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ON THE PURSEY»PAULI INVARIANTS
I THE THEORY OF RETA DECAY*
Gerhart Lilders¥**

Radiatlon Laboratory, University of California
" Berkeley, California
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ABSTRACT

The assumption of a vanishing neutrino mess leeds to a'group of
transformations of the neutrino field which transform the.beta decay
interaction into eqﬁivelent inferactione. By physical observations one
cannot distinguish between equivalent‘interQCtions. vThe results ef '

observations can be expressed in terms of nuclear matrix elements and

combinatiensl Qf the coupling constants which are invariant under the

group. These invariants have reeently been put forward by Pursey and on
a more general basis by Peﬁli, They ere explored further in this paper.
Theiremathematics is sﬁu&ied and relations between them are established.
?hekcon&itions for invariance with respect to reflections in space, cbarge
conjﬁgetion, and time revefsal are expressed in tefms.of these'iﬁvariants°
Interactions Which conserve lepton charge an@/or ceuﬁle to ohly two

components of fhe neutrino field are characterized by relaﬁions between

‘the invariants. (For a reader who does not want to follow the detailed

arguments the main results are summarized in the last section.) In the
Appendix possible experiments on beta deeay are expressed in terms of the

invariants, _ : ' -

This Work was performed under the auspices of” the U. S. Atomic Energy
Commission° '

Fulbright and Smith-Mundt Grantee on leave of absence from Max»Planck
Institut ~ir Physik, Gdttlngen, Germany,
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1. As recently shown by.Pauli; the assﬁmption that the maes of the
neutrino iS’exacfiy equel to zero 1eeds to a group of linear trensformetions
of the neutrino fiel& Qperators which leave bothvcemmutation feletions and
free field Hamiltonian inveriant° This group is gene?ated byvﬁhe folloviﬁg

two commuting subgroups

v =axy+br5c'f'1”\}'; v =va*"\17+b*¢'0(y'5
| (1)
with v
lal® &+ b1 2 = 1 o (2)
(transformation (I) in 1C) e.nd2
tay _ 1
vo= e v Vo= Ve s (3)

with a real (transformation (II) in 1C).> The symbol C in Eq. (1)

denotes the 4 x 4 charge conjugation_matriﬁ;h Throughout this paper the

W. Pauli, On the Comservation of the Lepton Charge, Il Nuovo Cimento (to
be published). We shall use the symbol LC when reférring to this paper.

2 pransformation (II) was often used in the literature. It forms the basis
of a discussion by D. L. Pursey of Invariance Propertles of Fermi Inter-
actions (I1 Nuovo Cimento, to be publlshed)

3 In the following we shall refer to these two transformations by (I) and
(11) as done in IC.

l"'We use the definition given in ILC. The present author used a slightly
different definition in a recent paper (Annals of Physics 2, }(1957))o

The relation between these two definiticns is cPaull = ‘C Liders®
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conventional four-component theory of the neutrino shall be nsed; the two-
component theory can be treated as a: special case in which only one half of
the degrees of freedom of the neutrino appears in the interactlon Hamiltonian
(c.f. Section 6). The existence of especially transformation (I) shows that
the concept of particles versus‘antiparticles is not'well defined for}free

neutrinos. To each momentum and spin parallel or antiparallel to the -

momentum, there are two linearly independent states ofvthe,neutrino; but

it is not clear which particular linear combination of theéestates has to be
used to define ‘the neutrlno (1n the convent10na1 sense) or the antlneutrlno.
Therefore the concept of antineutrino shall be avoided in this paper and
the word neutrino shall be used for the whole physical entity descrlbed by
the four-compenent spinor.

Pauli's discussion of beta decay is baeed upon the interaction

Hamiltonian
5 o . o
Biae = a1 (W Oy ¥p) [gr,i(‘."v 03 ¥e) = T, 3(¥, y5 05 V)

+ err,s(¥, €O ¥) +frp (¥, C oy 0 "’e)J ,

+ herm,'oonj. ’ . ;'f ' . ‘l(ﬁ)
(Lc Eq° (l)) where local interaction is assumed but nelther parity
conservatlon nor conservation of lepton charge in the conventlonal sense.»
An applicatlon of the transformatlons of the neutrino field does not leaye .
the interaction Hamlltonian invariant but rather can be expressed as a
linear transformation of the- four coupling constants carrying the same

subscript i, i.e., referring to the same type_of coupling. Eaull indlcates

CA

that physical results are not affected by such a transformation (ef..also.Sec. 2)
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‘and, therefore, can depend only upon invariant combinations of the coupling

constants. A complete list of these invariants is_given by

L P S (5)

Kjg = Kg1 = &qpepy*fpy fpg 8 pqy By * gy Frpy o 2
* \* ¢ * * f  " . (6

Lig = Lgs = 8qy Try*Tpy 85~ 80y Trpy - F oy Trpy o )
Tty = Ty = 8y Brry * 8rpy Bpy * fpy Trpy * Trpg fry oo (7)
Fig = Ty = 8 Ty fIIi ng i 81y - 81 Ty o (8)

We mention that K,y and L, are both real and that

K, > © ; Ky S Ly oS K. (9)
The sign of equality in the first.equation'only holds if that particnlar
type of interaction does not appear}at all in the Ha.miltoniano |

The general structure of these invariants is better understood when
one looks at three special transformations contained in the group.

(a) Phase transformation of the neutrino field (transformation (1)
with b = 0). This transformation amounts to multiplying coupling constents
with subscript I by some phase factor and multiplying those w1th subscript
IT by the complex conjugate phase factor. Conseqnently there appear in
the invariants either products of coupling constants and complex conjugate
coupling constants carrying the same Roman subscript (K and L, ) or
products of two coupling constants carrying different Roman indices (I 13

and Jij)°
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(b) Charge conjugation of the neutrino field (apply first (I) with
a=0, b=-i and subsequently (II) with @ = n/2). This transformation
essentially (i.e., apart from signs) leads to an exchange of coupling constants

with subscripts I and II. Se these coupling have to appear in an essentially
symmetrical manner.

(e) Multiplication of ¢, Dby Xg. This case has been discussed

already in LC. As a consequence the constants f and g enter in an
essentially symmetrical way.5

The invariants K and L,., on the one hand and I. and J, on
_ ij iJ _ o ig 7o ij

the other hand are not quite on the same footing since the neutron, proton,
and electron fields can be multiplied by an arbitrary phase factor without
changing any physical results. If this transformation again is expressed

as a transformation of the coupling constants, Kij and Lij still stay

invariant wheras;[ij and Jij take up the same phase factor. So physical

results must be expressable in terms of- Kij ) Lij and the combinations

I I* I * *
i Am ijJI/m’ ‘TiJJl}m :
In IC also relative invariants are given, i.e., expressions which

remein inveriant under (I) but teke up a phase factor under (II). If one,

however, forms-strictly invariant combinations, e.g,, one

Ngij NIIQm ’

5

These considerations could in fact be used for a systematic construction
of the invariants starting from any product of coupling constants.

C. P. Enz (Fermi Interaction with Non-Conservation of Lepton Charge and
of Parity, to be published in TI1 Nuovo Cimento) treated the case of double
Aprocesses with nonvanishing neutrino mass° The bilinear combinations of
coupling constants which in the results appear multiplied by mL, can
be constructed in a similar manner if one observes that a neutrino with
nonvanishing rest mass still a&mits the group generated by phase trans-
formations, charge conjugation, and JB vnultiplication combined w1th

the substitution m-—+ ”mu The latter transformation was used in a
different context by D. C. Peaslee, Phys. Rev. 91, 1uu7 (1953)

For the notation see LC, Egs. (18a) and (18b),
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sees that they qan be expressed in terms of bilinear combinatiéns of the
oriéinal invariants. This is a consequence of the completeness of the
bilinear invariants (c.f. Sec. 3). |

The whole physics of beta decay including all double processes can
be expressed in terms of the invariants (5)+hruh(€). Particularly, ordinary

beta decay depends only on the inveriants Ki _and L 3 (and, of course,

J i
the nuclear matrix elements). Double beta decay can be expressed in terms
of Iij and Jijv (or rather their fully invariant combinations). The c¢hain

beta decayéinverée beta decay depends either on I and J or on K

i ij by

and Lij depending on whether the charge of the electron emitted in the two

processes is the same or opposite. These statements are true in the lowest

' nonvanishing order. Practically uninteresting higher order terms might depehd

on all four types of invariants. We believe that these invariants are not

only of theoretical interest but that they aiso‘might represent an effective

tool for the analysis of exPerimental-data.7 Therefore we explored these

invariants beyond the analysis‘given‘by Pursey and Pauii in their papers.

2, It has already been shown Pauli that states which contain neutrons,

protons, and electrons but no neutrinos are not affected by the group of

transformaﬁions. But the éaﬁe holdswith slight modifications for final étafes
which do confain neutrinos. If the neutrinos are not absorbed, e.g., in some
suﬁseqnentAinvérse.beta decay, they escape essentially unoﬁsefved. The most
one can hopé to measure is their lineér momentum (iﬁ the casebof oniy one ‘
neutrino from momentum conSerﬁation),gnd perhaps the component of the spin‘

parallel to the momentum. Therefore in all statements of physical significance

T @f. the Appesiix to this paper.
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one has to sum over internal degrees of freedom of the neutrino. Such a
situation can be expresséd by éormulating the final situgtion in.terms, not

of a gtate vector, but of a projection operator (density matriic)°

For this purpose the neutrino operator shall be decomposed in the

‘usual way in terms of plane waves

. ¥ (,1:) = e > A ip-r A -ip-r :
g Vv P (agh uBo e + b oA v_gc e ) (10)
A ‘ . . .8,9‘
upo (A = 1,2) are, for fixed P, a pair or orthonormal four-spinors
obeying
: A -
( yre o+ lfl’;)eo LA 0 | o ()

where e 1is the three dimensional unit vector in the_direétion of motion.

- In the same way one haslo

(gfg i ixh)eg v_Pg" = 0 . : (12)

. . * * N
On the one hand - a_., b and a ., b on the other hand are the well
DAY DA A gk

known annihilation and creation operators for neutrinos of momentum p.

. *
S The normalization is & o) ete. A covarlant normalizatlon
jo2 8 "on T O

(using E%h 8 ) ‘is not possible for mass zero.

9 The spinofs upk and v ph actually do not depend upon the magnitude

of the momentum vector p but only on its dlrection, the unit vector €.

10 Notice that because of the absence of a mass term there is no real

difference between spinors of poSitive and negative energy.
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For the present discussion it is advisable to relateithe spinors - upx and

vapk in the following manner,

-

*

- s ) c"ll.(ug"f) | | | (13)

This correspondence is compatible with the Dirac equations (11) and (12) and

'conserves orthonqrmality. If the spinors are eigenstates of the spin component

in the direction of motion, Eq. (12) relates spinors of equal eigénvalue.ll
Once this_correspéndence has been established the creation operators transform

under (I) in the following way ,

(14)
Transformation (II) on the other hand-leads to a multipli#atiqn of each'
creationvoperator sepafately by a phaselfactor ifAthe spinors.have been éhoéen
as eigenstates of the spin component in the direction of motion.
Now we can take‘up the diécussion'of-projectibn operators;‘ For the
séke of simplicity. this discﬁésionvshall be limited to final states containing
only one neutrino. ILet > be»avstate‘of the system which is different

\

from this final state only by the absence of the neutrino and a pkl >

. * : :
as well as b | > . be the neutrino containing states which actually appear

PA

as final states. Iet

P=v l>§l J (15)

el This follows without calculation from the observatlon that relatlon (13)

does not depend upon any space direction apart from e.
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”be’;he projection operator corresponding to | > . The projection operator
for the states with neutrino, summed over the internal degrees of freedom of

the neutrino, is then given by
P, = a_, P a + b P b, . . (16) .

Here we assume that the neutrlno states correspond to a particular spln
component in the direction of the momentum, In most cases one will heve to
sum over A (= 1, 2), Now it is easily seen that this projection operator is
indeed invariant nnder the trensformation (14 ) (which corresponds to
transformatlon (I)) and of course also under a multiplication of the creation.
operators by phase factors (corresponding to transformation (II))

Neutrinos in initial states cannot be treated in an amalogous We.y°

One'rather has to include their production mechanism in the physical process.

TheeeVCOnsideretions show that interaction Hamiltonians which can be

transformed into each other by a combination of thertransformations (I) and

(II) lead to the same physical conclusions. Within the framework of beta

decay there_is;no possibility of_distinguishing between them. Such

. Hamiltonians shall be called equivalent. The invariants (5) through (8) are
the same for eqnivalent Hemiltonians. In the following section we shell show
that if two interaetion Hamiltonians lead to the ~same values for the
invariants then there is one and generally only one transformatlon of the

group which transforms these Hamlltonians into each other. So eqpality of

12 In the second case a simpler proof can be- given in terms of the Casimir

_progectlon operator in spinor space, One only has to check that

1a ia
xé(x'e + 1)fu)e Xé ‘.(I.i + i'X'h)
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the invariants is a necessary and sufficient condition for the eqpi#alence
of interaction Hamiltonians. We shall also show that these invariants form

‘a complete set but are nbf entirely independent.

3. 7 For discussions of a more methematical characterl3 the coupling
constents &> 81y fI’ fII 'arelless_prectiee} thenbthe following'iineef
com'binationslh -
Fq o= & - T, Gy = & * fr >
(17)
Fo = &rp * frp G = -8y * Trp

here the subscript i referring to the type of coupling has been omitted.

If one further introduces

, " S ‘ , N
H = G, ) , H, = -G, | (18)
the transformation of the coupling constants is simply given by_l5
[} br — : v 3 = (1
| (19)
with
' a =-b*
T o= "l : ) . , (20)
' ’ b a%*

The reader not 1nterested in mathematlcal rigor might very well skip !

this section. He should however take notice of the ineqpalitles (25),

(26), and. (27) between the invariants and of the existence of rather

complicated identities between them.

1k | '
IC Eq. (5).

Y 10 Eq. (10).
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So the pairs Fl’ F2 and Hl’ _H2 transform under the same irfedueib1e~
representation of the group. If one regerds F-= (Fl, Fg) apd H= (Hl, H2)
as vectors in\a’two-diﬁensonal complex ?ecter space16 one fecognizes that
the group generated by transformations (I) and (II) induces a unitary
transﬁrmation in this space.,17 |

" The invariants under this group of unitary transformations arée given

by the scalar products

' * * . ‘ o
AB = A, B+ A,B, (21)

of pairs of vectors or, more explicitly, by

F.-F,, H.-H

2173 S By (22)

where now the subscrlpt referring to types of coupllng have been written down
explicitly. The relation between these invarlants and the 1nvar1ants (5)

through (8) is given by

H‘F.=°I, e-J =-—.-I

F.°F. =K., - L, ., " H,-H, =K,, + L 13 ji*inf.

=i =j i i’ =i =] ij
| (23)
The invariants (22), i.e. (5) through (8), are obviously characteristic
for the unitary group in two dimensions and consequently for the‘group of
‘ 18 ,

transformations of the neutringfield. From the theory of invariants of

the unitafy group it also follows that all invariant combinations of the

16 To avoid misunderstanding we should like to mention that the ordinary

complex plane in the sense of this terminology is not a two=d1mensional
» but a one-dlmen51onal complex space.
o This inc1dentally shows that the group of transformations of the neutrino
field is isomorphic with the unitary group in two dimensions. :

18 This has already been shown in IC. The autﬁor'realizes that it is more -

difficult to establish a mathematlcal fact than to simplify a proof
already given.
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coupling constants can be eipressed in terms of the basic inveriants (22);19
these invariants form & complete set.

. At present we are. interested in a different gpesfion. Provided
there are two sets of vectors Fi’ H and Efi, g}i which lead to the

same invariants (22) (or (5) through (8)). Does there always exist a
transformation of the group which transforms one set into the other ¥ In
other words, is equality of all invarients not onl& a necessary but also a.
gsufficient condition for the eqpivalence of the two interactiens in the
sense explained in Section 2 (identicel values for all physically meaningfui
éueptities) 2 From simple geometrieal conéiderations, or from the theory of
the unitery gioup, it follows that the answer is indeed in the effirmative.
From the eqpality of the sealar preducts between corresponding dashed and
~ undashed vectorsyone concludes that iengths and felafive orientations of the
-two sets_of vectors are the same; therefore theyznnheiransformed'into each
other bﬁ avunitary transformation. If there are at least two lineafly
independent veetors the transformation is determined ﬁniquely.

The scalar products (or invariants) are not 511 independent, First -
there are ineqpalities between them which are a conseqpence of the Cauchy
Schwarz 1nequality | | ‘

Caa)ER) = laB1? . (@)

In terms of the invariants (5) through (8) one finds

(Kiii"_t;z_ L )(ij ij-) .'>/ |:Ki., + (25)

(K:2W‘¥'miii)(ij .1 ) fé AN 7 (26)

ii Jd

19 This is especially true for invarlant products of the relative
1nvariants (1c, Eqs. (18) - (18b))
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Inequality (25) is valid both for upper and lower sign. Puttihg i= j.
in the second inequality oné obtains | |
i1 (27)
which is a stronger relation than_Eg. (9).20

There are aiéo identities'between the invariants whiéh are §htained
in the following way. Siﬁéevthé nﬁmber of dimensions.of the cémplex vector
space is éqpél,to two,’an& £hree vectors ﬁ,'g, C are linéarly dependent,‘i,e.

there &re numbers A, p, v not all equal to zero’so'that’

M + uB + v = O, : ~ (28)

4

Forming scalar produéts of this relation with three vectors D, E, G one
obteins three equations which can be regerded as linear equations for X\, u, V.

The condition for e non-triviel solution is

DA DB D€ |
E-A EB  EC =0 ¢ (29)
GA @B GC

From this general expression one can derive relations between the invariants
(5) through (8) but at present it seems not worthwhile to do so. An
experimental test of such relations might eventuaily mean a test of the

general ansatz (4) for the interaction.

20 It should be noticed that Eq. (9) is not a consequence of Eq. (2k) but

rather follows immediately from Eg. (23) since a scalar product of a
vector with 1tself is a real non-negatlve qpantity
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Y, Since there is no physical distinction between equivalent ﬁamiltonians
 the concept of‘invariance with respect to symmetry opefations’(especialxy
reflections in space, charge conjugation, an@ time reversal) ié to be
modified. One might very well use the usual_définitions of these operations.21
But it would be unphysical to réquire that the interaction Hamiltonian is
unchanged by such a trangformation.' One rather.has to postulate that the
transformed Hamiltonian is equivalent to the originai one in the sense of
this paper. This means that one only has to study the actibn of a symmetry
operation on the invariants (5) through (8). The conditions that-a‘parficular
theory_is invariant with respeét,tb a symmetry operations'have to be
expressed entirely in terms of thesé“in§ariants;

As an exgmple we ffegt.;eflections in spéce in ébmé detail. If one
éppliés the custbméry-paritj,operation one obtains the following transformation

of the coupling constants

v in ' _ _ eig
€11 | €111 T “6r1i )

(30)

] _ . iﬂ 1 _ ig
fog = fe o Ty = frpy e

where exp(in) and exp(if) are arbitrary phase factors. This leads to
the foilowing-transformation of the invariants

L o o i(n+t) < JLn+d)
Cag 7 By Pag T othyy Ty TN o T Tyt

(31)

21 cf. e.g., G. Lﬁderé, Annals of Physics 2, 1 (1947). Before application

of charge conjugation notice, however, footnote 3 of the present paper.
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The conditions for invariance with respect to reflections in space (or

conservation of parity) are therefore given by’_g2

L,, = 0, IiJJM = 0 . (32)

The last condition of course means thatveither all Iij or all Jij have

to vanish. In ordinery beta decay all effects from which a nonconservation

of parity can be recognized depend upon the invariants L ; parity

ij
'violating_effects in double beta decay can be expressed in terms of

Iij J ks® |
If one treats the operations of charge conjugation and time reversal

23

in a similar manner one obtains the following condltions :invariance with.

respect to charge conJugation:

In K, = Re Lig = Be Iy 7 ke % (33)

invariance with respect to time reversal:

W, L, - mI,d,, - 0 | e

By = by = MLy dy, = 0 5
Incidentally, since the quantities Li are real, one sees that invarianee
'with respeect to charge conjugation requires the vanishing of all Li One

result of the TCP theorem is immediately recognized from the conditions (32)

22 For the more special case I = 0. these conditions and the others

j
" presented in this section were already given by Pursey, l Coo

23 Re = real part, Im =-imaginary part.
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through (34): from the invariance with respect to any two of these symmetry
pperatioﬁs, invariance with respect to all three can be inferred. The

condition for invariance under all three oPerations is 1ndeéd given by

*

ImKij = Lij = Iij :sz = 0 . o (35)

5, The question whether a particﬁlar-interaction Hamiltonién conserves
lepfon charge is to be'handled in a similar ﬁay. One has to ahaiyze'whether
there is an equivalent Hamiltonian in which all coupling constants w1th
subscript II vanish. - One condition on the invariants is easily-recognlzed

.Iij = :J’ij A=’o . | (36)

Since double beta decay depends only on - Iij qmi J&j this condition
physically means that there is no double beta decay (qnd,no effect in the
" chain beta decay-inverse beta decay with the emission of equally charged
electrons in both proceSses). |
_ The other conditions are obtained if one puts all .f and g, .
4 o dand - = IT,i- 11,1
eqﬁal to zero in the invariants Kijl and Lij°2§ One gets

Ry L, oLy = (g, ® z)(zckj Ty o O

'the eqpations are to be postulated both with plus sigﬁs and with minus signs.

Qh The derivatlon of these equations is more easy if one works with the

flrst two invariants (22) putting ng Gy = 0; cf. also Eq. (38).—

The equations are eqpivalent to the conditions NI 1 NII 157 0 in IC.
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We shall show’presently that Egs. (36) and (37)‘are not oh;y necessary but
also sufficienﬁ conaitions for the conservation of lepton charge° It is
remarkable that.Eq. (%6) alone constitutes almost a sufficient condition.>?
It

‘(with upper or lowef sign)dees not hold for all combinations of indices then
Eq. (37) oen be inferred from (36) throughvthe identities (29). If, however,
(38) holdsone of the conditims (37) is evidently satisfied but the other has |

to be postulated.26 It should also be mentioned thet once the conditions

for the conservation of lepton charge are satisfied, all 1neqnalities (Qh)
and identities (29) between the invariants are automatically fulfilled; so

no furﬁher information cen be obtaiﬁed from them,27.

We now want to show.that'conditions (36) and (37) together are

sufficient for conservation of 1epton charge in the sense that there exists

/

= 817,14

purpose we assume that there is a set of coupling constants

an eqnlvalent interaction Hemiltonian with fII 1 = 0. Por this

1 ] 1 . 1 ’ ; .
g I'i’ g 1,1’ £ I,i’ f II,i which leads to invariants folfulllng these
25 '

The reverse, however, is not true; Eg. (56) cannot be concluded from-
Eq. (37) Equation (37) also holds if there is no conservation of lepton
charge but only two components of the neutripo fleld are coupled to the
other fields (ef. Sec. 6).
26 Enz, l.c., got hold of such an exceptional case with KSS + ISS =
Kop + Lgp = Kpp * Lipp = |
Inequality (25) is obviously satisfied with the sign of equality; the
second ineqpélity-is fulfilled with vanishing right hand side since both
terms on the left hand side are positive (Eq° (9)) In  the 1dent1ty

27

(29) all possible choices of the vectors have to be dlscussed separately.
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relations. Then we ask whether it is possible to choose another set of
coupling constapts gI,i’ fI,i,’ to put gII,i = fII,i = Q , and still to
obtain the same invariants. If Eq. (37) is expressed in terms of the

invariants (22) one has

(Ei°gj)(§kﬂfz) = (Ei’gz)(gk’gj)3 (Ej'ﬁi)(§g°§k) = (§g°§i)(§jf§k)
- . (39)
énd the question'ig whe#her it is,possible fo chgose constants Fl,i Iand
H, , so that | |
E * ‘ , ' *
Iy = Fyy Ty oo EpeHy = By By
| | (40)

For the general argument is is only necessary to analyze in more detail the

First we put

invariants Ei.E

j‘
F,.. = e F.°F, 41
1) R e : - , (42)
for all j where the phase factors exp(iaj) remain to be determined. We
can fix one of these phase factors, e.g., exp(ial), ambiguouslygs and

determine the others from putting

% i(ozj - al) \
Fafy = V (£ )(E5-E) = 50 (¥2)

for all J == 1. That this is indéed possible follows from (39) with a
special choice of indices

B 12 = (B E)D@ESE) | (43)

8 It 1s assumed that F°E; ¥ O.
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The F,, determined in this way also give the correct value for ,giegj (i=#l)29
since , '
(F, -F.)(F,F.) ' ,
FoF, = e et S M . (bh)
N A | o
=1-1

6. In contrast to Pauli in LC we do not want to treat the two-component

theory of the neutrino as a different’case.fpr which new invariants have to
be formalated. We rather want to work wi?h the full four-cbmponeht_
formuletion thfoughout and to treaﬁ the two=component.theory as a
speeiaiization. This means“that.we always work with the same invariants
(5) through (8) and express experimental inférmation in terms Of these |
invariants only. If one has a two-component neutrino there are identities
between the.vafious foufscomponenﬁ invariants which one has to test on the
expefimental data.

- ‘The_ordinﬁry two-component,theory of the neutrino can be written
either in.the‘Weyl fonmulation or in the Majorana formulation. If one‘
ﬁorks with the Weyl formulation and translates it into the four-component

theory it means that one has the following conditions on the coupling

constants
= H » =+ . :
€11 = Ty €rry = =TIy (45)
 with either the upper or the lower signs throughout. The Majorana
formulation is in four-component language given by
€y = ¥ 8ry1 ; fry = % frpy - (46)

2 This argument shows that not all conditions (37), (39), respectively,

are independent.
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The equivalence between the two formulation330 can be expressed és ;qnivalence
in the sense of this paper by recognizing that Eg. (45) is transformed inio
" (46) under transformation (I)>T with a = b = V—%j .

The éfatement that we’have a twéacomponent theory does not mean that
the interaction Hamiltonlan really has to fulfill the conditions (45), (46),
respectively. It rather meahs that the particular interaction Hémiltonian
‘is equi#alent to a two-component theory fulfilling either of these conditions;
Theref@re:the twm-component character can be expressed in terms 6f identities
" between the invariants (5) through (8). .Inserting either (45) or (46) inmto
these ihwariants‘one sees that the following relation is a necessary condiﬁion

32

for a two-component theory in the above sense
(K ( ) o G ) )
13 Tl (K = Tygg) = (Tgy + 3 5 NIy + J54)- 1)

Further Eg. (37) has to be sa:tisfiedB3 so that from ordinary beta decay alone
%

31

Serpe, Physica 18, 295 (1952) amd more recent papers by other authers.‘

This follows most easily from IC, Eq. (6) if it is noticed that Eg. (45)
(for upper sign) is equivalent to Fy = G,y = O and Eg. (46) equivalent
to Fli_+ Fei = Gli - Gai = 0. A slightly more general condition en

a and b is a + b¥ = 0. Both the Weyl and the Majorana formulation
still admit transformation (II) (ef., LC, Egq. (7)) and charge conjugation;
the latter operation changes upper into lower signs in the conditions '
(45) and (46). | |

32 This equation is equivalent to (H 5: )( Z) = (Hi°Fk) (H ) Thﬁ

necessity of this condition and of Eq. (57) in the form of Eq. (59) is
most conveniently derived in the Weyl formulation with Fli G2 = O,
c.f. footnote 31. This representation is also suitable for proving the

sufficiency of the conditioms.

33 _ e , | |
One also derives (Iij +J ij)(Ikz +J kz) = (Iiz +J'iz)(ij fJ'kj) or

(§1°Ej)(§k'gz) = (giogz)(gkogj) which, however, is not independent of
Egs. (37) and (47). |
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(i,ee, Kﬁj and 'Lij) one cannot decide between a four-component interaction

vwhiéh conserves lepton charge and a two-component interaction for which
conservation of lepton charge has not been postulatéd. All 1nequa11tiéé
(25) and (26).and‘identities.(29) are again satisfied; in fact all two-rowed
subdeterminants of (29) vanish. ' That the conditions' (37) and (47) are also
sufficient is shown in a similar manner as in Sectien'S for the conservation
of lepton charge.

.Now the particular case of a two»component theory which conserves

lepton eharge51+ shall be treated. It follows from Egs. (36) and (47) that

35

or

N (Kij + Lij)(KkE - Lkz) = 0 C o (48)

with the same sign for all indices. Conseqnentiy Eq;A(37) reduces . to ‘

Kij‘Kkz‘-? Koo K - | (50)

Egs. (49) and (50) together form necessary and sufficient conditions for a

36

“two~-component interaction with conservation of lepton charge. For all

i with K., % O 5T one finds Ly (=:‘:Kii) % 0. Consequently one

necessarily has violation of both parity and charge conjugation (cf. Egs.

(32) and'(35)) in a twb;édmponéht‘theory which conserves lepton charge«jg:

3

In most of the current.literaﬁure such a theory is simply called a

two=-component theéory.

A35 The relations for i # J can be inferred from those for 1 = 3 by '
means of inequality (25).
36 Notice that inequality (26) leads to Eq. (36) as a consequence of Eq. (49).

3T of. our remarks in connection with Eq. (9).

38 This has been recognized recently by several physicists on the bas1s of
less general formulations of beta decay theory.
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Since the second inequality (9) imposes a limitation on the possible values
of Lﬁ: oﬁe sohgefé maximum vidation cf parity and charge conjugation.

Both the Weyl equafion and the Majorasna equation lead to a neutrino
the physiéal state of which is entirely-specified by momeqtum and compgnent
of the spin in the direction of the momentum. In the foﬁrncomponent theory
these qpaptum numbers do not specify the state of a,neuﬁrino completely;

- one rathe; has an additional twoafold degeneracy. The fact that the grqup
generated by transfomtioﬁs (1) and (II) acts on this additional "aegree ‘of
freedam:but does not éhange pﬁysical results means that this degree of
freedom is physically redundant. This could bé:fegarded as an argument in
favor of the reallzation of the- two-component neutrino in nature. We think,

however, that one should be most reluctant with arguments ‘of this kind.

Te : A1l experlmental 1nformation in the field of beta decay can, under
the assumptlon of vanishing neutrino rest mass and local interactions (Eq_°

( 4)) be expressed in terms of ~l;he bilinear combinations (inva.ria.nts) (5)
tﬁrough_(S) of the coupling constants and of nuéiéar métrii elements.
Especially ordinary beta decay aependsAonly on‘the quantities Kij :and |

L, ; ‘without additional assumptions or conventions more detailed information

iJ
about the coupling constants themselves cannot be obtained from experiments.
- Inveriance with respect to reflections in space (1.e5_conservation of pa;;ty),
charge conjugation, .and time reversal are_expreséedvby the conditions (52),
(33), (34), respectively. Conservation of lepten charée is Pulfilled if the
eenditioné (36) and (37) are satisfied; these conditions_do not only forbid
vdoubié beta decay but théy”also put limitations on the Quahtipies éﬁtering .
info ordinary beta deééyo- If beta decay is adeqpately described by a two-

component neutrino, Egs. (37) and (47) have to be fulfilled. A two=-component
- thery which conserves lepton charge is characterized by Egs. (49) and (50).
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Unfortunately Eq. (37) conneCting guantities which can be derived from

ordinary beta decay alone is a necessary condition for both conservation

of lepton.charge‘and two-component interaction (with no réquifements as to
conservatioﬁ of ieptop charge), So‘ffom singlevbeta decay data one cannot
deéide betﬁeen the two casescv.Thevstronger requirement of a two component

1

neutrino interaction which simultaneously conserves lepton charge can,

“however, be_tesfed on information from beta decay alone.
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Aﬁgendix
Allowed Transitions

For more detailed formulae one has to specify the Dirac matrices Oi
in Eq. (4). This cen for instance be done by postulating that the square of

. each of them is equal to one which leads to the following list39

1, Tu} iTIJ-l?’ iT 75: 7'5 °.
Pauli's notation for the coupling constants is not identical with the one used
in cﬁrrent beta decay theory. The relation between Pauli's coupling constants
: iTo) '
L .
f and. Ci, c is given by

f11’ ‘11 1 _ |
: * % '

&y = Cy frg = ¢y o
Here, it is understood that in the term for tensor interaction it is to be
spmmed only once over each pair of tensor indices (or that a factor of ”%
is to be added if free summation is permitted).

In the following tablehl’ue,many observable quentities in allowed
bets decay are expressed in terms of the invariants Kij and‘ Lij’ To |
obtain such expressions one only has to make use Qf'calcdlational results

: L. 1
for an interaction containing both 814 and fIi (or Ci and C_i); from

the general arguments given in LC andrin this_paper it then follows'thax

9 This.distribution of” 1maginary units does, however, not give tensors
which are bilinear in Dirac fields and have simple Hermiticity propertles°

“0 m, D. Lee and C. N. Yang, Phys. Rev. 104, 25k (1956).

41 The table has been compiled mainly by Dr. T. Kotani. It is based on

recent papers (cf., footnotes 40 and 42) and on unpublished work by

- himself; ef., also his University of California Radiation Laboratory
Report No. 3798. The present author is very grateful to Dr. Kotani for
his permission to publish the table, and for many discussions of its
content.

42 5, D. Jackson, S. B. Treiman, a.nd H. W. Wyld, Phys. Rev. 106 517 (1957),
M. E. Ebel and G. Feldman, Phys. Rev. (to be published); M. Morita and
R. S. Morita, Phys. Rev. 107, 139 (1957), and Phys, Rev. (to be
published) .
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the coupling constants 811 and fIIi can only occur in such a way as to
complete the invariants Kij and LiJ..LLB The table is mainly presented to

show explicitly in what observable effects the various invariants enter.
Since complete foﬁmulae for these effects are not presented here the reader
should in any particular case use formulae already given in-tﬁe'literature
and then generalize them in the same way as haévbeen done for the construction
of the table. | |

In the table, essentially the factors are given which in the various
observable quantities appeér multipliéd by the squared Fermi matrix element,
the squared Gamowaeller matrix élement, or products between these two
matrix elements; First order Coulomb corrections (terms propoftional to
.(d 7)3) are presented besides ﬁhe main terms (no dependence upén az).
Experimenfs 1, 2, 7, and 12 do not show any violation effects_in the Coulomb -

independent part; the results depend only upon Re Ki . Indications for

J
invariance under charge conjugation_and under time reversal can, howeﬁer;

be obtained from the Coﬁlomb term_in,Experiment 2. Experiments 5,>h, 5, 6,
and 13 are typical experiments_fér testing the viélation of parity; in SQme
of the cases conservation or violation of time reversal can be read from

the terms proportionsl tc «aZ. Experiments lQ end 11 in principle slso test
parity violation; the main effect vanishes, however, in these cases if time
reversal is not violated. Experiments_8 and 9 (depending upon Im Kij in

the main term) check invariance with respect'to charge conjugation and time

‘reversal whereas the second eendition for invariance under time reversal

= For nonviolation effects it is even sufficient to use calculations for
parity cohserving interactions; cf., also T. D. Lee and C. N, Yang,
' Phys. Rev. 10k, 254 (1956), especially Egs. (A.3) through (A.5). For
Eq. (AMd) & Errata in Phys. Rev. 106, 1371 (1957).
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(ImL,, = 0) is tested in Experiments 10, 11, and 1%. Expériments 12, 13, and

iJd ,
14 are ‘B»r correlation_expefiments. The symbol m dJdenotes the mass of
the electron and E its totsl energy. Where two sigﬁs ( i or ;:.) aie
given the upper sign refers té emissian of positive electrons, the lower to
emissiéﬁ:of negaiive elecirons. |

In the féiloﬁing ve give short formal expressions for the various
Qbservabie quantities. Notations: d = spin of oriented nucleus, p = eleétron

momentum; 0 = electron spin, q = neutrino momentum, k = y momentum,

T(= * 1) symbol for circular polarization of ¥ quantum.

8: Jep x

wa

2 P2

e 9 opxd

s - | 10: o d xp

5 @l n:  gdxg

6: §°E 12: k.J

Ta: Jeg 13: " T(p-k)

T (J3.p)(p-0) s (e xk(IRY, (a=1, 3)
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