is defined as 

with 

r (g;Til,'TTZ, ••• 'TTt~ 

Equivalently, the inertia group consists of those elements which leave r 

invariant. The group 

ml 
representation (H

1 
x 

Gr [H1 , Hz, .•• ,Ht], by definition, has the permutation 

mz mt ' ' 
Hz x ••. xHt ). Gr. The group Gr is known as the 

inertia factor 
m * m * 

of the representation r. If the representation matrices of 

F l II F z 
1 z 

m * t fl ••• f!Ft (e; rr
1

, rrz, •.• ,Tit)are known it is possible to find the 

6 
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.~----~-- -· --- ·--....... _ -~ 
m * m * 

representation matrices of F/ II F2 
2 m * t 

II • • • IIF t 

suitable permutation of the columns of the former as described in reference 

15. The tilde symbol is used to denote a suitable permutation of the 
m * m * m * 1 2 t 

F
1 

II F2 11 ••• 1/Ft IfF' is columns of the representation matrices of 

an irreducible, representation of G~the irreducible representations of 
_, m.* 

G[H1 , H2 , •..• ,Ht] are given by(~ Fi
1 

® F') t G[H1 , H2 , ... ,Ht], where 
1 

the arrow stands for an induced representation. The concept of induced 

representation has been 'extensively reviewed by Altmann
20 

and Coleman
32

• 

For several detailed illustrative examples, see reference 15. 

Let D be the set of nuclei of the same kind and R be the set of 

possible spin states of the nuclei in the set D. For example, if one 

considers the non-rigid hydrazine molecule D is the set of 4 hydrogen nuclei 

and R is the set of two spin states. The nitrogen nuclei will be treated 

as a separate D set. In this paper we will consider each kind of nuclei 

as a separate D set and obtain the spin species of each kind of nuclei 

separately. Then the overall nuclear spin species is obtained as a direct 

product of different kinds of nuclear spin species. The symmetry group of 

14 
the non-rigid hydrazine molecule is given by the wreath product c2v[c2] • 

In this example, the PI group is a direct product of P and I groups and 

thus the nuclear spin statistics can be treated either in P or in PI groups. 

The group c 2v[c2 ] acts on the set D in that it permutes the nuclei in D. 
Image of 

Consider the set F of maps from D to R. /each such map in F is a spin 

function. An example of such a map for hydrazine is shown below. 

fl(l) ~ 

fl (2) £ 

fl (3) - £ 

fl (4) = ~· 

7 



The PI group which acts on D also acts on F by the recipe shown below. 
-1 . 

T(f(i)) = f(T i) for every isD, T£G[H1 , H2 , •.. ,Ht]. To illustrate, 

-1 
consider T as (1324) sc2v[c3], "Since T = (1423), the action of-T on the 

map f
1 

is shown below. 

Tfl (1) fl (T 
-1 

1) fl (4) ~ 

Tf
1

(2) 
-1 

2) fl(3) f
1

(T i! 

Tfl (3) f
1

(T -1 3) fl (1) §, 

Tf1 (4) -1 4) fl(2) f 1 (T = i!· 

Consequently, (1324) acts on ~ i! i! ~ to produce the spiri function 

In order to book-keep the number of various possible spin states in a 

spin function let us introduce the concept of weight of an element r in 

the set R. To each rsR assign a weight w(r), which is just a formal 

symbol used to differentiate the various spin states in the set R. For 

example, we may assign a weight a to the spin state Q, and a weight B to 

the spin state B for the spin 1/2 problem. Then define the weight of any 

function f£F as the products of the weights of the images of f. In symbols, 

the weight of f, W(f) is given by 

W(f) = IT w(f(d)) 
dsD 

To illustrate, consider the map f
1 

used as an illustrative ex~mple above. 

Th . h f h" . 2s2 . . . . 2 I d 2B' d e we1g t o t 1s map 1s a s1nce 1ts 1mage conta1ns a s an ~ s an 

the weight of a is a and that of §, is B. 

B. Spin Projection Operators of PI Groups 

Let us denote the PI group of a non-rigid molecule, 

G[H1 , H2 , •.. ,Ht], by simply H. Let V be a vector space of dimension IRI, 

the number of elements in the set R. For example, V is a 3-dimensional 

8 
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vector space for the spin 1 problem. d 31 Let V be the d-fold tensor product 

of d copies of the vector space V. Symbolically, 

Vd = v ~ . 
de:D 

Let e1 , e 2 , •.• ,eiRI be a basis for the vector space V. Then to each fEF, 

we can assign an ef defined as follows. 

ef is a tensor in the space Vd. The set of tensors S = {ef:fEF} forms a 

basis for Vd. For any he:H, define an operator P(h) by its action on ef 

shown below. 

e 1 fJ e 1 ®. ·' -~ 1 
f(h- 1) f(h- 2) f(h- d) 

Thus P(h) is a permutation operator relative to the basis S, since it per-

mutes the tensors in S by way of the action of g on f. Let h ~ x(h) be 

the character of an irreducible representation r in H. Williamson,
33 

in 

his general theorem for any group considered x to be the character of one 

dimensional representations. However, Merris 34 generalized this result to 

9 

irreducible representations of any dimension. Define an operator T~ as follows. 

Tx 1 · I x(h) P(h) 
H THT he:H 

T~ is easily shown to be an idempotent operator, i.e., 

Equivalently, T~ is a projection operator in the space 

The projection operator T~ projects all spin functions from D to R 

which transform according to the irreducible representation whose character 

is X• However, if one wishes to project spin functions according to their 

1 h b ' d . tota spin quantum number t en one needs to consider a su space of V 1n 



in which only functions having the same total spin quantum number are 

projected. d d For this purpose consider the subspace V of V spanned by 
X -

all the tensors that have the same weight x. That is, Vd is spanned by 
X 

the set Sx = {ef:W(f) = x}. All the spin functions in the space S will 
X 

have the same total spin quantum number.. Let the restrictions of the 

operators T~ and P(h) to the subspace V~ be r~xand Px(h), respectively. 

T~,x is a spin projector of spin functions with the same weight x. For 

example, if we consider all spin functions of the type ~ ~ ~ ~. ~ ~ ~ ~ 

etc., which have the same weight aB 3 = x , then T~,x projects only those 

spin functions that have 3~'s and 1~. Define a weighted permutation 

operator PW(h) and a weighted projector T2'W as follows. 

~ xP (h) 
X X 

where ~denotes a finite direct sum. A definition of finite direct sum 

25 can be found in Hamermesh ; x's vary over all the functions. In a matrix 

representation of PW(h), trace of PW(h), tr PW(h) is 

I (h) H(f), 
f 

where the sum is taken over all fsF such that hf = f. To illustrate, if 

we consider the protons of hydrazine molecule with R ={~, ~} and h = (12) 

then 

(This is because by the action of h=(l2), ~ ~ ~ ~· ~ ~ ~ ~· ~ ~ ~ ~. 

~ ~ ~ ~· ~ ~ ~ ~· ~ ~ ~ ~. ~~~~and ~~~~are left invariant. Hence, 

tr PW(h) is the sum of the weights of the functions that are invariant 

10 
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under the action of h). 
' 33 

In this formulation Williamson and later 

M . 34 d h f 11 . h err1s prove t e o ow1ng t eorem. 

Theorem 1: 

Thus, 
(h) 

1~1 I x(h) I w(f). 
hEH f 

The implication of this theorem is that. the weighted spin projection 

operator is the same as the projection operator with permutation operator 

replaced by the corresponding weighted permutation operator. Trace of the 

weighted spin projector is the generator of the irreducible representations 

contained in the set of spin functions and the nuclear spin species. 

C. Generalized Character Cycle Indices (GCCI) 

In this section we introduce group structures called generalized 

character cycle indices, hereafter abbreviated as GCCI, which are poten-

tially useful in expressing Williamson's theorem outlined in Sec 2B in a 

form suitable for applications. We also obtain the GCCI's of generalized 

wreath products G[H
1

, H2 , •.• ,Ht), which are generators of nuclear spin 

species and nuclear spin statistical weights in terms of GCCI's of G, H
1

, 

H2 , •... and Ht. Consequently, it is not necessary to know the character 

table of the PI groups of non-rigid molecules in order to obtain the nuclear 

spin species. 

Define the generalized character cycle index (GCCI) of a group H, 

correspondi~g to the character X of an irreducible representation r of 

H as 

pX 
H 

bl b2 bn 
where x

1 
x2 ••• xn is a representation of a typical permutation hEH, which 

has b1 cycles of length 1, b 2 cycles of l~ngth 2, etc. 

11 



Equivalently, the cycle type of hEH is (b1 , b2 , ... ,bn). For example, the 

permutation (12)(34) of the PI group of hydrazine has the cycle represen-

2 tation x2 since it has 2 cycles of length 2. Similarly the permutation 
. 1 

(1324) of the same group has the cycle representation x
4 

(1 cycle of 

length 4), etc. The GCCI which corresponds to character xis just the 

sum of the product of cycle representations of elements in H and the 

corresponding character. + For example, the character of the B
1 

repre-

sentation of the P group of hydrazine and the corresponding GCCI are 

shown below. 

,....._ 

""" '-' ,....._ 
C"'l ,....._ ,....._ 
'-' 

""" 
C"'l ,....._ C"'l N ,....._ 

N '-' '-' 

""" '-' ,....._ ,....._ ,...... N ,...... N N. 
""" 

C"'l 
.--l .--l .--l .--l .--l 
'-' '-"' '-'. '-' '-"' 

1 2 .. 1 2 2 

+ 
Bl 1 1 1 -1 -1 

B+ 
1 4 2 2 p 1_ = (xl + 2x1x2 - x2 - 2x4 ) 

C2[C2] 8 

The use of GCCI as generators of nuclear spin species is discussed in 

Section 2D. In this section we proceed to obtain the GCCI 1 s of generalized 

wreath product G[H1 , H2, ... ,Ht] in terms of GCCI 1 s of G, H
1

, H2 , ... and Ht. 

We need the concept of inertia group and inertia factor that we intro-

duced in the earlier section for obtaining the GCCI 1 s of G[H
1

, H
2

, ... ,Ht] 

in terms of the GCCI 1 s of G, H
1

, H2 , ... ,H. Let the inertia group of a 
~ t 

* ml ~ m2 * mt 'I< 
representation F = F1 # F2 # ... #Ft be GF*[H

1
, H2 , ... ,Ht] and let 

I 

GF* be the corresponding inertia factor. 
I 

By definition, GCCI of GF* 

corresponding to the character x, is 

12 



1 cij (g) 
I II II x(g) x

1
.J. 

gsG~* i j 

where Cij(g) is the number of j-cycles of gsGF* in the set Yi. The GCCI 

' of GF* takes the above form because g permutes elements only within a 

set Y; as one can recall from Section 2B. 
1 

recast in a convenient form shown above. 

bl b2 bt 
Hence x1 x2 •. ~xt can be 

m. 
1 

Recall that F. is the m.-fold 
1 1 

outer product of 

character of F .• 
1 

the same irreducible representation 

Ak 
Define the GCCI, Z. to be 

F .• 
1 

Let Ak be the 

where 

Define 

1 

1 

TiD 1 

bl b2 
x

1 
x2 ••• has the same meaning as in the definition of any GCCI. 

Ak . 
Z., by the following substitution. 

1] 

where the subscripts on the x variables are the products. If we denote an 
m.* 

1 
irreducible representation of G[H1 , H2 , .•• ,Ht] by r = (~ Fi x F')t 

1 

G[H
1

, H2 , •.. ,Ht] then a GCCI of G[H1 , H2 , .•. ,Ht] which corresponds to the 

character of r , denoted by Pr (G[H
1

, H2 , ••• ,Ht] is_ given by 

if this j-cycle in Y. is constituted by j copies of the representation 
1 

whose character is Ak. For all the irreducible representations, this result 

can be proved by a method similar to the one used by Williamson
29

- 30 for 

wreath products. In particular, when r is an induced representation this 

result also follows from a lemma of Foulkes35 which relates the GCCI of an 

induced representation to the GCCI of the inducing representation. The 

13 



substitution outlined above is reminiscent of plethysms of S-functions 

36 
outlined in Read's paper ) 

~--

f. 
lA special case of this substitution for the identity represen-

was 14 37-39 
tation/used and illustrated with examples by the present author , in 

isomer enumeration and NMR. 

Let us now illustrate the above result.with hydrazine. Since the PI 

group of the non-rigid hydrazine molecule is a direct product of the P and 

I groups, the nuclear spin statistics can be described in either groups. 

The P gr~up of hydrazine is given by s2 [s
2
], whose structure was studied in 

15 
great details by_ the present author. (cf. Table II of ref. 15). The 

------.-----· 
irreducible representations of s2 [s 2 ] are r 1 = [2] II [2]_....-dfl.__J:.~~-/ 

r 
2 

= ('z){j··-(;·] w [~_2 1 ', r 
3 

= [2] II [1 2 ] t s
2 

[S
2
], r 

4 
= .·[12 ] II [1 2 ]· tr [2)'. 

and r5 = •'[~z-;-;]-~2 ] ® [12 ]', where [2] is the identity representation 

and [1
2

] is the alternating representation of s2 • 

which correspond to [2] # [2], [2] # [12 ] and [12 ] 

' 

The inertia factors 

2 I I 

# [1 ] a~e s
2 

, s
1 

and s2 , where s
1 

is the group containing only the identity. The 

X ' PG' for various X and GF* are shown below. 
F* 

[ 1] ' 
Ps, 

1 

A A 
The various Z.k's and Z k, are shown below. 

1 ij s 

14 
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z[2] = z[21. z[2] = l 2 + X ) 11 1 , 12 2 (x2 4 

[12] [12] [12] 1 2 
- x4). zll zl ZJ2 =- (x2 2 

Hence, 

This is what one directly also obtains using the character table of the 

P group of hydrazine. However, the above expression was obtained with 

this method without the knowledge of the character table of the P group 

of hydrazine. Similarly, 

r2 [12]' z~:]) p (S2 [S2]) P S, (x .. -+ 
2 l] lJ 

1 [{l 2 2 1 2 
+ x4)] =2 (xl + x2)} -2 (x . 

2 2 

Since the inertia factor of the third representation is the group containing 

only the identity we have to replace one x
11 

by zli 1 and for the other 

[12] 
by z

11 
• Thus 

r3 1 2 1 2 1 4 
P (S2[S2]) = 2 (xl + x2) · 2 (xl- x2) = 8 (2x1 

The last two GCCI's are obtained with the substitution similar to that in 

r
1 

and r 2 . They are shown below. 

[2]' [12] 1 1 2 Ps, (x .. -+ z.. ) = -2 [ {-2(xl 
2 lJ l] 

15 
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2 2 xl 

D. Generators of Nuclear Spin Species 

The GCCI's introduced in Sec 2C are the generators of nuclear 

spin species. Theorem 1 introduced in Sec 2B can be expressed in a 

convenient form in terms of the GCCI's. With a little algebric manipulation, 

similar to the one in reference 24 it can be shown that Theorem 1 takes 

the following form. 

pX(x -+ 
H k I 

n:R 

k 
(w(r)) ) . 

bl b2 Tx,w 
The coefficient of a typical term w

1 
w

2 
.•• in tr H gives the frequency 

of occurrence of the irreducible representation r whose character is x in 

bl b2 
the set of spin functions with the same weight w

1 
w

2 
. For example 

+ if we set x to the character of B
1 

representation of the PI group of 

hydrazine, then the coefficient of a
2s2 in the polynomial obtained by 

replacing every xk by ak + Bk in the corresponding GCCI gives the number 

of B~ representation in the set of spin functions that have 2a's and 2B's. 

We now illustrate the above procedure with hydrazine. All the GCCI's 

of the PI group of hydrazine were obtained in Sec 2C. Let us identify the 

irreducible representations r
1

, r 2 , r
3

, r
4 

and r
5 

by the species A
1

, B
1

, 

E, B2 and A2 . Then 

, Thus, spin function containing all £ 1 S has one A
1 

representation, spin 

functions containing ja's and lB have one A
1 

representation, spin functions 
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containing 2a's and 28's contain 2A
1 

representations, and so on. The 
al bl 

coefficient of a typical term a B in this generating function corresponds 

to the total spin ~uantum number mz = (a1-b1)/2 since a represents mz = 1/2 

and B represents m = - 1/2. Consequently, if one arranges the spin z 

species according to their m values as given by the above generating 
z 

function, they separate into spin multiplets with m varying from -s to S. 
z 

Al 
For example, from G.F. we obtain the nuclear spin species which cor-

5 1 respond to A
1 

representation as A
1 

and A
1

• The G.F.'s corresponding 

to the other irreducible representations obtained in a similar manner are 

shown below. 

Bl 1 4 2(a+B)
2

(a
2
+B2) (a2+B2)2 2 (a 4+84)] a3B + a

2
e

2 
+ aB3 G. F. = - [ (a+B) + 

8 

E .!. [2(a+B) 4 2(a2+82)2] a
3

B + a
2

e
2 + aB

3 
G. F. = 8 

Bz 
.!. [(a+B) 4 2(a+B) 2 (a

2
+B2) 3(a2+82)2 2(a4+e4)J a2B2 G. F. = + 

8 

o. 

Thus, we obtain the proton nuclear spin species of the non-rigid hydrazine 

5 1 3 3 1 molecule to be A
1

, A
1

, B
1

, E, and B2 • If one includes the inversion 

operations these spin species carry the additional + label. These species 

17 

are in agreement with the results of Longuet-Higgins1 for hydrazine. However, 

these spin species were obtained without enumerating all the nuclear spin 

functions and obtaining the character of each block of spin functions with 

the same rn value and then breaking each block into irreducible r~presentations. 
z 

With our method all that we needed was the set of GCCI's of PI group from 

which generating functions and the nuclear spin functions were obtained 

immediately. Even the character table of the PI group of hydrazine was 

not needed since GCCI's were obtained without knowing the character table 



of the PI group of hydrazine. However, to obtain GCCI's, we need the 

character tables of the P group of the rigid nuclear structure and the 

torsional groups. 

Let us now give a non-trivial example. Consider the molecule Boron 

trimethyl B(CH
3

)
3 

. ·This molecule was used by Longuet-Higgins1 to 

illustrate how rapidly the order of the PI group of non-rigid molecules 

increases. He did not obtain the nuclear spin species or the nuclear spin 

statistical weights of the rovibronic levels of this molecule. We will 

now illustrate the power and use of the above procedure with this molecule. 

The PI group of this molecule is the wreath pro~uct D
3
h[c

3
] or D

3
[c3]AI, 

where the symbol A has been used to denote a semi-direct product. This 

is an example of a molecule whose PI group is not a direct product of P 

and I groups. We will first obtain the GCCI's of the P group (D3 [c3 ]) of 

this molecule and then add the additional terms arising from the I group. 

The GCCI's of the group n
3 

and c
3 

are shown in tables 1 and 2, respectively. 

The irreducible representation of n
3

[c
3
], their GCCI's obtained using the 

GCCI's of n
3 

and c 3 are shown in Table 3. When the inversion operations 

are included, the irreducible representations A
1

, A2 , E
1 

and 1
7 

double; 

the other GCCI's remain the same. The GCCI's of the PI group of B(CH
3

)
3 

are shown in Table 4. 

We will now obtain the nuclear spin species of 11B(
12

cn ) using 
3 3 

these GCCI's, where D denotes the deuterium isotope of hydrogen. The total 

number of nuclear spin functions in this molecule is 4.39 = 78, 732. Let 

us first find the deuterium spin species and then multiply the Boron spin 

species by a Clebsch-Gordan series. Let us denote the three nuclear spin 

states of D by ~, ~ and ~· Let the weights ·associated with these 3 states 

be A, ~ and v, which stand for spin states with nuclear spin = -1, 0 and 1, 

respectively. Then if one replaces every xk in the GCCI which corresponds 

18 



to the irreducible representation r by A.k + ~k + vk, one obtains the 

generating function for nuclear spin species, corresponding to r. To 

illustrate, given below is the expression obtained by replacing every 

Xk in the GCCI of the irreducible representation r
3 

of the PI group of 

B(CD
3

) by Ak + ~k + vk. 
3 

1 9 = 324 [ 6 (A.+~+v) 

5 3 4 4 3 5 2 6 7 8 7 2 6 2 . 5 2 2 
+ 14>.. ~ v+l6A. ~ v+l4A. ~ v+9A ~ v+4A.~ v+~ v+ZA v +9A ~v +20>.. ~ v 

al a2 a3 . r 
The coefficient of a typical term A. ~ v 1.n the G.F. gives the 

19 

number of irreducible representations r in the set of nuclear spin functions 

containing a1l states, a2~ states and a3~ states. Thus, this coefficient 

corresponds to the number of spin functions transforming as r with the 

total spin quantum number equal to a 3 - a1 . \.<Jhen we group the species r 

r as generated by G.F. , they separate into multiplets with their total spin 



varying from -S to S. For example, when we group the coefficients in the 

generating function corresponding I
3 

in accordance to the total spin 

17 15 13 11 9 
quantum number, we obtain I

3
(1), I

3
(2), I

3
(4), I

3
(8), I

3
(12), 

7 5 3 1 I
3

(15), I
3

(17), I
3

(13) and I
3

(4) as the nuclear spin species. The 

numbers in the parentheses indicate the frequency of occurrence of the 

corresponding spin species. In this manner all the nuclear spin species 

can just be read-off from the generating functions. Generating functions 

thus obtained for the D species of B(CD
3

) are shown ih Table 5. In that 
- 3 

table the various terms appearing in the generating functions are shown 

in the first row. The coefficients in the generating functions for all 

the irreducible representations are shown in the subsequent rows. For 

4 4 
example, from this table one infers that the coefficient of A Jl v which 

corresponds to the A1 species is 6. The nuclear spin species thus 

obtained from these generating functions are shown in Table 6. Since the 

nuclear spin of 
11

B is 3/2 arid this nucleus is the center of the molecule, 

h 1 . . f llB . 4A t e nuc ear sp1n spec1es o 1s 
1

• The overall nuclear spin species 

of this molecule is the direct product of the boron and the deuterium 

spin 

s2 
D. ' 

J 

where 

s s s 
species. A typical direct product of the species D. 1 and D.

2
, D.

1 ~; 
1 J 1 

decomposes into a Clebsch-Gordan series
25 

s s 
D.l ~· D.2 

1 . J 

D.@ D. 
1 J 

the direct sum of irreducible representations Dk's contained in Di ~ Dj. 

20 
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To illustrate the 9 7E
1 

deuterium species and the 4A
1 

boron species give 

Thus from this combination alone we obtain the overall species to be 

10 8 6 4 
E1 (9), E1 (9), E1 (9) and E1 (9). In Table 7 we show the overall 

nuclear spin species of B(CD
3

) • The process can be repeated to obtain 
3 

the nuclear spin species of the molecule B11 cc13n
3

) , for which one also 
3 

needs the carbon species. The carbon species can be easily obtained by 

obtaining the GCCI's corresponding to the carbon nuclei. 

If one denotes the 

nuclear spin states of 
13c by Q and ~with the weights a and B, and 

replace every ~ by ak + Bk in the corresponding GCCI's, one obtains the 

G.F. 's of carbon species. It can be seen that the resulting species are 

4A and 2E
1

• One then takes the direct product of carbon, boron and 
. 1 

21 

deuterium species to obtain the overall species. For the sake of comparison 

in Table 8 we give the proton spin species of B(CH
3

)
3 

obtained using the 

GCCI's in Table 4. In this case every xk in the GCCI's is replaced by 

k k a + B where a and B are the weights associated with the two spin state 

Q and ~ of protons. 

To illustrate the elegance of this procedure we consider yet another 

non-rigid molecule, namely, triphenyl which contains 14 protons and 18 

carbon atoms. This molecule was considered as an illustrative example in 

reference 15, where the character table of its symmetry group was also 

obtained. For details of the character table of its PI group the readers 

are referred to reference 15. Table 9 shows the GCCI's corresponding to 

hydrogen nuclei present in this molecule. Note that the GCCI's which 



"+ "+ "+ "+ 
correspond to A1 and B1 , and, A2 and B2 ar~ identical. Thus it is 

enough if one generates the nuclear spin species of one of the two irre-

ducible representations. In Table 10 we have the deuterium species of 

the non-rigid triphenyl molecule, c18n14 . 

3. Th~ Statistical Weights of Rovibronic Levels from Generating Functions 

The nuclear spin statistical weights of the rovibronic levels of 

non-rigid molecules can also be obtained using the GCCI's. If one is 

interested in the statistical weights of rovibronic levels instead of the 

possible nuclear spin species, it is possible to obtain them directly 

from GCCI's. Evidently, the number of times an irreducible representation 

r . rspin occurs 1n , the reducible representation of all nuclear spin func-

tions, is given by the sum of the coefficients of all the terms in the 

corresponding nuclear spin generating function. For example, the number 

of times the A1 representation appears in the set of deuterium spin func-

tions of B(CD
3

) is the sum of the coefficients in the row corresponding 
3 

to A1 in Table 5 which is 230. The sum of the coefficients in any 

generating function is obtained by setting all the weights to unity in 

the generating function. This is tantamount to replacing every xk in 

pX by 
H 

L (w(r) )k = I Rl, since w(r) =1 for all n:R. 
n:R 

Thus the number of 

times the irreducible representation r whose character is X appears in 

rspin is given by 

Corollary l:N(r) = P~(xk + IRI). 

Let us now illustrate corollary 1 with several examples·. We start 

with B(CD
3

) • 
3 

The GCCI's of this molecule are in Table 4. The number 

of A
1 

representations in r~pin is obtained by replacing 
Al 

every xk in PG 

by 3 since the number of possible nuclear spin states of D is 3. 

Consequently, 

.22 
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... 

1 9 3 6 3 2 3. 3 3 N(Ai).= 324 (3 + 26.3 + 6.3 .3 + 12.3 .3 + 36.3 + 36.3 .3 + 18.3 .3 

3 4 + 18.3 .3 + 90.3.3. + 27.3.3 + 54.3.3.3) = 230 

Similary, 

- 36.3.3) = 396. 

In this manner when one computes N (r) for all r 's of the PI group of 

230 A1 + 45A2 + 56A3 + 120A4 + 340E1 + 100E2 + 120E3 + 56E4 + 168G 

+ 396Il + 308I2 + 528I3 + 440I4 + 288I5 + 224I6 + 388I7 + 316I8 

We arrive at the same result by adding the multiplicity times the fre­

quency of occurrence of deuterium spin species in Table 6. Since 
11

B 

nuclear spin functions span the representation 4~, the overall spin 

r spin, species is given by 

+ 480E3 + 224E4 + 672G + 1584I1 + 1232I2 + 2112I3 + 1760I4 

+ 1152I5 + 896I6 + 1552I7 + 1264I8. 

To obtain the nuclear spin statistical weight of a rovibronic level 

f . rrve . . 1 h rrve .w rspin trans orm1ng as representat1on, one s.t1pu ates t at ~ 

h ld . rint h rint . h . f h 1 s ou conta1n , w ere 1s t e symmetry spec1es o t e tota 

internal wavefunction. By Pauli exclusion principle rint must be anti-

symmetric with respect to permutations alone for Fermions. For Bosons 

int 
r must be symmetric with respect to permutations alone. Note that 

there is no restriction placed on inversion operations. Since deuterium 

1 · B rint b A A nuc e1 are osons can e 
1 

or 
3

. 

already been found. Thus, for example, the nuclear spin statistical 

23 



weight of the rovibronic level A
2 

is 660 since 180A
2 

and 480A
4 

of rspin 

Conta-in rint . th d. t d t rspin ,.,;-, rrve • 1.n e 1.rec pro uc ~ . This way one obtains 

the nuclear spin statistical weights of all the rovibronic levels and 

they are shown below in parenthesis. 

A
1 

(1144), A2 (660), A
3

(1144), A4 (660), E1 (2720), E2 (800), E
3

(960), 

E
4

(448), G(l344), 1
1 

(3168), 12 (2464), 1
3
4224), 1

4
(3520), 1

5
(2304), 

16(1792), 17(3104), 18(2528). 

For 12c-triphenyl, 12c D rspin obtained using Corollary 1 is shown 
18 14' ' 

below. 

410670 A~++ 409455 Bi+ + 261954 Az+ + 262926.Bz+ + 32.8050 A'f~ 

+ u+ + + + + 328050 B" + 209952 A + 209952 B" + 656100 E' + 524880 E" '; '· 1 2 2 

S . D 1 ' B rint be A
1
'+ A' 1.nce nuc e1. are osons can or 

1 
. Since the PI. group 

of this molecule is a direct product of P and I groups, the statistical 
\ 

weights are unaffected by + labels. The statistical weights thus 

obtained are shown below. 

A{±C410670), Bi±(4094S5), AZ±(261954), Bz±(262926), Al±(328050), 

Bl±(328050), Az±(209952), Bz±(209952), E'±(656100), E"±(524880). 

4. Application to Molecular Beam Experiments 

40 ' ' 
Muenter and co-workers have been carrying out molecular electric 

beam deflection and electric resonance experiments to derive structural 

information of weakly bound complexes such as (H
2

o)
2

, HF·HCl, HF·ClF, 

ammonia polymers, etc. These authors also formulated the PI group of 

these weakly bound polymers which are reminiscent of non-rigid molecules. 

In fact, all the P groups of these polymer complexes can be represented 

by wreath product groups. The inversion operations· are either incorporated 

24 



as a semi-direct product to the P group or as a direct product depending 

on if the inversion operation is prtesent in the molecule. One of the 

problems these authors are considering is an attempt to interpret the 

microwave spectra of these compounds in order to understand its structure. 

To interpret the microwave spectra one needs the statistical weights of 

the rovibronic levels. In this section we shall illustrate our method 

with an ammonia dimer (Structure I of Fig. 1 in reference 40a). The PI 

group of this molecule is s2 [s
3

] x I where Sn denotes the complete per-

mutation group containing n! elements and I is the inversion group. 

This is an example where the PI group is a direct product of P and I 

groups. The GCCI's which correspond to protons of this molecule are 

shown in Table 11. Note that the notation for the symmetry species we 

follow here is that of reference 15 (cf. Table 4). In this special case 

where the P group is a wreath product of 2 symmetric groups, the GCCI's 

are the plethysms of S-functions (or Schur functions); for a detailed 

36 41 discussion of S-functions see Read or Littlewood, or the paper of the 

22 
author. From these GCCI's the generating functions for the proton 

species can be obtained immediately. The proton species of this molecule 

are shown in Table 12. The 
14

N nuclei span the species 6A~ + 3A;. Thus 

rspin for this molecule is given by 

78 A~ + 66 A; + 21 G~ + 15 c; + 72 c; 

25 

Since 14N nuclei are Bosons and protons are Fermions rint can be A; or A
3

. 

Thus one obtains the following statistical weights of the rovibronic levels. 

As one can see the statistical weights for the G species that we obtain 

are one fourth of the statistical weights reported by Odutola et a1.
40

a 



(cf. Table II of their paper). The statistical weights reported by 

these authors are multiplied by the.dimension of the irreducible repre­

sentation.42 It will be interesting to see how the statistical weights 

alter if one replaces protons by deuterium nuclei in this molecule. The 

deuterium species are shown in Table 13. Using Corollary 1 it can also 

be directly inferred that r;pin is given as follows. 

Hence the overall spin species is 

+ 276G; + 720G; + 72G~. 

14 + 
Since both Nand Dare Bosons the overall species can be A~. Thus the 

statistical weights are 

Eight of the levels which were forbidden by Pauli exclusion principle 

have become allowed up on replacement of H nuclei by D nuclei. 
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Table 1. The GCCI's of the Group n
3 

Irreducible X 

6 · PG 
Representation 

Al [ 3] 3 
xl + 2x

3 + 3x
1

x
2 

A2 [ 1 3] 3 
xl + 2x3 - 3x1x2 

E [2,1] 3 
- 2x 2x1 3 

Table 2. The GCCI's of the Cyclic Group c
3 

Irreducible X 

Representation 3 · PG 

Al 
3 

+ 2x
3 xl 

3 

1'1 
xl - x3 3 

- 2x E or 2x1 3 3 
Y2 xl - x3 



Table 3. The GCCI 1 s of D
3
[c

3
], the P group of B(CH)

3 

Irreducible 
Representation 

= A 
1 

(AliiAliiAl) Cit [1
3

] I 

= A2 

(AliiAliiAl) X [2,1] 

= El 

I 

{
( y lY 1/ly 1 )} ® [ 3] I 

( y 2 fly 2/ly 2) 

= E3 

{
( y 1 fly lily 1 )} ® [ 1 3 ] I 

(y 2lly z1'Y 2) 

= E4 

{

( y lily lily 1 )} 

( y 2/ly 211y 2) ® [ 2 J 1] I 

= G 

162 P~ [C ] 
3 3 

9 ' 6 3 2 3 3 3 3 3 
x

1 
+ 6x

1 
x

3 
+ 12x

1 
x

3 
+ 26x

3 
+ 36x

9 
- 9x

1 
x2 -: 18x1 x 6 - 18x2x

3 

- 36x
3
x

6 

9 6 3 2 3 3 3 3 3 
2x

1 
- 6x

1 
x

3 
+ 6x

1 
x

3 
+ 34x

3 
- 18x

1 
x

2 
+ 18x

1 
x

6 
+ 18x

3
x

2 

- 18x
3

x6 - 36x
9 

31 



Table 3 (continued) 

Irreducible 
Representation 

(Altly lily 2) 

t n
3

[c
3

] = r
7 

32 

.. 

9 6 3 2 3 3 3 3 3 . 
6x

1 
- 18x

1 
x

3 
+ 18x

1 
x

3 
+ 18x

1 
x

2 
- 18x

1 
x

6 
- 6x

3 
- 18x

2
x

3 

+ 18x
3

x
6 



1'-j 

Table 4. The GCCI's of the PI Group of B(CH
3

) 
3 

Irreducible 
Representation 

G 

9 3 6 3 2 3 3 3 
x

1 
+ 26 x

3 
+ 6x

1
x

3 
+ 12x

1
x

3 
+ 36x

9 
+ 36x

1
x

2 
+ 18x

1
x

6 

3 4 + 18x
2

x
3 

+ 90x
3

x
6 

+ 27x
1

x
2 

+ 54x
1

x
2

x
6 

9 3 6 . 3 2 3 3 3 
x

1 
+ 26x

3 
+ 6x

1
x

3 
+ 12x

1
x

3 
+ 36x

9 
- 36x

1
x 2 - 18x1x6 

3 4 
- 18x

2
x

3 
- 90x

3
x

6 
+ 27x

1
x

2 
,+ 54x

1
x2x6 

9 3 6 3 2 3 3 3 
x

1 
+ 26x

3 
+ 6x

1
x

3 
+ 12x

1
x

3 
+ 36x

9 
- 18x

1
x2 + 18x1x6 

3 4 + 18x
2

x
3 

- 18x
3

x
6 

- 27x
1

x 2 - 54x
1

x2x6 

9 3 6 3 2 3 3 3 
x

1 
+ 26x

3 
+ 6x

1
x

3 
+ 12x

1
x

3 
+ 36x

9 
+ 18x

1
x2 - 18x1x6 

3 4 
18x

2
x

3 
+ 18x

3
x

6 
- 27x

1
x

2 
- 54x

1
x2x6 

9 3 6 3 2 3 3 3 
2x

1 
+ 34x

3 
- 6x

1
x

3 
+ 6x

1
x

3 
- 36x

9 
+ 18x

1
x2 - 18x1x6 

3 
- 18x

2
x

3 
+ 18x

3
x6 

9 3 6 3 2 3 3 3 
2x

1 
+ 34x

3 
- 6x

1
x

3 
+ 6x

1
x

3 
- 36x

9 
- 18x

1
x2 + 18x1x6 

3 + 18x2x
3 

- 18x
3

x6 
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Table 4 (continued) 

px 1' 
Irreducible 324 

Representation G 

-" 
Il 

9 6x
1 + 3 12x

3 
3 2 18x
1

x3 
3 3 + 18x
1

x2 
3 18x1x6 + 3 36x2x

3 - 36x
3

x6 

I2 
9 6x
1 

3 + 12x
3 

3 2 
18x1x3 

3 3 18x
1

x2 + 3 18x1x6 
3 36x2x

3 + 36x
3
x6 

9 3 - 6 3 3 3 3 - 36x
3
x

6 I3 6x - 24x
3 

+ 18x
1

x
3 

+ 18x
1

x
2 + 36x1x6 - 18x2x

3 1 

9 3 6 3 3 3 3 + 36x3x6 I4 6x - 24x
3 

+ 18x1x3 - 18x x - 36x1x6 + 18x2x3 1 1 2 

9 3 6 3 2 3 3 3 3 
6x - 6x - 18x1x3 + 18x1x3 + 18x1x2 - 18x1x6 - 18x2x3 

Is 
1 3 

+ 18x
3

x6 

9 3 6 3 2 3 3 3 - 3 
6x - 6x

3 
- 18x

1x
3 

+ 18x
1x

3 
- 18x

1x2 + 18x
1

x6 + 18x2x3 
I6 

1 

- 18x3x6 

I7 
9 

6x1 
3 + 12x
3 

- 3 2 
18x1x3 

4 + 54x
1

x
2 - 54x1x2x6 

I8 
9 

6x1 
3 

+ 12x3--
3 2 

18x1x3 
4 - 54x1x2 + 54x1x2x6 

r'' 
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Table 5. Generating functions for deuterium species of B(CD3) 
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r 

A1 

A2 

A3 
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E2 

E3 

E4 
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11 

12 

13 

14 
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4 6 9 6 4 1 1 

9 16 19 16 9 3 4 

3 6 7 6 3 0 0 

3 8 12 8 3 1 1 

1 5 8 5 1 0 0 

4 13 18 13 4 0 1 

10 25 33 25 10 2 3 

8 21 29 21 8 1 1 

14 29 36 29 14 3 4 

12 26 32 26 12 2 3 

7 21 30 21 7 1 2 

5 18 26 18 5 0 1 

9 25 31 25 9 2 3 
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..j 
..j ~ 
~ N 
;::1 ;::1 

..j .... 
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10 16 
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12 25 
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29 16 
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Table 5 (continued) 
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Table 6. Non-rigid Deuterium Spin Species of B(CD
3

)
3 

I 

r SEin SEecies 

'3 s 7 9 
11Al (4)' 13Al (2), lSAl (2), 19A (1) Al A

1 
(6), A

1 
(2), A

1 
(8), Al (3), 1 

<~-~ 

3 s 7 . 9 11
A (1) A2 A

2 
(2), A2 (1), A

2 
(2), A

2 
(1), 

2 

A3 
1 s 7 9 13A, (1) A3 (3)' A

3
(3), A

3
(1), A

3 
(2), 

3 

A4 
1 3 s 7 9 

11A4(1), 13A (2) A
4 

(3), A
4 
n), A

4 
(4), A

4 
(3), A

4 
(4), 

4 

1 3 s 7 9 
llEl (6)' 13El (3), lSEl (2), 17E (1) El E

1 
(1), El (7)' E

1 
(8), E

1 
(9), El (7)' 1 

1 3 s 7 9 
11E2 (1)' 13E (1) 

E2 E
2 

(2), E
2

(2), E
2 

(4), E
2 

(3), E
2 

(3), 
2 

1 3 s 7 9 
11E3 (1)' 13E (1) 

E3 E
3 

(2), E
3 

(4), E
3 

(4), E
3 

(S), E3 (3)' 3 

E4 
1 E

4
(2), 3 

E4 (3)' 
s 
E4(3), 

7 E
4

(3), 9E4 (1) 

G 
1G(2), 3G(7), SG(9), 7G{6), 9G(4), 11G (2) 

1 3 s 7 9 
11Il (6)' 13I1 (2), lSI (1) 

. Il I
1 

(4), I
1 

(12), I
1 

(14), I
1 

(14), I
1 

(9), 
1 

1 3 s 7 9 
11I2(3), 13I (2) I2 I

2 
(S) , I

2 
(10), I2(13), . I2(11), I

2 
(8), 

2 

1 3 s 7 9 
11I3 (8)' 13I3(4), 

I3 

I3(4), I
3 

(13), I
3 

(17), I
3 

(1S), I3(12), 

<i 
1SI3(2), 17I3(1) 

1I4(4), 3 s 7 9 11 13 lSI (1) 
j• 

I4 I
4 

(11), I
4 

(lS), I
4 

(14), I4(11), I4(7), I4(3), 4 

Is 
1 

Is (4), 
3 
Is (11), 

s 
Is(13), 

7 
Is (11), 

9 11 
Is en, Is (3), 13Is (1). 

1 3 s 7 9 11
I (2) I6 I

6 
(4), I

6 
(10), I

6 
(12), I6(9), I6 (S)' 6 
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Table 6 (continued) 

r Spir:t Species 

-. 



Table 7. The Overall Nuclear Spin Species of 11sc12cn
3

) 
3 

r Spin Species 

G 

8 6 4 2 
A

1 
(17), A1 (19), A1 (16), A1 (8) 

6 4 2 E1 (31), E1 (25), E1 (15) 

12E4(1), 10E4(4), 8E4(7), 6E4(10), 4E4(11), 2E4(6) 

14G(2), 12G(6), 10G(l2), 8G(21), 6G(26), 4G(24), 2G(16) 

4
11(44), 

2
11{26) 

39 

16
12(2), 

14
12(5), 

12
12(13), 

10
12(24), 

8
12(35), 

6
12(42), 

4
12(39), 

2
12(23) 
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Table T (continued) 

r Spin Species 

18I4(1), 16I4(4), 14I4 (11)' 12I4(22), 10I4(3S), 8 6 

I4 
14(47), I4(S1), 

,,_ 

4 
I4(44), 

2
I4(26) 

16Is(l), 14Is(4), 12Is (11)' 10Is(22), 8 6 4 

Is 
Is (34), Is(42), Is (39), 

2
Is(24) 

I6 14I6(2), 12I6 (7)' 10 8 I 6 (16), I 6 (28), 6 I 6 (36), 4 I 6 (3S), 2
I6(22) 

18I7 (1)' 16I7(3), 14I7(9), 12I7(17), 10I7 (31), 
8 . 6 

I7 
I7(41), I7(49), 

4 I 7 (43), 2
I7(26) 

16I8(2), 14I8(S), 12I8(14), 10I8 (24)' 8 6 4 

I8 
I8 (37)' I 8 (42), I8(40), 

2
I8(23) 
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Table 8. The Non-rigid Proton Spin Species of B(CH
3

)
3 

r Spin Species 

4 6 10 A (i) . ., A1 A
1 

(1), A
1 

(1), 
1 

A2 None 
_,, 

A3 None 

A4 4A4(1) 

E1 
2 

E
1 

(1), 
4 

E
1 

(1), 
6 

E
1 

(1), 8E1 (1) 

E2 None 

E3 4E3(1) 

E4 None 

G 
2G(1) 

11 
2 

1
1 

(1), 
4 1

1 
(1), 611(1) 

12 412 (1) 

13 
2 

13 (1), 
4 
13(1), 

6 
13 (1), 813(1) 

14 
2 

14 (1), 
4 

14 (1), 614(1) 

15 
2 
15(1), 415 (1) 

16 ' 216 (1) 

17 
2 

17 (1), 
4 

17 (1), 617(1) 

'>' 
418 (1) 18 
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Table 9. The Non-zero GCCI's of the Hydrogen Nuclei 
Corresponding to the P Group of a Non-rigid 
Triphenyl 

14 10 2 6 4 T 3 2 2 6 
r x1 xl x2 xlx2 x2 x2x4 xlx2 

"' 
A'+ 

1 1 3 3 4 4 1 
'-. 

B'+ 
1 1 3 3 -4 -4 1 

A'+ 
2 1 -1 -1 -4 4 1 

B'+ 
2 1 -1 -1 4 -4 1 

A"+ 
1 1 1 -1 0 0 -1 

II+ 
Bl 1 1 -1 0 0 -1 

A"+ 
2 1 -3 3 0 0 -1 

B"+ 
2 1 -3 3 0 0 -1 

E'+ 2 2 ~2 0 0 -2 

E"+ 2 -2 -2 0 0 2 



,, 
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Table 10. The Deuterium Species of the Non-rigid Triphenyl Molecule c18n14 

r Spin Species 

1A'~(2472), 3Al+(6336), 5Ai+(9036), 7Ai+(9384), 9Ai+(8456), 11Ai+(6338), 

13Ai+(4306), 15Ai+(2462), 17Ai+(1298), 19Ai+(557), 21Ai+(227), 

23A'+(67) 25A'+(21) 27A'+(3) 29A'+(1) 
1. ' 1 ' 1 '.1 / 

Bi+ 1Bi+(2259), 3Bi+(6531), 5Bi+(8841), 7Bi+(9530), 9Bi+(8310), 11Bi+(6429), 

13Bi+(4215), 15Bi+(2507), 17Bi+(1253), 19Bi+(575), 21Bi+(209), 

23BI+(72), 25Bi+(16), 27Bi+(4) 

Az+ 1Az+(1678), 3A• 2+(4855), 5AZ+(6441), 7Az+(6780), 9AZ+(5668), 11Az+(4165), 

13Az+(2523), 15Az+(l364), 17Az+(588), 19Az+(227), 21Az+(61), 23Az+(15), 

25A,+(1) 
2 

Bz+ 1Bz+(1858j, 3Bz+(4693), 5Bz+(6603), 7Bz+(6660), 9Bz+(5788), 11Bz+(4095), 

13Bz+(2593), 1~Bz+(1332), 17Bz+(620), 19Bz+(217), 21Bz+(71), 23Bz+(13), 

25B,+(3) 
2 

A"+ 
1 

"+ 
B1 

1Al+(2025), 3Al+(5551), 5Al+(7612), 7Al+(7980), 9Al+(6920), 11Al+(5152), 

13Al+(3309), 15Al+(1851), 17Al+(889), 19Al+(367), 21Al+(125), 23Al+(35), 

25 Al+ (7)' 27Al+ (1) 

1Bl+ (2025), 3Bl+ (5551), 5Bl+(7612), 7 Bl+ (7980), 9Bl+ (6920), 11Bl+ (5152), 

13Bl+(3309), 15Bl+(l851), 17Bl+(889), 19Bl+(367), 21B"~(125): 

23Bl+(35), 25Bl+(7), 27Bl+(1) 



r 
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Table 10 (continued) 

Spin Species 

l A~( (1524), 
3 
A:t (4140), 

5 
A:t(5580), 

7 
A:( (5684), 

9 
A:t (4 724), ll A:t (3308), 

13 
A:t (1948), 

15 A~( (964), 
17 A~( (388), 

19 A~( (124), 
21 A:t (28), 

23 A:t (4) 

Bz+ 
1

Bz+(l524), 
3

Bz+(4140), 
5

Bz+(5580), 
7
Bz+(5684), 

9
Bz+(4724), 

11
Bz+(3308), 

13
Bz+(1948), 

15
Bz+(964), 

17
Bz+(38S), 

19
Bz+(124), 

21
Bz+(28), 

23
Bz+(4) 

llE,+(10304), 13E'+(6618), 15E'+(3702), 17E'+(1778), 19E'+(734), 

21E'+(250), 23E 1+(70), 25E 1+(14), 27E'+(2) 



45 

•.;> Table 11. The GCCI's of the Protons of Anunonia Dimer 

r 6 4 3 2 2 2 3 
!'! xl xlx2 xlx3 xlx2 x3 xlx2x3 x2 x6 x2x4 

Al 1 6 4 9 4 12 6 12 18 

A2 1 6 4 9 4 12 -6 -12 -18 

A3 1 -6 4 9 4 -12 -6 -12 18 

A4 1 -6 4 9 4 -12 6 12 -18 

Gl 4 0 -8 0 4 0 12 -12 0 

G2 4 0 -8 0 4 0 -12 12 0 

G3 4 12 4 0 -8 -12 0 0 0 

G4 4 -12 4 0 -8 12 0 0 0 

E 2 0 8 -18 8 0 0 0 0 

, .. 

)' 
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Table 12. The Proton Specie's ... 
of the Ammonia Dimer 

r SEin SEecies '; 

+ 
A1 

3 
A; (1), 

7A+(1) 
1 

'" + 1
A;(1), SA+(1) A2 2 

A+ 
3 None 

A+ 
4 None 

E+ None 

G+ 
1 

3G+(1) 
1 

G+ 
2 

1G+(1) 
2 

G+ 
3 

3
c;(1), 

5G+(1) 
3 

+ 
. G4 None 
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Table 13. The Deuterium Species of the Ammonia Dimer 
(ND3) 

2 
'" 

r Spin Species 

.fl A+ 1A1(2), 5A1(3), 7 A1(1), 9A1(2), 13A+(l) 
1 1 

A+ 
2 

3
A; (2), 

5
A;(l), 

7
A;(2), 9 A; (1), llA+(l) 

2 

A+ 
3 None 

A+ 
4 

lA+(l) 
4 

E+ 3E+(l), 7E+(l) 

G+ 
1 1G1(2), 3G1 (1), 5G1(3), 7G1(1), 9G+(l) 

1 

+ 
G2 

3c; (3), 5
c;(l), 

7G+(2) 
2 

G+ 
3 

1
c;(l), 3G; (3)' 

5
c;(4), 

7
c;(3), 

9
c;(2), llG+(l) 

3 

G+ 
4 

3G~(l), SG+ (1) 
4 
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