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RESEARCH ARTICLE Open Access

Proliferative potential and resistance to
immune checkpoint blockade in lung
cancer patients
Sarabjot Pabla1, Jeffrey M. Conroy1,2, Mary K. Nesline1, Sean T. Glenn1,2, Antonios Papanicolau-Sengos1,
Blake Burgher1, Jacob Hagen1, Vincent Giamo1, Jonathan Andreas1, Felicia L. Lenzo1, Wang Yirong1, Grace K. Dy2,
Edwin Yau2, Amy Early2, Hongbin Chen2, Wiam Bshara2, Katherine G. Madden3, Keisuke Shirai3,
Konstantin Dragnev3, Laura J. Tafe3, Daniele Marin4, Jason Zhu4, Jeff Clarke4, Matthew Labriola4, Shannon McCall4,
Tian Zhang4, Matthew Zibelman5, Pooja Ghatalia5, Isabel Araujo-Fernandez6, Arun Singavi7, Ben George7,
Andrew Craig MacKinnon7, Jonathan Thompson7, Rajbir Singh8, Robin Jacob8, Lynn Dressler9, Mark Steciuk9,
Oliver Binns9, Deepa Kasuganti10, Neel Shah10, Marc Ernstoff2, Kunle Odunsi2, Razelle Kurzrock11, Mark Gardner1,
Lorenzo Galluzzi12,13,14 and Carl Morrison1,2*

Abstract

Background: Resistance to immune checkpoint inhibitors (ICIs) has been linked to local immunosuppression
independent of major ICI targets (e.g., PD-1). Clinical experience with response prediction based on PD-L1
expression suggests that other factors influence sensitivity to ICIs in non-small cell lung cancer (NSCLC) patients.

Methods: Tumor specimens from 120 NSCLC patients from 10 institutions were evaluated for PD-L1 expression by
immunohistochemistry, and global proliferative profile by targeted RNA-seq.
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Results: Cell proliferation, derived from the mean expression of 10 proliferation-associated genes (namely BUB1,
CCNB2, CDK1, CDKN3, FOXM1, KIAA0101, MAD2L1, MELK, MKI67, and TOP2A), was identified as a marker of response to
ICIs in NSCLC. Poorly, moderately, and highly proliferative tumors were somewhat equally represented in NSCLC,
with tumors with the highest PD-L1 expression being more frequently moderately proliferative as compared to lesser
levels of PD-L1 expression. Proliferation status had an impact on survival in patients with both PD-L1 positive and
negative tumors. There was a significant survival advantage for moderately proliferative tumors compared to their
combined highly/poorly counterparts (p = 0.021). Moderately proliferative PD-L1 positive tumors had a median survival
of 14.6 months that was almost twice that of PD-L1 negative highly/poorly proliferative at 7.6 months (p = 0.028).
Median survival in moderately proliferative PD-L1 negative tumors at 12.6 months was comparable to that of highly/
poorly proliferative PD-L1 positive tumors at 11.5months, but in both instances less than that of moderately
proliferative PD-L1 positive tumors. Similar to survival, proliferation status has impact on disease control (DC) in patients
with both PD-L1 positive and negative tumors. Patients with moderately versus those with poorly or highly
proliferative tumors have a superior DC rate when combined with any classification schema used to score PD-L1 as a
positive result (i.e., TPS≥ 50% or≥ 1%), and best displayed by a DC rate for moderately proliferative tumors of no less
than 40% for any classification of PD-L1 as a negative result. While there is an over representation of moderately
proliferative tumors as PD-L1 expression increases this does not account for the improved survival or higher disease
control rates seen in PD-L1 negative tumors.

Conclusions: Cell proliferation is potentially a new biomarker of response to ICIs in NSCLC and is applicable to PD-L1
negative tumors.

Keywords: Atezolizumab, Nivolumab, Pembrolizumab, Ipilimumab, PD-1

Background
On March 4th 2015, nivolumab (Opdivo®, from Bristol-
Myers Squibb) became the first immune checkpoint
inhibitor (ICI) to be approved by the US Food and Drug
Administration for use in patients with metastatic
nonsquamous non-small cell lung cancer (NSCLC)
progressing on or after platinum-based chemotherapy [1],
following disclosure of the results from the Phase III
Checkmate-037 trial [2]. Since then, three other ICIs that
inhibit the programmed cell death pathway, including
programmed cell death 1 (PDCD1 or CD279, best known
as PD-1) and its ligands – CD274 (best known as PD-L1)
and programmed cell death 1 ligand 2 (PDCD1LG2 or
CD273, best known as PD-L2) – have been licensed for
use in NSCLC patients, namely pembrolizumab
(Keytruda®, from Merck) [3, 4], atezolizumab (Tecentriq®,
from Genentech) [5, 6], and durvalumab (Imfinzi®, from
AstraZeneca) [7]. Response rates to these ICIs employed
as single agent immunotherapeutic interventions in an
unselected population, however, is generally below 20%
[3]. Moreover, ICI-based immunotherapy has been
estimated to cost 100,000–250,000 USD per patient (with
some variation depending on specific ICI, treatment
regimen and duration) [8]. Thus, considerable efforts are
being devoted to the elucidation of the mechanisms
controlling the development of primary and acquired
resistance to ICIs [9], as well as to the identification of
biomarkers with robust predictive value [10, 11].
These observations have rapidly been translated into the

clinical management of NSCLC with the FDA companion

diagnostic for pembrolizumab treatment, PD-L1 expres-
sion levels assessed by the PD-L1 22C3 pharmDx assay
(from Agilent) [12]. However, response prediction based
on PD-L1 levels is not 100% accurate. For instance,
pembrolizumab monotherapy in NSCLC patients with a
PD-L1 tumor proportion score (TPS) < 1% (i.e., membran-
ous PD-L1 expression on < 1% malignant cells), of 1–49%,
and ≥ 50% was associated with response rates of 10.7, 16.5,
and 45.2%, respectively [3]. Thus, a small population of
NSCLC patients with low PD-L1, seemingly “negative bio-
marker” patients, will still respond to ICI-based therapy.
Conversely, not all patients with high PD-L1 TPS obtain
clinical benefits from ICIs, which suggests the existence of
alternative resistance mechanisms, such as mutations that
affect the ability of cancer cells to be recognized or elimi-
nated by the immune system [9], or other mechanism of
local immunosuppression in the tumor microenvironment
via pathways that do not directly involve ICI targets such
as PD-L1 and PD-1 [3].
We employed targeted RNA sequencing of an immune

related panel of slightly less than 400 genes to optimize
the detection of low expressing genes as opposed to
whole transcriptome, that was specifically designed for
use in formalin fixed paraffin embedded (FFPE) clinical
samples [13]. This list of genes was divided into 41
different immune function categories and analyzed for
response to ICIs in a cohort of NSCLC patients from
ten different institutions. The highest association with
response among the different immune function categories
was cell proliferation, represented by the expression of ten
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unique genes. We demonstrate that either extreme of
cellular proliferation in the tumor microenvironment, i.e.
highly or poorly proliferative, is associated with resistance
to ICIs amongst NSCLC patients, and that the expression
levels of a 10-gene set associated with cellular proliferation
can be harnessed to improve patient stratification beyond
PD-L1 TPS. Most importantly, we show that additional
stratification of PD-L1 negative NSCLC based upon cell
proliferation status introduces a new approach to response
to ICI therapy in NSCLC.

Methods
Patients and clinical data
Ten collaborating institutions obtained approval by their
respective institutional review boards (IRBs) to submit
existing de-identified specimens and associated clinical
data for use in this study. A total of 120 patients were
included in the study (Fig. 1a), based on the following
criteria: (1) history of Stage IV NSCLC; (2) availability of
adequate archival formalin-fixed paraffin-embedded
(FFPE) tissue collected prior to treatment with ICIs; (3)
availability of sequencing data; and (4) availability of
demographic, diagnosis, follow-up and survival data.
Table 1 summarizes the baseline clinical characteristics
of these patients (individual patient data provided in
Additional file 1: Table S1).
Patients who were treated with ICIs were included if

they were treated by an agent approved by the FDA as
of November 2017 and had follow up and survival from
first ICI dose (n = 120). ICI-treated patients who died

within 90 days of first dose were excluded as it could not
be discerned whether they were rapid progressors or had
poor performance prior to going on drug. Patients
lacking sufficient follow up time for response evaluation
(less than 90 days from first dose), were also excluded
from analysis. Of the120 ICI-treated patients, for all of
which survival data was available, there were 10 patients
not evaluable for response due to either no measurable
disease or target lesion (n = 4), missing scans (n = 4), or
not specified (n = 2) (Fig. 1a). For the remaining 110 pa-
tients all were evaluable for response based on RECIST
v1.1 and were divided into a test set (n = 34) from one
institution with the most patients (Duke) and a training
set (n = 76) from all other institutions. Patients whose
best response was complete response (CR), partial
response (PR), or stable disease (SD) with 12 months or
more survival were classified as disease control (DC),
while patients whose best response was progressive
disease (PD) or SD with less than 12months survival
were classified as no disease control (NDC). Duration of
response was not available for all patients and not
included for final analysis.

Immunohistochemical studies
The expression of PD-L1 on the surface of cancer cells
was assessed in all cases by means of the Dako Omnis
Platform and the 22C3 pharmDx antibody (Agilent,
Santa Clara, CA) using FDA-scoring guidelines [14].
Briefly, a minimum of 100 viable tumor cells were
assessed for membranous staining of any intensity for

Fig. 1 Summary of patient disposition and exploratory analysis. a) A total of 120 patients previously treated with checkpoint inhibitors were
included in the study. All patients had survival data from date of first dose of checkpoint inhibitor, while 110 were evaluable by RECIST v1.1 for
response. b) Exploratory analysis using pair-wise proportion test of 41 immune-related gene functions derived from 394 genes for patients with
disease control versus no disease control identifies cell proliferation as a biomarker of interest
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the 22C3 antibody. The percentage of viable tumor cells
showing partial or complete membrane staining relative
to all viable tumor cells present in the sample (positive
and negative) was then used to derive a tumor proportion
score (TPS). PD-L1 levels were scored by a board-certified
anatomic pathologist as per published guidelines [15],
with a TPS ≥ 50% considered as a strongly positive result
for different comparisons, while a result of ≥1% consid-
ered as positive result for different comparisons. PD-L1
TPS ≥ 1% to < 50% were considered weakly positive for
additional comparative purposes. PD-L1 TPS < 1% was
considered as negative. Ki-67 positivity amongst neoplas-
tic and immune cells was scored upon nuclear staining,
regardless of intensity, with the M7240 (clone MIB1) anti-
body from Dako (Carpentaria, CA) with the percentage of
each cell type recorded.

RNA-seq
RNA were extracted from each sample and processed
for targeted RNA-seq, as previously described [13, 16].
Gene expression was evaluated by amplicon sequencing of
394 immune transcripts on samples that met validated
quality control (QC) thresholds [13].

Data analysis
Immune gene expression ranks (range 0–100) from a
targeted RNA-seq immune panel of approximately 400
genes were divided into 41 biological function categories
according to commercial annotations from the manufac-
turer (Additional file 1: Table S2). For all 110 cases with
response, distribution of each biological function was
split into 3 tertiles of low (less than 33), medium
(between 33 and 66) and high (greater than 66). Next,
we performed a pair wise proportion test (chi-square
test) to test for difference in DC rates for these three
tertiles (i.e. low vs medium, medium vs high and low vs
high) for each biological function (Fig. 1b). Proportion
test was performed with continuity correction and pair-
wise p-values for each biological function were adjusted
for multiple hypothesis testing using “holmes” correc-
tion. We further divided the dataset into a training set
(n = 76) consisting of samples from all data access
groups except the largest contributor. A separate test set
(n = 34) was constituted from samples from a single
largest contributing institute. Any biological function
that did not have cases representing one or more tertiles
was removed from further analysis due to lack of
dynamic range of that biological function in the popula-
tion assessed in this study. The most significant gene
functions were utilized for further analysis. Survival
analysis was performed using a log-rank test on 5-year
Kaplan-Meier survival curves for PD-L1 levels assessed
by IHC and combined expression of 10 proliferation-re-
lated genes assessed by RNA-Seq. Comparison of DC
rate was performed using Chi-square test with Yate’s
continuity correction. Multivariate analysis was per-
formed by fitting a binomial logistic regression model to
DC labels and co-variates such as proliferation status,
PD-L1 status, histology, race, sex, and age category.
Analysis of variance (ANOVA) was performed on the
fitted model to study the table of deviance to determine
the co-variate that explains the most variance in the
DC rates.

Results
Immune-related gene functions
Among 41 different immune-related gene functions
(Additional file 1: Table S2) evaluated by pairwise
comparison test in the training set (n = 76), three were
significantly differentially expressed for DC versus NDC
for at least one comparison (Additional file 1: Table S3).
These three functions and specific genes (see Additional
file 1: Table S2 for full gene names) included proliferation
[BUB1, CCNB2, CDK1, CDKN3, FOXM1, KIAA0101,
MAD2L1, MELK, MKI67 (better known as Ki-67), and
TOP2A; maximum p = 0.0092], antigen processing (CD74,
HLA-A, HLA-B, HLA-C, HLA-DMA, HLA-DMB,
HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1,

Table 1 Patient characteristics

Patients (n = 120)

Age at initial diagnosis (years)

< 30 1 (00.0)

30–39 1 (00.0)

40–49 4 (03.3)

50–59 28 (23.3)

60–69 43 (35.8)

70–79 34 (28.3)

≥ 80 9 (07.5)

Mean 65

Sex

Female 61 (50.8)

Male 59 (49.2)

Race

White 96 (80.0)

Other 17 (14.2)

Unknown 7 (05.8)

Vital status at last follow up

Alive 60 (50.0)

Dead 60 (50.0)

Checkpoint inhibitor

atezolizumab 2 (01.7)

ipilimumab + nivolumab 2 (01.7)

nivolumab 79 (65.8)

pembrolizumab 37 (30.8)
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HLA-DQA1, HLA-DQA2, HLA-DQB2, HLA-DRA,
HLA-DRB1, HLA-E, HLA-F, HLA-F-AS1, HLA-G; p =
0.0796), and dendritic cell (HERC6, IL3RA, ITGAX, NRP1,
TLR3, ZBTB46; p = 0.0903). When both the training and
test set (n = 110) were used for the same comparison
(Additional file 1: Table S4), proliferation was the only of
these three functions that was significant (Fig. 1b). Results
for the test set (n = 34) did not identify proliferation, anti-
gen processing, or dendritic cell as significant (Additional
file 1: Table S5), presumably due to the small size of the
sample set. Proliferation was chosen for further evaluation
based upon the identification as a significant factor in the
training set as well as the combination of the training and
test set.

Proliferative status
NSCLC had a wide distribution of poorly, moderately,
and highly proliferative tumors with input by both
neoplastic and immune cells that can be measured in
more than one way. The mean expression rank values of
10 proliferation-related genes in 120 NSCLC specimens

(adenocarcinoma n = 94, sarcomatoid carcinoma n = 1,
squamous cell carcinoma n = 25) was used as the pri-
mary indicator for the proliferative status of the tumor
microenvironment. Tumors were stratified into poorly,
moderately and highly proliferative based on the tertile
rank of expression of this gene signature as compared to
a separate reference population of 167 patients with
multiple tumor types (Additional file 1: Table S6) [10].
Based on this analysis, poorly proliferative tumors were
the least frequent in all available samples tested (27/120;
22.5%), followed by an equal distribution of highly (47/
120; 39.2%) and moderately proliferative tumors (46/120;
38.3%), (Fig. 2a).
To define whether neoplastic cells, immune cells, or

both constituted the source of proliferation-related
transcripts, 7 highly proliferative and 9 poorly prolifera-
tive cases were evaluated by immunohistochemistry for
the expression of MKI67 (best known as Ki-67), a
biomarker of proliferation largely employed in the clinics
[17]. Highly proliferative tumors (as defined by
RNA-seq) had > 50% of neoplastic cells staining positive

Fig. 2 Results for cell proliferation as an independent biomarker. a) Proportion of 120 NSCLC patients for cell proliferation by tertiles of poorly,
moderately, and highly proliferative. b) Proportion of 120 NSCLC patients positive or negative for PD-L1 IHC using a cut-off of tumor proportion
score of ≥50% as a positive result. c) Proportion of 120 NSCLC patients positive or negative for PD-L1 IHC using a cut-off of tumor proportion
score of ≥1% as a positive result. d) Prevalence for all combinations of strongly positive PD-L1 (TPS≥ 50%) cases and proliferation status. e)
Prevalence for all combinations of PD-L1 and proliferation status for weakly positive PD-L1 cases (TPS≥ 1 and < 50%). f) Prevalence for all PD-L1
negative (TPS < 1%) cases and proliferation status. Number and p values are reported
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for Ki-67 in 6 out of 7 cases, while their poorly prolifera-
tive counterparts contained less than 40% Ki-67+ neo-
plastic cells in 8 of 9 cases (Additional file 1: Table S7).
In a similar fashion, highly proliferative tumors had 5%
or more of immune cells staining positive for Ki-67 in
all cases, while their poorly proliferative counterparts
showed only two cases with this degree of reactivity.
Importantly, an abundant tumor CD8+ T-cell infiltrate
did not necessarily correlate with a highly proliferative
tumor microenvironment. For example, in one poorly
proliferative adenocarcinoma (Fig. 3a) there is a lack of
staining by Ki-67 in both malignant and immune cells
(Fig. 3b), even though there is an abundance of CD8+ T
cells (Fig. 3c). In comparison, for a highly proliferative
adenocarcinoma (Fig. 3d) there is frequent staining by
Ki-67 in both malignant and immune cells (Fig. 3e), with
a similar number of CD8+ T cells (Fig. 3f ).
To evaluate the impact of single gene proliferation

results, e.g. Ki-67, the mean expression rank values of all

10 proliferation-related genes were evaluated for accur-
acy (i.e. true positive plus true negatives divided by total
number of results) for each gene individually (Additional
file 1: Table S6). Accuracy ranged from a low of 52.7%
for FOXM1 to a high of 67.3% for TOP2A, as compared
to a value of 71.8% for the mean expression rank values
of all ten proliferation-related genes (Additional file 2:
Figure S1). The accuracy of Ki-67 at 59.1% was near the
mid-value of other single gene results.
The sum of all of these results suggest that poorly, mod-

erately, and highly proliferative tumors are somewhat
equally represented in NSCLC; that both immune cells
and malignant cells are sources of proliferation-related
transcripts, and it is possible to reach similar results for
any of the 10 genes using only single gene evaluations.

PD-L1 expression
Tumors with the highest PD-L1 expression were more
frequently moderately proliferative as compared to lower

Fig. 3 Immunohistochemical assessment of Ki-67 positivity and CD8+ T cell infiltration. Representative fields for hematoxylin/eosin (a, d), CD8
positivity (b, e) and Ki-67 positivity (c, f) are depicted. The left hand panel (a-c) of a poorly proliferative tumor shows numerous CD8+ T-cells (c),
while Ki-67 (b) stains very few neoplastic or immune cells. The right hand panel (d-f) of a highly proliferative tumor like the other case shows
numerous CD8+ T-cells (f), while Ki-67 (e) stains a high number of neoplastic and immune cells. Scale bar = 100 μm
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levels of PD-L1 expression. PD-L1 TPS, defined as the
percentage of neoplastic cells displaying membranous
positivity of any intensity upon staining with the DAKO
22C3 antibody, ranged from 0 to 100 and 32/120
(26.7%) of all cases were strongly positive (Fig. 2b), while
56/120 (46.7%) of all cases were positive at any level of
staining (Fig. 2c). Moderately proliferative tumors were
slightly enriched for strongly positive PD-L1 tumors as
compared to highly proliferative tumors (p = 0.4611),
and more so as compared to poorly proliferative tumors
(p = 0.01237), or a combination of the latter two (p =
0.07227), (Fig. 2d). For weakly positive PD-L1 tumors,
moderately proliferative were not enriched as compared
to poorly proliferative counterparts (p = 1.0), highly
proliferative (p = 0.2463), or a combination of the latter
two (p = 0.5417), (Fig. 2e). For PD-L1 negative tumors,
moderately proliferative were under represented as com-
pared to poorly proliferative counterparts (p = 0.01955),

or a combination of poorly and highly proliferative (p =
0.02317), but less so for highly proliferative (p = 0.1188),
(Fig. 2f ). Overall these results support that as PD-L1
expression increases there is an over representation of
moderately proliferative tumors, but as shown below
does not account for the improved survival or higher
disease control rates seen in PD-L1 negative tumors.

Overall survival
Proliferation status had an impact on survival in patients
with both PD-L1 positive and negative tumors. There
was a significant survival advantage for moderately
proliferative tumors compared to their combined highly/
poorly counterparts (p = 0.021) (Fig. 4a). When highly
and poorly proliferative groups were evaluated separately
there was a trend towards survival for patients with
moderately proliferative tumors (p = 0.064) (Fig. 4b).
Likewise, the survival of patients with strongly positive

Fig. 4 Overall survival of 120 NSCLC patients receiving an immune checkpoint inhibitor (ICI) as part of their therapy. a) Overall survival based
upon stratification by cell proliferation for moderately versus combined poorly/highly proliferative. b) Overall survival based upon stratification by
cell proliferation for moderately versus poorly and highly proliferative. c) Overall survival based upon stratification by PD-L1 expression levels
using TPS≥ 50% as a cut-off for a positive result. d) Overall survival based upon stratification by strongly positive PD-L1 tumors and proliferation
status (PD-L1 TPS≥ 50% moderately proliferative, PD-L1 TPS≥ 50% highly or poorly proliferative, PD-L1 TPS≥ 50% moderately proliferative, PD-L1
TPS≥ 50% highly or poorly proliferative). Number at risk and p-values are reported
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PD-L1 tumors was associated with a statistically signifi-
cant survival advantage (p = 0.03) (Fig. 4c). A combin-
ation of proliferation and PD-L1 resulted in a significant
survival advantage in moderately proliferative strongly
positive PD-L1 tumors with a median survival of 14.6
months that was almost twice that of all less than
strongly positive PD-L1 highly/poorly proliferative
tumors at 7.6 months (p = 0.028) (Fig. 4d). Likewise,
median survival in less than strongly positive PD-L1
moderately proliferative tumors at 12.6months was
comparable to that of highly/poorly proliferative strongly
positive PD-L1 tumors at 11.5months (p = 0.86) (Fig. 4d),
but in both instances less than that of moderately prolifer-
ative strongly positive PD-L1 tumors. The results for all
PD-L1 positive tumors by a TPS ≥ 1% criteria were very
similar (Additional file 3: Figure S2). The summary of
these results support that moderately proliferative tumors
have a survival advantage beyond PD-L1 positive tumors
for NSCLC patients treated with checkpoint inhibitors.

Disease control rate
Similar to survival, proliferation status had an impact on
disease control in patients with both PD-L1 positive and
negative tumors. The overall objective of evaluating
disease control was to show this intersection of response
to checkpoint inhibition for cell proliferation versus the
current standard of PD-L1 IHC. The results (Table 2,
Fig. 5) show that patients with moderately versus those
with poorly or highly proliferative tumors have a superior

DC rate when combined with any classification schema
used to score PD-L1 as a positive result (i.e., TPS ≥ 50% or ≥
1%; see Additional file 4 for full results). The value of cell
proliferation as a marker of response was best displayed by
noting that the DC rate for moderately proliferative tumors
was no less than 40% for any classification of PD-L1 as a
negative result. This was critically important for the
fifty-seven negative PD-L1 negative tumors for which mod-
erately proliferative tumors had a DC rate of 41.2% (7/17)
(Fig. 5g), while the DC rate among highly and poorly prolif-
erative tumors combined was 17.5% (7/40, p = 0.1179). The
summary of all of these results support that cell prolifera-
tion is a relevant biomarker in all groups of NSCLC, but is
unique and clinically useful for patients with PD-L1
negative tumors. Further support of this conclusion was a
multivariate analysis on all co-variates using binomial
logistic regression model showed that moderately pro-
liferative tumors to have a significant association with
probability of disease control (Table 3; p = 0.0071).
Furthermore, analysis of deviance of each co-variate
(Table 3) suggests that adding proliferation to a null
model improved it significantly (p = 0.0009) followed
by a second most informative co-variate of PD-L1
status (p = 0.0337). Collectively these results suggest
that, the proliferative status of the tumor microenvir-
onment can be harnessed to improve patient stratifi-
cation based on PD-L1 expression levels. Importantly,
cell proliferation seems to have value as a biomarker
of response in PD-L1 negative tumors.

Table 2 Disease control for cell proliferation and PD-L1 IHC

Cell Proliferation PD-L1 IHC DC NDC Total pts DC rate χ2 test

Moderately 22 22 44 50.0%

Highly 9 33 42 21.4% p = 0.0146

Poorly 4 20 24 16.7% p = 0.0113

Poorly/highly 13 53 66 19.7% p = 0.0017

Strongly positive (TPS≥ 50%) 16 16 32 50.0%

Not strongly positive (TPS < 50%) 19 59 78 24.4% p = 0.0009

Positive (TPS≥ 1%) 21 32 53 39.6%

Negative (TPS < 1%) 14 43 57 24.6% p = 0.1363

Moderate Strongly positive (TPS≥ 50%) 10 7 17 58.8%

Poorly/highly 6 9 15 40.0% p = 0.4786

Moderately Not strongly positive (TPS < 50%) 12 15 27 44.4%

Highly 4 25 29 13.8% p = 0.0250

Poorly 3 19 22 13.6% p = 0.0438

Poorly/highly 7 44 51 13.7% p = 0.0063

Moderately cold tumors (CD8 rank < 15%) 7 10 17 41.2%

Poorly/highly cold tumors (CD8 rank < 15%) 7 33 40 17.5% p = 0.1179

Moderately cold tumors (CD8 rank < 33%) 5 5 10 50.0%

Poorly/highly cold tumors (CD8 rank < 33%) 0 11 11 0.0% p = 0.3298
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Fig. 5 Impact of PD-L1 levels and proliferative status on disease control rate in 110 NSCLC patients receiving an immune checkpoint inhibitor
(ICI) as part of their therapy. a) Prevalence and DC rate for moderately versus highly and poorly proliferative tumors, as well as combined of the
latter two. b) Prevalence and DC rate for strongly positive PD-L1 (TPS≥ 50%). c) Prevalence and DC rate for PD-L1 negative (TPS < 1%). d)
Prevalence and DC rate for strongly positive PD-L1 combined with moderately versus highly/poorly proliferative tumors. e) Prevalence and DC
rate for PD-L1 positive (TPS≥ 1%) combined with moderately versus highly/poorly proliferative tumors. f) Prevalence and DC rate for PD-L1 less
than strongly positive (TPS < 50%) combined with moderately versus highly/poorly proliferative tumors. g) Prevalence and DC rate for PD-L1
negative (TPS < 1%) combined with moderately versus highly/poorly proliferative tumors. h) Prevalence and DC rate for weakly positive PD-L1
(TPS≥ 1% and < 50%) combined with moderately versus highly/poorly proliferative tumors. i) Prevalence and DC rate for minimal tumor
infiltration by CD8+ T cells (so-called “cold” tumors) combined with moderately versus highly/poorly proliferative tumors
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Proliferative status and cold tumors
Proliferation status had an impact on disease control in
patients with factors other than PD-L1 positive or nega-
tive status, impacting response to checkpoint inhibitors.
In this regard, cell proliferation was further evaluated for
value beyond PD-L1 status in the emerging recognition
of inflammatory status [16], and more specifically the
degree of CD8 infiltration. Response was evaluated for
tumors with reduced levels of CD8-coding transcripts as
compared to a reference population of 167 patients with
multiple tumor types, which we previously demonstrated
to indicate minimal tumor infiltration by CD8+ T cells
(so-called “cold” tumors) [16]. As there is no current ab-
solute criteria to define cold tumors we first arbitrarily
defined this group by a CD8 rank less than 15, and then
compared to those results to an non-arbitrary cut-off of
the lower tertile of CD8 rank, or a value less than 33.
Irrespective of the cut-off, DC was accurately predicted
by the proliferative status of the tumor microenviron-
ment (Table 2), although the numbers are quite small

for the more stringent cut-off value (Fig. 5i). Most
importantly, the DC rate was greater than 50% for any
grouping of moderately proliferative cold tumors, while
the rate was less than 20% for poorly/highly proliferative
counterparts. PD-L1 status did not associate with
response in cold tumors (Additional file 1: Table S8),
again supporting that cell proliferation is a unique
biomarker of response in NSCLC.

Discussion
Our findings suggest that a highly or poorly proliferative
tumor microenvironment is associated with limited
sensitivity to ICIs amongst NSCLC patients, and that
targeted RNA-seq can be employed to assess the prolif-
erative status of the tumor microenvironment at diagno-
sis, with the ultimate goal of improving clinical decision
making based on PD-L1 only. Most importantly, these
findings suggest that some highly or poorly proliferative
tumors may be resistant to ICIs independent of PD-L1
or inflamed status and that both PD-L1 positive and

Table 3 Multivariate analysis

Variable Estimate Std. Error z value p value

(Intercept) 17.3526 2712.1561 0.006 0.9949

Proliferation Moderately 1.3503 0.5013 2.694 0.00707

PD.L1. status Positive 0.5169 0.547 0.945 0.34468

Histology SCC.or.Other −0.5898 0.6417 −0.919 0.35801

race Black or African American −34.8319 3301.0002 −0.011 0.99158

race Black or African American −16.7776 2712.156 −0.006 0.99506

race Other −35.6219 4796.5772 −0.007 0.99407

race Other −34.6736 4796.5771 −0.007 0.99423

race Unknown −18.5693 2712.1561 −0.007 0.99454

race White −17.9126 2712.1559 −0.007 0.99473

race White −18.3781 2712.1559 −0.007 0.99459

sex M 0.1522 0.5119 0.297 0.76616

age_cat 1–29 −35.0709 4796.5772 −0.007 0.99417

age_cat 40–49 −1.201 1.6759 −0.717 0.47359

age_cat 50–59 −0.6471 0.9129 −0.709 0.47843

age_cat 60–69 −0.9142 0.8863 −1.031 0.30233

age_cat 70–79 −1.1416 0.9098 −1.255 0.20955

Analysis of deviance of each co-variate

Co-variate Df Deviance Resid. Df Resid. Dev P value(>Chi)

NULL 109 137.61

Proliferation 1 11.1163 108 126.49 0.0008557

PD.L1.status 1 4.5112 107 121.98 0.0336733

Histology 1 0.0593 106 121.92 0.8076295

race 7 7.4867 99 114.44 0.3800195

sex 1 0.1064 98 114.33 0.7442778

age_cat 5 4.2582 93 110.07 0.5128654
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PD-L1 negative tumors at any TPS value can be strati-
fied more accurately by cell proliferation. Moving for-
ward the need for standardization of cell proliferation
will be vitally important in comparing response among
various studies. In that regard the proliferative potential
of malignant cells (assessed by Ki-67 positivity or
enumeration of mitotic figures) has been extensively
employed over the past 3 decades for prognostic
purposes in a number of tumors [18–21]. In our study,
Ki-67 as measured by RNA-seq analysis was not the
most accurate predictor of disease control as a single
gene result, but rather was TOP2A. At such a formative
stage of development we did not evaluate proliferation
as a continuous variable for any single gene or the mean
rank of 10 genes, but this is factor that will need to eval-
uated further in future studies. We also did not evaluate
K-67 or TOP2A IHC as a predictor of disease control
and is another potential future study.
In a recent study, RNA-seq was employed to investi-

gate the effect of proliferation on the survival of 6581
patients with 19 different cancers, as catalogued by The
Cancer Genome Atlas (TCGA) [22]. In this setting, a
low proliferation index was associated with improved
patient survival in 7 of 19 malignancies (including lung
adenocarcinoma) which were subsequently defined as
“proliferation-informative cancers” [22]. Most recently,
another TCGA study evaluating the immune landscape
of cancer in more than 10,000 tumors identified six im-
mune subtypes hypothesized to define immune response
patterns impacting prognosis [23]. Two of these six sub-
types, C1 and C2, were noted for a high proliferation rate,
with both having a substantial immune component but
the least favorable outcomes. In this study tumor types
over represented by C1 and C2 subtypes included bladder
cancer, breast cancer, cervical cancer, colon cancer, head
and neck squamous cell carcinoma, lung squamous cell
carcinoma, mesothelioma, ovarian cancer, gastric adeno-
carcinoma, and endometrial cancer. Moreover, in NSCLC,
a dormant tumor-infiltrating lymphocytes (TIL) signature
characterized by low activation (Granzyme B) and prolif-
eration markers (Ki-67) in CD3 + TILs was also recently
demonstrated to be associated with survival benefit in pa-
tients treated with ICI [24]. These studies support that cell
proliferation should be evaluated further as an integral
component of the immune response to ICIs and that re-
sults may be tumor type dependent.
While our work was not based upon a single,

well-structured clinical trial, samples were obtained from
10 different institutions across the US and Europe, and re-
sults stood the test of such a heterogeneous, real-world
clinical scenario. One of the major limitations of the
present study is that response data (based on RECIST
v1.1) was available for a relatively small number of cases
(110 patients), which obliged us to operate on pooled

data from patients receiving PD-1- or PD-L1-targeting
agents (nivolumab, pembrolizumab atezolizumab),
CTLA4-targeting agents (ipilimumab), or both (nivolu-
mab + ipilimumab) as it complicated subgroup analysis.
As a retrospective study across multiple institutions, there
were also limitations for data collection. Smoking status
was not available from all sites and as such was not a vari-
able in the multi-variate analysis. The exclusion of
ICI-treated patients who died in less than 90 days post
first dose checkpoint inhibitor did not allow for an
analysis of this important group due to the lack of
collection ECOG performance score and our subsequent
inability to distinguish rapid progressors from poor health
performance.

Conclusion
In summary, we demonstrated that a poorly or highly
proliferative potential in the tumor microenvironment is
associated with resistance to ICI-based immunotherapy
amongst NSCLC patients, and that assessing the expres-
sion levels of ten proliferation-related genes by RNA-seq
in diagnostic biopsies stands out as a promising strategy
for improving clinical decision making based on PD-L1
expression only. Additional studies are ongoing to test
these observations in other tumor types commonly
treated with ICIs.
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