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X-secure T -private Information Retrieval from MDS Coded

Storage with Byzantine and Unresponsive Servers

Zhuqing Jia and Syed A. Jafar

Center for Pervasive Communications and Computing (CPCC), UC Irvine
Email: {zhuqingj, syed}@uci.edu

Abstract

The problem of X-secure T -private information retrieval from MDS coded storage is studied
in this paper, where the user wishes to privately retrieve one out of K independent messages
that are distributed over N servers according to an MDS code. It is guaranteed that any group
of up to X colluding servers learn nothing about the messages and that any group of up to
T colluding servers learn nothing about the identity of desired message. A lower bound of
achievable rates is proved by presenting a novel scheme based on cross-subspace alignment and
a successive decoding with interference cancellation strategy. For large number of messages
(K →∞) the achieved rate, which we conjecture to be optimal, improves upon the best known
rates previously reported in the literature by Raviv and Karpuk, and generalizes an achievable
rate for MDS-TPIR previously found by Freij-Hollanti et al. that is also conjectured to be
asymptotically optimal. The setting is then expanded to allow unresponsive and Byzantine
servers. Finally, the scheme is applied to find a new lower convex hull of (download, upload)
pairs of secure and private distributed matrix multiplication that generalizes, and in certain
asymptotic settings strictly improves upon the best known previous results.
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1 Introduction

Originating in computer science and cryptography, the problem of private information retrieval
(PIR) [1] seeks efficient ways to retrieve desired messages from distributed servers without dis-
closing to the servers which messages are desired. The rate of PIR is the maximum number of
bits of desired message that can be retrieved per bit of total download from all servers [2]. PIR
has recently attracted much attention in the information theory community, where the focus has
been on finding the capacity (maximum rate) [2] or equivalently, minimizing the download cost [3]
under various constraints. The study of PIR is important from an information theoretic perspec-
tive not only because privacy is important, but also because optimal PIR schemes often reveal
novel coding structures, thereby advancing our understanding of structured codes, a cornerstone
of network information theory. The fundamental significance of these coding structures is empha-
sized by the connections between PIR and a number of other important problems such as locally
decodable codes [4,5], locally repairable codes [6], batch codes [7], oblivious transfer [8,9], instance
hiding [1,10], secret sharing [11], blind interference alignment [12,13], and secure computation [14],
including recent works on secure distributed matrix multiplication [15–20]. As the literature on
information theoretic PIR continues to grow, it is also valuable to find unified perspectives that
combine our understanding of various aspects of PIR and allow generalizations beyond PIR. Against
this background, the contribution of this work is summarized in Figure 1.

PIR [2]
Replicated storage

TPIR [21]
T -private

Replicated storage

U-TPIR [21]
U-unresponsive
T -Private

Replicated storage

B-TPIR [22]
B-Byzantine
T -Private

Replicated storage

U-B-TPIR [23]
U-unresponsive

B-Byzantine

T -Private

Replicated storage

MDS-PIR [24]
MDS-coded storage

XSTPIR [25]
X-secure, T -private

Replicated Storage

MDS-TPIR
[26, 27]
T -private

MDS-coded storage

U-B-MDS-XSTPIR
X-secure, T -private

U-unresponsive

B-Byzantine Servers

MDS-coded storage

(this work)

Private Secure

Distributed

Matrix Multiplication

[20,28]

(application)

Figure 1: The U-B-MDS-XSTPIR setting studied in this work generalizes previously studied settings of
PIR [2], TPIR [21], MDS-PIR [24], MDS-TPIR [26, 27], XSTPIR [25], U-TPIR [21], B-TPIR [22], and
U-B-TPIR [23] as shown, and finds application beyond PIR in the context of Private Secure Distributed
Matrix Multiplication (PSDMM).

The capacity of PIR with K messages, N servers, and replicated storage was characterized
in [2] as CPIR =

(
1 + 1

N + · · ·+ 1
NK−1

)−1
. Since the number of messages, K is typically large,

of particular interest is the asymptotic value of capacity as K → ∞. Evidently, the asymptotic
capacity of PIR is C∞PIR = 1 − 1

N . The asymptotically optimal achievable scheme builds upon a
prior construction from [29] and may be seen as a form of blind interference alignment [12]. The
capacity of TPIR, i.e., PIR with a T -privacy constraint and replicated storage was characterized
in [21]. and its asymptotic value is C∞TPIR = 1 − T

N . The optimal achievable scheme uses an MDS
coded query structure. The T -Privacy constraint requires that no information about the desired
message index is leaked to any set of up to T colluding servers. The capacity of MDS-PIR, i.e.,
PIR with (N,Kc) MDS-coded storage was characterized in [24] and its asymptotic value turns out
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to be C∞MDS-PIR = 1 − Kc
N . MDS-TPIR, i.e., PIR with both T -privacy and (N,Kc) MDS coded

storage was studied in [26] and while its capacity remains open [27], the asymptotic achievable
rate of R∞MDS-TPIR = 1 − T+Kc−1

N is expected to be optimal. The novel achievable scheme of [26]
is based on star products of GRS (Generalized Reed-Solomon) codes. The asymptotic capacity
of XSTPIR, i.e., PIR with X-secure storage, T -private queries, and replicated storage was found
in [25] as 1 − (X + T )/N . The achievable scheme of [25] is based on the novel idea of cross-
subspace alignment, which has subsequently found use in the context of secure distributed matrix
multiplication [17,19].

In this work we study the problem of U-B-MDS-XSTPIR, i.e., PIR with X-secure data, T -
private queries, (N,Kc) MDS coded storage, where U servers are unresponsive and up to B
servers are Byzantine (who may return erroneous responses). In particular we show that a rate

of R∞U-B-MDS-XSTPIR = 1 −
(
Kc+X+T+2B−1

N−U

)
is achievable for any number of messages K. This rate

strictly improves upon the previous best known rate R =
(

1−
(
Kc+X+T+2B−1

N−U

))(
Kc

Kc+X

)
for

MDS-XSTPIR, found1 in [30]. In fact, for MDS-XSTPIR, i.e., with U = B = 0, we conjecture that
our rate of R∞MDS-XSTPIR = 1−

(
Kc+X+T−1

N

)
is asymptotically optimal as K →∞, thus generalizing a

previous conjecture for MDS-TPIR in [26] that can be obtained by further setting X = 0. Remark-
ably, U-B-MDS-XSTPIR is a generalization of PIR, TPIR, MDS-PIR, XSTPIR, U-TPIR, B-TPIR,
and U-B-TPIR and the asymptotically optimal (or the best known) structured coding schemes for
all of these problems can be obtained as a special case of the unified scheme for U-B-MDS-XSTPIR
that we present in this work. The basis for this unified view, and the central technical contribution
of this work, is a scheme that combines the cross-subspace alignment idea of [25] with a layered
structure that allows successive decoding and interference cancellation to retrieve multiple layers
of symbols from the desired message. The scheme is also shown to be applicable to the problem
of secure and private distributed matrix multiplication (PSDMM) that was recently introduced
in [20, 28]. Remarkably, the new scheme is able to generalize, and in certain asymptotic settings
strictly improve upon the previously best known rates for PSDMM.

Notations: For a positive integer N , [N ] stands for the set {1, 2, . . . , N}. The notation X[N ]

denotes the set {X1, X2, . . . , XN}. For an index set I = {i1, i2, . . . , in}, XI denotes the set
{Xi1 , Xi2 , . . . , Xin}. For variables αn, n ∈ [N ] and an arbitrary function f(·), we denote the N × 1

vector whose nth term is f(αn), as
−−→
f(α).

2 Problem Statement: U-B-MDS-XSTPIR

Consider K independent messages, W1,W2, . . . ,WK . Each message is represented by ` uniformly
random symbols from the finite field Fq.

H(W1) = H(W2) = · · · = H(WK) = `, (1)

H(W[K]) = K`, (2)

in q-ary units. Note that as is typical in information theory, the message sizes are unbounded, and
the coding scheme may freely choose the block size `. The information stored at the nth server is
denoted by Sn, n ∈ [N ]. Messages are stored among N servers according to an MDS(N,X + Kc)

1Reference [30] considers the problem of private polynomial computation with Lagrange encoding, which reduces
to MDS-XSTPIR in the special case where the functions to be computed are all distinct coordinate projections.
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code which codes each message separately. From any X+Kc servers, it must be possible to recover
all messages.

H(W[K]|SM) = 0, ∀M ⊂ [N ], |M| = X +Kc. (3)

The storage requirement at each server is K`/Kc, i.e.,

H(Sn) =
K`

Kc
, ∀n ∈ [N ]. (4)

Thus, compared to replicated storage, the storage requirement is reduced by a factor of 1/Kc.
X-secure storage, 0 ≤ X ≤ N , guarantees that any X (or fewer) colluding servers learn nothing
about the messages.

I(SX ;W[K]) = 0, ∀X ⊂ [N ], |X | = X. (5)

The user privately and uniformly generates the index of his desired message θ ∈ [K]. To retrieve
the desired message privately, the user generates N queries, Qθ[N ]. The nth query Qθn is sent to the

nth server. The user has no prior knowledge of the information stored at the servers, i.e.,

I(S[N ]; θ,Q
θ
[N ]) = 0. (6)

T -privacy, 0 ≤ T ≤ N , guarantees that any T (or fewer) colluding servers learn nothing about the
desired message index θ.

I(QθT , ST ; θ) = 0, ∀T ⊂ [N ], |T | = T. (7)

Upon receiving the user’s query Qθn, the nth server responds with the answer Aθn.
There exists a set of servers B, B ⊂ [N ], |B| ≤ B, known as Byzantine servers, and another

(disjoint) set of servers U , U ⊂ [N ], |U| = U , known as unresponsive servers. The user knows
U,B but the realizations of the sets U ,B, are not known to the user apriori. The Byzantine
servers respond to the user arbitrarily, possibly introducing errors. The unresponsive servers do
not respond at all. However, the remaining servers, i.e., servers in [N ] \ (B ∪ U), respond to the
user truthfully with a function of the query and their stored information.

H(Aθn|Qθn, Sn) = 0, ∀n ∈ [N ] \ (B ∪ U). (8)

The user must be able to recover the desired message Wθ from the responses that he receives.

H(Wθ | Aθ[N ]\U , Q
θ
[N ], θ) = 0 ∀U ,B ⊂ [N ],U = U,B = B,U ∩ B = ∅. (9)

The rate of a U-B-MDS-XSTPIR scheme is defined by the number of bits of desired message that
are retrieved per total bit of download from all servers on average,

RU-B-MDS-XSTPIR =
H(Wθ)∑
n∈[N ]\U A

θ
n

=
`

D
. (10)

D =
∑

n∈[N ]\U A
θ
n is the expected number of downloaded bits from all servers. When B = 0, U = 0,

i.e., there are no Byzantine servers and no unresponsive servers, then we refer to the problem simply
as MDS-XSTPIR.
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3 Result: An Achievable Rate for U-B-MDS-XSTPIR

The following lemma is essentially inherited from [25] with minor notational adjustments. Since this
lemma is used extensively in this work, a brief proof is also included for the sake of completeness.

Lemma 1. If 1, 2, · · · , L, α1, α2, · · · , αN are N + L distinct elements of Fq, with 1 ≤ L ≤ N − 1,
then the following N ×N matrix is invertible over Fq.

ML,N ,




1
1−α1

1
2−α1

· · · 1
L−α1

1 α1 · · · αN−L−11
1

1−α2

1
2−α2

· · · 1
L−α2

1 α2 · · · αN−L−12

· · · · · · · · · · · · · · · · · · · · · · · ·
1

1−αN
1

2−αN · · · 1
L−αN 1 αN · · · αN−L−1N


 (11)

Proof. To set up a proof by contradiction, suppose M is not invertible. Then there exist constants
cn ∈ Fq, n ∈ [N ], at least one of which is non-zero, such that

∑
n∈[N ] cnM:,n = 0, where M:,n is the

nth column of M. Define

∆ , (1− α)(2− α) · · · (L− α). (12)

Then the polynomial

g(α) = ∆


∑

l∈[L]

cl
l − α +

N∑

n=L+1

cnα
n−L−1


 (13)

has at least N distinct roots: α1, α2, · · · , αN . But g(α) has degree no more than N − 1, so it must
be the zero polynomial. This implies that cn = 0 for all n ∈ [N ]. The contradiction completes the
proof. �

Theorem 1. The following rate is achievable for U-B-MDS-XSTPIR,

RU-B-MDS-XSTPIR(N,Kc, X, T, U,B,K) = 1−
(
Kc +X + T + 2B − 1

N − U

)
. (14)

The achievability of this rate, proved in Section 4, is the central contribution of this work.
It is based on a coding scheme that uses cross-subspace alignment along with a layered struc-
ture that allows successive decoding with interference cancellation. Note that previously the best
known achievable result for U-B-MDS-XSTPIR for large number of messages (K → ∞) was

R =
(

1−
(
Kc+X+T+2B−1

N−U

))(
Kc

Kc+X

)
, found in [30]. Evidently our scheme achieves a strictly

higher rate. While we conjecture that the rate in Theorem 1 for MDS-XSTPIR (U = 0, B = 0)
is also the asymptotic capacity of MDS-XSTPIR, a converse proof to this effect remains beyond
reach. This is to be expected, because the converse proof has also been unavailable for MDS-TPIR,
which is a special case of MDS-XSTPIR. Our final result appears in Section 5 where the result of
Theorem 1 is applied to the problem of Private Secure Distributed Matrix Multiplication.

4 Proof of Theorem 1

First we provide the proof of achievability for U = 0, B = 0, i.e., with no unresponsive or Byzantine
servers. Throughout the scheme, let us define

L = N − (Kc +X + T − 1). (15)
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and let us set
` = LKc. (16)

Let us start with an illustrative example.

4.1 X = 1, T = 1, Kc = 2, N = 4

Here we have L = 1 and ` = 2. So let each message consist of ` = 2 symbols from a finite field
Fq, where q ≥ L + N = 5. Let W11 and W12 be two 1 ×K row vectors containing the first and
second symbol from every message, respectively. Let Z11 be a uniformly distributed random noise
vector from F1×K

q , that will be used to provide X = 1 security for the stored data. Let Z
′1
11, Z

′2
11 be

independent, uniformly distributed random noise vectors from FK×1q that will be used to provide
T = 1 privacy for the queries. Let Qθ be the θ-th column of the K × K identity matrix, where
θ is the index of desired message. The independence between message, noise vectors, and desired
message index θ is formalized as follows.

H(W11,W12,Z11,Z
′1
11,Z

′2
11, θ) = H(W11) +H(W12) +H(Z11) +H(Z

′1
11) +H(Z

′2
11) +H(θ). (17)

Note that by the definition of W11, W12 and Qθ, the inner products W11Qθ and W12Qθ are pre-
cisely the two symbols of the desired message, that the user wishes to retrieve. Let 1, α1, α2, · · · , αN ,
represent N + 1 distinct elements of Fq. The storage at the n-th server is constructed as follows.

Sn =

(
1

(1− αn)2
W11 +

1

1− αn
W12 + Z11

)
, (18)

Thus, the data is coded along with the noise according to an MDS(N,Kc + X), i.e., MDS(4, 3)
code. The presence of noise guarantees that the data is (X = 1) secure. The query sent by the
user to the n-th server to privately retrieve the θ-th message, consists of Kc = 2 rounds, which are
denoted as Qθ,1n and Qθ,2n respectively.

Qθ,1n =(1− αn)Qθ + (1− αn)2Z
′1
11, (19)

Qθ,2n =Qθ + (1− αn)2Z
′2
11. (20)

Upon receiving the query from user, the answer returned by the n-th server is

Aθn = (SnQ
θ,1
n , SnQ

θ,2
n ). (21)

Now let us see why correctness is guaranteed. We rewrite SnQ
θ,1
n as

SnQ
θ,1
n =

(
1

(1− αn)2
W11 +

1

1− αn
W12 + Z11

)(
(1− αn)Qθ + (1− αn)2Z

′1
11

)
(22)

=
1

1− αn
W11Qθ +

(
W11Z

′1
11 + W12Qθ

)

︸ ︷︷ ︸
I1

+(1− αn)
(
W12Z

′1
11 + Z11Qθ

)

︸ ︷︷ ︸
I2

+(1− αn)2 Z11Z
′1
11︸ ︷︷ ︸

I3

.

(23)

Now, note that the terms 1, (1 − αn), (1 − αn)2, can each be expanded into weighted sums of the

terms 1, αn, α
2
n. Re-grouping terms according to this expansion, and collecting SnQ

θ,1
n terms from
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the answers received from all N = 4 servers, we obtain



S1Q
θ,1
1

S2Q
θ,1
2

S3Q
θ,1
3

S4Q
θ,1
4


 =




1
1−α1

1 α1 α2
1

1
1−α2

1 α2 α2
2

1
1−α3

1 α3 α2
3

1
1−α4

1 α4 α2
4







W11Qθ

I1 + 1I2 + 12I3
−I2 − 1I3 − 1I3

I3


 (24)

Since the 4×4 matrix is M1,4 which is invertible according to Lemma 1, the user is able to retrieve
his first desired symbol, W11Qθ. Now, in order to retrieve his second desired symbol, W11Qθ, the
user will use successive decoding along with cancellation of interference from the previously retrieved
desired symbol. Consider the second part of the answer received from each server, SnQ

θ,2
n , which

can be written as follows.

SnQ
θ,2
n =

(
1

(1− αn)2
W11 +

1

1− αn
W12 + Z11

)(
Qθ + (1− αn)2Z

′2
11

)
(25)

=
1

(1− αn)2
W11Qθ︸ ︷︷ ︸

I′0

+
1

1− αn
W12Qθ

+ (W11Z
′2
11 + Z11Qθ)︸ ︷︷ ︸
I′1

+(1− αn)W12Z
′2
11︸ ︷︷ ︸

I′2

+(1− αn)2 Z11Z
′2
11︸ ︷︷ ︸

I′3

(26)

Aside from the desired symbol W12Qθ, there are four interference terms I ′0, I
′
1, I
′
2, I
′
3. Now, since

the user has already retrieved W11Qθ, he can subtract I ′0 from SnQ
θ,2
n . Furthermore, like before,

the remaining interference terms can be expanded along αtn, t ∈ {0, 1, 2}. Thus the user is able to
obtain




S1Q
θ,2
1 −

I′0
(1−α1)2

S2Q
θ,2
2 −

I′0
(1−α2)2

S3Q
θ,2
3 −

I′0
(1−α3)2

S4Q
θ,2
4 −

I′0
(1−α4)2




=




1
1−α1

1 α1 α2
1

1
1−α2

1 α2 α2
2

1
1−α3

1 α3 α2
3

1
1−α4

1 α4 α2
4







W12Qθ

I ′1 + 1I ′2 + 12I ′3
−I ′2 − 1I ′3 − 1I ′3

I ′3


 (27)

from which, by inverting the matrix M1,4, the user is able to retrieve his second desired symbol,
W12Qθ. This completes the proof of correctness.

For ease of reference, a compact summary of the storage at each server, the queries, and a
partitioning of signal and interference dimensions contained in the answers from each server, is
provided in Table 1. Queries and answers of each round are partitioned with dashed lines. Recovered
desired symbols from previous rounds that can be canceled appear along vectors that are wrapped
with rounded-corner boxes.

T = 1-privacy and X = 1-security follows from the fact that queries and storage are protected
by the i.i.d. uniformly distributed noise vectors Z11 and Z

′1
11, Z

′2
11 respectively. Finally, let us

calculate the rate achieved by the scheme. From 8 downloaded q-ary symbols, the user retrieves 2
desired q-ary symbols, so the rate achieved is R = 2/8 = 1/4 = 1− 3/4. This completes the proof
of achievability for the setting U = B = 0, X = 1, T = 1,Kc = 2, N = 4.

4.1.1 X = 1, T = 1,Kc = 2, N = 5

Here we have L = N − (X + T + Kc − 1) = 2 and ` = LKc = 4. So let each message consist of
` = 4 symbols from a finite field Fq, where q ≥ L+N = 7. Let W11,W21,W12,W22 be four 1×K

7



Server ‘n’ (Replace α with αn)

Storage(Sn) 1
(1−α)2W11 + 1

1−αW12 + Z11

Query (1− α)Qθ + (1− α)2Z
′1
11

(Q
[θ]
n )

Qθ + (1− α)2Z
′2
11

Desired symbols appear along vectors−−−−−−→
(1− α)−1

−−−−−−→
(1− α)−2 ,

−−−−−−→
(1− α)−1

Interference appears along vectors
−→
1 ,
−−−−→
(1− α),

−−−−−→
(1− α)2 ≡ −→1 ,−→α ,

−→
α2

Table 1: A summary of the MDS-XSTPIR scheme for X = 1, T = 1,Kc = 2, N = 4, U = 0, B = 0, showing
storage at each server, the queries, and a partitioning of signal and interference dimensions contained in the
answers from each server.

row vectors containing the four symbols from every message, respectively. Let Z11,Z21 be two
independent, uniformly distributed random noise vector from F1×K

q that will be used to guarantee

X = 1 security. Similarly, let Z
′1
11,Z

′1
21, Z

′2
11,Z

′2
21 be independent, uniformly distributed random

noise vectors from FK×1q that will be used to guarantee T = 1 privacy. As before, let Qθ be the
θ-th column of the K ×K identity matrix, where θ is the index of desired message. The desired
message Wθ can be represented as

Wθ = (WlkQθ)l∈[2],k∈[2] (28)

= (W11Qθ,W12Qθ,W21Qθ,W22Qθ). (29)

The independence between message, noise vectors, and desired message index θ is specified as
follows.

H(W11,W21,W12,W22,Z11,Z21,Z
′1
11,Z

′1
21,Z

′2
11,Z

′2
21, θ)

=
∑

l∈[2],k∈[2]

H(Wlk) +H(Z11) +H(Z21) +H(Z
′1
11) +H(Z

′1
21) +H(Z

′2
11) +H(Z

′2
21) +H(θ). (30)

Let 1, 2, α1, α2, · · · , α5 be L + N = 2 + 5 = 7 distinct elements of Fq, q ≥ 7. The storage at the
n-th server is constructed as follows.

Sn = (Sn1, Sn2), (31)
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where

Sn1 =
1

(1− αn)2
W11 +

1

1− αn
W12 + Z11, (32)

Sn2 =
1

(2− αn)2
W21 +

1

2− αn
W22 + Z21 (33)

so that each of (32) and (33) codes noise with message symbols across N servers according to an
MDS(N,Kc+X) code, guaranteeing X = 1 security on top of MDS coded storage. The query sent

to the n-th server to retrieve the θth message consists of Kc = 2 rounds, Qθ,1n and Qθ,2n . Furthermore,
we will set

Qθ,1n = (Qθ,1n1 , Q
θ,1
n2 ) (34)

Qθ,2n = (Qθ,2n1 , Q
θ,2
n2 ) (35)

where

Qθ,1n1 =(1− αn)Qθ + (1− αn)2Z
′1
11, (36)

Qθ,1n2 =(2− αn)Qθ + (2− αn)2Z
′1
21, (37)

Qθ,2n1 =Qθ + (1− αn)2Z
′2
11, (38)

Qθ,2n2 =Qθ + (2− αn)2Z
′2
21. (39)

Upon receiving the query from user, the answer returned by the n-th server is comprised of two
symbols,

Aθn = (Aθn1, A
θ
n2) (40)

= (Sn1Q
θ,1
n1 + Sn2Q

θ,1
n2 , Sn1Q

θ,2
n1 + Sn2Q

θ,2
n2 ). (41)

Now let us see why correctness is guaranteed. Consider the first symbol, Aθn1.

Aθn1 = Sn1Q
θ,1
n1 + Sn2Q

θ,1
n2

=
1

1− αn
W11Qθ +

1

2− αn
W21Qθ + (W11Z

′1
11 + W21Z

′1
21 + W12Qθ + W22Qθ)

+ (1− αn)(W12Z
′1
11 + Z11Qθ) + (2− αn)(W22Z

′1
21 + Z21Qθ)

+ (1− αn)2Z11Z
′1
11 + (1− αn)2Z21Z

′1
21. (42)

The first two terms in (42) are desired message symbols. Each of the remaining 5 terms can be
expanded into weighted sums of terms of the form αtn, t ∈ {0, 1, 2}, allowing the user to represent
the symbols Aθn1 downloaded from all n ∈ [N ] servers, as




Aθ11
Aθ21
Aθ31
Aθ41
Aθ51




=




1
1−α1

1
2−α1

1 α1 α2
1

1
1−α2

1
2−α2

1 α2 α2
2

1
1−α3

1
2−α3

1 α3 α2
3

1
1−α4

1
2−α4

1 α4 α2
4

1
1−α5

1
2−α5

1 α5 α2
5







W11Qθ

W21Qθ

∗
∗
∗




(43)
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where we have used ∗ to represent various combinations of interference symbols that can be found
explicitly by expanding (42), since those forms are not important. What matters is that the 5× 5
square matrix in (43) is M2,5 which is invertible according to Lemma 1, so the user can retrieve
the two desired symbols, W11Qθ, W21Qθ by inverting the matrix. Next, the user needs to retrieve
the remaining two desired symbols W12Qθ, W22Qθ, for which we will use successive decoding with
interference cancellation. Consider the downloaded symbol Aθn2.

Aθn2 = Sn1Q
θ,2
n1 + Sn2Q

θ,2
n2

=
1

(1− αn)2
W11Qθ +

1

(2− αn)2
W21Qθ +

1

1− αn
W12Qθ +

1

2− αn
W22Qθ

+ (W11Z
′2
11 + W21Z

′2
21 + Z11Qθ + Z21Qθ) + (1− αn)W12Z

′2
11 + (2− αn)W22Z

′2
21

+ (1− αn)2Z11Z
′2
11 + (2− αn)2Z21Z

′2
21. (44)

The first two symbols in (44) are desired symbols that have already been decoded. So these terms
can be subtracted out, leaving the user with the following downloaded information from all N = 5
servers.




Aθ12 − 1
(1−α1)2

W11Qθ − 1
(2−α1)2

W21Qθ

Aθ22 − 1
(1−α2)2

W11Qθ − 1
(2−α2)2

W21Qθ

Aθ32 − 1
(1−α3)2

W11Qθ − 1
(2−α3)2

W21Qθ

Aθ42 − 1
(1−α4)2

W11Qθ − 1
(2−α4)2

W21Qθ

Aθ52 − 1
(1−α5)2

W11Qθ − 1
(2−α5)2

W21Qθ




=




1
1−α1

1
2−α1

1 α1 α2
1

1
1−α2

1
2−α2

1 α2 α2
2

1
1−α3

1
2−α3

1 α3 α2
3

1
1−α4

1
2−α4

1 α4 α2
4

1
1−α5

1
2−α5

1 α5 α2
5







W12Qθ

W22Qθ

∗
∗
∗




(45)

Once again, the 5 × 5 square matrix in (45) is M2,5 which is invertible according to Lemma 1, so
the user can retrieve his remaining two desired symbols, W12Qθ, W22Qθ by inverting the matrix.
This completes the proof of correctness. Let us summarize the storage at each server, the queries,
and the partitioning of signal and interference dimensions contained in the answers from each server
in Table 2. T = 1-privacy and X = 1-security follows from the fact that queries and storage are
protected by the i.i.d. uniformly distributed noise vectors. Now consider the rate achieved by the
scheme. Since the user downloads 2 symbols from each of 5 servers, we note that from a total
of 10 downloaded q-ary symbols, the user is able to recover 4 desired q-ary symbols, so the rate
achieved is R = 4/10 = 2/5 = 1 − 3/5. This completes the construction of the scheme for the
setting U = B = 0, X = 1, T = 1,Kc = 2, N = 5. We now specify the scheme for U = B = 0 and
arbitrary X,T,Kc, N parameters.

4.1.2 U = B = 0, arbitrary X,T,Kc, N

Let each message consist of ` = LKc symbols from a finite field Fq where L = N−(X+T+Kc−1) and
q ≥ L+N . Let Wlk, l ∈ [L], k ∈ [Kc] be 1×K row vectors. For each value of l ∈ [L], k ∈ [Kc], the
1×K row vector Wlk contains the (L(k−1)+l)th symbol from every message. Let (Zlx)l∈[L],x∈[X] be

independent, uniformly distributed random noise vectors from F1×K
q that will be used to guarantee

X-security. Let (Z
′κ
lt )l∈[L],t∈[T ],κ∈[Kc] be independent, uniformly distributed random noise vectors

from FK×1q that will be used to guarantee that the queries are T -private. As before, let Qθ be the
θ-th column of the K ×K identity matrix, where θ is the index of desired message. The desired
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message Wθ can be represented as,

Wθ = (WlkQθ)l∈[L],k∈[Kc] (46)

=




W11Qθ, W12Qθ, · · · , W1KcQθ

W21Qθ, W22Qθ, · · · , W2KcQθ

· · · · · · · · · · · ·
WL1Qθ, WL2Qθ, · · · , WLKcQθ


 . (47)

The independence between messages, noise vectors and θ is formalized as follows.

H((Wlk)l∈[L],k∈[Kc], (Zlx)l∈[L],x∈[X], (Z
′κ
lt )l∈[L],t∈[T ],κ∈[Kc], θ)

=
∑

l∈[L],k∈[Kc]

H(Wlk) +
∑

l∈[L],x∈[X]

H(Zlx) +
∑

l∈[L],t∈[T ],κ∈[Kc]

H(Z
′κ
lt ) +H(θ). (48)

Let 1, 2, · · · , L, α1, α2, · · · , αN be L+N distinct elements of Fq. Since q ≥ N + L, these constants
must exist. The storage at the nth server is comprised of L symbols (Snl)l∈[L], i.e.,

Sn = (Sn1, Sn,2, . . . , SnL). (49)

For all l ∈ [L], Snl is constructed as

Snl =
1

(l − αn)Kc
Wl1 +

1

(l − αn)Kc−1
Wl2 + · · ·+ 1

l − αn
WlKc +

∑

x∈[X]

(l − αn)x−1Zlx (50)

=
∑

k∈[Kc]

1

(l − αn)Kc−k+1
Wlk +

∑

x∈[X]

(l − αn)x−1Zlx. (51)

Server ‘n’ (Replace α with αn)

Storage 1
(1−α)2W11 + 1

1−αW12 + Z11

(Sn) 1
(2−α)2W21 + 1

2−αW22 + Z21

Query (1− α)Qθ + (1− α)2Z
′1
11

(Q
[θ]
n ) (2− α)Qθ + (2− α)2Z

′1
21

Qθ + (1− α)2Z
′2
11

Qθ + (2− α)2Z
′2
21

Desired symbols appear along vectors−−−−−−→
(1− α)−1,

−−−−−−→
(2− α)−1

———————————————————————————
−−−−−−→
(1− α)−2 ,

−−−−−−→
(2− α)−2 ,

−−−−−−→
(1− α)−1,

−−−−−−→
(2− α)−1

Interference appears along vectors
−→
1 ,
−−−−→
(1− α),

−−−−−→
(1− α)2,

−−−−→
(2− α),

−−−−−→
(2− α)2 ≡ −→1 ,−→α ,

−→
α2

Table 2: A summary of the MDS-XSTPIR scheme for X = 1, T = 1,Kc = 2, N = 5, U = 0, B = 0, showing
storage at each server, the queries, and a partitioning of signal and interference dimensions contained in the
answers from each server.
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Thus, for each l ∈ [L], the values Snl stored across all N servers comprise an MDS(N,Kc + X)
code which includes X noise symbols for X-security. The query sent by the user to the n-th server,
in order to retrieve the θth desired message, is comprised of Kc rounds, (Qθ,κn )κ∈[Kc]. For each
κ ∈ [Kc], the query is constructed as follows.

Qθ,κn = (Qθ,κn1 , Q
θ,κ
n2 , . . . , Q

θ,κ
nL), (52)

where ∀l ∈ [L], let us set

Qθ,κnl = (l − αn)Kc−κQθ +
∑

t∈[T ]

(l − αn)Kc+t−1Z
′κ
lt . (53)

Upon receiving the query from the user, the n-th server responds with the following Kc symbols.

Aθn = (Aθn1, A
θ
n2, · · · , AθnKc) (54)

where for all κ ∈ [Kc],

Aθnκ = (Sn1Q
θ,κ
n1 + Sn2Q

θ,κ
n2 + · · ·+ SnLQ

θ,κ
nL). (55)

To show that the scheme is correct, for any κ ∈ [Kc], let us rewrite the symbol Aθnκ as,

Aθnκ =
∑

l∈[L]

SnlQ
θ,κ
nl (56)

=
∑

l∈[L]


 ∑

k∈[Kc]

1

(l − αn)Kc−k+1
Wlk +

∑

x∈[X]

(l − αn)x−1Zlx





(l − αn)Kc−κQθ +

∑

t∈[T ]

(l − αn)Kc+t−1Z
′κ
lt


 (57)

=
∑

l∈[L]

∑

k∈[κ]

1

(l − αn)κ−k+1
WlkQθ +

∑

l∈[L]

Kc∑

k=κ+1

(l − αn)k−κ−1WlkQθ

+
∑

l∈[L]

∑

x∈[X]

(l − αn)Kc−κ+x−1ZlxQθ +
∑

l∈[L]

∑

k∈[Kc]

∑

t∈[T ]

(l − αn)k+t−2WlkZ
′κ
lt

+
∑

l∈[L]

∑

x∈[X]

∑

t∈[T ]

(l − αn)Kc+t+x−2ZlxZ
′κ
lt . (58)

Now we will see why it is possible to recover all desired symbols (WlkQθ)l∈[L],k∈[Kc]. Consider
κ = 1.

Aθn1 =
∑

l∈[L]

SnlQ
θ,1
nl (59)

=
∑

l∈[L]

1

l − αn
Wl1Qθ +

∑

l∈[L]

Kc∑

k=2

(l − αn)k−2WlkQθ +
∑

l∈[L]

∑

x∈[X]

(l − αn)Kc+x−2ZlxQθ

+
∑

l∈[L]

∑

k∈[Kc]

∑

t∈[T ]

(l − αn)t+k−2WlkZ
′1
lt +

∑

l∈[L]

∑

x∈[X]

∑

t∈[T ]

(l − αn)Kc+t+x−2ZlxZ
′1
lt (60)

12



The first term contains the L desired symbols (W11Qθ, . . . ,WL1Qθ) that are to be retrieved in the
first round, i.e., for κ = 1. Each of the remaining four terms constitute interference which can be
expanded into weighted sums of terms of the form αtn, t ∈ {0, 1, . . . ,Kc + X + T − 2}. Therefore,
collecting the Aθn1 symbols from all N servers, the user obtains




Aθ11
Aθ21

...
AθN1


 =




1
1−α1

· · · 1
L−α1

1 α1 · · · αKc+X+T−2
1

1
1−α2

· · · 1
L−α2

1 α2 · · · αKc+X+T−2
2

...
...

...
...

...
...

...
1

1−αN · · · 1
L−αN 1 αN · · · αKc+X+T−2

N







W11Qθ

W21Qθ
...

WL1Qθ

∗
...
∗




(61)

where ∗ represents various combinations of interference terms, whose precise forms are inconse-
quential. What matters is that the N × N matrix in (61) is ML,N which is invertible according
to Lemma 1, so that the user is able to retrieve the desired symbols (W11Qθ, . . . ,WL1Qθ) by
inverting the matrix.

The scheme proceeds similarly to retrieves desired symbols (W1κQθ, . . . ,WLκQθ) with the κth

round of queries. To prove this by induction, let us consider any κ, such that 2 ≤ κ ≤ Kc, and
assume that the desired symbols (WlkQθ)l∈[L],k∈[κ−1] have already been retrieved. Now we wish to
show that the desired symbols (WlκQθ)l∈[L] can be retrieved.

Aθnκ =
∑

l∈[L]

SnlQ
θ,κ
nl (62)

=
∑

l∈[L]

∑

k∈[κ−1]

1

(l − αn)κ−k+1
WlkQθ +

∑

l∈[L]

1

l − αn
WlκQθ

+
∑

l∈[L]

Kc∑

k=κ+1

(l − αn)k−κ−1WlkQθ +
∑

l∈[L]

∑

x∈[X]

(l − αn)Kc−κ+x−1ZlxQθ (63)

+
∑

l∈[L]

∑

k∈[Kc]

∑

t∈[T ]

(l − αn)t+k−2WlkZ
′κ
lt +

∑

l∈[L]

∑

x∈[X]

∑

t∈[T ]

(l − αn)Kc+t+x−2ZlxZ
′κ
lt . (64)

The first term contains symbols that have already been retrieved, so the user can subtract this
term from Aθnκ.

Aθ
′
nκ = Aθnκ −

∑

l∈[L]

∑

k∈[κ−1]

1

(l − αn)κ−k+1
WlkQθ. (65)

The next term is comprised of the L symbols (WlκQθ)l∈[L] that the user wishes to retrieve. The
remaining 4 terms constitute interference which can be expanded as before into weighted sums of
terms of the form αtn, t ∈ {0, 1, . . . ,Kc + X + T − 2}. Therefore, collecting the Aθ

′
nκ symbols from
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all N servers, the user obtains,




Aθ
′

11

Aθ
′

21
...

Aθ
′
N1


 =




1
1−α1

· · · 1
L−α1

1 α1 · · · αKc+X+T−2
1

1
1−α2

· · · 1
L−α2

1 α2 · · · αKc+X+T−2
2

...
...

...
...

...
...

...
1

1−αN · · · 1
L−αN 1 αN · · · αKc+X+T−2

N







W1κQθ

W2κQθ
...

WLκQθ

∗
...
∗




(66)

The desired symbols (WlκQθ)l∈[L] can be retrieved by inverting the N × N square matrix in
(66), which is guaranteed to be invertible according to Lemma 1. Thus, the induction argument
shows that all ` = LKc desired symbols are retrieved successfully. A summary of the storage at
each server, the queries, and a partitioning of signal and interference dimensions contained in the
answers from each server is provided in Table 3.

T -privacy is guaranteed because Qθ is protected by the noise vectors (Z
′κ
lt )l∈[L],t∈[T ],κ∈[Kc] that

are i.i.d. uniform and coded according to an MDS(N,T ) code. Similarly, X-security is guaranteed
because for each l ∈ [L], the messages (Wlk)k∈[Kc] are protected by the noise vectors (Zlx)x∈[X]

that are i.i.d. uniform and coded according to an MDS(N,X) code. Now let us consider the rate
achieved by the scheme. From a total of NKc downloaded q-ary symbols, the user is able to retrieve
his ` = LKc desired symbols, so the rate achieved is

R =
LKc

NKc
=
L

N
= 1−

(
Kc +X + T − 1

N

)
, (67)

which matches the result in Theorem 1.
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Server ‘n’ (Replace α with αn)

Storage 1
(1−α)KcW11 + · · ·+ 1

1−αW1Kc + Z11 + · · ·+ (1− α)X−1Z1X

(Sn) 1
(2−α)KcW21 + · · ·+ 1

2−αW2Kc + Z21 + · · ·+ (2− α)X−1Z2X

...
1

(L−α)KcWL1 + · · ·+ 1
L−αWL′Kc + ZL1 + · · ·+ (L− α)X−1ZLX

Query (1− α)Kc−1Qθ + (1− α)KcZ
′1
11 + · · ·+ (1− α)Kc+T−1Z

′1
1T

(Q
[θ]
n ) (2− α)Kc−1Qθ + (2− α)KcZ

′1
21 + · · ·+ (2− α)Kc+T−1Z

′1
2T

...

(L− α)Kc−1Qθ + (L− α)KcZ
′1
L1 + · · ·+ (L− α)Kc+T−1Z

′1
LT

(1− α)Kc−2Qθ + (1− α)KcZ
′2
11 + · · ·+ (1− α)Kc+T−1Z

′2
1T

(2− α)Kc−2Qθ + (2− α)KcZ
′2
21 + · · ·+ (2− α)Kc+T−1Z

′2
2T

...

(L− α)Kc−2Qθ + (L− α)KcZ
′2
L′1 + · · ·+ (L− α)Kc+T−1Z

′2
LT

...

Qθ + (1− α)KcZ
′Kc
11 + · · ·+ (1− α)Kc+T−1Z

′Kc
1T

Qθ + (2− α)KcZ
′Kc
21 + · · ·+ (2− α)Kc+T−1Z

′Kc
2T

...

Qθ + (L− α)KcZ
′Kc
fL′1

+ · · ·+ (L− α)Kc+T−1Z
′Kc
LT

Desired symbols appear along vectors−−−−−−→
(1− α)−1, · · · ,

−−−−−−−→
(L− α)−1

−−−−−−→
(1− α)−2 , · · · ,

−−−−−−−→
(L− α)−2 ,

−−−−−−→
(1− α)−1, · · · ,

−−−−−−−→
(L− α)−1

...

−−−−−−−→
(1− α)−Kc , · · · ,

−−−−−−−−→
(L− α)−Kc , · · · ,

−−−−−−→
(1− α)−2 , · · · ,

−−−−−−−→
(L− α)−2 ,

−−−−−−→
(1− α)−1, · · · ,

−−−−−−−→
(L− α)−1

Interference appears along vectors
−→
1 ,
−−−−→
(1− α), · · · ,

−−−−−−−−−−−−→
(1− α)X+T+Kc−2, · · · ,−−−−−→(L− α), · · · ,

−−−−−−−−−−−−−→
(L− α)X+T+Kc−2

≡ −→1 ,−→α , · · · ,
−−−−−−−−→
αX+T+Kc−2

Table 3: A summary of the general MDS-XSTPIR scheme showing storage at each server, the queries, and
a partitioning of signal and interference dimensions contained in the answers from each server.
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4.2 Arbitrary U , B

Now let us generalize the scheme to non-trivial U and B, i.e., for U unresponsive servers and up
to B byzantine servers. For this generalization, let us set

L = (N − U)− (Kc +X + T + 2B − 1) (68)

` = LKc. (69)

Even though now the values of U,B are non-trivial, the construction of storage, queries and answers
remains identical to the description provided previously for U = B = 0. So let us consider any
(N − U) responsive servers, say servers n1, n2, · · · , nN−U . Instead of the N × N square matrix
ML,N in (66), we now have the (N − U)× (N − U − 2B) decoding matrix,

M(N−U)×(N−U−2B) =




1
1−αn1

· · · 1
L−αn1

1 αn1 · · · αKc+X+T−2
n1

1
1−αn2

· · · 1
L−αn2

1 αn2 · · · αKc+X+T−2
n2

...
...

...
...

...
...

...
1

1−αnN−U
· · · 1

L−αnN−U
1 αnN−U · · · αKc+X+T−2

nN−U



. (70)

Note that if we consider any N − U − 2B rows of M(N−U)×(N−U−2B) then we obtain an invertible
square matrix because of Lemma 1. Therefore, M(N−U)×(N−U−2B) is the generator matrix of an
MDS(N − U,N − U − 2B) code, and it is can correct up to ((N − U) − (N − U − 2B))/2 = B
errors. Thus by this construction, we establish a scheme that works with U unresponsive servers
and up to B Byzantine servers, while achieving the rate of

R = 1−
(
Kc +X + T + 2B − 1

N − U

)
. (71)

This completes the proof of Theorem 1.

5 Private and Secure Distributed Matrix Multiplication

Recently in [20,28], the problem of private and secure matrix multiplication (PSDMM) is proposed,
where a user wishes to compute the product of a confidential matrix A with a matrix Bθ, θ ∈ [M ]
with the aid of N distributed servers. In [20], it is assumed that the set of matrices B[M ] are public
and available to the N servers, however, the confidential matrix A is shared secretly among all
N servers, such that no information about A is leaked to any server. Besides, the user wants to
keep the index θ private from each server. The goal of the problem is to minimize (i) the upload
cost from the source of the confidential matrix A to the N servers and (ii) the download cost from
the N servers to the user. In [20], the authors exploit the MDS-PIR scheme proposed in [24] to
construct the PSDMM scheme, and characterize the lower convex hull of (upload, download) pairs.

Using the MDS-XSTPIR scheme present in Section 4, we now present a novel PSDMM scheme
for a generalized model. In our model, the index θ is T -private, while the confidential matrix A is
XA-secure. Furthermore, we also allow matrices B[M ] to be XB-secure. Note that the model in [20]
is obtained as a special case of our generalized model by setting XA = T = 1, XB = 0.
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5.1 PSDMM: Problem Statement

Let A = (A1,A2, . . . ,A`) represent ` random matrices, each of dimension λ×χ, that are indepen-

dently and uniformly distributed over Fλ×χq . Let B[M ] be M random matrices independently and

uniformly distributed over Fχ×µq . The independence between matrices A[`] and B[M ] is formalized
as follows.

H(A,B[M ]) =
∑

l∈[`]

H(Al) +
∑

m∈[M ]

H(Bm). (72)

The matrices A and B[M ] are made available at N distributed servers through secret sharing
schemes with security levels XA and XB, respectively. That is, any group of up to XA colluding
servers can learn nothing about A, and any group of up to XB servers can learn nothing about
B[M ]. To this end, matrices A and B[M ] are separately coded according to secret sharing schemes

that generate shares Ãn, B̃n, n ∈ [N ], and these shares are made available to the n-th server.
Furthermore, we assume that the upload cost of Ã[N ] is to be optimized, while that of B̃[N ] and

Qθ[N ] is ignored, presumably because A matrices are frequently updated while B[M ] are static, and
the size of queries does not scale with `.

AB1,B2, · · · ,BM

Server 1 · · · Server n · · · Server N

Ã1 Ãn ÃNB̃1 B̃n
B̃N

User

Y θ1
Qθ1 Y θn Qθn Y θN

QθN

ABθ

Figure 2: Model for private secure distributed matrix multiplication (PSDMM). A matrices are XA secure,

while B matrices are XB secure. The uploads to be optimized are the Ã terms and the downloads to be
optimized are the Y θ terms.

The independence between the securely coded matrices is specified as follows.

I(A, Ã[N ];B[M ], B̃[N ]) = 0. (73)

Matrices must be recoverable from their secret shares.

H(A | Ã[N ]) = 0, (74)

H(B[M ] | B̃[N ]) = 0. (75)
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The matrices must be perfectly secure from any set of secret shares that can be accessed by a set
of up to XA, XB colluding servers, respectively.

I(A; ÃX ) = 0 X ⊂ [N ], |X | = XA, (76)

I(B[M ]; B̃X ) = 0 X ⊂ [N ], |X | = XB. (77)

The user generates an index θ ∈ [M ] privately and uniformly, and wishes to compute the product

ABθ = (A1Bθ,A2Bθ, . . . ,A`Bθ). (78)

To this end, the user generates N queries Qθ[N ]. The n-th query Qθn is sent to the n-th server. The
user has no prior knowledge of matrices A and B[M ] and their secret shares, i.e.,

I(θ,Qθ[N ]; Ã[N ], B̃[N ]) = 0. (79)

T -privacy, 0 ≤ T ≤ N , guarantees that any group of up to T colluding servers learn nothing about
θ.

I(QθT , ÃT , B̃T ; θ) = 0. (80)

Upon receiving the user’s query Qθn, the n-th server responds with an answer Y θ
n , which is a function

of all information available to it.

H(Y θ
n |Qθn, Ãn, B̃n) = 0. (81)

The user must be able to recover the product ABθ from all N answers, i.e.,

H(ABθ|Y θ
[N ], Q

θ
[N ]) = 0. (82)

The upload cost and download cost are defined as follows.

U =

∑
n∈[N ]H(Ãn)

H(A)
, (83)

D =

∑
n∈[N ]H(Y θ

n )

H(ABθ)
. (84)

5.2 A New Scheme for PSDMM

In this section, we will present a PSDMM scheme to show that the lower convex hull of (upload,
download) pairs

(U,D) =

(
N

Kc
,

N

N − (2Kc +XA +XB + T − 2)

)
(85)

for

Kc = 1, 2, . . . , b(N + 1−XA −XB − T )/2c (86)

is achievable when q → ∞ and χ ≥ min(λ, µ). Furthermore, when XB = 0, i.e., there are no
security constraints on matrices B[M ], and χ ≥ min(λ, µ), then the lower convex hull of (upload,
download) pairs

(U,D) =

(
N

Kc
,

N

N − (Kc +XA + T − 1)

)
(87)
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for

Kc = 1, 2, . . . , (N + 1−XA − T ) (88)

is achievable as q →∞.
First, let us consider the case XB 6= 0. For this setting, let us set

L = N − (XA +XB + T + 2Kc − 2), (89)

` = KcL. (90)

For all l ∈ [L], k ∈ [Kc], let us define

Alk = AL(k−1)+l. (91)

We will also set
B =

[
B1 B2 . . . BM

]
(92)

to be an χ ×Mµ matrix that contains all B[M ]. Let us also define Qθ be a Mµ × µ matrix as
follows.

Qθ = [ 0µ . . . 0µ︸ ︷︷ ︸
A total of (θ − 1)0µ’s

Iµ 0µ . . . 0µ︸ ︷︷ ︸
A total of (M − θ)0µ’s

]T (93)

where 0µ is the µ × µ square zero matrix, and Iµ is the µ × µ identity matrix. We note that by
construction, ABQθ = (A1BQθ, . . . ,A`BQθ) = (AlkBQθ)l∈[L],k∈[Kc] is the desired product. Let
(Zlx)l∈[L],x∈[XA] and (Z′lx′)l∈[L],x′∈[XB ] be independent, uniformly distributed random noise matrices

from Fλ×χq and Fχ×Mµ
q that will be used to guarantee XA and XB security levels for A,B[M ],

respectively. Let (Z
′′κ
lt )l∈[L],t∈[T ],κ∈[Kc] be independent, uniformly distributed random noise matrices

from FMµ×µ
q , that will be used to guarantee T -privacy of queries. The independence between

A,B[M ], noise matrices and θ is formalized as follows.

H(A,B[M ], (Zlx)l∈[L],x∈[XA], (Z
′
lx′)l∈[L],x′∈[XB ], (Z

′′κ
lt )l∈[L],t∈[T ],κ∈[Kc], θ)

=
∑

l∈[L],k∈[Kc]

H(Alk) +
∑

m∈[M ]

H(Bm) +
∑

l∈[L],x∈[XA]

H(Zlx)

+
∑

l∈[L],x′∈[XB ]

H(Z′lx′) +
∑

l∈[L],t∈[T ],κ∈[Kc]

H(Z
′′κ
lt ) +H(θ). (94)

Let 1, 2, · · · , L, α1, α2, · · · , αN be distinct elements of Fq. We require q ≥ L + N so these
elements must exist. Now we are ready to construct the scheme. The secret share of B[M ] at the

n-th server, B̃n is constructed as follows.

B̃n = (B̃n1, B̃n2, . . . , B̃nL), (95)

where ∀l ∈ [L],

B̃nl = B +
∑

x′∈[XB ]

(l − αn)Kc+x
′−1Z′lx′ . (96)

The secret share of A at the nth server is constructed as follows.

Ãn = (Ãn1, Ãn2, . . . , ÃnL), (97)
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where ∀l ∈ [L],

Ãnl =
∑

k∈[Kc]

1

(l − αn)Kc−k+1
Alk +

∑

x∈[XA]

(l − αn)x−1Zlx. (98)

The query sent by the user to the nth server, is comprised of Kc rounds, Qθn = (Qθ,κn )κ∈[Kc]. For all
κ ∈ [Kc], we construct the queries as follows.

Qθ,κn = (Qθ,κn1 , Q
θ,κ
n2 , . . . , Q

θ,κ
nL), (99)

where ∀l ∈ [L], we set

Qθ,κnl = (l − αn)Kc−κQθ +
∑

t∈[T ]

(l − αn)Kc+t−1Z
′′κ
lt . (100)

Upon receiving the query from the user, the nth server responds with the following Kc symbols.

Y θ
n = (Ãn1B̃n1Q

θ,κ
n1 + Ãn2B̃n2Q

θ,κ
n2 + · · ·+ ÃnLB̃nLQ

θ,κ
nL)κ∈[Kc]. (101)

To show the correctness of the scheme, let us consider ÃnlB̃nl, ∀l ∈ [L].

ÃnlB̃nl =


 ∑

k∈[Kc]

1

(l − αn)Kc−k+1
Alk +

∑

x∈[XA]

(l − αn)x−1Zlx





B +

∑

x′∈[XB ]

(l − αn)Kc+x
′−1Z′lx′


 (102)

=
∑

k∈[Kc]

1

(l − αn)Kc−k+1
AlkB +

∑

x∈[XA]

(l − αn)x−1ZlxB

+
∑

k∈[Kc]

∑

x′∈[XB ]

(l − αn)x
′+k−2AlkZ

′
`x′ +

∑

x∈[XA]

∑

x′∈[XB ]

(l − αn)Kc+x+x
′−2ZlxZ

′
lx′ (103)

=
∑

k∈[Kc]

1

(l − αn)Kc−k+1
AlkB +

∑

ξ∈[Kc+XA+XB−1]

(l − αn)ξ−1Z̄lξ (104)

In (104) we rearranged the last three terms of (103) grouping them into weighted sums of terms
of the form (l − αn)i, i ∈ {0, 1, . . . ,Kc +XA +XB − 2}. The grouped terms Z̄lξ can be calculated
explicitly but as it turns out the precise form of these terms is inconsequential. Now note that
if we regard (AlkB)l∈[L],k∈[Kc] terms as messages, and other terms as noise, then (104) has the
same form as (51), the storage construction in the MDS-XSTPIR scheme presented in Section 4.2

Also note that the construction of queries is also the same as the MDS-XSTPIR scheme, thus the
correctness follows directly from the proof presented in Section 4, which means the user is able
to recover the product ABQθ = (AlkBQθ)l∈[L],k∈[Kc]. Privacy and security follows from the fact
that Qθ, A, B[M ] are protected by the i.i.d. uniformly distributed noise matrices coded according

2Note that X in (51) corresponds to Kc + XA + XB − 1 in (104), so that L = N − (X + T + Kc − 1) in
Section 4 corresponds to L = N − (2Kc + XA + XB + T − 2) in this section. The condition on Kc becomes

Kc = N−(XA+XB+T+L−2)
2

. However, since we must have L ≥ 1 and Kc ≥ 1 can only take integer values, it follows

that the feasible values of Kc are 1 ≤ Kc ≤ bN−(XA+XB+T−1)
2

c.
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to MDS(N,T ), MDS(XA, T ), MDS(XB, T ) codes, respectively. This completes the construction of
the scheme for XB 6= 0. Note that when q →∞ and χ ≥ min(λ, µ), then H(ABθ) = `λµ in q-ary
units according to ( [19], Lemma 2), and the download cost is

D =
NKcλµ

`λµ
=
N

L
=

N

N − (2Kc +XA +XB + T − 2)
. (105)

Now let us consider the case XB = 0. For this setting, let us set

L = N − (XA +XB + T +Kc − 1), (106)

` = KcL. (107)

We will continue using other definitions as before, but since there is no security constraint on B
matrices, let us replace B̃n as

B̃n = B. (108)

Now we have

ÃnlB̃nl =
∑

k∈[Kc]

1

(l − αn)Kc−k+1
AlkB +

∑

x∈[XA]

(l − αn)x−1ZlxB, (109)

which is coded according to an MDS(N,Kc+XA) code. Thus the correctness, privacy and security
follows from that proof in Section 4. The download cost is

D =
NKcλµ

Lλµ
=
N

L
=

N

N − (Kc +XA +XB + T − 1)
. (110)

Now let us consider the upload cost of the scheme. Note that by the construction of Ãn, it is coded
according to an MDS(N,Kc) code. Therefore, the upload cost is N

Kc
.

It is shown in [20] that when XA = T = 1, XB = 0, the lower convex hull of (upload, download)
pairs

(U,D) =

(
N

Kc
,
Kc + 1

Kc

(
1 +

(
Kc + 1

N

)
+ · · ·+

(
Kc + 1

N

)M−1))
(111)

is achievable for Kc = 1, 2, . . . , N − 1. For the asymptotic setting, i.e., M →∞, we have from [20]
that D = Kc+1

Kc
N

N−(Kc+1) , which is strictly worse than the (upload,download) pairs characterized in

this work. This is because the scheme in [20] allows the user to decode noise matrices protecting A,
whereas in our scheme, because of cross-subspace alignment, the user is only able to decode desired
matrices, thus the penalty term Kc+1

Kc
disappears.

6 Conclusion

The problem of U-B-MDS-XSTPIR, i.e., X-secure T -private information retrieval from MDS coded
storage, with N servers out of which U are unresponsive and up to B may be Byzantine, is studied in
this work. A lower bound on achievable rates of U-B-MDS-XSTPIR is characterized by presenting
a cross-subspace alignment and successive decoding based scheme. We also adapt the scheme to the
problem of private and secure distributed matrix multiplication that is recently proposed in [20,28].
The presented MDS-XSTPIR scheme is shown to be applicable to PSDMM problem, even if we
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allow security concerns for all constituent matrices. The immediate challenge for future work is
to settle the asymptotic capacity conjectures for MDS-TPIR, and also of MDS-XSTPIR, either in
the affirmative by finding tight converse bounds or in the negative by finding better asymptotic
achievable schemes. Beyond this, settling down the conjecture of asymptotic capacity of U-B-MDS-
XSTPIR with unresponsive and Byzantine servers also merits investigation.
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