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Abstract

Objective: The objective of this study is to compare detection rates of extracapsular

extension (ECE) of prostate cancer (PCa) using artificial intelligence (AI)-generated

cancer maps versus MRI and conventional nomograms.

Materials and methods: We retrospectively analysed data from 147 patients who

received MRI-targeted biopsy and subsequent radical prostatectomy between

September 2016 and May 2022. AI-based software cleared by the United States

Food and Drug Administration (Unfold AI, Avenda Health) was used to map 3D

cancer probability and estimate ECE risk. Conventional ECE predictors including MRI

Likert scores, capsular contact length of MRI-visible lesions, PSMA T stage, Partin

tables, and the “PRedicting ExtraCapsular Extension” nomogram were used for

comparison.

Postsurgical specimens were processed using whole-mount histopathology section-

ing, and a genitourinary pathologist assessed each quadrant for ECE presence. ECE

predictors were then evaluated on the patient (Unfold AI versus all comparators) and

quadrant level (Unfold AI versus MRI Likert score). Receiver operator characteristic

curves were generated and compared using DeLong’s test.

Results: Unfold AI had a significantly higher area under the curve (AUC = 0.81) than

other predictors for patient-level ECE prediction. Unfold AI achieved 68% sensitivity,

78% specificity, 71% positive predictive value, and 75% negative predictive value. At

the quadrant level, Unfold AI exceeded the AUC of MRI Likert scores for posterior

(0.89 versus 0.82, p = 0.003), anterior (0.84 versus 0.80, p = 0.34), and all quadrants

(0.89 versus 0.82, p = 0.002). The false negative rate of Unfold AI was lower than

MRI in both the anterior (�60%) and posterior prostate (�40%).

Conclusions: Unfold AI accurately predicted ECE risk, outperforming conventional

methodologies. It notably improved ECE prediction over MRI in posterior quadrants,

with the potential to inform nerve-spare technique and prevent positive margins. By
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enhancing PCa staging and risk stratification, AI-based cancer mapping may lead to

better oncological and functional outcomes for patients.

K E YWORD S

artificial intelligence, fusion biopsy, extracapsular extension, MRI, prostate cancer

1 | INTRODUCTION

For men in the United States, prostate cancer (PCa) is the most

frequently diagnosed cancer and the second-most common cause of

cancer death.1 Treatment paradigms have evolved in recent decades,

but radical prostatectomy (RP) remains the most common therapeutic

modality for intermediate and high-risk PCa.2,3 Extracapsular extension

(ECE) is an important consideration during RP planning since it is

associated with an elevated risk of cancer recurrence and adverse out-

comes.4 In particular, ECE status often determines surgical margins and

whether to spare the neurovascular bundles.5 Appropriately executed

nerve sparing improves urinary and sexual function without diminishing

cancer control.6,7 Thus, accurate ECE identification is crucial to assure

oncological efficacy and functional outcomes for RP patients.

Several predictive tools, such as preoperative MRI,8–10 PSMA-

PET/CT imaging,11–13 and various nomograms14–17 estimate ECE risk.

However, current paradigms are imperfect predictors of ECE, fre-

quently over- or underestimating true PCa extent.18–21 Furthermore,

image-based ECE prediction is subjective and dependent upon reader

experience. To overcome these shortcomings, several artificial intelli-

gence (AI)-based tools for ECE detection have been developed in

recent years.22–24 AI analysis is a promising alternative to current

practice, and some initial success has been reported. However, extant

models are not commercially available and rely on a single modality of

data (MRI or clinical). AI that combines multi-modal data and is readily

available to clinicians has the potential to improve ECE risk assess-

ment and impact patient outcomes.

Readily available software cleared by the United States Food and

Drug Administration (Unfold AI, K221624, Avenda Health, Culver City,

CA) uses an AI algorithm to visualize cancer probability in 3D. The

Unfold AI model was trained to generate 3D cancer estimation maps

(CEMs) using multi-institutional, multi-modal input data consisting of

T2-weighted MRI, prostate and MRI region of interest (ROI) segmenta-

tions, 3D biopsy locations, International Society of Urological Pathol-

ogy Grade Group (GG), and serum prostate-specific antigen (PSA).

Additional information regarding the AI algorithm development, train-

ing, and validation are presented in Priester et al.25 In prior studies,

Unfold AI was shown to improve intraprostatic PCa contours.25,26 We

hypothesized that the AI output could be used to predict ECE occur-

rence by assessing cancer probability adjacent to the prostate capsule.

2 | MATERIALS AND METHODS

We conducted a retrospective single-centre assessment of ECE

detection with Unfold AI. We compared AI with conventional

methodologies: MRI ECE assessment (1–5 Likert Score),27–29 ROI con-

tact length, Partin Tables,17 the PRedicting ExtraCapsular Extension

(PRECE) nomogram,16 and 68Ga-PSMA-11 PET/CT primary tumour

stage (T stage). The ground truth presence of ECE in each quadrant

was determined by pathologist review of whole-mount

histopathology.

2.1 | Dataset Description

In an IRB-approved study, 241 patients consecutively accrued at the

University of California, Los Angeles (UCLA) were retrospectively

assessed. A radiologist prospectively interpreted multiparametric MRI

obtained at either 1.5 (4% of cases) or 3 Tesla (96% of cases). The

radiologist defined ROIs suspicious for PCa and assessed ECE risk via

a 1–5 Likert scale. PSMA PET imaging was also performed in a subset

of patients. All patients received preoperative biopsy via an MRI-

ultrasound fusion device between September 2016 and May 2022.

Cores were sampled from ROIs and systematically as previously

described.30 RP was then performed within one year of fusion biopsy.

A genitourinary pathologist examined whole mount histopathology

slides of the excised specimen to determine ground truth ECE status

and location (Figure 1C, F).

The following inclusion criteria were applied to ensure data qual-

ity, a clinically relevant patient population, and compatibility with

Unfold AI:

1. The patient received no prior surgical, ablative, or radiation treat-

ment for PCa.

2. GG ≥ 2 PCa was detected on biopsy.

3. At least six biopsy cores were tracked and recorded during fusion

biopsy, including ≥3 systematic cores and ≥1 targeted core.

4. Biopsy data was free from severe tracking, segmentation, and soft-

ware errors.

One hundred and forty-seven cases met inclusion criteria; the

dataset selection process is illustrated in Figure 2 and population char-

acteristics are summarized in Table 1.

2.2 | ECE Prediction Using Unfold AI

The Unfold AI algorithm incorporates multi-modal input data:

T2-weighted MRI, PSA, 3D biopsy locations, and biopsy core pathol-

ogy (GG, core length, and cancer length). Additional details on algo-

rithm development, parameters, and validation have been previously
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reported.25 The AI software generates a 3D cancer estimation map,

representing the probability of csPCa (defined as GG ≥ 2) in each

prostate voxel. The CEM for each patient was downloaded and ana-

lysed using custom scripts written in Python.

The capsular contact length of MRI-visible lesions has been previ-

ously reported to correlate strongly with ECE occurrence.32 Since

Unfold AI is a more accurate reflection of tumour extent than

MRI,25,26 we hypothesized that ECE risk could be predicted using the

F I GU R E 1 Two exemplary cases with similar MRI regions of interest, showing (A, D) T2-weighted MRI, (B, E) Unfold AI ECE risk assessment,
and (C, F) whole-mount histopathology. The first case (A-C) had low ECE risk on Unfold AI, no ECE on histopathology, and negative surgical
margins. The second case had high ECE risk on Unfold AI, ECE on histopathology, and focally positive surgical margins. It is plausible that Unfold
AI could have helped prevent positive margins for the second case.

F I GU R E 2 Flowchart illustrating dataset selection for this study. The final column describes the conventional ECE predictors and the number
of patients available for comparison with Unfold AI.
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CEM values of voxels intersecting the prostate capsule. Patient-level

ECE risk was estimated as the total csPCa probability of capsular vox-

els (Figure 1B, E). Similarly, quadrant-level ECE risk was estimated as

the total csPCa probability of capsular voxels in the left anterior, right

anterior, left posterior, and right posterior quadrants.

2.3 | ECE Prediction Using Conventional
Methodologies

ECE risk was also assessed using conventional methods as detailed

below.

1. MRI Likert score was derived from an expert radiologist’s interpre-

tation of multiparametric MRI. They assigned each case a Likert

score between 1 and 5 according to the criteria in Table 2. This

approach was used in lieu of PI-RADS scores, which are optimized

for tumour diagnosis rather than ECE detection and have been

previously shown to over-stage ECE.33

2. ROI contact length was defined as the maximum contact distance

between the ROI(s) and the prostate. A point on the ROI was con-

sidered to be in contact if it lay within 1.5 mm of the prostate

capsule.

3. 68Ga-PSMA-11 PET/CT imaging was acquired on a subset of

patients. The apparent T stage was assessed jointly by an expert

radiologist and nuclear medicine physician based on the distribu-

tion and relative uptake of PSMA.

4. Partin Table values were computed using clinical variables (GG,

PSA, and clinical stage) as described by Tosoian et al.34 Partin table

predictions were applicable for cases with clinical stages T1c-T2c.

5. The PRECE nomogram by Patel et al.16 was used to estimate ECE

risk using published logistic model coefficients for age, PSA, clinical

stage, rate of PCa-positive cores, rate of csPCa-positive cores, rate

of cores >60% cancer-positive, and average percentage of cancer.

The PRECE nomogram was only applicable for cases with a prede-

termined clinical stage and more than two biopsy cores in both the

left and right prostate lobes.

In addition, quadrant-level ECE was predicted on MRI using Likert

Score. Each quadrant was assigned the highest Likert score among

ROIs inside it (defined as intersecting ≥10% of the ROI volume). If a

quadrant contained no ROI, a score of 0 was assigned.

T AB L E 1 Patient characteristics (N = 147).

Characteristic Data

Years of Age Median (IQR) 71 (66–74)

PSA (ng/ml) Median (IQR) 7.2 (5.2–11.0)

<10 100 (68%)

10–20 42 (29%)

>20 5 (3%)

Biopsy Cores Sampled Targeted (Median,

IQR)

6 (4–7)

Systematic (Median,

IQR)

10 (7–11)

Total (Median, IQR) 16 (14–17)

Biopsy Grade Group (GG) GG 2 55 (37%)

GG 3 47 (32%)

GG 4 23 (16%)

GG 5 22 (15%)

Clinical T Stage <T2 123 (84%)

≥ T2 and <T3 24 (16%)

PI-RADS Score31 3 17 (12%)

4 40 (29%)

5 83 (59%)

MRI Likert Score (for ECE
risk)

1 10 (7%)

2 55 (39%)

3 35 (25%)

4 24 (17%)

5 18 (13%)

PSMA T Stage T2 32 (82%)

≥T3 7 (18%)

T AB L E 2 Likert Scoring of ECE risk for PI-RADS ROIs.

Likert
score Criteria

1 ROI does not abut the capsule

2 ROI abuts or may abut the capsule

3 ROI has a broad base of capsular contact or bulges the

capsule

4 ROI capsular contact is irregular or blurred

5 ROI has clear extraprostatic extension (gross or minimal)

T AB L E 3 AUC measures and comparisons for patient-level ECE prediction.

Predictor Sample size ECE prevalence

AUC Std. Err.

p-ValuePredictor AI (same patients) Predictor AI (same patients)

Unfold AI 147 65 (44%) - 0.812 - 0.036 -

MRI Likert 142 63 (44%) 0.719 0.810 0.042 0.037 0.044

ROI Contact 147 65 (44%) 0.706 0.812 0.046 0.036 0.011

Partin Tables 122 52 (42%) 0.640 0.797 0.049 0.041 0.008

PRECE 113 49 (43%) 0.699 0.795 0.051 0.043 0.046

PSMA T Stage 39 28 (71%) 0.625 0.825 0.042 0.067 0.003
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2.4 | Assessment of ECE Prediction Accuracy

The area under the curve (AUC) of the receiver operating characteris-

tic (ROC) was used as the primary metric to assess ECE predictions.

Following the application of a decision threshold closest to the (0,1)

point on the ROC curve,35 secondary metrics were also calculated for

each predictor: sensitivity, specificity, balanced accuracy, positive

predictive value (PPV), and negative predictive value (NPV). All

metrics were computed at both the patient and quadrant level for

Unfold AI and the conventional comparator(s). Statistical significance

was assessed using DeLong’s test36 in Stata: Release 15 (College

Station, TX: StataCorp LLC.), which compared the AUC of Unfold AI

with conventional methods. Since conventional predictors were not

available for every case (see Figure 2), each statistical test was

performed individually on the sub-population of cases with each

predictor available.

3 | RESULTS

3.1 | Patient-Level ECE Prediction

Unfold AI had superior AUC to all other predictors (p < 0.05), outper-

forming them by 0.13 on average. Table 3 shows the AUC values for

Unfold versus each conventional predictor, and Figure 3 shows the

patient-level ROC curves for all ECE predictors. When thresholded to

a binary prediction of ECE, Unfold AI had an average sensitivity of

68%, specificity of 76%, balanced accuracy of 72%, PPV of 73%, and

NPV of 70%. Secondary metrics for conventional comparators are

listed in the Appendix A (Table A1).

3.2 | Quadrant-Level ECE prediction

The prevalence of ECE in the anterior and posterior prostate was 8%

(21/271) and 21% (56/271) respectively. Unfold AI had superior AUC

to MRI for ECE assessment in all quadrants (0.89 versus 0.82,

p = 0.003) and posterior quadrants (0.89 versus 0.82, p = 0.002). The

AUC of Unfold AI was also higher than MRI for anterior quadrants,

though the difference did not achieve statistical significance (0.84 ver-

sus 0.80, p = 0.34). Figure 4 shows the ROC plots for quadrant-based

analysis. When thresholded to a binary prediction of ECE, Unfold AI

achieved 84% sensitivity, 79% specificity, 82% balanced accuracy,

51% PPV, and 95% NPV for ECE prediction in posterior quadrants.

Furthermore, in posterior quadrants, the false negative rate was 27%

for MRI Likert scores and 16% for Unfold AI, a pronounced difference

with important ramifications for RP planning. Example cases of false

negative MRI findings but true positive Unfold AI findings are shown

in Figure 5. Additional metrics are summarized in Table 4.

F I GU R E 3 Receiver operating characteristic curves for patient-
level ECE prediction, computed using the data subset available for
each metric (sample sizes vary; see Table 3).

F I GUR E 4 Receiver operating
characteristic curves for quadrant-level
ECE prediction, analysing (A) all quadrants
in aggregate, N = 542, and (B) quadrants
stratified into anterior and posterior
subgroups, N = 271.
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F I GU R E 5 Example cases for which MRI
failed (false negative) but Unfold AI succeeded
(true positive) to predict posterior-quadrant ECE.
The left column shows MR images and MRI Likert
Scores for the posterior quadrants, with the
prostate outlined in white, the ROI outlined in
red, and prostate midline annotated with a grey
dotted line. The right column shows Unfold AI
cancer estimation maps and histopathology ECE
ground truth for posterior quadrants, and the
region of highest ECE risk annotated with a black
dotted line. Example cases include (A-B) a case
where MRI predicted ECE (Likert = 3) only in the
right posterior, but Unfold AI successfully
predicted bilateral ECE; (C-D) a case where MRI
predicted no ECE (Likert = 1), but Unfold AI
successfully predicted ECE in the left posterior;
(E-F) a case where MRI predicted no ECE
(Likert = 2), but Unfold AI successfully predicted
bilateral ECE; and (G-H) a case where MRI
predicted no ECE (Likert = 2), but Unfold AI
successfully predicted ECE in the right posterior.
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4 | DISCUSSION

In this study, we demonstrate that Unfold AI significantly outperforms

MRI, 68Ga-PSMA-11 PET/CT, and nomogram-based approaches to

predicting and localizing ECE (Table 3). Though it is difficult to assess

clinical impact in the absence of prospective data, Unfold AI has the

potential to enhance decision-making during radical prostatectomy. In

particular, the ECE risk in each posterior quadrant may help determine

whether the adjacent neurovascular bundles should be spared or

resected. Compared with MRI, Unfold AI would have reduced the

false negative rate from 27% to 16% in posterior quadrants, a 40%

relative reduction (Table 4). Notably, MRI evaluation of ECE also per-

formed well within this cohort. However, the performance of expert

radiologists in an academic institution may not be broadly representa-

tive, and MRI sensitivity was much higher in the present study (0.73)

than it has been reported historically (0.55).37 Despite recent evidence

suggesting potentially improved ECE detection using PSMA vs MRI,38

68Ga-PSMA-11 PET/CT underperformed in our study population.

Though 68Ga-PSMA-11 PET/CT excels at the detection of metasta-

ses, it seems to struggle to distinguish organ-confined from locally

advanced disease. To date MRI remains the best available tool for

ECE evaluation, despite a tendency to underestimate tumour size20

and insufficient resolution to identify microscopic ECE foci.39 There

remains a pressing need to improve presurgical staging, a task AI is

well suited to address.

Improving the assessment of ECE has immediate clinical implica-

tions. First, surgeons can utilize Unfold AI to implement nerve-sparing

to improve urinary and sexual outcomes6,7 while maintaining onco-

logic outcomes. Second, ECE is a contraindication for focal therapy.40

Accurately determining ECE will appropriately select patients for sur-

gery who may initially appear to be good focal therapy candidates on

MRI (Figure 5G). Finally, Unfold AI provides a 3D map that can be dis-

played within the surgical robot during RP. This capability could

improve clinical outcomes since similar maps based on MRI technol-

ogy alone have enabled a reduction in surgical margins.41

The findings of this study are consistent with previous AI-based

ECE detection efforts, which reported AUC values of 0.72–0.88 and

sensitivities of 76–82%.24,42–44 Our approach compares favourably

with prior work since it maps cancer risk in 3D, enabling localization

and visualization of tumour stage and extent. Indeed, the performance

of Unfold AI is remarkable considering that it was developed to map

intraprostatic cancer risk, and never explicitly trained for ECE detec-

tion. Its success is likely attributable to its multi-modal nature, wherein

predictions are made using diverse minimally correlated data from

imaging, biopsy, and biomarkers. The use of multi-modal data may

even reduce dependence on the quality of any one data source.

Though nomograms such as PRECE attempt to similarly incorporate

multi-modal data, they do not fully leverage imaging and 3D informa-

tion. Conversely, 68Ga-PSMA-11 PET/CT and MRI entail 3D imaging

but lack multi-modal data correlates and are susceptible to inter-

reader variability.

The promising performance of Unfold AI warrants future develop-

ment efforts. The AI model could be enhanced through the incorpora-

tion of additional data sources such as diffusion-weighted MRI,

perfusion MRI, ultrasound images, and high-resolution images of

biopsy histopathology. Furthermore, Unfold AI and conventional pre-

dictors could be incorporated into a combined model, which may out-

perform Unfold AI alone. Lastly, this study demonstrates the potential

T AB L E 4 Results for quadrant-level ECE prediction.

Quadrants Metric Unfold AI MRI Likert Score

All quadrants

N = 542

ECE Prevalence = 77 (14%)

AUC (Std. Err.) 0.888 (0.020) 0.825 (0.026)

Sensitivity 77.9% 67.5%

Specificity 84.5% 87.3%

Balanced Accuracy 81.2% 77.4%

PPV 45.5% 46.8%

NPV 95.9% 94.2%

Anterior quadrants
N = 271

ECE Prevalence = 21 (8%)

AUC (Std. Err.) 0.843 (0.039) 0.800 (0.051)

Sensitivity 81.0% 52.4%

Specificity 75.2% 90.0%

Balanced Accuracy 78.1% 71.2%

PPV 21.5% 30.6%

NPV 97.9% 95.7%

Posterior quadrants
N = 271

ECE Prevalence = 56 (21%)

AUC (Std. Err.) 0.894 (0.023) 0.821 (0.032)

Sensitivity 83.9% 73.2%

Specificity 79.1% 84.2%

Balanced Accuracy 81.5% 78.7%

PPV 51.1% 54.7%

NPV 95.0% 92.3%
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of AI cancer mapping to improve upon multiple aspects of PCa man-

agement, with no need to develop task-specific models. Future stud-

ies could investigate the use of Unfold AI cancer estimation maps to

enhance therapy selection, radiation dosing, PCa staging, biopsy plan-

ning, and PCa progression prediction.

This retrospective study had several limitations worth noting.

Firstly, though the AI model was trained on multi-institutional data, all

ECE cases were derived from a single institution (UCLA). Furthermore,

the definition of ECE ground truth relied on the interpretation of a

single experienced pathologist. Follow-up multicentre studies, with

diverse populations of both patients and physicians, are warranted.

Secondly, our analysis did not distinguish between focal and estab-

lished ECE, which have different ramifications for both treatment and

prognosis.45 Future efforts should a entail also predicting ECE extent.

Third, factors such as patient preference and surgeon experience can

strongly influence nerve-spare technique and positive margin rates.

The true clinical impact of Unfold AI is impossible to predict with ret-

rospective data, and thus a prospective study is currently being

planned. Lastly, though Unfold AI outperformed MRI in posterior

quadrants, differences in anterior quadrant predictions were not sta-

tistically significant. This may be explained by the scarcity of anterior

quadrant ECE (only 8%) in the dataset, likely underpowering compari-

sons. Also, a key advantage of Unfold AI is the incorporation of

tracked biopsy data, which is far more prevalent in the posterior than

anterior gland. In the absence of thorough biopsy sampling, the rela-

tive benefit of Unfold AI in the anterior gland may be diminished.

5 | CONCLUSIONS

Unfold AI shows promise as a means of assessing ECE risk, particularly

in posterior quadrants. It significantly outperformed alternative

approaches including MRI, 68Ga-PSMA-11 PET/CT, and other com-

monly used nomograms. Thus, Unfold AI has the potential to improve

prostatectomy planning and inform nerve resection technique. By

enhancing PCa staging and risk stratification, AI-based cancer map-

ping could improve both oncological efficacy and quality of life for

patients with prostate cancer.
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APPENDIX A

Appendix A Table A1 shows the performance of Unfold AI versus

conventional comparators when thresholded using the ROC curve

points closest to (0,1). Unfold AI exhibited higher sensitivity than ROI

contact length, PRECE, and PSMA T stage and higher specificity than

all except PSMA T stage. It also demonstrated a higher balanced

accuracy of 6% on average than all conventional methods. Lastly, it

had higher PPV than all predictors except PSMA T stage and higher

NPV than all others except MRI Likert score.

T AB L E A 1 Secondary metrics and comparisons for patient-level ECE prediction.

Predictor ECE Prevalence

Sensitivity Specificity Balanced Accuracy PPV NPV

Predictor
(%)

AI
(%)

Predictor
(%)

AI
(%)

Predictor
(%)

AI
(%)

Predictor
(%)

AI
(%)

Predictor
(%)

AI
(%)

Unfold AI 65/147 (44%) - 67.7 - 78.0 - 72.9 - 71.0 - 75.3

MRI Likert 63/142 (44%) 77.8 68.3 64.6 77.2 71.2 72.7 63.6 70.5 78.5 75.3

ROI Contact 65/147 (44%) 63.1 67.7 76.8 78.0 70.0 72.9 68.3 71.0 72.4 75.3

Partin Tables 52/122 (42%) 71.2 63.5 62.9 80.0 67.0 71.7 58.7 70.2 74.6 74.7

PRECE 49/113 (43%) 63.3 65.3 75.0 79.7 69.1 72.5 66.0 71.1 72.7 75.0

PSMA

T Stage

28/39 (71%) 25.0 75.0 100.0 63.6 62.5 69.3 100.0 84.0 34.4 50.0
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APPENDIX B

Table B1 shows the ECE positive predictive value and 95% confidence

intervals of the Unfold AI metric for anterior and posterior quadrants.

The metric ranges represent low (1%), moderate (10%), and elevated

(25%–50%, respectively) ECE risk. These ranges were selected to

facilitate prospective use, enabling urologists to adjust their surgical

technique according to the estimated ECE risk in each quadrant. The

methodology of Clopper and Pearson46 was used to obtain 95% exact

confidence limits for the PPV proportions.

Figure B1 shows quadrant‐level Unfold AI ECE risk metric values

for an illustrative case. By cross‐referencing this case with Table B1,

ECE risk would be prospectively assessed as follows:

• Left posterior (metric value = 26): high risk of ECE (mean 50%,

CI 40%–60%)

• Left anterior (metric value = 9): moderate risk of ECE (mean 10%,

CI 5%–18%)

• Right posterior (metric value = 3): low risk of ECE (mean 1%,

CI 0%–6%)

• Right anterior (metric value = 1): low risk of ECE (mean 1%,

CI 0%–4%)

T AB L E B 1 Quadrant‐level positive predictive value of the Unfold AI metric for ECE prediction.

Unfold AI metric <3.5 3.5–18 >18

ECE risk Low Moderate High

PPV

(Mean, 95% CI)

Posterior* 1%

(0%–6%)
10%

(4%–17%)
50%

(40%–60%)

Anterior 1%

(0%–4%)
10%

(5%–18%)
25%

(13%–40%)

*For simplicity of interpretation, posterior metric values were linearly transformed (y = 0.71x + 0.94) to match the anterior quadrant PPV at the “low” and
“moderate” risk stratification boundaries. This transform is automatically applied for risk values displayed via Unfold AI.

F I G U R E B 1 Unfold AI ECE risk metric values for an illustrative
case, which can be used for prospective ECE risk assessment.
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