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The ability to conduct high-quality semiautomatic 3D segmentation of lung nodules in CT scans is of high value to busy radiologists.
Discriminative random fields (DRFs) were used to segment 3D volumes of lung nodules in CT scan data using only one seed point
per nodule. Optimal parameters for the DRF inference were first found using simulated annealing. These parameters were then
used to solve the inference problem using the graph cuts algorithm. Results of the segmentation exhibited high precision and recall.
The system can be adapted to facilitate the process of longitudinal studies but will still require human checking for failed cases.

1. Introduction

Traditionally, the analysis of tumors through computed
tomography (CT) scans involved time consuming manual
segmentation of tumor volumes, where a radiologist or tech-
nician would draw ROIs encapsulating the tumor areas by
hand. Numerous semiautomatic segmentation algorithms
have been proposed for a variety of tumors, including brain
[1], liver [2], breast [3], and lung [4]. In certain cases, such as
Zhang et al. [1], the proposed method was not specific to a
certain kind of tumor. In other cases, such as Kostis et al.
[4], the segmentation required prior knowledge about the
characteristics of the types of tumors observed in order to do
morphological processing.

There exists a significant opportunity for reducing the
human input required for nodule segmentation in longitudi-
nal studies. An initial seed point given at the first time point
can be coregistered and extrapolated to subsequent studies,
under the assumption that nodules do not exhibit significant
movement.This is particularly useful in a clinical application
for tracking small pulmonary nodules in the lungs to deter-
mine malignancy [4].

Markov random fields (MRFs) have been used in the area
of computer vision for segmentation by solving an energy
minimization problem [5]. We use the pixel grid as a graph,

in which each pixel is a vertex and neighboring pixels share
an edge between them.We can then define an energy cost for
any given labeling as a function of various features of the
MRF. In the traditional MRF definition, the energy potential
can be expressed as an association potential function of
each node and an interaction potential function of pairs of
neighbors. The goal is then to find an optimal labeling which
minimizes the total energy. Solving the inference problem
afterwards can be done quickly and optimally (for binary
labels, for multiple label and within an approximation factor)
using an optimization method such as graph cuts [6–9].
Picking the right potential functions can often be a matter of
trial and error.

There are several variants of MRFs out in the literature.
In particular, conditional random fields (CRFs) generalize
the MRF formulation by allowing data to factor into the
traditionalMRF interaction potential formulation, with a dis-
criminative model instead of a generative model. Kumar and
Hebert’s discriminative random fields (DRFs) [10] extend the
usual work of conditional random fields to multiple dimen-
sions. In particular, Kumar and Hebert’s construction allows
for the use of a variety of discriminative models, like SVMs
[11].

DRFs do suffer from some problems, however. Because
the learning process uses a pseudolikelihood approximation,
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the results tend to overestimate the interaction potential para-
meters, unless careful regularization is used [10]. We avoid
this issue by optimizing using simulated annealing on the
F-score, so that inference results play a direct role in the
optimization. The F-score is a direct measure of inference
performance, so optimization based on the F-score should
give us better results than pseudo-likelihood maximization.
Unfortunately, this sacrifices many of the nice properties of
the original formulation, such as convexity. In practice, how-
ever, F-score optimization consistently produces slightly bet-
ter results. This method has been tried before for CRFs, with
better reported performance than standardCRF training [12].

Our goal in this paper is to applyDRFmethodology to the
segmentation of lung nodules in CT scans. To our knowledge,
this has never been attempted before. A recent work by Ye
et al. [13] has used graph cuts to segment lung nodules but
did not use an underlying discriminative model to train
their energy function. DRFs have been used by Lee et al.
[11] for brain tumors in MRI scans, with good results. The
DRF methodology provides a strong, flexible framework for
image segmentation tasks that providesmore robust segmen-
tations than nongraphical models. For example, a previous
study by Kostis et al. has demonstrated a successful lung
nodule segmentation algorithm through thresholding and
morphological processing [4] that required identification of
nodule type (e.g., juxtapleural, juxtavascular). This followed,
earlier work by Zhao et al. using progressive thresholding and
a conditional shape constraint [14]. These methods require
different parameters for different kinds of nodules, which
makes the job of segmentation more time consuming. More
recently, Hayashi et al. used thresholding and morphological
filtering to accomplish the same goal [15].Whilemorphologi-
cal filtering can dowell at estimating volumes, the filters often
smooth away surface data, which has to be restored via some
other method.

On the other hand, Xu et al. used dynamic program-
ming and expectation maximization to calculate the opti-
mal boundaries of lung nodules, using a shape constraint
to counter the problem of juxtapleural nodules [16]. This
method avoids the problem of smoothing away surface data
but does not always performwell, requiring human interven-
tion. In addition, Xu et al. work on each slice independently,
which does not take advantage of the spacial information
from working in three dimensions. Similarly, a work has
been done by Okada et al. on robust 2D ellipsoid fitting on
synthetic data [17], though their work does not focus on the
end segmentation.

Using DRFs, we can incorporate simpler, more approxi-
mate morphological filtering into a set of other features and
pairwise constraints to achieve an overall more accurate and
robust segmentation. Coming up with good features is rarely
a systematic process; instead one must often rely on intuition
and human knowledge of the problem. In the case of lung
nodules, it is known that a lung nodule is generally located
around its seed point, has CT intensities in a certain range,
and is usually round [18]. This paper shows that good results
can be achieved even with simple features containing this
information. Furthermore, we can easily learn parameters
from training data and test performance on test data to avoid

the risk of overfitting. The DRF framework allows us to swap
out features as we see fit, giving us the ability to adapt the
method for other volumes that need segmentation. Since the
ultimate goal of this research is to create a semiautomatic
segmentation algorithm that can be applied to other types of
tumor segmentation tasks, this is a great advantage.

2. Materials and Methods

2.1. Data. Thedata set consisted of 4 pairs of training nodules
and 50 pairs of testing nodules from the VOLCANO’09 Chal-
lenge [19]. For training and individual results, only the first of
each pair was used. For longitudinal comparison results, we
numbered each individual nodule such that nodules 𝑥 and
50 + 𝑥 are the first and second nodules in pair 𝑥, respectively.
These numbers will be used throughout. Seed points were
given with the data sets. Training was done on the supplied
training set only, with results evaluated on the supplied
testing set only.

The training set nodules showed variation in image noise
but lacked variation in nodule position. In particular, the
training set contained no juxtapleural or juxtavascular nod-
ules. These kinds of nodules do show up in the testing set. In
order to maintain consistency with the VOLCANO’09 Chal-
lenge, however, the training and test sets were not rearranged.

Ground truth voxel labelings for all nodules were done
manually by a graduate research fellow trained by a radiolo-
gist.

2.2. Algorithm Summary. Several features, such as estimated
radius and approximate segmentation, are first calculated
through a morphological filtering process. We will then use
supervised learning to learn the weights for these features in
a DRF model of lung nodules from labeled training scans.
The details of the feature generation and parameter learning
are described in the following section. After we have learned
the parameters, we can solve the inference problem using the
same feature generation process and graph cuts to obtain a
segmentation on new scans.

2.2.1. Constants and Nodule Feature Extraction. We first
calculate several global constants from the data. A Gaussian
model of nodule voxel intensities was calculated from the
training data with constants 𝜇int and 𝜎int for the mean and
standard deviation, respectively. A uniformmodel (threshold
model) was calculated from the training data with constants
𝑡min, 𝑡max as the minimum andmaximum thresholds. As seen
in Figure 1, a Gaussian distribution can fit the nodule voxels
to a first approximation.

In addition, for each nodule, its radius was estimated by
taking the following steps.

(1) Denoising: an in-slice Gaussian filter of one voxel
standard deviation was applied to smooth out high
frequency noise, and then upper and lower thresholds
were applied to obtain an initial segmentation.
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Figure 1: (a) Histogram of voxel intensities of positive examples
(nodule voxels) and negative examples (everything else) in training
data. Negative examples overwhelm positive examples in all inten-
sities, even in the local area, as shown in this histogram. We must
thus exploit locality to achieve a good segmentation. (b) Histogram
normalized by number of voxels.

(2) Subvolume and initial radius estimation: a rough esti-
mate of radius 𝑟init was obtained by growing a bound-
ing box and stopping when the fraction of voxels not
in the initial segmentation reached 0.75 of the total
volume.

(3) Lung subvolume extraction: a morphological close
followed by a morphological open operation with
an anisotropic sphere with 6mm radius (under

the assumption that most features in the lung are
smaller than 6mm) was performed on the inverse of
the initial segmentation.The nodule area was filled in
with an anisotropic sphere of radius 𝑟init/2 centered at
the input point, and a morphological close operation
was applied to arrive at the final lung volume.

(4) The initial segmentation was filtered to only include
voxels in the lung volume and filtered again to only
include the voxels in the same connected component
as the seed point.

(5) The center of the nodule was recalculated by finding
the local maximum of the 2D distance transform
(distance from outside the smoothed segmentation)
closest to the seed point on the same slice.

(6) The final estimated nodule radius 𝑟 was calculated
by expanding a sphere from the new center until we
included no more segmented voxels or the fraction
of smoothed segmentation voxels inside the sphere
reached less than 0.5.

2.3. DRF Framework. We construct a DRF model of the CT
volume as follows.

Let𝐺 = (𝑆, 𝐸) be the graph that represents the 3D volume,
where each node in 𝑆 represents a voxel and an edge in 𝐸
connects adjacent voxels in a 6-neighborhood. Let 𝑛

𝑖
be the

observed intensity at voxel 𝑠
𝑖
∈ 𝑆, let 𝑝

𝑖
be the 3-vector of

the relative coordinates of voxel 𝑠
𝑖
in the volume, and let

label 𝑥
𝑖
∈ {−1, 1} be the label associated with 𝑠

𝑖
. We define

an observation 𝑦
𝑖
= (𝑛
𝑖
, 𝑝
𝑖
). The random variables 𝑥

𝑖
obey

the Markov property that Pr(𝑥
𝑖
| 𝑦, 𝑥

𝑆𝑖
) = Pr(𝑥

𝑖
| 𝑦, 𝑥

𝑁𝑖
),

where𝑁
𝑖
is the set of neighbors of 𝑠

𝑖
and 𝑆𝑖 is everything in 𝑆

except 𝑠
𝑖
.

Assuming only pairwise clique potentials to be nonzero.

Pr (𝑥 | 𝑦) = 1

𝑍

exp(∑
𝑖∈𝑆

𝐴
𝑖
(𝑥
𝑖
, 𝑦) + ∑

𝑖∈𝑆

∑

𝑗∈𝑁𝑖

𝐼
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
, 𝑦)) ,

(1)

where 𝑍 is the partition function, 𝐴
𝑖
is an association

potential, and 𝐼
𝑖𝑗
is an interaction potential.

2.3.1. Association Potential. Wemodel the association poten-
tial discriminatively using a logistic model since the labels
are binary. We will define a feature vector 𝑓

𝑖
at site 𝑠

𝑖
as

a function of the observations 𝑦. The location of the lung
nodule voxels was also modeled as a Gaussian deviating from
a prior known location normalized by the estimated nodule
radius 𝑟, calculated automatically, and constants 𝑙 = (𝑙

𝑥
, 𝑙
𝑦
, 𝑙
𝑧
)

and 𝜎loc = 𝑑/V, where V is the size of the voxel in 𝑥, 𝑦, and 𝑧
physical coordinates.
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We then define our feature vector to be

𝑓
𝑔
=
√
(𝑛
𝑖
− 𝜇)
2

𝜎
2

,

𝑓
𝑢
= {

0, if 𝑛
𝑖
> 𝑡min ∧ 𝑛𝑖 < 𝑡max,

1, otherwise,

𝑓
𝑙
=










(𝑝
𝑖
− 𝑙)

𝜎loc








2

,

𝑓
𝑖
(𝑦) = [𝑓

𝑔
, 𝑓
𝑢
, 𝑓
𝑙
] .

(2)

The first two features capture the cost of a voxel’s intensity
in a Gaussian model and a uniform model, respectively. The
third feature captures the cost for a distant voxel from the
expected nodule center.

We then have the option of transforming our feature
vector via some nonlinear transformation to ℎ

𝑖
(𝑦) =

[1, 𝜙
1
(𝑓
𝑖
(𝑦)), . . . , 𝜙

2
(𝑓
𝑖
(𝑦))]
𝑇, which is a kernel mapping

of our original feature vector with the introduction of a bias
element. We chose not to use a kernel, so 𝜙(𝑓

𝑖
(𝑦)) = 𝑓

𝑖
(𝑦).

The features are then weighted by a parameter 𝑤.
We formulate our association potential as a probability by

applying a logistic function

Pr (𝑥
𝑖
= 1 | 𝑦) =

1

1 + 𝑒
−𝑤
𝑇
ℎ𝑖(𝑦)

. (3)

Since Pr(𝑥
𝑖
= −1 | 𝑦) = 1−Pr(𝑥

𝑖
= 1 | 𝑦), we can express

this probability more compactly as

Pr (𝑥
𝑖
| 𝑦) =

1

1 + 𝑒
−𝑥𝑖𝑤
𝑇
ℎ𝑖(𝑦)

. (4)

Finally, we model the association potential as the log of
this probability in order to preserve the logistic regression
characteristics when the interaction potential factor is zero
[10]:

𝐴 (𝑥
𝑖
, 𝑦) = log( 1

1 + 𝑒
−𝑥𝑖𝑤
𝑇
ℎ𝑖(𝑦)

) . (5)

The parameter to learn in the association potential is then
𝑤.

2.3.2. Interaction Potential. Wemodel the interaction poten-
tial using the pairwise smoothing of the Ising model, nor-
malized by a constant minus the difference in intensities of
the two sites. We will define a new feature vector 𝛿

𝑖𝑗
(𝑦) that

captures this difference:

𝛿
𝑖𝑗
(𝑦) = [max(

1 −






𝑛
𝑖
− 𝑛
𝑗







1000, 0

)]

𝑇

,

𝐼 (𝑥
𝑖
, 𝑥
𝑗
, 𝑦) = 𝛽 (𝑥

𝑖
𝑥
𝑗
V𝑇𝛿
𝑖𝑗
(𝑦)) .

(6)

The 𝛽 term is a constant term controlling whether the
smoothing cost affects the potential. The parameter to opti-
mize, then, is V.

2.4. Learning and Inference

2.4.1. Performance Metrics. The primary performance met-
rics for evaluation used are precision and recall. Given a
calculated labeling𝑂 and the ground truth labeling 𝐺, where
nodule voxels are positive samples and nonnodule voxels are
negative, tp denotes true positive, fp denotes false positive,
and fn denotes false negative. Precision and recall are then
defined as

precision = tp
tp + fp

,

recall = tp
tp + fn

.

(7)

2.4.2. Learning. Optimal parameters were learned using
simulated annealing on the F-score of inference results on
training data.

Given parameters 𝜃 = (𝑤, V), there exists an optimal label
𝑂 such that, for each 𝑥

𝑖
given 𝑦,𝐴(𝑥

𝑖
, 𝑦)+∑

𝑗∈𝑁𝑖
𝐼(𝑥
𝑖
, 𝑥
𝑗
, 𝑦) is

greater than 𝐴(𝑥
𝑖
, 𝑦) + ∑ 𝑗 ∈ 𝑁

𝑖
𝐼(𝑥
𝑖
, 𝑥
𝑗
, 𝑦) (where 𝑥

𝑖
denotes

the opposite label of 𝑥
𝑖
). The optimal labeling is calculated

using graph cuts [5].
Optimal parameters were found by performing simulated

annealing on the F-score function, defined as 2(precision ∗
recall/(precision + recall)). At a given iteration 𝑖, a seg-
mentation was calculated with graph cuts using parameters
𝜃
𝑖
generated randomly from the previous parameters 𝜃

𝑖−1
,

constrained distancewise by a “temperature” parameter that
slowly decays as the iterations increase. The calculated seg-
mentation is then used to calculate the F-score, which is
compared to the F-score of the previous iteration as part of the
simulated annealing process. Matlab’s simulated annealing
implementation was used to find the optimal parameters.
Boundary parameters were (−Inf, Inf) for all parameters in
𝜃. Initial parameters for simulated annealing were 𝜃 = 0⃗.
After the initial run, boundary parameters were picked by
hand to include the optimum with tighter one-sided bounds
to improve running time for subsequent runs. This did not
change the optimum parameter appreciably, so the initial
parameters were changed to the optimum parameters. Again,
this did not change the optimum parameters upon rerunning
simulated annealing. This gives us more confidence that the
optimum parameters we found are in fact optimal in its local
neighborhood.

2.4.3. Inference. The volume was first smoothed with a one
voxel radius Gaussian filter to get rid of high frequency noise.
An exact maximum a posteriori solution was then obtained
for the pairwise Isingmodel by a graph cuts algorithm. Graph
cuts were performed using Olga Veksler’s gco-3.0 library in
C++ with a Matlab wrapper [6, 9].
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(a) Inferred segmentation

(b) Ground truth segmentation

(c) Unsegmented

Figure 2: Tumor 11: comparison of inferred segmentation versus
the ground truth labeling with the unsegmented subvolume for
reference.

(a) Inferred segmentation

(b) Ground truth segmentation

(c) Unsegmented

Figure 3: Tumor 23: Comparison of inferred segmentation versus
the ground truth labeling with the unsegmented subvolume for
reference.

3. Results

3.1. Segmentation. Theparameters were learned from the first
nodules of the 4 given pairs of training nodules. Results were
segmented using graph cuts on the first nodules of the 50 pairs
of test nodules. The mean precision was 0.92 and the mean
recall was 0.89, not accounting for the size of the nodules.
An example segmentation and the ground truth can be seen
in Figures 2 and 3. When all 50 pairs (100 nodules) were
evaluated, the mean precision was 0.91 and the mean recall
was 0.89.

The segmented physical volumes were plotted against the
ground truth physical volumes in Figure 4. An ordinary least
squares fit was applied to the data, and the fit line closely
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Figure 4: Plot of segmented volume size versus ground truth
volume size. An ordinary least squares fit is shown, along with the
expected fit, 𝑦 = 𝑥. The correlation coefficient 𝑅 = 0.99, and the
𝑃 value 𝑃 = 0.00. Our method accurately estimates the volumes
compared to ground truth with no significant bias towards either
a larger or a smaller segmentation.
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Figure 5: Histogram of errors relative to ground truth volume.

approximates the expected fit line, 𝑦 = 𝑥. The correlation
coefficient 𝑅 = 0.99, and the 𝑃 value 𝑃 = 0.00. This shows
that our method accurately estimates the volumes compared
to ground truth and that there is no significant bias towards
either a larger or a smaller segmentation.

The relative volume error compared to ground truth was
calculated for each of the first 50 test examples.Themaximum
positive error was 0.33 and the maximum negative error was
−0.31. A histogram of the relative errors is shown in Figure 5.
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Figure 6: Histogram of precision and recall of first 50 segmented
examples.

A 2D histogram of the precisions and recalls is shown in
Figure 6.Most examples had precisions and recalls within the
0.8 to 1.0 range.

As a comparison test, performance was compared to the
Robust Statistical Segmentation procedure implemented in
Slicer.The RSS method uses a statistics-driven active contour
model for segmentation [20]. Approximate volumes were
specified using ground truth data. Boundary and intensity
uniformity parameters were tuned by hand for each nod-
ule until a satisfactory or best possible segmentation was
achieved. Slicer RSS achieved a mean of 0.78 precision and
0.78 recall under these conditions. A histogram of the results
can be seen in Figure 7. RSS is more inconsistent with its
performance compared to our method. Some segmentations
can be seen in Figures 8, 9, and 10, and a volume rendering
can be seen in Figure 11. As a whole, our method performed
better than RSS used by Slicer, but in some individual cases
like Figure 10 RSS performed better. There are examples in
which both methods performed poorly as well: Tumor 30 is
such an example, largely due to significant vascularization of
the nodule and its juxtapleural position. A volume rendering
comparison of Tumor 30 can be seen in Figure 12. RSS
oversegmented the nodule significantly, while DRF also
oversegmented the nodule to a lesser extent. A slice-by-slice
comparison can be seen in Figure 13.

The metric used to evaluate performance in the VOL-
CANO’09 Challenge is percent volume change (𝑉2−𝑉1)/𝑉1
from the first sample volume of a pair (𝑉1) to the second one
(𝑉2). In Figure 14, the percentage change for each testing pair
was plotted against the percentage change from a participant
[15] and against the percentage change of our ground truth.
Because there was no previous ground truth percentage
change established for the challenge, our ground truth does
not reflect the desired results of the challenge.

4. Discussion

Due to the lack of widely available dedicated lung nodule
segmentation software currently, it is difficult to compare

1
0
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3

Precision and recall histogram

0.20.2
0.40.4

0.6 0.6
0.8

0.8
1 

Precision Recall

Figure 7: Histogram of precision and recall of first 50 Slicer RSS
segmented examples.

our results with existing standards. In comparison with
similar work, Ye et al. report a mean Dice’s coefficient of
0.79 on 101 nodules [13]. Our Dice’s coefficient (which is an
equivalent definition to the F-score in this context) is 0.90.
The standard deviations of our F-scores were both around
0.06. We suspect that our superior performance despite
simpler features can be explained by two factors: first, our
discriminative model and training gave us a better energy
function; and second, simpler metrics may prove to be more
tolerant to error. Dehmeshki et al. did not do a voxelwise
comparison but instead reported an “acceptability” metric of
0.84, as determined by radiologist examination [21]. Kostis
et al. seemed to have achieved very good results, but they
did not report explicit performance metrics comparing their
results to ground truth [4]. Neither Zhao et al. [14] or
Xu et al. [16] reported data sets or performance metrics
compared to ground truth. The comparison with Robust
Statistical Segmentation in Slicer shows our performance
against a state-of-the-art generalized segmentation tool, and
our method on average performs better.

One must also be wary of placing too much trust in
ground truth. Manual segmentations currently in use may
differ significantly between users, as Opfer and Wiemker
pointed out [22]. Without a better idea of the variation in
acceptable segmentations, one runs the risk of overfitting.
For a case like Tumor 30 (which was challenging for both
our algorithm and other comparison algorithms), the nearby
vasculature and pleura may affect the accuracy of manual
segmentations as well.

Several groups participated in the VOLCANO’09 Chal-
lenge [15, 18, 19], but because the challenge was focused
on evaluating volume change in longitudinal studies instead
of measuring volume itself, only volume change metrics
were reported. Volume change metrics from our results
were comparable to the results from Hayashi et al. [15].
Because aggregate results for the VOLCANOChallenge were
renumbered before reporting in Reeves et al. [19], we did
not compare their aggregate results. Given our established
ground truth, however, we believe that the precision and
recall are a better measure of our performance in general.
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(a) Inferred segmentation (b) RSS comparison segmentation

(c) Ground truth segmentation (d) Unsegmented

Figure 8: Tumor 20: comparison of inferred segmentation versus RSS, ground truth, and the unsegmented subvolume for reference. In this
example, RSS overestimated the roundness and undersegmented the nodule. Our method successfully segmented the bumps.

(a) Inferred segmentation (b) RSS comparison segmentation

(c) Ground truth segmentation (d) Unsegmented

Figure 9: Tumor 40: comparison of inferred segmentation versus RSS, ground truth, and the unsegmented subvolume for reference. In this
example, both segmentation methods performed well.

(a) Inferred segmentation (b) RSS comparison segmentation

(c) Ground truth segmentation (d) Unsegmented

Figure 10: Tumor 50: comparison of inferred segmentation versus RSS, ground truth, and the unsegmented subvolume for reference. This is
an example in which our method oversegmented into the pleural wall, while RSS did not.

A natural extension of this work would be to apply the
same method to segmentation of other tumors in the body.
The problem of segmentation in other anatomical areas has
of course been studied: for example, Lee et al.’s work involved
segmenting MRI data on brain tumors, with results implying
their precision and recall were around 0.8 that each [11].

The main advantage of the DRF learning framework is
the automatic learning of energy function parameters for
segmentation. Since all specific knowledge about the type of
tumor we are looking for is learned automatically from the
training examples as opposed to knowledge that is built into
the algorithm, we can in theory train our model to work
with other types of tumors than the lung nodules presented

in this paper. In practice, lung nodules are generally easier to
distinguish due to their high contrast to surrounding tissue,
so applying the model to other tumors will likely produce
worse results.

If the problem has been formulated properly, the theo-
retical optimum solution for the parameters should be the
maximum likelihood solution to the DRF. Our investiga-
tion, however, found that the maximum likelihood solution
favored oversegmentation, achieving a very high recall, but
with losses in precision. We thus decided to use a more
practical approach and optimize directly based on the metric
we were using to evaluate the algorithm: the F-score, the
harmonicmean of precision and recall. Our results give better
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Figure 11: Tumor 20: comparison of our segmented volume versus
RSS and ground truth for reference. From left to right: our seg-
mented volume, ground truth volume, and RSS segmented volume.

Figure 12: Tumor 30: comparison of our segmented volume versus
RSS and ground truth for reference. From left to right: our seg-
mented volume, ground truth volume, and RSS segmented volume.
Both segmentation methods performed poorly, but RSS vastly
oversegmented the nodule compared to our method.

(a) Inferred segmentation

(b) RSS segmentation

(c) Ground truth segmentation

(d) Unsegmented

Figure 13: Tumor 30: comparison of inferred segmentation versus
RSS with ground truth and unsegmented subvolume for reference.

recall with similar precision compared to the maximum
pseudo-likelihood solution for the parameters.The difference
is on the order of a few percentage points.

In practice, the inference step required to segment new
nodules can be solved via fast polynomial time algorithms
using graph cuts. Using unoptimized Matlab code on a
3.3 GHz quad core desktop with 8GB RAM, this translated

0 10 20 30 40 50

3

3.5

Case number

Volume change comparison

Segmented volume change
Hayashi reported volume change
Ground truth volume change

0.5

1.5

2.5

0

1

2

−0.5

−1

Vo
lu

m
e c

ha
ng

e (
V
2
−
V
1)
/V

1
Figure 14: Percent volume change versus Hayashi et al.’s percent
volume change and our ground truth percent volume change.

to sub-10 second segmentations for the volumes tested. With
optimized, compiled code, this will likely be much faster.

4.1. Conclusion. OurDRF semi-automatic segmentation pro-
duces results that are generally very accurate, with on average
90% precision and recall.This system can be used to facilitate
lung nodule size tracking applications. Further work includes
creating a clinical application in order to investigate the
consistency and clinical applicability of such a system. Future
work can be done to expand the algorithm’s performance
to different types of tumors, such as brain or liver. More
consistency can be established with better radius estimation,
which can be achieved through a better initial segmentation.
Another possibility would be to try extending the robust
ellipsoid fitting algorithm from Okada et al. [17] to three
dimensions, allowing us to get a better estimate of nodule
shape.
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