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Investigation of Delamination Initiation and Propagation in the Vicinity of 

Fastener Locations in Primary Composite Structures 

by 
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Doctor of Philosophy in Structural Engineering 

University of California San Diego, 2019 

Professor Hyonny Kim, Chair 

 

 Primary aerospace composite structures are commonly assembled with bolted 

joints due to their ability to transfer high loads and ease of assembly. However, when 

bolted joints are used beyond their originally intended design life, joint strength can be 

significantly reduced due to the accumulation of internal damage, necessitating frequent 

inspections. Furthermore, internal damage in composites (delamination, matrix cracks) 
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can continue to propagate without visual indications, thus nondestructive testing is 

required. As a result, maintenance can become very costly, particularly for aircraft that 

are in-service beyond their designed life expectancy. By establishing a comprehensive 

understanding of damage propagation behavior, engineers can determine which damage 

modes to inspect for and reduce inspection frequency. This research aims to support and 

improve maintenance operations, fleet management, and aircraft design practice by 

investigating delamination initiations and propagations in the vicinity of fastener holes 

within fiber-reinforced composite materials.  

Static and fatigue bearing were performed using novel test methods developed as 

part of this research for countersunk fastener joints: the modified countersunk double lap 

shear (DLS), single lap shear (SLS), and semi-circular notch (SCN) test configurations. 

DLS and SLS static and fatigue experimental test results were compared to study joint 

configuration, laminate stacking sequence, and loading condition effect on bearing 

damage initiation and growth under both static and fatigue loading. From static and 

fatigue tests, it was observed that major bearing damage accumulates in the straight shank 

region of the countersunk hole indicating most of the bearing load is carried by the 

straight shank region. Fatigue bearing test data showed that when the bolted hole 

elongates, stiffness decreases and internal delamination damage area growth becomes 

detectable through C-scan. Stated in reverse, if no measurable hole elongation is found, 

significant delamination is not expected. Complex damage morphology forms in this 

region, emanating from the loaded bearing face, and creating large wedge-shaped regions 

that drive delamination propagation with additional loading cycles. Additionally, optical 

microscopy observations indicated that pin bending might have affected bearing damage 
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growth. In order to understand the effect of pin bending, a custom designed semi-circular 

notched experiment was performed on the countersunk hole geometry and compared to 

the DLS static experiments. Results indicated that the pin bending had no strong effect on 

the bearing failure morphology for the selected diameter to thickness ratio.  

Finite element analysis using Virtual Crack Closure Technique (VCCT) and 

Hashin failure criteria in Abaqus was used to further understand the internal stress state 

of the specimen configurations and to investigate the rate of delamination growth and 

arrest in the SCN and DLS configurations. Results from FEA were used to more 

comprehensively understand the observations from static and fatigue experiments and to 

verify hypotheses formulated to explain these observations.  
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1 INTRODUCTION 

 

1.1  MOTIVATION 

 Advanced composite materials have been used in many aerospace structures, 

including primary structures (fuselage and wing) on commercial aircraft, military aircraft, 

and space structures. Since any large structure is rarely built as one single piece, 

composites sub-structures are often assembled through bolted joints and/or adhesively 

bonded joints. It is these complex joint locations, in general, where failure in structures 

usually originates. Despite the many advantages of adhesively bonded joints, mechanical 

fasteners are often more desirable due to inherently allowing for assembly and 

disassembly, visual inspections, repairable reliability, immediate load-bearing ability, and 

high load carrying capability. However, drilling many holes onto an aircraft can cause 

stress concentrations throughout the structure. This is a concern, particularly for 

composite structures, where delamination (separation of plies) may initiate around the 

bolt hole and propagate during flight. Figure 1.1 shows an example of a single bolt-hole 

bearing damage in a composite bolted joint assembly that was subjected to cyclic loading.     
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Figure 1.1: Bearing failure due to cyclic loading of a countersunk bolted joint. 

 

 Delamination is a failure mode that occurs between the individual plies within the 

composite laminate, thus it is typically not detectable with a naked eye and requires 

nondestructive equipment to detect this type of damage. Delamination initiation may be 

induced during manufacturing through improperly drilling composites, and during 

operation from taking off, hard landing, accidental impacts, sharp maneuvers, etc. 

Particularly, composite fighter jets, such as the F/A-18, experience extreme 

environmental conditions, repetitive impacts, and maneuvers that make it more prone to 

delamination growth. In order to mitigate risks of delamination propagation during flight, 

aircraft are often inspected by nondestructive testing techniques such as ultrasonic C-

scan. However, using ultrasonic inspections may take days to perform on one aircraft 

since transducers used are typically 12.7 mm in diameter and depending on the aircraft 

geometry, it may sometime require different types of transducers and operator skill levels 

to scan the entire plane. Since composite failure modes, such as delamination initiating 

and growing at fastener holes, is not comprehensively understood, there is an increase in 

the need for recurring inspection, retrofit and engineering analysis. As a result, it is very 

costly to sustain a composite aging aircraft without degrading mission readiness and 
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capability. Therefore, to aid in the monitoring/inspection and safety assurance of 

composite aircraft structures, the objective of this research is to develop a comprehensive 

understanding of bearing failure in countersunk composite bolted joints under both static 

and cyclic load.  

 

1.2 OBJECTIVE 

 The main objective of this research is to comprehensively understand 

delamination initiation and propagation in the vicinity of fastener holes within fiber-

reinforced composite bolted joints subjected to static and fatigue loading. In addition, this 

research intends to establish quantitative and qualitative descriptions of the phenomena 

governing delamination growth using nondestructive investigation (NDI) and destructive 

sectioning (optical microscopy). This research focuses heavily on experimental studies of 

double lap shear, single lap shear and semi-circular notch test configurations. All 

experiments were performed on three different laminate layup types to investigate the 

effect of stacking sequence on the bearing damage of composites. Results from 

experiments will assist in developing methods for predicting bearing damage and 

delamination growth under fatigue loading. Finite element modeling with the software 

Abaqus was used in conjunction with experimental results and observations to gain a 

deep-level understanding of damage modes observed in the experiments.  

 Chapter 2 provides background on previous work on bearing damage of 

composites and parameters that may influence bearing strengths.  Chapter 3 describes the 

experimental setup for the three different test configurations, drilling of the composite 
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bolt holes, ultrasonic C-scan, and MTS test machine. Chapter 4 presents all static and 

fatigue test results and discussions, beginning with bearing strength definition, damage 

progression of bearing failure, double lap shear versus single lap shear and double lap 

shear versus semi-circular notched test. Chapter 5 explains the modeling technique used 

to better understand experimental results and predict delamination growth and arrest.  

 

1.3 NOVEL CONTRIBUTION 

 Bearing strength of advanced composite materials have been studied for many 

years. However, past research studies mainly focused on static failure of bolted joints, 

particularly protruding head fastener (i.e., non-countersunk). Although there are some 

contributions on the fatigue behavior of composite bolted joints, there is still lacking a 

comprehensive understanding on fatigue failure of countersunk bolts in composites. 

Countersunk fasteners are desired in aerospace structures for preserving smooth exterior 

surfaces needed for being aerodynamically efficient. This research aims to provide 

experimental observations and prediction methodology for delamination growth under 

fatigue loading. Various test parameters that influence bearing strengths, such as stacking 

sequence orientation, clamping pressure, hole geometry and test configurations were 

investigated to provide a general understanding of damage initiation and growth, 

including delamination. The outcome of this research provides key observational 

information and quantitative data about internal damage in composite bolted joints, which 

is critical for development of detailed model-based prediction capability. This research 

also provides engineers with understanding of expected failure modes and damage 
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growth rates with cyclic loading, which can support maintenance operations and fleet 

management through reducing overall cost from recurring inspection and repair. 

Understanding the behavior of delamination propagation can also assist engineers on 

improving aircraft design practice and developing quality verification protocols for 

composite aircraft.   
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2 BACKGROUND 

 This chapter provides a literature review on topics that are directly related to this 

research. First, a description of common bolted joint failure modes will be discussed. 

Then, the focus will be on previous work that has been studied to better understand 

parameters that influence bearing failure.  

2.1 BEARING FAILURE OF CARBON FIBER COMPOSITES 

 Common bolted joint failure modes in composite structures include shear-out, 

net-section, bearing and bolt failure [1]. Net-section failure is caused by tensile loading 

on composite components with a small width-to-hole diameter ratio (see Figure 2.1A). 

Shear-out failure occurs when there is a small edge-to-hole diameter ratio (see Figure 

2.1B). Bearing failure is due to compressive stresses acting on the hole surface under 

loading and failure occurs progressively with increasing load (see Figure 2.1C). Lastly, 

bolt failure is caused by both shear stresses and bending stresses in the fastener (see 

Figure 2.1D). In bolted composite joint design, the desired failure mode is bearing 

failure, with shear-out and net-section failure modes prevented by increasing the width-

to-hole diameter and edge-to-hole diameter ratio, as well as selecting appropriate 

laminate configurations. Since bearing damage is progressive and is an accumulation of 

local compressive failure at the bearing surface, it is favorable in industry as a failure 

mode for bolted joints in composite structures, as damage stays localized at the holes and 

load can redistribute to surrounding fasteners or other load paths. Therefore, this research 

will primarily focus on investigating the modes of damage behavior resulting when a 

joint undergoes what is referred to as bearing failure.  
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Figure 2.1: Common bolted joint failure model [1]. 

 

Bearing failure occurs gradually under compressive loading on the bolt-bearing 

surface, which involves several failure modes at the micro scale. Typically, bearing 

failure begins with matrix cracking then followed by buckling of destabilized fibers [4]. 

Fiber buckling starts in the bearing plane at the 0-degree plies, due to its great stiffness in 

the loading direction. As loading increases, shear cracks in matrix form, which leads to 

delamination and kink bands of buckled fibers (see Figure 2.2) [4]. Bearing strength can 

be affected by many parameters such as bolt clamping pressure, laminate stacking 

sequence, hole clearance, joint geometry, and washer size. Work that has been studied on 

these parameters will be discussed in the following sections. 
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Figure 2.2: Bearing failure of joint loaded to 23 kN (left) and formation of kink bands in bearing 

plane (right) [4]. 

 

 

2.2 EFFECT OF BOLTED JOINT CONFIGURATIONS ON BEARING FAILURE 

 Double-Lap Shear vs. Single-Lap Shear. Composite structures are often joined 

together in a double lap or single lap joint configuration (see Figure 2.3). For 

instance, bolting of wing skins to internal structure, connecting sections of the 

fuselage and assembling the ailerons to the wing box are all joined through either 

a single lap or double lap joints. A single lap shear joint configuration consists of 

two members that are bonded by fasteners, which are typically countersunk or 

protruding heads. The geometry of these fasteners makes this lap joint non-

symmetric with respect to the center of the joint. Thus, the eccentricity of the 

loading on the joint will cause out-of-plane deformation known as secondary 

bending (see Figure 2.4). When load is applied, the fastener experiences a 

bending moment, which is reacted by the contact between the fastener and the 

members. This causes non-uniform stress distribution through the thickness of the 



 

9 

 

joint, resulting in a non-uniform contact stress profile on the bolt-hole surface (see 

Figure 2.5). The magnitude of this stress concentration may be influenced by 

stiffness mismatch from the plates and bolt-hole clearance [4].  

 

 

 

Figure 2.3: Typical joint configurations on aerospace structures [4]. 

 

 

 

Figure 2.4: Out-of-plane displacement caused by eccentric load path in single lap joint [4]. 

 



 

10 

 

 

Figure 2.5: Contact stress due to secondary bendingpin [4]. 

  

The double lap bolted joint configuration consists of three members bonded 

together with fasteners, which provides a more symmetric joint compared to the single 

lap. This is not truly symmetric with respect to the center of the middle member because 

of the fastener head is often protruding head or countersunk. The fastener geometry is not 

symmetric about the centerline (see Figure 2.6). However, since there is an additional 

member on the double lap joint, it minimizes the secondary bending effect. Two outer 

members resist the load that is applied to the inner member, which prevent the fastener 

from rotating (see Figure 2.7) globally, although there is still bending of the fastener that 

occurs which can contribute to the non-uniform bearing stress (e.g., in Figure 2.5). Since 

two outer members are pressed together to the middle member, some of the load is 

transferred between the members through friction instead of only in the bolt-hole contact. 

Additionally, researchers found single-lap joints have lower bearing strengths compared 

to a double-lap joint due to secondary bending, which results in non-uniform stress 

distribution the bolt-hole surface [2] and [4]. 
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Figure 2.6: Typical pin and fasteners used in bolted joints. Pin is used for pure bearing test since it is 

geometrically symmetric about pin’s length direction. Pure bearing test eliminates factors taht can 

influence bearing strength, such as clamping pressure. 

 

 

 

Figure 2.7: Double lap shear joint configuration cross-sectional view. 

 

 Countersunk vs. Straight Through-Hole Bolted Joints. Countersunk fasteners 

are often used rather than protruding head fasteners in aerospace application 

because of its smooth outer surface (see Figure 2.6). Although study on 

countersunk fasteners are limited, some researchers found that it produces higher 

stress concentration at the bolt-hole compared to a straight hole because of the 
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reduced length from the cylindrical bolt shank [4-8]. The stress concentration 

from the reduced shank length causes nominal bearing stress to be higher 

compared to the protruding head [4]. McCartney et al. [6] found that the conical 

region of the laminate is ineffective in transmitting load, thus bearing damage is 

found to occur in the straight shank region of the countersunk hole (see Figure 

2.8). This is where stress concentration is localized. They also found that the 

countersunk fasteners produce a greater radial stress distribution (by about 1.7 

times) at the hole boundary in the laminate compared to the protruding-head joint 

(see Figure 2.9). This image show stress concentration at the most outer surface of 

the laminate and decreases in stress near the conical region. Additionally, T. Qin 

et al. [7] performed static tests and discovered that the initial stiffness for 

countersunk and protruding head joints are the same, up until reaching initial 

failure, which was observed in stage 1 and 2 (see Figure 2.10). Results also show 

countersunk fastener has a lower initial failure load (about 13.5 kN for 

countersunk and 16.3 kN for protruding head joint), shown in 3rd stage. Load at 

4th stage for the protruding head joint is almost constant, whereas the countersunk 

joint continues to increase before failure. Lastly, data shows that protruding head 

has about 4.5% higher final failure load compared to countersunk joint. 
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Figure 2.8: Microscopy of composite material experiencing bearing load with a protruding head (left) 

and countersunk (right) fastener [6]. 

 

 

 

 

Figure 2.9: Radial stress distribution at the hole boundary of the composite having a countersunk 

(left) and protruding head (right) fastener [6]. 
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Figure 2.10: Bearing static test results for protruding head joint versus countesunk joint [7]. 

 

 

2.3 COMPOSITE DAMAGE DUE TO DRILLING 

Performing drill operations on composite structures can introduce many defects such 

delamination (ply separation), chip-out of fiber and matrix, and matrix overheating. 

Research has shown damage induced during drilling operation reduces material strength, 

which affects fatigue life of the structure [9]. Delamination is one of the most critical 

flaw types and it is a common reason for rejecting a part in aerospace industry [11]. This 

drilling-induced defect occurs when the drill peels up at the entrance of the hole or 

pushes out as it exits the composite. During the hole machining process, the drill bit pulls 

the cut material away and along the flute direction even before the machining process is 
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complete. This causes the uncut material to spiral upwards, which can induce 

delamination in the upper most half of the laminate (see Figure 2.11). As the drill tool 

exits, the uncut thickness of the laminate is more pliable, thus the thrust force from the 

tool will become greater than the inter-laminar strength causing delamination to initiate. 

This defect can be resolved by adding a supporting and sacrificial material to the back of 

the composite, which will provide local stiffness to the laminate as the drill exits. 

 

 

Figure 2.11: Peel up delamination when drill enters (left) and push out delamination when drill exits 

(right) [12]. 

 

Numerous research studies have been performed to investigate parameters that 

would induce defects while drilling composite materials and found that damage could be 

caused by tool wear, thrust force, drill type, and feed and speed rates [9]. Persson E. et al. 

[9] found delamination could because by overheating of the tool and using a blunt drill. A 

sharp drill bit tip will puncture through the last couple of plies of the laminate over a 

smaller area compared to a blunt tip (see Figure 2.12). Thus, those plies would be 
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subjected to a smaller bending force from the tip and produce less delamination. 

Furthermore, drilling-induced defects, such as fiber and matrix chip-outs are caused when 

the drill does not cut the fiber, instead it is torn out of the hole surface causing the surface 

to be rough [9]. In addition, overheating of the tool occurs when the drill speed rate and 

or thrust force is too high, such that friction between the tool and composite will generate 

heat and result in matrix damage. Continuously removing the cut material from the hole 

and using effective cooling methods can assist on achieving a good hole quality. 

 

 

Figure 2.12: Uncut fibers at the exit side caused by a sharp drill (left) and blunt drill (right) [9]. 

 

Thrust force is a critical parameter to control, as it causes delamination initiation 

and propagation in composite drilled holes [13]. Krishnaraj et al. [14] performed an 

experiment relating thrust force and speed and feed rates (see Figure 2.13). While they 

found thrust force decreases with a decrease in feed rate and increase in spindle speed 

rate, this can cause the hole diameter to different from desired nominal diameter (see 

Figure 2.14. This was found to be caused by self-induced vibration when the tool enters 

the material. The tool vibrates during the drilling process and if the feed rate is slow and 
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speed rate is high, the vibration and heating from friction between the tool and composite 

can lead to a larger hole diameter. Another researcher experimentally tested feed rate 

versus bearing stress and found that bearing strength increases with a decreased feed rate 

(see Figure 2.15) [15]. By decreasing feed rate, the thrust force from the tool onto the 

composite is lower, which decreases delamination. However, as stated earlier, low feed 

rate can enlarge the hole diameter due to vibration of the tool. All of these investigations 

on the drilling composites show that it is a very challenging task to attain a damage free 

hole. Through experiment, Krishnaraj et al. [14] found that the optimal spindle speed and 

feed rate for drilling thin carbon fiber composite laminates are 12,000 rpm and 0.137 

mm/rev, respectively.     

 

 

Figure 2.13: Effect of speed and feed rate on thrust force [14]. 
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Figure 2.14: Hole size from different feed rates at 12,000 rpm [14]. 

 

 

 

Figure 2.15: Bearing stress due to various drilling feed rates [15]. 
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2.4 EFFECT OF CLAMPING PRESSURE ON BEARING FAILURE 

Clamping pressure on bolted joints have been investigated by many researchers 

who all found that increasing clamping pressure will also increase bearing strengths (see 

Figure 2.17) [16-21]. Clamping pressure is defined as a torque load applied to the nut 

when assembling the bolted joint. The applied torque load will transfer from the nut to 

washer and washer to the composite laminate through frictional forces at the interface 

between those components. The amount of torque applied to the bolted joint can be 

translated to clamping pressure that the composite experiences, by dividing the load to 

the washer surface area. This clamping pressure applies lateral constraint to prevent out-

of-plane deformation at the bolted joint (see Figure 2.16). 
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Figure 2.16: Double lap joint fixture and specimen assembly. The applied torque-up load on the nut 

and transferred to the washers to provide lateral constraint (out-of-plane deformation). 

 

Wang et al. [16] experimentally characterized bearing failure with various 

clamping pressure and concluded that bolted joints can fail catastrophically if there is no 

lateral support (see Figure 2.18). An accumulation of bearing damage caused by 

compressive bearing stress of the pin would lead to shear crack growth. However, lateral 

supports could suppress shear cracks propagation and change the failure mode from 

catastrophic to progressive. Crews [17] performed static and fatigue bearing tests on a 

double lap shear configuration with a protruding head fastener, on various clamp-up 
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torques. He found that clamping pressure affects bolted joint failure modes. In a simple 

pin-bearing joint, when there is no clamping pressure, the resulting failure mode would 

have a “brooming” type characteristic near the hole edge (see Figure 2.18). However, at a 

high clamp-up torque, specimens fail in shear-out, tension, and then bearing failure and 

small clamp-up torque shifts the failure mode to shear-out then bearing (see Figure 2.19). 

Eriksson [18] studied lateral constraint effect on ultimate bearing strength and found 

specimens clamped at 5.4 N-m yielded 1.5 times higher strength than finger-tightened 

specimens, and 2.4 times higher strength than the specimen with no lateral constraint 

(i.e., pin-loaded). Xiao et al. [19] studied bearing strength and failure behavior of bolted 

composite joints. They concluded clamping forces from washer and bolts cause damage 

accumulation to expand along the in-plane direction, inside the washer region, in a 

gradual manner until the delamination extends beyond the edge of the washer, then joint 

response rapidly decreases. Lastly, Khashaba et al. [20] tested various clamp up torques 

and washer sizes on a double lap joint configuration and found that increasing washer 

size may improve contact pressure from the torque to improve bearing strength of the 

joint. However, if the washer size is too large, the bearing strength decreases because of 

the lower contact pressure. The optimal washer size was stated to be 18 mm for a 6 mm 

hole size. Much research was conducted to study the effect of lateral constraints from 

various washer sizes and clamp-up torques on bearing strength. This shows that there are 

many parameters to consider when developing a comprehensive understanding of bearing 

failure in composites. 
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Figure 2.17: Effect of clamping pressure on bearing strength and hole elongation [16]. 

 

 

 

Figure 2.18: Optical microscopies of bearing damage in bolted joints with various clamping pressure 

[16]. 
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Figure 2.19: Bearing failure modes due to clamping pressure [16]. 

 

 

2.5 EFFECT OF COMPOSITE LAYUP ON BEARING FAILURE 

Stacking sequence effect on bearing strengths were investigated and it was found 

that placement of certain plies can affect bearing strengths and failure modes of bolted 

laminates [4]. Irisarri et al. [21] studied three different layup orientations with increasing 

clamping force. The three laminates included quasi-isotropic, quasi-isotropic that is prone 

to delamination (high angle change 45°/-45° interface), and quasi-isotropic with 0°/90° 

interface. They concluded that bearing strengths of the quasi-isotropic layup is greater 

than the other two laminates because those laminates are more prone to delamination due 

to high Poisson ratio mismatch. The quasi-isotropic laminate with 0°/90° interface has the 

lowest bearing strength because there are more 90° plies than 0° plies and their interface 

is more likely to cause delamination. Quinn and Matthews [22] performed pin-bearing 

tests on glass fiber reinforced polymers with eight different stacking sequences and found 

that placing 90° plies at or near the surface of the laminate increases the bearing strength 

(see Figure 2.20). On the contrary, placement of 90° plies in the mid-laminate lowers the 
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bearing strengths. Laminates with 0° plies on the outer layers often fail in fiber splitting 

on the surface. Whereas, placing them in the interior of the laminate will show more 

delamination as the failure mode [23]. Wang et al. [16] and Park [24] also stated the same 

conclusions from their experimental research. In addition, Baba [25] studied the effect of 

having more 90° plies versus 0° plies and found that a layup of [0/90/0]s increases 

bearing strength by about 24% compared to [90/0/90]s (see Figure 2.21). The additional 

0° ply increases the bearing strength. Although conclusions from these experimental 

studies show bearing strengths are affected by the stacking sequence, more research is 

necessary to develop a better understanding of how ply placements affect bearing 

strengths because there are wide variations in the stacking sequence of composite 

laminates.   

 

 

Figure 2.20: Effect of stacking sequence on bearing failure load [22]. 
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Figure 2.21: Effect of 0° plies versus 90° plies on bearing strength [25]. 

 

 

2.6 FATIGUE BEHAVIOR OF COMPOSITES 

In an aircraft’s lifetime, it experiences many flight hours, which is often converted 

to structural cyclic loading from take-off, in-flight maneuvers, fuselage pressurization, 

and landing. Every time a structure is loaded or unloaded, it can initiate and propagate 

damage around fastener holes. Common fatigue damage around the holes may include 

hole wear (material degradation), delamination, material erosion, and fastener yielding. 

An accumulation of fatigue damage can lead to a structural failure, which can be 

catastrophic if damage is undetected and/or unrepaired. Thus, it is not only critical to 

study composite bolted joint in static test, but also fatigue. Saunders D.S. et al. [26] 

experimentally performed fatigue tests on a thick graphite/epoxy laminate with two 

countersunk fasteners in a single lap joint configuration. They concluded erosion of 

matrix is caused by hole wear produced by movement of the bolt during cyclic loading 

(see Figure 2.22). Fastener movement was found to increase measurably throughout the 
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fatigue loading. Additionally, erosion of the matrix occurs most readily in the 0° ply 

orientation, because it is unable to redistribute stress laterally away from the fastener 

contact area. This leads to crushing of matrix and fibers (see Figure 2.23).  

 

 

Figure 2.22: Movement of bolt during fatigue loading [26]. 

 

 

 

Figure 2.23: Hole wear caused by fatigue loading in composite bolted joint [27]. 
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Sypt et al. [28] performed fatigue tests on a pin-bearing joint and characterized 

fatigue failure to occur in three stages. In the first stage, which consists of several 

thousand cycles, the asperities generated by the drilling process are detached from the 

hole surface and the stiffness of the joint is steady. As the number of loading cycles 

increase in stage 2, the mechanical damage and hole wear appears, which creates crushed 

particles of carbon fibers and matrix. Further increase in cycles would increase the area 

of the worn hole and decrease joint stiffness, leading to ultimate failure. During this time, 

a significant amount of energy is dissipated, which creates bearing damage 

(delamination, kink band and cracks) and increased hole elongation (see Figure 2.24). 

The three stages of fatigue failure is summarized in Figure 2.25, where (a) shows the hole 

surface when asperities are removed from the hole surface  in the first thousand cycles, 

(b) shows the damage developed during the stabilized sequence and (c) shows the 

damage state at final failure.  
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Figure 2.24: Hole elongation during pin-bearing fatigue test [28]. 

 

 

 

Figure 2.25: Fatigue test of pin-bearing failure sequence [28]. 

  

 In summary, many parameters influence bearing strengths and damage 

morphologies. Some topics not discussed in this thesis, but that are also important to 

bearing failure are thermal effects, laminate thickness, loading types, and bolt-to-hole 
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clearance. All of the literature review discussed in this section provided important 

information on developing a deep-level understanding of bearing failure. Many studies 

indicated that delamination failure mode is observed in the development of bearing 

failure, but the formation and growth of delamination has not been fully understood. 

Therefore, the research presented in this dissertation project aims to establish quantitative 

and qualitative descriptions of the phenomena governing delamination behavior in bolted 

joints when subjected to fatigue loading.  
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3 EXPERIMENT TEST SETUP 

Three different experiments were performed to develop a comprehensive 

understanding of bearing damage. Bearing failure in composite material is an 

accumulation of damage caused by compressive loading, which consist of matrix cracks, 

delamination, fiber fracture, and fiber kinking. Though these failure modes are related, 

the focus of this research is to understand delamination initiation and propagation.  

The first experiment will be performed with a double lap shear (DLS) test 

configuration, which does not exhibit secondary bending compared to the single lap shear 

configuration (SLS). Additionally, this bolted joint will have a finger-tight torque of 0.5 

N-m, which will not introduce clamping pressure effects on the joint. DLS is an ideal test 

setup to study bearing damage because the parameters that influence bearing strength can 

be isolated. A typical bolted joint that has a DLS configuration can be found joining 

sections of fuselage on an aircraft. 

Results from DLS will be compared to the data from single lap shear (SLS) test 

configuration to study joint effect on bearing damage. SLS joints are more commonly 

found on an aircraft structure, such as in the assembly of wing sections and spar to 

fuselage skins. Bearing damage from DLS bolted joint are not the same as SLS due to the 

secondary bending effect and torque-up load. Thus, it is important to understand bearing 

damage behavior of this type of joint, in order to provide thorough information to assist 

engineers on aircraft future design, maintenance, and repairs. 

Lastly, data found from cyclic loading of DLS specimens show pin bending may 

have an effect on bearing damage development. Thus, the semi-circular notched (SCN) 
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experiment was designed to study this phenomenon. Since the test setup and the 

geometry of the specimen is not typically found on an aircraft structure, it cannot be used 

to make conclusions on bearing strength.  The results from this experiment will only be 

used to making conclusions on whether the pin affects delamination growth. 

 

3.1 SPECIMEN DESIGN 

The bearing specimens were fabricated using AS4/3501-6 carbon fiber-reinforced 

epoxy in three different 48-ply layups. Each of the three layups, have the same 

percentage of 0°, 90° and ±45° plies (see Table 3.1). The laminate labeled "Reference 

Laminate" was chosen as the baseline for all study cases. This was selected from an in-

service aging aircraft wing layup design. The other laminates had their ply orientation 

rearranged such that in one laminate there were large groupings of 0° plies and in the 

other were large changes in angle between adjacent plies. These specimens have a single 

9.53 mm bolt-hole located at an edge-to-hole diameter (E/D) distance of 4 for semi-

circular notched and 4.6 for single and double lap shear specimens to avoid shear-out 

failure (see Figure 3.1). All holes were drilled, reamed and countersunk in one operation 

using the CNC milling machine. The quality was verified through visual inspection, C-

scan and dye penetrate test. The conical height portion of the countersunk hole was 

machined to half the thickness of the specimen (see Figure 3.2). Double lap shear and 

single lap shear specimen overall dimensions were sized at 88.9 x 139.7 mm, whereas the 

semi-circular notched specimen was sized at 88.9 x 38.1 mm (see Figure 3.1).  
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Table 3.1: Bearing specimens layup information 

Specimen Type Layup 
Thickness 

Range (mm) 

Reference [±45/0
2
/90/0

2
/-45/0

2
/+45/0/-45/90/0/+45/0/+45/0/-45/90/0/±45]

s
 7.26-7.76 

Large 0° 

Groupings 
[±45/0

2
/90/0

2
/-45/0/+45

2
/-45

2
/0

2
/90

2
/0

4
/+45

2
/-45]

s
 7.23-7.65 

Large Angle 

Change 
[±45/0

2
/90/0

2
/-45/+45/0

2
/90/0

2
/-45/+45/0

2
/90/0/±45

2
]

s
 7.22-7.58 

 

 

 

Figure 3.1: Bearing Specimens for DLS and SLS (left) and SCN (right). 

 



 

33 

 

 
 

Figure 3.2: Bearing specimen cross-sectional view. 

 

 

3.2 COMPOSITE SPECIMEN DRILLING 

All composite holes were drilled, reamed and countersunk in one operation using 

a CNC machine. A portable vacuum with a hose extension was used in place of liquid 

lubricant to cool the tool and vacuum the carbon debris during the drilling process (see 

Figure 3.3). Liquid lubricant was not used since liquid can penetrate and be entrapped 

inside the composite if flaws (i.e., delamination and matrix burnt-out) develop during the 

drilling operation. Additionally, in the hole drilling set up, FR4 fiberglass was used as a 

backing material and replaced after completing each hole. This allowed the drill to 

penetrate through the fiberglass material each time the drill exits to prevent delamination. 

As concluded by researchers [9-11], flaws induced during the drilling process can reduce 

bearing strength and the composite’s fatigue life. Thus, a study of tool pecking and feed 

and speed rates was performed to determine the most optimal procedure for drilling 

composites without creating fiber pull-out, matrix burn-outs, and/or delamination.  
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Figure 3.3: Composite hole drilling setup on the CNC millimg machine. 

 

Every hole fabricated on the composite specimens used a titanium-nitride coated 

high speed steel drill bit, carbide-tipped tool steel reamer and titanium-nitride coated 

triangular carbide countersunk cutter (see Table 3.2). The drill bit removed the majority 

of the composite material (9.13 mm) and the reamer created the exact hole diameter of 

9.53 mm. Since the drill removed most of the composite material, it dulled rapidly. 

Through experiment, it was concluded that the drill was only able to produce five quality 

holes before becoming dull. Thus, it is highly recommended to use a carbide tip drill to 

increase the life of the drill when drilling composite material. The conical region of the 

countersunk hole was carefully fabricated using a 100° degree angle countersunk cutter 

and cut to half the laminate thickness. Prior to drilling, each laminate was meticulously 

measured at the drill location to ensure that the conical depth would stop at mid thickness 

of the laminate.  
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Table 3.2: Tools used to dril, ream and countersink a 9.53 mm hole on all composite specimens. 

Tools Description Supplier, Model # 

 
Short-length Drill Bit 

McMaster-Carr 

Model # 2908A52 

 

Carbide-Tipped 

Round-Shank 

Reamer 

McMaster-Carr 

Model # 3025A19 

 
 

Replaceable Carbide-

Insert Countersinks 

for 100 Degree Angle 

McMaster-Carr 

Model # 29245A81 

 

TiN Coated Triangle 

Carbide Insert 

McMaster Carr 

 Model # 29245A71 

   

 

Upon selecting the optimal parameters to fabricate the countersunk holes, a few 

experiments were performed. The baseline of speed and feed rates for fabricating holes in 

composite material was provided by NAVAIR (see Table 3.3). However, following those 

parameters did not produce a desirable hole quality for the experiments performed in this 

research. Optical microscopy was performed to the finished hole and there was evidence 

of rough spots on the hole surface, which may indicate that the feed rate was too high 

(see Figure 3.4). The tool was traveling through the thickness of the laminate fast enough 

that the drill did not have time to cut the material to produce a smooth hole surface. In the 

second attempt, the speed rate was increased to 2100 rpm and the feed rate was reduced 

from 50.8 mm/min to 12.7 mm/min for the drill and countersunk cutter. The reamer 

speed rate was increased to 250 rpm and the feed rate was reduced to 6.4 mm/min (see 
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Table 3.4).  The optical microscopy image shows a smoother finished hole surface but 

there were many gouges, which may indicate that the tool was overheating. When the 

tool becomes too hot, it can burn the matrix, causing gouges to the surface of the drilled 

hole (see Figure 3.5). Through these experiments and lessons learned, the parameters to 

drill, ream and countersink all tested specimens were developed (see Table 3.5). 

Overheating of the tool was resolved through implementing a pecking operation in the 

drill and countersink cutting, since this is where most of the material is removed. Optical 

microscopy and fluorescent dye penetrate tests were performed to verify hole quality (see 

Figure 3.6). Figure 3.7 shows that there are no gouges or delamination on the surface of 

the hole. Though the side of the laminate had large holes, it was not caused by the drilling 

process. Destructive sectioning of the specimen was performed using a wet tile saw to 

view the hole surface quality from the drilling process.   

 

Table 3.3: Baseline drilling procedure for fabricating a countersunk hole on a composite laminate. 

 
Drill Ream Countersink 

Speed Rate 2000 rpm 200 rpm 2000 rpm 

Feed Rate 50.8 mm/min 50.8 mm/min 50.8 mm/min 

Pecking Depth No Pecking No Pecking 0.076 mm 
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Figure 3.4: Optical microscopy image of a countersunk hole drilled from using the baseline drill 

parameters. Rough surfaces were created due to fast feed rate, which does not allow enough time for 

tool to cut the composite. 

 

 

 
Table 3.4: Drilling procedure with increasing speed rate and decreasing feed rate. 

 
Drill Ream Countersink 

Speed Rate 2100 rpm 250 rpm 2100 rpm 

Feed Rate 12.7 mm/min 6.35 mm/min 12.7 mm/min 

Pecking Depth No Pecking No Pecking 0.076 mm 
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Figure 3.5: Optical microscopy of countersunk hole with slow feed rate. The tool overheats due 

to friction causing gouches from matrix burn-out.      

 

 

Table 3.5: Parameters used to drill a 9.53 mm countersunk hole on all composite specimens using the 

CNC machine. 

 
Drill Ream Countersink 

Speed Rate 2100 rpm 250 rpm 2100 rpm 

Feed Rate 12.7 mm/min 6.35 mm/min 12.7 mm/min 

Pecking Depth 0.254 mm No Pecking 0.0762 mm 
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Figure 3.6: Optical microscopy of countersunk hole showing no flaws (i.e., delamination and gouges 

from matrix burnt-out). Drill parameters used to create this hole was used to fabricate all 9.53 mm 

countersunk hole for tested specimens. 

 

 

 

Figure 3.7: Flourescent dye penetrant test performed on the specimen that was fabricated with the 

optimal drill, ream and countersunk paraemters. No matrix burnt-out or delamination on hole 

surface. Gouges on the side of specimen was due to sectioning the specimen with a wet tile-saw. 

 

Through testing the variations of drill parameters, it was found that pecking 

through the depth of the laminate during the drilling and countersinking prevents over-

heating and gouges on the surface of the drilled hole. These tools can easily generate heat 

due to friction, particularly when drilling a thick laminate. Additionally, increasing the 
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speed and feed rates can reduce the contact time between the composite material, which 

may also help with over-heating of the tool. However, if the feed rate is too high and the 

laminate is thin or has no stiff backing material where the drill exits, then it may 

introduce delamination (see Figure 3.8). Detailed instructions on the drilling process for 

all holes fabricated in this research are shown in Appendix A. 

 

 

 

Figure 3.8: Delamination induced due to high drill feed rate and no stiff support where the tool exits. 

 

 

3.3 SINGLE LAP SHEAR (SLS) AND DOUBLE LAP SHEAR (DLS) TEST 

The modified double lap shear (DLS) and single lap shear (SLS) test fixtures were 

designed based on the ASTM D5961, a standard test method for bearing response in 

polymer matrix composite laminates [3]. The DLS fixture was modified from the 

standard to use a custom-designed countersunk pin with a 9.53 mm diameter shank (see 
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Figure 3.9). The single lap shear test fixture used an off-the-shelf Hi-Lok fastener 

(HL21PB12-16), which has a 9.53 mm diameter shank and a countersunk head (see 

Figure 3.10). Both the DLS custom designed pin and bearing fixtures were fabricated 

using high strength 17-4 PH stainless steel. However, only the pin was heat treated to 

H900 to increase material strength. Detailed drawings are shown in Figure 6.1 through 

Figure 6.3 in Appendix B. The DLS final fixture and specimen assembly includes a 

double nut mechanism on both sides of the pin to prevent loss of the initial "finger-tight" 

clamping pressure prior to testing.  This was applied using a torque wrench to ensure a 

uniform initial torque of 0.50 N-m for every specimen. The Hi-Lok fastener also used a 

double nut mechanism and a torque-up load of 45 N-m was applied. This load was 

selected based on the torque off load from the collar (HL86-12), which was designed to 

be used with the SLS Hi-Lok fastener. Replacing a new collar for each test is very costly, 

thus three collars were tested for the torque-off load and the average of them, which was 

45 N-m, was applied to all the SLS experiments in this research. All static and fatigue 

experiments were performed on a 22 kip MTS hydraulic machine. 
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Figure 3.9: Double lap shear test configuration using a cusom designed countersunk bolt. A torque 

load of 0.50 N-m (finger-tight) was used in this setup. 

 

 

 

 

Figure 3.10: Single lap shear test configration with hi-lock fastener. Torque up load of 45 N-m was 

applied to this joint configuration. 



 

43 

 

Bearing static tests were performed for both DLS and SLS test configurations. All 

three laminate types were tested at a loading rate of 0.50 mm/min until the force versus 

crosshead displacement plot showed significant nonlinear behavior and then were 

unloaded. After testing, hole elongation was measured using a hole gauge and 

micrometer and a final destructive optical microscopy was performed (see Figure 3.11). 

 

 

Figure 3.11: Location of where the hole elongation is measured using a hole gauge and micrometer. 

Measurements were taken three times and the averaged. 

 

 All DLS and SLS bearing fatigue tests began with a pristine specimen, where 

ultrasonic C-scans and initial static stiffness tests were performed prior to cyclic loading. 

Each specimen was statically loaded to the maximum load that it would experience 

during the fatigue test, in order to obtain the initial stiffness value and verify that the 

quality of hole would not cause strength reduction before testing. After the initial static 

test, the specimen was cyclically loaded for a desired number of cycles (e.g., 2,000 

cycles) without disassembling it from the fixture. The fatigue test was performed under 

constant peak load (load control) at a stress ratio of 0.05 (tension-tension). Before 

removing the specimen from the MTS machine, another static test was conducted to 

measure the stiffness change value of the joint. Hole elongation was physically measured 
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using a hole gauge and a micrometer and then the specimen was ultrasonic C-scanned to 

monitor delamination growth. This fatigue procedure was repeated for several increments 

of cycles until there was significant hole elongation observed. Lastly, after all testing was 

complete, destructive sectioning and optical microscopy were performed.   

 

3.4 SEMI-CIRCULAR NOTCH (SCN) TEST 

Microscopy images from DLS experiments indicated that pin bending may 

influence delamination propagation in bearing failure. Thus, the semi-circular notch 

(SCN) experiment was designed to investigate the effect of pin bending on bearing 

damage. SCN specimens consist of a semi-circular hole that is either countersunk or 

through-hole (see Figure 3.12). A stainless steel dowel pin was bonded to a fixture along 

the length of the pin to provide a uniform compressive loading on the specimen (see 

Figure 3.13). Through the DLS experiment, it was found that the straight shank region of 

the countersunk hole carried most of the bearing load. Thus, a straight dowel pin was 

used to load both the countersunk and through-hole SCN specimen in the shank region 

only (see Figure 3.14).  
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Figure 3.12: SCN through-hole and countersunk specimen geometry. 

 

 

 

Figure 3.13: SCN specimen and fixture assembly for bearing test on the MTS machine. 
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Figure 3.14: Top view (left) and side view (right) of SCN specimen and fixture assembly. 

 

A total of 18 specimens were tested for the different laminate and hole types using 

a hydraulic MTS test machine. Two aluminum plates were placed on both sides of the 

specimen before inserting them into the vise, similar to the washers in the DLS fixture. In 

order to achieve the "finger tight" torque that was used in the DLS experiment, the vise 

was tightened such that the specimen and aluminum plates remained stationary, but could 

still move with a small amount of hand-applied force. The static load was applied at a 

rate of 0.50 mm/min until the force versus crosshead displacement plot reached an initial 

load drop, which defines the ultimate bearing failure load. Some specimens were loaded 

beyond this ultimate bearing failure load to study the progression of damage over 

displacement (i.e., large hole elongation). Prior to testing, each specimen was 

ultrasonically C-scanned to ensure there was no induced damage due to the drilling 

process. When the test was completed, all the specimens were C-scanned again to capture 

the delamination growth and then sectioned to perform optical microscopy.  
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3.5 NONDESTRUCTIVE INVESTIGATION (NDI) 

The ultrasonic pulse-echo method was used as a nondestructive testing technique 

for all bearing specimens to detect defects in the composites. In this research, the 

ultrasonic C-scan system consist of a Mistras UPK-T10 automated tabletop scanner and 

an immersion tank with a scanning envelope of 254 mm length by 254 mm width (see 

Figure 3.15). The specimen was fully immersed in a water tank with a single immersion 

transducer, serving as both a transmitter and a receiver. For this particular transducer, the 

optimal focal length is one inch away from the scanning surface of the specimen. In the 

ultrasonic pulse-echo C-scan method, ultrasonic waves transmit through the thickness of 

the material and reflects back to the receiver when there is an inhomogeneity in the 

material, such as a flaw, or when waves reach the back wall of the specimen (see Figure 

3.16). The immersion transducer used was a 12.7 mm diameter, 5 MHz spherical focused 

longitudinal wave transducer (Mistras Group Inc., Part # IU5G2) that uses water as a 

couplant. There are typically three forms of immersion transducers including unfocused, 

spherically focused, and cylindrically focused. The spherical focus transducer was used 

because it can improve detection of small flaws compared to the other types of 

transducers. Detailed C-scan settings when using this particular transducer are shown in 

Appendix C. 
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Figure 3.15: Ultrasonic C-scan system. 

 

 

Transducer 

Fixture 

Composite 
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Figure 3.16: Ultrasonic pulse-echo technique. 

 

Data acquired from the pulse-echo method produces A-scan plots based on the 

time-of-flight (TOF), material velocity (VL) and material thickness (D) (see Figure 3.17). 

Equation 3.1 was used to determine the location of flaws through the thickness of the 

specimen. When there is a flaw in the material, ultrasonic waves reflect sooner than when 

it travels through the entire thickness of the material (i.e., no flaw) before reflecting back 

to the transducer. A collection of A-scan plots produces a C-scan image, which was used 

to visualize flaws in a 2D view of the specimen area (see Figure 3.17). Thus, an A-scan 

plot represents a single pixel on the C-scan. Each color on the C-scan image represents a 

different thickness in units of inches, thus providing information on flaw size and 

location. When ultrasonic waves reflect one wave or have no wave reflection, then the C-

scan image define it as missing data points. In this research, all C-scan images showing 

white color near the hole edge indicates loss of wave signal reflecting back to the 

transducer and black color for water. 
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Figure 3.17: C-scan (left) and the corresponding A-scan (right) for one pixel on the C-scan image. 

 

     (3.1) 

 

 

    

3.6 MTS HYDRAULIC TEST SETUP 

All static and fatigue bearing tests were performed at the University of California 

San Diego using a 22-kip capacity MTS hydraulic test machine. All static tests were 

performed under displacement control at a rate of 0.50 mm/min and unloaded upon 

reaching the desired load. Specimens were unloaded to near zero load before removal 

from the test machine to perform ultrasonic C-scanning. For fatigue bearing tests, the 

MultiPurpose TestWare (MPT) software was used to program both cyclic loading and the 
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stiffness check in one continuous test procedure. Detailed procedure for performing this 

experiment is shown in Appendix D. Before beginning the fatigue test, the specimen and 

fixture assembly was inserted into the MTS machine and the load cell was set to zero. 

This ensures the gripping pressure does not generate pre-load to the bolted joint prior to 

testing. After gripping, the specimen was gradually pre-loaded to 50% of the peak load. 

All fatigue bearing tests were performed using load control at a stress ratio of 0.05 

(tension-tension). After reaching the pre-set number of cycles, the MPT software stopped 

at the average force and decrease load to near zero before beginning the stiffness check. 

The stiffness check was a static test, where the same specimen was loaded to the 

maximum cyclic load and then unloaded. The slope of the load versus crosshead 

displacement is determined to be the current stiffness of the joint. Figure 3.18 illustrates 

the test procedure for performing cyclic loading. All fatigue tests were cycled until either 

reaching 4 times a typical aircraft life cycle (defined as 30,000 cycles per one life time), 

bearing failure, or if there was no significant growth of delamination observed from C-

scan images. 
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Figure 3.18: Illustration of cyclic loading procedure. 

 

 

Chapter 3 includes material as it appear in the Investigation of Delamination 

and Growth Behavior at Fastener Locations in Primary Composite Structures, 2017. 

Ngo, Mimi and Kim, Hyonny, Proceedings of the 32nd Annual American Society for 

Composites Technical Conference, 2017 and A Comparative Study on Pin Bearing 

Effect Under Bearing Static and Fatigue Failure, 2018. Ngo, Mimi and Kim, Hyonny, 

Proceedings of the 33rd Annual American Society for Composites Technical 

Conference, 2018. The dissertation author was the primary investigator and author of 

this paper.  
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4 EXPERIMENTAL RESULTS 

4.1 BEARING STRENGTHS 

Static bearing tests were performed for both double lap and single lap shear test 

configurations to understand the effect of joint configuration on bearing strength and 

damage morphologies. Bearing failure of composite materials is a complex phenomenon, 

thus studying the damage morphologies may assist in determining the root causes for 

bearing failure and thus permit accurate models to developed. A series of DLS static tests 

were performed to investigate damage at low, mid and ultimate bearing failure load 

levels. At the low bearing load level, joint stiffness remains linear, which is shown in the 

joint load versus crosshead displacement plot (see Figure 4.1). Specimens tested to mid 

load were stopped when the plot became nonlinear before reaching ultimate failure load. 

The onset of bearing damage was determined through a 5% deviation from the linear fit 

line from the bearing stress versus crosshead displacement data (see Figure 4.2). This 

criterion was chosen based on experimental results, where static tests were stopped when 

the bolted joint began to lose its stiffness by 2-5%. Bearing stress was calculated using 

Equation 4.1, where P is the applied load, k is force per hole factor (1.0 for single-

fastener), t is the total thickness, and D is the diameter of the bolt. In this equation, it was 

assumed that the shank region carried most of the load, thus the thickness was multiplied 

by one-half. 

 

     (4.1) 
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Figure 4.1: Typical bearing load vs. displacement plot form a static test. Load level definitions used 

to study progressive damage of composite specimens are indicated. 

 

 

Figure 4.2: Onset of bearing damage defined by 5% deviation from the experimental results. 
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4.2  BEARING PROGRESSIVE DAMAGE OF COMPOSITE MATERIALS 

Progressive damage of bearing failure in composites was studied through the 

double lap shear test configuration. Three specimens from each laminate types were 

loaded to low, mid, and ultimate loads and optical microscopy were performed. Bearing 

stress versus crosshead displacements were plotted for each laminate types at each load 

level. Applying low load to the specimen provide information on bearing damage 

initiation, whereas the mid load demonstrates damage progression before leading to 

ultimate failure. Specimens tested at low load were stopped when there was a slight 

decrease (~2-5%) in joint stiffness (see Figure 4.1). The initial joint stiffness was 

calculated as the slope of the applied load versus crosshead displacement in the linear 

region. 

  Figure 4.3 shows results plotted from the reference laminate type at these 

different load levels. The joint stiffness for the specimen tested at a low bearing load is 

about 8% greater than the one tested at ultimate bearing load. On the contrary, the other 

two laminate types have slightly lower joint stiffness when the specimens experience low 

load compared to ultimate load. Figure 4.4 shows results from static testing of three 

specimens with large groupings of 0° plies. Their joint stiffness are all within 5% 

difference from the largest to smallest change in stiffness from the same laminate type. 

Figure 4.5 shows the specimen with large change in angle plies. Specimens tested at the 

mid and ultimate loads were unloaded at the same load levels even though it was 

following the criteria for when to end the experiment (see Figure 4.1). This may be 

caused by the difference in the joint stiffness. Since the specimen tested at mid level is 
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stiffer than the one tested to ultimate load, the joint was able to carry a greater load before 

exceeding linear region of the load versus crosshead displacement plot. Table 4.1 

tabulates all of the initial joint stiffness from the static test for all laminate types. Table 

4.2: Peak load applied to the static DLS test specimens Table 4.2 summarizes the loads 

applied to each of the specimen types for the low, mid, and ultimate load categories. 

These values vary because each test was unloaded manually based on the applied load 

versus crosshead displacement plot provided by the MTS software during the experiment. 

 The small variations in the joint stiffness may be due to using a new specimen for 

each test, thus there can be slight variation in the manufacturing process that can 

influence the joint stiffness (i.e., laminate thickness). Another possible cause may be the 

slight change in clamping pressure. Although a torque wrench was used in an attempt to 

apply constant finger-tight clamping pressure on the bolted joint for all experiments, 

there may be some slight variation when the specimen and fixture assembly are placed in 

test machine. Since the clamping pressure is very low, the specimen could have moved a 

little while gripping pressure from the test machine was applied.  
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Figure 4.3: DLS static test of three Reference laminate tested at low, medium and ultimate loads. 

 

 

Figure 4.4: DLS static test of three laminates from the specimen type with large groupings of 0° plies 

tested at low, medium and ultimate loads. 
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Figure 4.5: DLS static test of three laminates from the specimen type with large change in angle plies 

tested at low, medium and ultimate loads. 

 

 

Table 4.1: DLS joint stiffnesses from static tests. 

Bolted Joint Stiffness 

Specimen Types Low Load Mid Load Ultimate Load 

Reference Laminate 45.0 kN/mm 40.5 kN/mm 41.3 kN/mm 

Large Groupings of 0° 

Plies 
43.5 kN/mm 45.9 kN/mm 44.9 kN/mm 

Large Change in Angle 

Plies 
39.8 kN/mm 46.4 kN/mm 40.4 kN/mm 
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Table 4.2: Peak load applied to the static DLS test specimens. 

Peak Load Levels 

Specimen Types Low Load Mid Load Ultimate Load 

Reference Laminate 36.7 kN 45.1 kN 56.8 kN 

Large Groupings of 0° 

Plies 
28.6 kN 39.4 kN 57.1 kN 

Large Change in Angle 

Plies 
28.1 kN 56.4 kN 56.9 kN 

 

 Optical microscopy performed on all static specimens were sectioned at a plane 

passing through the center of the bolt-hole and along the 0° plies, in the direction of 

loading (see Figure 4.6). A summary of these microscopies are shown in Figure 4.7. Each 

image represents a new tested specimen with damage accumulation from applying low, 

mid, or ultimate load levels for each of the specimen types. The columns represent the 

different load levels that the specimen experienced and the rows show the different 

laminate type that were investigated. 

 

 

Figure 4.6: Schematic view of microscopy sectioning. 



 

60 

 

 

Figure 4.7: Optical microscopies of DLS static specimens tested at low, mid and ultimate failure 

loads. 

 

 For all specimen types, it was observed that the majority of bearing damage 

accumulates in the shank region of the bolted hole, which corroborates the assumption 

made when calculating bearing stress (see Figure 4.7). Equation 4.1 only takes into 

account half of the laminate thickness, which represents the shank region. Additionally, 

shear cracks grow in the conical countersunk section and the outer surface of the laminate 

with increasing loads. At a low load level, it is evident that fibers fail due to fracturing at 

the bolt-bearing surface, where cracks form perpendicular to the laminate through-
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thickness direction (see Figure 4.8 through Figure 4.10). This can be observed for all 

three laminate types, indicating that matrix cracks initiates after the load versus 

displacement plot deviates from its linear region and cause the fibers to fracture. These 

fiber fractures do not shear in a diagonal direction or deeper in the length of the 

composite in the bearing direction, compared to the fiber fractures that occur at a higher 

load (see Figure 4.11 through Figure 4.13).  When increasing the applied load, matrix 

cracks propagate through the length of the specimen, in the direction of pin bearing and 

cause a longer length of fiber to become unsupported. Thus, the combination of 

compressive loading and the naturally misaligned fibers, will lead to micro-buckling of 

the fibers causing it to shear. This phenomenon is known as fiber kinking. A group of 

fibers kinking in one region of the laminate is known as a kink band. When the specimen 

is initially loaded, the matrix crack is extended to a small distance on the very edge of the 

hole, thus fibers are unlikely to buckle. Additionally, it was observed that matrix cracks 

grows toward the interface of the fibers and arrest, initiating delamination. Delamination 

is often found to occur between the interfaces where there is a change in angles due to the 

Poisson’s ratio effect [21]. When specimens are tested to ultimate load, it is more visible 

where delamination initiates and propagates due fiber fracture (see Figure 4.14 through 

Figure 4.16). Once the fibers fracture, the bearing loads are carried by the adjacent fibers. 

The bright silver lines in all the microscopy images are the 0° plies and the adjacent plies 

are either the 90° plies or a ±45° ply. Fiber fracturing causes a discontinuous load transfer 

in the direction of loading, thus a hypothesis is that some of the load spreads to the 

neighboring plies, pushing outwards from the fiber direction (see Figure 4.17). This may 

cause delamination to initiate and with greater load, it would propagate. From these 
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microscopy images, it can be concluded that fiber fracture, fiber kinking and matrix 

cracks were the main failure mechanisms observed at the boundary of the bolted hole.  

Damage in the specimen that have large groupings of 0° degree ply was not as 

severe as compared to the other two specimen types (see Figure 4.14 through Figure 

4.16). Since the 0° degree plies carried majority of the applied stresses, the larger 

groupings of 0° plies provide a higher local stiffness compared to a single 0° degree ply. 

The reference type specimen has smaller groupings and wider distributions of the 0° 

degree plies, which has lower local stiffness and result in having the greatest damage 

accumulation. The local compressive loads and inter-laminar stresses cause shear cracks 

to occur through the thickness of the laminate. Due to the complex nature of composite 

laminates, the direction of these shear cracks can vary significantly, as shown in Figure 

4.11 and Figure 4.14, where the reference laminate with mid and ultimate load levels 

show different directions of shear cracks. The specimen with a large change in angle plies 

have larger sections of 0° degree plies on the bottom of the shank region, thus the shear 

cracks do not propagate upwards towards the conical section of the specimen. This 

indicates that matrix cracks often branch in the direction of the stiffer region through the 

thickness of the specimen, and are likely not bridging across the relatively thick set of 

non-zero degree plies at the specimen center. 
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Figure 4.8: Microscopy of the DLS specimen from the reference laminate after loaded to low 

load (28.6 kN). 

 

 

Figure 4.9: Microscopy of the DLS specimen with large grouping of 0° plies after experiencing 

low load (36.7 kN). 
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Figure 4.10: Microscopy of the DLS specimen with large change in angle plies after 

experiencing low load (28.1 kN). 

 

 

Figure 4.11: Microscopy of the DLS specimen from the reference laminate after stopping the 

experiment at mid load (45.1 kN). 
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Figure 4.12: Microscopy of the DLS specimen with large grouping of 0° plies after experiencing 

mid load (39.4 kN). 

 

 

Figure 4.13: Microscopy of the DLS specimen with large change in angle plies that was stopped 

at mid load (56.4 kN). 
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Figure 4.14: Optical microscopy of a DLS specimen from the reference laminate type that was 

loaded to 57.1 kN. 

 

 

Figure 4.15: Optical mircoscopy of the DLS specimen with large grouping of 0° plies that was 

loaded to  57.1 kN. 
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Figure 4.16: Microscopy of the DLS specimen type with large change in angle plies after 

experiencing 56.9 kN.  

 

 

 

Figure 4.17: Demonstration of delamination initiation after fiber fracture. 
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4.3 DOUBLE AND SINGLE LAP SHEAR STATIC TEST COMPARISON 

Static tests were performed on the single lap shear (SLS) test configuration for all 

laminate types and results were compared to the DLS specimens. DLS results show that 

the initial damage occurs at a lower bearing stress for all specimen types compared to the 

SLS configuration by about a 5% difference (see Table 4.3). The values presented are 

averages of all static tests performed. Nine DLS specimens and three SLS specimens 

were tested to attain the initial bearing stress. Bearing stress data for all specimens tested 

under static loading can be found in Appendix E.  Figure 4.18 through Figure 4.20 show 

the typical bearing stress versus crosshead displacement of each laminate types. Since the 

SLS test configuration used Hi-Lok fasteners with a pre-load of 45 N-m, SLS joint 

clamping pressure was higher than the DLS tests. Clamping pressure is likely responsible 

for the joint stiffening in the early stage of loading for all the SLS specimens plotted. 

From these plots, it was observed that SLS specimens had a larger final failure 

displacement and lower bearing stress than the DLS specimen for all specimen types.  

The lateral constraint also allowed the SLS specimens to more gradually accumulate 

damage until reaching ultimate failure, thus displacement is greater compared to DLS 

specimens. In addition, the SLS joint configuration induces both shear and bending loads 

on the fastener, whereas the DLS mostly produce shear loads. Thus, the SLS specimens 

to fail at lower ultimate bearing stress level compared to the DLS specimens (see Table 

4.4).  
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Figure 4.18 DLS versus SLS static test results for the reference type spcimen. 

 

 

Figure 4.19: Static test results for DLS and SLS specimens with large groupings of 0° plies. 
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Figure 4.20: DLS and SLS static test results for specimens with large change in angle plies. 

 

 

Table 4.3: Average initial bearing strength. 

Specimen Type 
DLS Initial 

Damage 

SLS Initial 

Damage 

% Deviation 

from DLS 

Reference 822 MPa 861 MPa +4.7 % 

Large 0° 

Groupings 800 MPa 804 MPa +0.5 % 

Large Angle 

Change 884 MPa 922 MPa +4.3 % 
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Table 4.4 : Average ultimate bearing strength. 

Specimen 

Type 

DLS Ultimate 

Bearing Strengths 

SLS Ultimate 

Bearing Strengths 

% Deviation 

from DLS 

Reference 1564 MPa 1307 MPa -18 % 

Large 0° 

Groupings 1574 MPa 1212 MPa -26 % 

Large Angle 

Change 1570 MPa 1357 MPa -15 % 

 

 

The SLS static test microscopy images Figure 4.21 through Figure 4.23 

significantly more damage accumulation compared to the DLS static test specimens even 

though the DLS specimen failed at greater ultimate bearing load. Shear crack formations 

from the shank to the conical region that were observed in the DLS specimens were also 

observed in the SLS reference specimen and the large groupings of 0° degree plies 

specimen. The root cause for greater damage may be due to the initial clamping pressure 

of 45 N-m from the Hi-lock pin, which suppresses bearing damage from growing in the 

early stage of loading. As load increases, cracks propagate toward the edge of the bolt 

head, and then fail in a brooming behavior. This failure type is similar to one that was 

observed by Wang et al., in a pin bearing failure experiment, where there were no lateral 

constraints [16]. Since bearing loads were mainly carried by the shank region, cracks 

propagate from the bolt-hole surface and travel towards the outer surface of the laminate. 

The conical section provides lateral support and local stiffness on the top half of the 

laminate thickness, thus preventing cracks from growing towards that direction, until 

greater load is applied. This corroborates the hypothesis that damage will nucleate at the 
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boundary of the shank region first (i.e., at transition between straight shank and conical 

countersunk region), and then with additional applied stress the matrix cracks, 

delamination, and fiber fracture will propagate to the conical section.   

 

 

Figure 4.21: Microscopy of the SLS reference laminate that experienced 45.9 kN. 
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Figure 4.22: Microscopy of the SLS laminate with large groupings of 0° plies after experiencing 44.8 

kN. 

 

 

Figure 4.23: Microscopy of image from the SLS specimen with large change in angle plies that was 

loaded to 47.4 kN. 
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4.4 DOUBLE LAP AND SINGLE LAP SHEAR FATIGUE TEST 

 Fatigue bearing tests were completed for both double lap and single lap shear 

specimens.  Delamination initiation and propagation, bolted joint stiffness and hole 

elongation were investigated through performing three different study cases. In all of 

these studies, delamination growth was monitored through ultrasonic (UT) C-scans after 

completing a desired number of cycles. Figure 4.24 shows an example of a C-scan of a 

countersunk specimen after completing a full fatigue test. Each color corresponds to a 

thickness value of the specimen. Yellow is about 0.30 inches (7.62 mm), which is the 

total thickness of the laminate. The various shades of blue represents the different depths 

of damage from the scanned surface (shank side facing transducer). The outer red circle 

represents the countersunk largest diameter, whereas the inner red circle is the straight-

shank diameter. It should be noted that these holes were filled with putty material to 

prevent water from entering during the submerged C-scan process. Thus, there are 

missing data (white color) towards the center of the red circle because of the mismatch in 

material acoustic impedence causing high attenuation in the signal. Since using the pulse-

echo UT technique to produce the C-scan images, the angle of the concial region reflects 

the return signal in different directions away from the transducer. Therefore, bearing 

damage within the countersunk diameter was not reliably measured with this method. 
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Figure 4.24: Example of a countersunk specimen C-scan image. 

 

In the first fatigue test study, a double lap shear specimen was subjected to cyclic 

loading at 38% of the ultimate bearing stress and then perform cyclic test again at 50% of 

the ultimate bearing stress. This investigates the relationship between delamination 

propagation at increasing load levels and hole elongation. The specimen that has large 

groupings of 0° plies was subjected to 18 kN at 4 Hz for the first 78,000 cycles and then 

24 kN at 2 Hz until a total of 178,000 cycles. This particular fatigue test was chosen to 

exceed the preset test condition of 4 times an aircraft life cycle to better understand 

damage propagation. Static tests were performed after completing a set number of cycles 

and the slope of the plots during up-loading was defined as the current stiffness state of 

the joint (see Figure 4.25). Joint stiffness versus number of cycles plotted in Figure 4.26 

shows a sharp increase in stiffness at the very beginning, from 0 to 8,000 cycles, and then 

a slight decrease before being stable at 20,000 cycles. This corresponds to about 1% hole 

elongation. Joint stiffness remained roughly constant until 78,000 cycles during the 18 

kN loading. Upon increasing the peak load to 24 kN, the hole elongation rate increased 

again with additional damage growth from 1.3% to about 9%. Delamination propagation 
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caused by the increased load can be observed as the difference between the UT C-scan 

images at 78,000 cycles and 98,000 cycles (see Figure 4.27). Then, the joint stiffness 

began to fluctuate as the specimen continued to be cyclically loaded, but the stiffness 

never reduced to the initial level. The stiffness increase during the initial loading cycles is 

thought to be due to the fact that some debris created during the test is compacted on the 

bolt-hole surface and therefore creating a tight bolt to hole clearance. McCartney et al. 

[29] experimentally tested clearance hole and found that increasing clearance between the 

bolt and hole can reduce the joint stiffness by 30%. Thus, explaining how stiffness can 

increase when debris from the fatigue test creates a more tight fit contact between the bolt 

and hole. Without increasing the fatigue load, the hole does not elongate and there is no 

significant growth in delamination. This type of joint behavior indicates the delamination 

may arrest if load does not increase beyond the initial loading in fatigue test. 

Additionally, measuring hole elongation may possibly reveal if there is delamination 

propagation within the composite without performing ultrasonic C-scan. 
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Figure 4.25: Static test plots performed after completing a set number of cyclic loading for a single 

specimen. 

 

 

Figure 4.26: DLS fatigue test results illustrating percent change in joint stiffness and hole elongation 

verus number of cycles. 



 

78 

 

 

Figure 4.27: Ultrasonic C-scan images for a single DLS fatigue specimen used to monitor 

delamination propagation. There are no significant delamination growth until increasing load, which 

can be observed at 78,000 cycles and 98,000 cycles. 

 

Optical microscopy was performed on the specimen after 178,000 cycles. Severe 

damage accumulated in the shank region and bottom half of the conical section where it 

intersects with the shank (see Figure 4.28). Failure mechanisms include fiber kinking due 

to compression-induced load from the pin bearing, delamination, and matrix cracking. 

Also, this image shows that when fibers undergo compressive fracture in the 0° plies, it is 

associated with shear cracking in the neighboring 90° and 45° plies. When opposite shear 

cracks join together, it forms wedge-shape features that promote delamination 

propagation during cyclic loading.   
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Figure 4.28: Optical microscopy of a DLS specimen after performing 178,000 cycles. Significant 

damage occurred in the straight shank region of the bolted hole. 

 

The second fatigue study was performed on the DLS joint configuration to 

investigate the damage growth behavior when applying 66% and 50% of the ultimate 

load for all specimen types. Selecting 66% ultimate load to perform the fatigue test stems 

from using a 1.5 factor of safety, which is commonly used in the aerospace industry. The 

66% of ultimate load is equivalent to the limit load, when using 1.5 factor of safety. 

However, fatigue test results from the high loading condition caused the hole to elongate 

and damage to propagate very early on (about 4,000 cycles) in the experiment (see Figure 

4.29), thus making it challenging to investigate bearing damage behavior during the 

fatigue test. This outcome motivated the reduction of the load to 50% of the ultimate load 

in subsequent cyclic load tests to allow for a more gradual damage propagation. This 

behavior was observed for all the laminate types.  
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Figure 4.29: Bolted joint after 4,000 loading cycles at 66% of the ultimate bearing load. 
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Hole elongation was monitored after completing each set of cyclic loading using a 

small hole gage and a micrometer. Table 4.5 shows a summary of hole elongation 

measured from one specimen of each laminate type that were tested at 66% ultimate load. 

In total, there were two specimens tested per laminate types (see Appendix F). 

Comparing the three different laminates, it can be seen that the specimen type with large 

change in angle plies have much less hole elongation compared to the other two types. 

One possible reason for this large difference in hole elongation between the laminate 

types may be due to damage induced during the drilling process. As explained in the 

literature review section, drilling induced damages, such as delamination and matrix 

burn-out was found to reduce strength of the material [16], [10]. In comparsion to the 

specimens tested at 66%, the specimens tested at 50% ultimate bearing stress had much 

smaller hole elongation (see Table 4.6). At 2,000 cycles, the Reference laminate hole 

elongates to 1.32 mm at the high bearing stress compared to 0.051 mm from the low 

bearing stress, which is approximately 26 times larger. A comparison of all DLS fatigue 

tests are shown in the Figure 4.30 where these measured values are plotted for 

comparison.  

 

 

 

 

 



 

82 

 

Table 4.5: Hole elongation measured after completing a set number of cycles for a DLS specimen 

loaded at 66% of ultimate bearing stress from each laminate type. 

Number of Cycles 
Reference 

Laminate 

Large Groupings 

of 0° Plies 

Large Change in 

Angle Plies 

1,000 1.32 mm 1.19 mm 0.27 mm 

2,000 1.32 mm 1.30 mm 0.27 mm 

3,000 1.32 mm 1.37 mm 0.30 mm 

4,000 1.60 mm 1.50 mm 0.30 mm 

 

 

 

 

Table 4.6: Hole elongation measured after completing a set number of cycles for a DLS specimen 

loaded at 50% of ultimate bearing stress from each laminate type. 

Number of Cycles 
Reference 

Laminate 

Large Groupings 

of 0° Plies 

Large Change in 

Angle Plies 

2,000 0.051 mm 0.076 mm 0.051 mm 

4,000 0.102 mm 0.152 mm 0.127 mm 

6,000 0.127 mm 0.178 mm 0.152 mm 

10,000 0.178 mm 0.254 mm 0.203 mm 

26,000 0.178 mm 0.0279 mm 0.203 mm 

41,000 0.203 mm 0.0279 mm 0.203 mm 

61,000 0.229 mm 0.305 mm 0.203 mm 

101,000 0.229 mm 0.330 mm 0.229 mm 

120,000 0.254 mm 0.330 mm 0.254 mm 
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Figure 4.30 shows the hole elongation versus number of cycles for each of the 

laminate types. Specimen types from the large groupings of 0° plies and large change in 

angle plies have hole elongattion beyond 4%, which is typically considered bearing 

failure (or maximum permissible elongation) in the aerospace industry. Those particular 

specimens may have had drilling-induced damage that was not detected through 

ultrasonic C-scanning because it was within the conical diameter (see Figure 4.31). As 

discussed in the background chapter, having high feed rates, inadequate backing support 

or dull tools from the drilling process can all introduce flaws within the 

laminate.Although most holes were fabricated at UC San Diego lab facility, some 

specimens were sent to an external machine shop. Therefore, not all specimens that were 

tested under fatigue had this type of damage because of how the holes were fabricated. 

Half of the holes were meticuously machined in a machining lab at UC San Diego, which 

resulted in having a hole elongation below 4 percent, even after 80,000 cycles of loading. 

Some specimens were sent to a machine shop and their hole elongation measured were 

greater than 4 percent. Despite the larger change in percent hole elongation, the trend 

found in all laminate types are the same. By applying a fatigue load at constant 

amplitude, the hole would elongate in the early cycles and become steady. Hole 

elongation stops increasing after 50,000 cycles and continue to not grow until the test was 

stopped at 120,000 cycles, which is equivalent to four times the life cycle of an aircraft.  
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Figure 4.30: DLS fatigue test results for each laminate type comparing specimens loaded at 

66% versus 50% ultimate bearing stress. 
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Figure 4.31: An example of a pristine specimen with delamination induced by drilling. 

 

In total 17 specimens were tested for DLS fatigue test and their joint stiffness, 

hole elongation and delamination were monitored through performing static tests, hole 

gauge measurement, and UT C-scans. Figure 4.32 show all of the plots from a series of 

static test performed after completing a desired set of cycles. Each figure represent a 

laminate type that were loaded at 50% ultimate bearing load and completed 120,000 
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cycles. All bearing fatigue tests were stopped after reaching 120,000 cycles (4 times an 

aircraft lifetime) or when the pin fractures. The stiffness was calculated from the slope of 

the loading plot for each laminate types comparing joint stiffness versus the number of 

cycles are shown in Figure 4.33 through Figure 4.35. Those plots show that when hole 

elongates and the joint stiffens in the early cycles, up to 10,000-20,000. After the initial 

increase in joint stiffness, it fluctuates throughout the fatigue test. One key finding is that 

the joint does not return back to its original joint stiffness, which may be caused by debris 

accumulating on the bolt hole surface. Each time the pin was unloaded and then loaded 

again, the debris from the damage surface may be compacted on the hole surface. This 

creates a new and tighter clearance between the bolt and hole surface. Thus, when static 

test is performed immediately after a set number of cycles, the pin is bearing against a 

locally stiffened surface until damage significantly propagates. This phenomenon is 

similar to the conclusions made on bolt-hole clearance influence on bearing strengths. 

Researchers found that bolt-hole clearance affects load distribution when the joint is 

initially loaded, but not the ultimate bearing strength of the joint [29]. After each fatigue 

test, the debris changes the bolt-hole clearance and as a result changes the initial contact 

stress. Since the fatigue tests were performed under constant load, there were no 

significant damage observed beyond the initial growth. This indicates that delamination 

will eventually arrest under cyclic loading, until the applied load is increased. 

Additionally, Figure 4.33 through Figure 4.35 plots show that there is a relationship 

between the percent change of hole elongation and joint stiffness. When the hole 

elongation stops growing, then the joint stiffness change levels out. C-scan images on 

those plots show that delamination extends beyond the conical diameter, at the inflection 
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point where the hole elongation stops propagating and with increasing cycles, there was 

no significant change in the damage growth. Ultrasonic C-scans images in Figure 4.36 

supports this conclusion. Each image is from the same tested specimen after completing a 

set number of cycles. This allows for delamination propgation to be monitored in one 

completed fatigue test. The greatest damage produced in the C-scan image shows dark 

blue color in the first 4,000 cycles before seeing light blue color. Colors shown on the C-

scan images were produced based on the time it takes the ultrasonic wave to reflect back 

to the transducer after transmitting through the composite. This time is converted into 

measurement of depth through the thickness of the laminate. Based on the color scale in 

Figure 4.36, darker blue means it is closer to the outer surface of the laminate on the 

shank region. This shows that delamination may occur towards the bottom straight shank 

region, before propagating through the thickness of the laminate, towards the conical 

region. Shear cracks propagating through the thickness may indicate that there are more 

intra-laminar shear stress bridging cracks compared to the inter-laminar shear stress that 

initiates delamination. After 10,000 cycles, there is no significant delamination growth 

observed in the C-scan images. All specimen types show the same behavior. Although, 

the reference laminate in Figure 4.36 show dark blue lines around the laminate, indicating 

delamination, it is located on the outer surface. Thus, conclusions made about the bearing 

damage behavior under cyclic loading is still valid because it did not affect where the pin 

is bearing against the specimen.  
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Figure 4.32: Static tests performed after completing a set of cyclic loading to monitor 

bolted joint stiffness for all lamiante types. 
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Figure 4.33: Change in joint stiffness and hole elongation for the reference laminate 

that was cyclic loaded at 50% ultimate bearing stress. 

 

 

Figure 4.34: Change in joint stiffness and hole elongation for the laminate with large 

groupings of 0° plies that was loaded at 50% ultimate bearing stress. 
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Figure 4.35: Percent change in hole elongation and joint stiffness versus cycles for 

for the specimen with large change in angle plies that was loaded at 50% ultiamte 

bearing stress. 
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A) 

 

B) 

 

C) 

 

Figure 4.36: C-scan images used to monitor delamination growth in fatigue test for A) large 

groupings of 0° plies, B) reference lamiante and C) large change in angle plies. 
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Ultrasonic C-scan images comparing the 66% versus 50% of the ultimate bearing 

stress support the hole elongation versus number of cycles conclusion. Two specimens 

that have large groupings  0° degree plies in Figure 4.37 were either loaded at 66% or 

50% ultimate bearing stress. The top row images represent a specimen that has been 

loaded to 66% ultimate bearing load and bottom is 50%. These images show that the rate 

of hole elongation may indicate the severity of bearing damage, such that measuring hole 

elongation can be a method of assessing delamination propagation without using costly 

NDE techniques. In the early stage of the fatigue test, the specimen loaded at 66% 

ultiamte bearing load shows that the rate of hole elongation is greater and bearing damage 

is more severe compared to the 50% tested specimens. Furthermore, damage in the 66% 

specimens keep increasing, as shown in Figure 4.37, corresponding to increasing hole 

elongation, as shown in Figure 4.30. Meanwhile, the 50% specimens show little damage 

change after 22,000 cycles in Figure 4.37, corresponding to the relatively little (or no) 

increase in hole elongation, as plotted in Figure 4.30 for the 50% of ultimate tests. 
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Figure 4.37: Ultrasonic C-scans of specimen cycled at 66% ultimate bearing stress (top) versus 50% 

ultimate bearing stress (bottom). 

 

Optical microscopies comparing the specimens cycled at 66% ultimate bearing 

loads are shown in and Figure 4.38 through Figure 4.40. The specimens that experienced  

50% ultimate bearing loads are shown in Figure 4.41 through Figure 4.43. Major failure 

modes include matrix cracks, delamination, shear cracks, and material erosion. The 

microscopy images also show shear cracks initiating from opposite direction and moving 

towards the same direction. The joining of these two shear cracks initiates delamination 

and creates a wedge shape feature, which propagates delamination as loading is applied 

on the bearing face by the fastener. When shear cracks form, it can either grow towards 

the outer surface of the laminate, in the shank region, or towards the conical region of the 

laminate. Shear cracks that move towards the outer surface of the laminate can initiate 

delamination near the last few plies, instead of arresting when it reaches the last ply. This 

may be caused by the lateral constraint from the finger-tight washers that were applied 

prior to performing the fatigue test. As shown in Figure 4.33 through Figure 4.35, joint 
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stiffness increases in the beginning of the cyclic load and becomes steady. However, it 

does not decrease below the initial joint stiffness. Shear cracks may have arrested at the 

very last ply and not initiate delamination, if the shear cracks travel beyond the washer 

diamater. As described by Wang et al. [5], shear cracks extending beyond the washer will 

behave similarly to a pin bearing joint and fail catastrophically. When shear cracks move 

toward the conical region of the laminate, delamination will also be initiated near the 

conical and straight shank interface. This phenomenon was observed for the specimen 

loaded at 50% ultimate bearing load and may be caused by local stiffness from the 

conical section of the laminate and the lateral support of the washer. However, specimens 

loaded at 66% ultimate bearing load show delamination occuring in both the shank and 

conical region of the laminate. The high fatigue load caused the pin to impact the bolted 

hole surface more violently, thus dissipating more strain energy through the laminate 

thickness. This may lead cracks propagation to extend towards and through the conical 

region. Additionally, at the 66% ultimate bearing load, specimens show more material 

erosion occuring on both the interface between the shank and the conical region as well 

as the bottom edge of the straight shank region. This may be caused by pin repeated 

impact in the loading direction and bending of the pin. In order to develop a deep-level 

understanding of whether or not pin bending effects bearing damage, the semi-circular 

notched (SCN) experiment was created.   
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Figure 4.38: Microscopy of the reference laminate after cyclic loading it to 66% ultimate 

bearing stress. 

 

 

Figure 4.39: Microscopy of the DLS specimen with large grouping of 0° plies after 

performing cyclic load at 66% ultimate bearing stress. 
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Figure 4.40: Microscopy of the DLS specimen with large chagne in angle plies after 

performing cyclic load at 66% ultimate bearing stress. 

 

 

Figure 4.41: Microscopy of DLS reference laminate after experiencing cyclic load at 50% 

ultimate bearing stress. 



 

97 

 

 

 

Figure 4.42: Microscopy of DLS specimen with large grouping of 0° plies after 

experiencing cyclic load at 50% ultimate bearing stress. 

 

 

Figure 4.43: Microscopy of DLS specimen with large change in angle plies 

after cyclic loading it at 50% ultimate bearing stress. 
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4.5 SEMI-CIRCULAR NOTCH STATIC TEST 

 The semi-circular notched (SCN) experiment was developed to investigate the 

effect of pin bending and results from these tests were compared to DLS test results. Both 

experiments were performed using specimens having the countersunk hole, however the 

SCN configuration also tested straight through-hole specimens. Static test results for the 

three types of SCN and DLS specimens are shown in Figure 4.44. These plots show that 

the DLS joint has a significantly higher bearing strength (about 2X) compared to the SCN 

countersunk and through-hole specimens. Table 4.7 and Table 4.8 summarizes the 

average initial failure stress and ultimate bearing strength of the different configurations 

for all tests. Bearing stress values of the countersunk holes were calculated by 

considering only half the laminate thickness area, since it was assumed that the shank 

region carried all of the bearing loads. In the DLS configuration, there was a consistent 

finger tight torque that was applied directly on the bolt, which provided a lateral pressure 

closer to the joint than in the SCN experiment. The lateral pressure in the SCN was 

applied from the vise to the two sliding aluminum plates acting as the lateral constraint to 

restrict brooming phenomena that was found in pin bearing tests, which has no lateral 

constraint [16]. However, adding the two plates in the SCN test configuration may have 

helped with the brooming effect, the applied lateral force is further away from the pin 

loading location, compared to the DLS test setup. Thus, global stresses in the SCN 

specimens are not the same, but the local stresses at the pin loading location would 

theoretically be similar to DLS specimens. Removing the aluminum plates will change 

the experiment into a pin loading. Therefore, lateral reinforcement is necessary to 

emulate the DLS joint configuration as close as possible. 
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Figure 4.44: DLS and SCN static test results for three laminate types 

. 
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Table 4.7: Average initial failure stress from DLS and SCN static tests showing that regardless of the 

test type, their initial failure stress is similar.  

Average Initial Failure Stress  

Specimen Type 
DLS 

Countersunk 

SCN 

Countersunk 

SCN      

Through-Hole 

Reference 

Laminate 
822 ± 54 MPa 768 ± 30 MPa 741 ± 29 MPa 

Large 0° 

Groupings 
800 ± 53 MPa 685 ± 19 MPa 740 ± 23 MPa 

Large Angle Ply 

Change 

884 ± 156 

MPa 
761 ± 15 MPa 714 ± 15 MPa 

 

 

Table 4.8: Bearing strength from DLS and SCN static tests. 

Average Bearing Strengths  

Specimen Type 
DLS 

Countersunk 

SCN 

Countersunk 

SCN      

Through-Hole 

Reference 

Laminate 
1564 MPa 774 ± 30 MPa 741 ± 82 MPa 

Large 0° 

Groupings 
1574 MPa 699 ± 14 MPa 740 ± 6 MPa 

Large Angle Ply 

Change 
1570 MPa 761 ± 20 MPa 714 ± 15 MPa 
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 Bearing strengths for the countersunk and through-hole in the SCN experiment 

showed no significant differences between the laminate types. Since the pin loaded on the 

countersunk hole was only loaded on the straight shank region its bearing strength is 

similar to the through-hole. However, microscopy showed different damage 

morphologies between these two hole types (see Figure 4.45). All of these microscopy 

images were taken by sectioning the specimens along the loading direction, which is 

parallel to the 0° plies. The images in the first row are the SCN through-hole specimens 

for the reference laminate, large groupings of 0° plies and large change in angle plies 

from left to right, respectively. Bearing damage was found on both the top and bottom 

edges of the hole, such as matrix cracks, delamination, fiber fractures and shear cracks. 

Results indicate that matrix cracks near the center of the through-hole specimen, which 

lead to kink band formation. These kink bands eventually lead to shear cracks traveling 

through the outer surface of the laminate. Other researchers observed similar results from 

performing DLS static test on a protruding head fastener [4, 5]. Ultrasonic C-scan images 

of the through-hole specimens show dark blue color around the hole, indicating that the 

delamination occurs near the outer surfaces of the specimen (see Figure 4.46). The color 

scale is dependent on the thickness of the laminate. Thus, darker blue color represents 

delamination closest to the outer surfaces and lighter blue is approximately near the 

center depth of the laminate.  

 The most common failure mechanism shown in both the countersunk and 

through-holes were shear cracks, which occurs when matrix cracks cause the fibers to 

become unstable and shear under in-plane compressive load. In comparison to the 

through-hole specimens, the countersunk holes for both the SCN and DLS test 
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configuration have most of its damage adjacent to the bottom outer surface of the straight 

shank portion of the hole and all specimen types exhibit shear cracks. These shear cracks 

were not found in the conical region. Fibers between the shank and conical interface have 

support from the conical region, whereas the bottom portion of the shank region is 

adjacent to a free surface where there is no lateral constraint suppressing fiber buckling. 

Thus, there is delamination observed in the bottom of shank surfaces than in the conical 

region. 

The pin bending effect motivated the design of the SCN test configuration, which 

actually eliminates pin bending. Comparing both the countersunk hole SCN and DLS 

bolted joint static test, it was found that the very similar shear cracks and delamination on 

the bottom of the straight shank region since this damage feature was present in both 

cases (i.e., with and without pin bending present). Thus, such damage cannot be 

attributed mainly to the pin bending (as originally thought to be so). Instead, the DLS 

configuration suppressed delamination from initiating near the conical and straight shank 

region of the hole. This interface has large shear stresses and when the pin bears against 

this conical region, it behaves as a lateral constraint preventing delamination from 

growing. From microscopy, it is evident that there is more delamination along the 

interface between the conical and straight shank region for the SCN countersunk hole 

than in the DLS bolted joint (see Figure 4.47). Additionally, the ultrasonic C-scan shows 

light blue color around the SCN countersunk hole, which illustrates that there is 

delamination in near the center of the laminate (see Figure 4.46).  
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Figure 4.45: Microscopies of SCN through-hole (left) and countersunk (right) specimens after 

bearing static test. 
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Figure 4.46: Ultrasonic C-scans of SCN through-hole (top) and countersunk hole (bottom) after static 

test. 



 

105 

 

 

Figure 4.47: Microscopies of DLS versus SCN countersunk specimens after performing static test. 
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 Damage morphologies due to pin bending in SCN static tests for countersunk 

specimens were compared to the DLS fatigue tests. Microscopy images of the fatigue test 

showed shear cracks formation near the bottom of the shank region and it was previously 

assumed to be caused by pin bending (see Figure 4.48). However, the SCN countersunk 

static test experiment showed similar shear cracks. This is due to the in-plane 

compressive loads, which created matrix cracks causing the fibers to become unstable. 

Since the bottom of the shank is a free surface, the fibers have a tendency of more easily 

fracturing or buckle under compressive loading at this location. Therefore, the pin 

bending did not affect the shear crack formation found in the fatigue tested DLS 

specimens. Instead, pin bending may have caused material erosion at the corner of the 

bottom shank region (see Figure 4.48). Material erosion was not observed in the static 

tested specimens for both DLS and SCN test configurations. However, it is visible in 

DLS fatigue tests that were loaded at 50% and 66% ultimate bearing stress. During the 

loading stage of the fatigue test, the pin may bend and force the already existing shear 

cracks further into the specimen. Then when the pin unloads, it creates some space 

between the pin and bolt hole which allow some debris around the corners of the shank 

region to be removed from the hole bearing surface (see Figure 4.49). In addition, the 

specimen was removed from the test fixture after a number of cycles to perform 

ultrasonic C-scan, which may also contribute to the material erosion.  
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Figure 4.48: Optical microscopies of DLS fatigue versus SCN countersunk static tested speciimen for 

all laminate types. 
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Figure 4.49: Pin bending effect on material erosion during fatigue test 

 

 

Chapter 4 includes material as it appear in the Investigation of Delamination 

and Growth Behavior at Fastener Locations in Primary Composite Structures, 2017. 

Ngo, Mimi and Kim, Hyonny, Proceedings of the 32nd Annual American Society for 

Composites Technical Conference, 2017 and A Comparative Study on Pin Bearing 

Effect Under Bearing Static and Fatigue Failure, 2018. Ngo, Mimi and Kim, Hyonny, 

Proceedings of the 33rd Annual American Society for Composites Technical 

Conference, 2018. The dissertation author was the primary investigator and author of 

this paper.  
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5 FINITE ELEMENT MODELING 

Semi-circular notched specimens were modeled using finite element analysis 

(FEA) to comprehensively understand: (i) stresses developed during static bearing test 

and (ii) delamination initiation and propagation. Crack initiation and propagation was 

studied through using the Virtual Crack Closure Technique (VCCT), which is a 

computational fracture mechanics subroutine implemented in Abaqus, a commercial FEA 

software [34]. In addition, Hashin failure criteria was included in the model to allow 

material degradation as delamination grows in order to capture a more realistic bearing 

failure behavior.  The assumptions and limitations of VCCT and Hashin failure criteria 

will be discussed.  

 

5.1 VIRTUAL CRACK CLOSURE TECHNIQUE (VCCT) 

Virtual Crack Closure Technique (VCCT) uses linear elastic fracture mechanics 

approach to calculate strain energy release rates, with the assumption that the energy 

required to separate a surface is the same as the energy needed to close the same surface. 

A delamination can be simulated as a fracture process because a delamination is a 

separation between plies, which can be seen as a crack in a composite material 

specifically running between the lamina. In fracture mechanics, strain energy release rate 

(G) is a quantity that is compared to the critical strain energy release rate (Gc) to 

determine when crack propagates. When G is greater than Gc, then the crack will grow. 

Additionally, there are three ways in which loads can be applied on a material to enable 

crack propagation.  In Mode I, forces are applied perpendicular to the crack growth 
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direction, creating an opening mode. Mode II is when forces produce an in-plane shear 

stress across the cracks, simulating a sliding mode. Lastly, Mode III is due to an out-of-

plane shear stress, similar to a tearing mode (see Figure 5.1). 

 

 

Figure 5.1: Three frature modes including Mode I (opening mode), Mode II (sliding mode), Mode III 

(tearing mode) [30]. 

 

In VCCT, it is assumed that the strain energy released when a crack is extended 

by a certain amount, requires the same amount of energy to close the crack by the same 

amount. Equation 5.1 is used to calculate the strain energy release rate in the pure Mode I 

case for a 2D shell element model. However, Abaqus is also capable of performing 

VCCT in 3D solid element models. From this equation, a crack extends from point i to j, 

where the initial crack tip is at nodes 2 and 5 (see Figure 5.2). The force and 

displacement at these nodes can be used to calculate the strain energy release rates for all 

three fracture modes (see Figure 5.3). When the strain energy release rate at nodes 2 and 

5 is greater than the material fracture toughness then the node will release to propagate 

the crack. Although Equation 5.1 only illustrates pure Mode I, similar equations can be 
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used to calculate pure Mode II and Mode III. This is an iterative process that is performed 

at each node and Abaqus uses either Paris Law, BK Law or Reeder Law to calculate an 

equivalent strain energy release rate Gequiv, which is a mixed-mode strain energy release 

rate. More details on these laws can be found in literature by Wu and Reuter [31], 

Benzeggagh and Kenane [32], and Reeder, et al, [33]. In general, a mixture of more than 

one fracture mode causes crack propagation, particularly for delamination. Thus, in 

Abaqus users can select to use either of those laws to calculate the equivalent strain 

energy release rate (Gequiv) and compare it to the critical equivalent value (GequivC).   

In this research, the BK law was used because the required input values for the 

selected material is readily available in literature and it delivers an adequate description 

of the fracture locus for a wide range of composites [35]. Also, BK law is equivalent to 

the Reeder Law when the critical strain energy release rate of Mode II is equivalent to 

Mode III (see Equations 5.2 and 5.3). Paris law was not used in this analysis because in 

Abaqus it requires more inputs which are not readily available. 

 

    (5.1) 

 

Where,  

 GI  is the Mode I strain energy release rate 

 b is the width of the element at the crack 

 d is the element length at the crack tip    
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 Fv,2,5 is the vertical force between nodes 2 and 5 

 v1,6     is the vertical displacement between nodes 1 and 6 

 

 

 

Figure 5.2: Crack extension from node release in Mode I strain energy release rate calculation [34]. 
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Figure 5.3: Area under the force versus displacement plot from nodes 2 and 5 is used to calculate 

strain energy release rates [34]. 

 

 

BK Law:  

   (5.2) 

 

  

Reeder Law: 

      (5.3) 
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5.2 SEMI-CIRCULAR NOTCHED MODEL DESCRIPTION 

FE analysis was performed for the SCN model to provide information on the 

stress profile on the pin-bearing surface of the hole, progressive failure modes and strain 

energy release rates. These outputs can assist in developing a better understanding of why 

bearing damage only occurs in certain regions, where damage initiates and propagate, and 

the location of stress concentration through the laminate thickness.  

The SCN specimen was modeled in Abaqus for all three laminate types with a 

steel alloy pin. The composite specimen and pin assembly is shown with geometric 

dimensions in Figure 5.4. The specimen was modeled with a total number of 48 plies and 

uses AS4/3501-6 linear elastic material properties for the composite laminate (see Table 

5.1). In order to prevent a sharp tip mesh geometry at the hole edge between the conical 

and straight shank interface, the conical region instance was created with 26 plies and the 

straight shank region was developed with 22 plies. The laminate was partitioned to have 

two plies per element through the thickness in the straight shank region and 26 plies in 

one element for the conical region (see Figure 5.5).  
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Figure 5.4: FE model of SCN specimen with steel pin assembly (top) representing the setup for SCN 

test configuration without the aluminum plates on both sides (bottom). 

 

 

Figure 5.5: Semi-circular notched FE model illustrating how the plies were partitioned through 

thickness of the laminate. 
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Table 5.1: Material properties of AS4/3501-6 carbon fiber reinforced epoxy composite. 

Unidirectional Carbon/Epoxy Material Properties 

(AS4/3501-6) 

E1 147 GPa 

E2 10.3 GPa 

E3 10.3 GPa 

G12 7 GPa 

G23 3.7 GPa 

G13 7 GPa 

ν12 0.27 

ν23 0.54 

ν13 0.27 

 

 

FE analysis was performed on an SCN specimen with pin assembly having and 

damage implemented in the model to study bearing stress distribution on the bolt-bearing 

surface. These bearing stress profiles along with the strain energy release rates will aid in 

better understanding how delamination initiates and arrest.  In the SCN FE model used to 

with no damage, a three-dimensional (3D) continuum solid (C3D8R) element was used to 

investigate the inter-laminar shear stress. In general, delamination initiation and 

propagation are influenced by inter-laminar shear stresses, thus it is necessary to 

investigate shear stresses (S23 and S13). 

 A second FE analysis was performed on SCN specimen having both Hashin 

failure criteria and VCCT implemented. Hashin damage in Abaqus is not compatible with 

3D stress elements, thus an 8-node quadrilateral continuum shell with reduce integration 
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and hourglass control (SC8R) element was used in the model. When using VCCT in 

Abaqus, pre-cracks must be created in the model before running the analysis. The pre-

crack begins 0.5 mm away from the hole edge surface and between plies 26- 27, plies 27-

28, plies 46-47 and plies 47-48 (see Figure 5.6). The first two pre-cracks were placed 

near the interface between the conical and straight shank region and the second two pre-

cracks were placed on the bottom surface of the straight shank region. The placement of 

these pre-cracks were based upon observations made through optical microscopy. 

Delaminations were commonly found in the lower bottom region of the straight shank 

and with high load, delamination can be found between the conical and straight shank 

interface (see Figure 5.7).  

 

 

Figure 5.6: FE model of SCN specimen illustrating pre-crack locations for using VCCT in Abaqus. 
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Figure 5.7: Optical microscopy from SCN specimens showing delaminaiton locations, which was used 

to determine the placements of pre-cracks in the FE model.  
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               Table 5.2: VCCT input parameters for AS4/3501-6 composite material. 

VCCT Parameters 

GIC  81.6 N/m2 

GIIC 554 N/m2 

GIIIC 554 N/m2 

η 1.75 

 

 

Table 5.3: Hashin damage input parameters for Abaqus. 

Hashin Damage Inputs 

Longitudinal Tensile Strength, F1t 2280 MPa 

Longitudinal Compressive  Strength, F1c 1725 MPa 

Transverse Tensile Strength, F2t 57 MPa 

Transverse Compressive Strength, F2c 228 MPa 

Longitudinal Shear Strength 76 MPa 

Transverse Shear Strength 76 MPa 

Damage Evolution 

Longitudinal Tensile Fracture Energy 8,850,822 N/m2 

Longitudinal Compressive Fracture Energy 8,850,822 N/m2 

Transverse Tensile Fracture Energy 1770 N/m2 

Transverse Compressive Fracture Energy 1770 N/m2 
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Additionally, default parameters for automatic stabilization and contact control 

were used to assist in the problem solution convergence. Particularly, when using VCCT, 

implementing multiple cracks through the laminate thickness will cause convergence 

issue. Boundary conditions on the SCN specimen and pin assembly are shown in Figure 

5.8. The specimen is fixed in the 2-direction (see Figure 5.8 for axis) on the bottom 

surface to prevent rigid body motion and the two perpendicular sides are fixed in the 3-

direction to prevent out-of-plane displacement. This setup mimics the aluminum plates 

and vice gripping constraint during the experimental setup. Additionally, the pin was 

constrained such that it is fully supported and can only move in the bearing direction 

towards the bolt-hole surface. A downward displacement of 1 mm was applied to the pin, 

replicating a displacement control from the MTS machine onto the specimen during the 

static test.  
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Figure 5.8: Boundary conditions and displacement applied to the SCN FE model in Abaqus. 

 

 

5.3 PRELIMINARY STUDIES  

Preliminary studies were performed for SCN specimens: (i) mesh study using 

VCCT and Hashin failure criteria and (ii) model verification through validating VCCT 

modeling method for composite in Abaqus with a published benchmark problem, 

performing a mesh study to show convergence of stiffness, and correlating results from 

FEM to experimental data.  

The mesh sensitivity study was performed on the SCN specimen having a layup 

from the reference laminate. Both Hashin damage and VCCT were implemented to the 

model. In order to prevent the initial crack tip length from influencing the results when 
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changing the mesh size, the pre-crack was assigned to initiate at 0.5 mm away from the 

hole edge. For all mesh studies, the pin global mesh size is 1 mm and the SCN specimen 

global mesh size is 2 mm at locations away from the cracks. The location near the crack 

tip and conical region varies in mesh size from 0.6 mm to 2 mm (see Figure 5.9). Figure 

5.10 shows the load versus displacement for the different mesh sizes. Through 

observations, the mesh size of 2 mm and 0.60 mm shows a greater deviation compared to 

the 0.8 mm and 1 mm. This may indicate that there is an optimum mesh size when using 

VCCT and Hashin damage criteria in the FE model. Thus, the mesh size of 0.80 mm was 

used in all the analysis for the SCN specimen with damage implemented in the model. 

For specimens with no damage, a mesh size of 1 mm was used to reduce analysis cost.  

 

  

Figure 5.9: Element size for mesh sensitivity study. The mesh size was changed in the radius 

geometry near the crack tip.  
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Figure 5.10: Mesh sensitivity study for SCN FE model with VCCT and Hashin damage included. 

Mesh size 0.8 mm and 1 mm show closer convergence behavior. 

 

Model verification was performed through two process. The first step was to 

verify that the method of applying VCCT in composite material is accurate through 

performing a benchmark study case on a DCB model by Ronald Kreuger [36]. The strain 

energy release rate and critical load at which the delamination propagates match with the 

benchmark study (see Figure 5.11). Thus, verifying that the process for developing a 

model using VCCT in Abaqus can be used in the SCN FE model. After completing this 

first step, the same procedure for implementing VCCT was applied to the SCN FE model.  

Two SCN FE models with the same Abaqus input variables were created with and 

without damage. Abaqus output for this FE model without damage used to correlate with 

the experimental test data (see Figure 5.12). The result shows that the FE model did not 
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correlate with the experimental data. Reasons for discrepancy in the stiffness may be due 

to manufacturing defects that were not modeled, material properties, test machine 

compliance, and boundary condition definitions. In the FE model, the side surfaces were 

constrained such that there is no out-of-plane displacement (see Figure 5.8). However, on 

the experimental test setup, the vise holding the aluminum side plates and specimen was 

clamped with the same pressure as “finger-tight”. Thus, as load increases, there may be 

some movement between the aluminum plates, specimen and vice that was not accounted 

for in the FE analysis. Additionally, displacement from the experimental data was taken 

from the crosshead displacement of the MTS test machine, which includes the 

compliance of the machine. The material property inputs were taken from literature 

instead of performing coupon testing on the specimens, which could also influence the 

FE model results. Although the FE model and experimental data did not show good 

agreement in stiffness, the model can still provide insights on stress concentration at the 

bolt-bearing face during loading. Bolted joint of composite material, particularly in the 

study of bearing failure is a very complex problem that will require more time to develop 

an accurate FE model to correlate with the experimental data. However, one is only using 

FE models to predict bearing failure in composite material, high fidelity results are 

difficult to achieve by only analysis. As presented in this chapter, many issues may arise 

in modeling that can influence the results.  
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Figure 5.11: Benchmark study case performed on DCB model to verify VCCT process in Abaqus 

is correct. Strain energy release rate (left) and critical load at crack initiation (right) was 

matched with Ronald Kreuger's DCB model. 
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Figure 5.12: FE model of SCN specimen with and without damage compared to experimenta test 

data for model verification. 

 

 

5.4 SCN FE MODEL WITH NO DAMAGE 

FE analysis was performed on an SCN model with no damage using a 3D solid 

continuum shell element (C83DR) to develop a better understanding of stress distribution 

on the bearing face. However, the stiffness of the model was not able to correlate with the 

experimental data. Thus, values presented hereon will not be used to make any 

quantitative conclusions, but instead, this model will be used to provide insights on stress 

concentration locations. Information on stress concentrations can show the most likely 

location where bearing damage will occur first and how it may propagate with increasing 

loads.  
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Bearing stress in Figure 5.13 shows stress concentration located at the conical 

region of the laminate. In comparison to observations from the SCN microscopy image 

for the same laminate type, the major bearing damage occurs near the bottom of the 

shank (see Figure 5.7). Both shear cracks and delamination were found mostly on the 

bottom of the shank, but only delamination was observed between the straight shank and 

conical interface. This possibly indicates that bearing damage initiates between this 

interface and the shear cracks would travel downwards towards the outer edge of the 

laminate surface. As the shear cracks propagate through the laminate thickness, the 

continuous compressive load from the pin can initiate delamination. Thus, both 

delamination and shear cracks are mainly found on the bottom of the shank region. This 

hypothesis can be further verified with a validated FE model. However, these current 

results show that bearing stresses from FE model can assist in explaining progressive 

damage in composites.  

 

 

Figure 5.13: Contour plot of the bearing stress distribution on the loading direction. Units for stress 

displayed is Pa. 
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Transverse shear stress (S13) is critical to delamination initation, whereas 

transverse normal (through the thickness, S33) stress influences inter-laminar 

delamination propagation. Thus, both of these results are examined in the FE analysis. 

The stress concentrates in the middle section of the pin-bearing surface near and between 

the conical and shank region interface in both contour stress plots (see Figure 5.14 and 

Figure 5.15). This result may explain why delamination was observed between the 

conical and shank region because the abrupt changed in geometry at the intersection may 

influence the transverse shear stresses. On the contrary, at the bottom of the shank region 

where the surface is free, there is very little shear stress.  

 

 

 

Figure 5.14: Transverse shear stress of SCN FE model show greatest shear stress at the center of the 

pin-bearing surface on the conical region. Units are in Pa. 
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Figure 5.15: Transverse normal stress on the pin-bearing surface of the SCN laminate. Stress units 

displayed is Pa. 

 

 

5.5 BEARING STRESS WITH HASHIN FAILURE CRITERIA AND VCCT  

SCN FE model with pin assembly was modeled with Hashin damage and VCCT 

to allow delamination initiation and propagation. The pre-cracks were placed in locations 

that delamination were commonly observed through optical microscopy images (see 

Figure 5.7). Figure 5.16 and Figure 5.17 show the Hashin fiber compression and tension 

failure modes in the SCN FE model. These failure maps indicate that fiber fractures or 

delamination failure most likely occur near the intersection between the conical and 

shank region. This may indicate that fiber fracture initiates near this this intersection and 

cause a series of shear cracks that propagates towards the free edge surface of the 

laminate (bottom of shank region) (see Figure 5.20).  Figure 5.18 and Figure 5.19 shows 

plot contour of the matrix compression and tension failure, respectively. Matrix 
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compression failure occurs through the thickness of the laminate on the pin-bearing 

surface, but there is more damage near the conical and shank intersection. Both matrix 

compression and tension failure occur before delamination initiates. Thus, understanding 

where matrix cracks occur can indicate where delamination will most likely develop in 

the composite.  

 

 

Figure 5.16: Hashin fiber compresison failure, which show locations where pin loading has the most 

affect on the bolt-bearing surface. Red color (value of 1) indicates damage has occured, whereas blue 

color (value of 0) means there is no damage. 
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Figure 5.17: Hashin fiber tension failure image illustrating locations where fibers have high tensile 

stress. Red color (value of 1) indicates damage has occured, whereas blue color (value of 0) means 

there is no damage. 

 

 

 

Figure 5.18: Hashin matrix compressiom failure with four pre-cracks, which occurs first before other 

failure modes occur (i.e. fiber tension and compression). Red color (value of 1) indicates damage has 

occured, whereas blue color (value of 0) means there is no damage. 
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Figure 5.19: Hashin matrix tension failure in indicating tensile stress in matrix is greatest where 

delamination occurs. Red color (value of 1) indicates damage has occured, whereas blue color (value 

of 0) means there is no damage. 

 

 

 

Figure 5.20: Microscopy of the reference layup type specimen showing location of delamination. This 

supports the damage observed in the FE model. 
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Delamination initiates in later time increment compared to the Hashin damage, 

which is expected because matrix cracks and fiber fractures were found to occur before 

delamination through the progressive damage study for bearing failure. Results from the 

VCCT model show that delamination occurs at crack 1 first, which is the location 

between the conical and shank region (see Figure 5.21). This figure shows the bond state 

of the laminate, thus each image represents the delamination surface. The red color 

represents that the laminate is fully bonded, whereas the blue color means the nodes have 

fully debonded (delamination). On the bottom of the laminate, there is blue color on the 

last nodes because those nodes were not bonded prior to running the analysis. Nodes 

where there is a fixed boundary condition can cause analysis issues if those nodes are 

also assigned to the bonded set. Figure 5.22 shows the strain energy release rate plot from 

Mode I before the crack initiates. This was greater compared to the strain energy release 

rates of the other cracks. The plot shows two peaks along the crack path, which 

corresponds with the two node release locations on Figure 5.21. Figure 5.23 shows the 

final delamination state of cracks 1 and 2 prior to terminating the analysis. Cracks 3 and 4 

did not propagate.  These results support the hypothesis that matrix crack and 

delamination occurs between the conical and shank region first. However, this is only 

valid for this SCN configuration because the boundary condition for the DLS bolted joint 

is different. In addition, the SCN experimental data show more delamination between the 

shank and conical region because there is very little lateral support from washers near the 

bolt-hole region. This is even more evident in modeling because the FE model has no 

boundary condition near the bolt-hole region and the abrupt change in the geometry of 

the joint makes the conical region more likely to have stress concentrations. Figure 5.24 
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shows the bearing stress S11 along the path of the pin bearing surface, which shows the 

stress concentration location on the pin bearing surface. Although, the stress values 

cannot be used to make any quantitative conclusions at this time, since the model does 

not correlate well with the experimental data, it can provide qualitative insights on stress 

concentration regions. In this case, bearing stress is greatest, between the conical and 

shank region.  

 

 

Figure 5.21: Bond state mapping of each crack. Red color indicate the plies between the cracks are 

still bonded and blue represents disbond. Crack 1 shows delamination initiation first. 
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Figure 5.22: Strain energy release rate from Mode II of crack 1 prior to delamination initiation. 

Mode II is the dominating failure mode for delamination in this joint configuration. The material 

fracture toughness input was 554 J/m2. 

 

 

 

Figure 5.23: Final bond state status before analysis was terminated. Delamination propagated in 

Crack 1 and nodes began to release in crack 2. 

Crack Growth 
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Figure 5.24: Bearing stress on the bolt-hole surface showing stress concentration between the concial 

and shank interface. 
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6 CONCLUSIONS 

Static bearing tests were performed for double lap shear (DLS), single lap shear 

(SLS) and semi-circular notched (SCN) for three different laminate types. Results from 

the double lap and single lap shear test configurations showed that bearing failure is 

governed by damage accumulation due to matrix cracking, compression-induced fiber 

fracture, and delamination. Damage initiates at the most highly-loaded bearing surface of 

the straight shank region. During fatigue loading, large wedge-shaped features develop 

from fiber compression failures and serve to pry open the cracks, further propagating 

delamination via Mode I dominated opening. Comparing DLS and SLS loading 

configurations, the DLS shows lower initial bearing failure stress, but higher ultimate 

bearing strength, whereas the SLS exhibits plateau-like response after the ultimate stress 

is reached with a higher level of damage developed for a given applied load, relative to 

DLS.  

Results from the DLS fatigue tests show that there is a correlation between joint 

stiffness, damage area, and hole elongation. When hole elongation increased, the damage 

area (observed by C-scan) also increased. During the first 25,000 cycles, each specimen 

type had an increase in hole elongation, stiffness, and damage area and then they all 

stabilized. Joint stiffness in particular increases in the first few thousands of cycles as 

local damage allows for more uniform contact of the fastener onto the bearing surface. 

After this initial stiffness increase, stiffness generally decreases as damage develops 

further away from the bearing surface (fiber compression, delamination). When cyclically 

loading DLS specimens at 66% of the ultimate bearing stress, the hole elongation 

exceeded the industry-based 4% hole elongation criteria early in the fatigue cycles 
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compared to applying 50% of the ultimate stress. On the contrary, at the 50% stress level, 

the hole elongation stabilizes even after 60,000 cycles. While these results are specific to 

this material system and laminate, a distinct threshold behavior exists for bolted joint 

fatigue where above a certain bearing stress level, hole elongation continues to grow with 

additional cycles, and below, it stabilizes after modest initial growth. Hole elongation has 

been found to be a strong indicator of internal damage. Increasing hole elongation 

correlates with increasing internal damage. No (or very low) hole elongation, equates to 

no internal damage, or no further growth if elongation stops growing. Hole elongation is 

thus recommended as a key damage inspection metric as it is visual based and requires no 

special equipment like C-scan. Due to the high clamping force from bolt torque-up, the 

SLS specimens exhibited different response than the un-torqued DLS specimens. The 

single lap shear fatigue test showed no damage area growth beyond the conical section or 

hole diameter elongation for the conditions tested. 

Optical microscopy from DLS fatigue tests suggested that bearing damage may be 

affected by pin bending. Thus, the semi-circular notched experiments were conducted to 

study pin bending effects on bearing damage morphology, hole elongation and damage 

area growth mechanisms. Results show that the DLS static loaded specimens have greater 

bearing strength compared to the SCN countersunk specimens due to through-thickness 

constraint achieved by bolt clamp-up. The finger tight torque in the DLS bolted joint 

setup increased the bearing strength. Additionally, fatigue testing created shear crack 

formations near the bottom of the shank region (near outer surface), which were 

originally assumed to be caused by pin bending. However, the SCN countersunk 

experiment which allows for no pin bending also showed this damage at this location, 
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and therefore indicates that the pin bending had no strong effect on the bearing failure 

morphology for this diameter to thickness ratio. Instead, pin bending may contribute to 

material erosion found in the fatigue specimens. The microscopy comparisons showed 

that the straight shank region of the countersunk hole behaves similar to half of the 

through-hole specimen, which shows that shear cracks travel from the hole surface 

towards the outermost surface of the laminate. Large shear cracks mainly occur near the 

bottom of the shank region for both the SCN countersunk hole and DLS bolted joint test 

configurations, which may be caused by the instability of fibers near the outer face of the 

laminate instead of being at the interior of the laminate. The half of the laminate having 

the conical region provides local out-of-plane stiffness preventing shear cracks from 

forming.  

FE modeling of the SCN specimen is able to provide qualitative insights on stress 

concentration regions on the bolt-bearing surface that cannot be observed during 

experimental testing. However, the complexity of modeling the failure modes associated 

with composite joint bearing failure using built-in Abaqus capabilities shows the need for 

advance modeling techniques and experimental testing.  
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APPENDICES 

A. DRILLING PROCESS FOR COMPOSITE MATERIAL 

DLS and SLS specimens were drilled using the HASS T2 CNC milling machine at 

UC San Diego lab facility. The following steps were used in the drilling process for 

these specimens. 

1. The specimen thickness at the hole location was measured to attain thickness 

information to ensure the conical region in the countersunk hole is half of that 

thickness. This was performed because specimens all had small variation in 

thickness. 

2. To setup the specimen on the CNC machining table, use a stiff sacrificial 

material to place underneath the specimen. This helps prevent delamination 

from initiating when the drill exits the specimen. For these specimens, a 1/8” 

(3.175 mm) thick FR4 fiberglass was used as the sacrificial material. For 

every new hole, use a new surface on the sacrificial material.  

3. Clamp all four sides of the specimen to ensure the vibration from the tool will 

not move the specimen. Do not apply too much pressure on the specimen 

when clamping to the machine table. This can cause local compression 

damage on the specimen. 
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4. Place a vacuum hose (may need to hold by hand) close to the tool during the 

drilling process to help remove all the debris and cool the tool. Do not use 

lubricant on the material. 

5. Table 6.1 shows parameters used to drill, ream and countersunk the bolt-hole. 

Table 6.1: Speed and feed rates used to fabricate all specimens used in this research. 

 
Drill Ream Countersink 

Speed Rate 2000 rpm 200 rpm 2000 rpm 

Feed Rate 50.8 mm/min 50.8 mm/min 50.8 mm/min 

Pecking Depth No Pecking No Pecking 0.076 mm 
 

 

6. After each tool has completed its operation, ensure to vacuum the debris out 

before drilling a new hole.  

 

Drill Operation Tips:  

 Since the drilling, reaming and countersunk cutting is all in one operation, do not 

remove the specimen from the machine table until all of these procedures are 

complete.  

 If using a high steel drill bit for a 3/8” hole diameter, the drill was able to produce 

five quality holes before becoming dull. Two methods that can help save the drill 

life is to drill a pilot hole first using a smaller diameter drill. The second option is 

to use a carbide tip drill bit.   



 

146 

 

 For thick laminates, it is critical to perform pecking operation to help reduce 

overheating of the tool.  

 If hole quality shows many small pockets of holes, it can be caused by 

overheating of the tool.  

 If the hole has rough surfaces, it can indicate that the tool is dull. Also, if 

machining by a hand tool and great force is required to remove the material, this 

is also a sign that the tool is dull.  
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B. FIXTURE AND SPECIMEN DRAWINGS 

 

Figure 6.1: Single lap shear test fixture with dimensions in inches. 
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Figure 6.2: Double lap shear test fixture with dimensions in inches. 

 

 

Figure 6.3: Dimensions of the custom designed pin used in the double lap shear test. 
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C. ULTRASONIC C-SCAN SETTINGS  

Table 6.2: Ultrasonic C-scan input parameters on the UTwin software. 

Composite Input Parameters 

Material Velocity 0.120 (in/µs) 

A/D Gain 40 dB 

LP Filter  5 MHz 

HP Filter 2 MHz 

A/D Average 1 

Sample Rate 100 

P/R Gain 0 dB 

P/R Voltage 150 Volts 

P/R Damp  40.5 (ohms) 

P/R Frequency 5 MHz 

Sync Mode Initial 

Sync Threshold 80 

   

 

 

 

D. STATIC AND FATIGUE TEST PROCEDURE 

Static and fatigue tests were performed on the MTS hydraulic 22-kip machine, 

which offers both Basic TestWare and MultiPurpose TestWare (MPT) programs (see 

Figure C.1 and Figure C.2). Basic TestWare was used for all static tests because the 

user interface for can be manually operated.  All static tests were performed using the 

Basic TestWare program because users can easily change input parameters during the 

test operation. Since static tests were manually stopped based on the load versus 

displacement plot, this was the ideal program to use. All fatigue tests were done 

through the MPT program because a series of operations can be written to occur at 

the same time and in a sequential order. For instance, when the load is set to increase 

to a specific value before beginning the fatigue test, this data may not be necessary. 

Thus, in the MPT program, the data collection can be program to start after reaching 
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the specified load. Although this is a simple example explaining the capabilities of 

MPT, there are many commands that can be used in one experimental testing (see 

Figure C.2).  

 

 

Figure 6.4: Basic TestWare user interface. Simple test operations can be modified during the test. 
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Figure 6.5: Procedure used for fatigue test on the MPT program. Each type can either run 

simutaneously with one another or in a chronological order. 

 

 

Tips for Fatigue Test on the MTS 22-kip Test Machine 

 Have a few practice specimens to test the machine and program that was written 

to run the test.  

 Before starting the test, ensure all limit switch are activated. If the test is load 

control then ensure the limit switch for load is on. The limit switch is used for 

safety purpose, such that it can turn off the hydraulic pump if the load exceeds the 

user defined value.  

 Under load control, if the frequency is set too high, the machine can begin to 

cycle the specimen, then spike the load and break the specimen. Thus, it is critical 

to have limit switch activated during the test. The spike in load was caused by the 
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gain of the test machine. User is requesting the machine to reach a certain load 

value at such a high frequency that it does not give the machine enough time to 

reach that load.  

o Solution: When load spike during test, check the P-Gain and I-Gain value. 

Large P-Gain value will make the MTS more responsive in reaching 

higher frequency fatigue test, but there is a risk of overshooting the load. 

In this research, P-Gain value of 0.20 and I-Gain of 0.015 was used for the 

DLS fatigue test and P-Gail value of 0.40 was used for SLS fatigue test. 
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E. BEARING STRENGTH FOR DLS SPECIMENS 

Table 6.3: Bearing Strength for all specimens tested under static load. 

DLS Bearing Strengths 

Specimen Type * Specimen 1 ** Specimen 2 *** Specimen 3 

Reference 1010 MPa 1242 MPa 1564 MPa 

Large 0° 

Groupings 
817 MPa 1086 MPa 1574 MPa 

Large Angle 

Change 
775 MPa 1554 MPa 1570 MPa 

 
* Specimen 1: Stopped test immediately after load exceeds linear region of load versus 

displacement plot (low load). 

** Specimen 2: Stopped test when load goes beyond linear region of load versus 

displacement plot, but before reaching ultimate failure (mid load). 

*** Specimen 3: Stopped at when specimen fails (ultimate load). 
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F. HOLE ELONGATION MEASUREMENTS 

Table 6.4:  Hole elongation measured for the reference specimens that were cycled at 50% ultimate 

bearing stress. 

 

Number of 

Cycles 
Specimen 1 Specimen 2 

 in mm in mm  

0 0 0 0 0 

2000 0.002 0.051 0.001 0.025 

3000 0.003 0.076 0.002 0.051 

4000 0.004 0.102 0.003 0.076 

5000 0.005 0.127 0.003 0.076 

6000 0.005 0.127 0.003 0.076 

7000 0.006 0.152 0.004 0.102 

8000 0.007 0.178 0.005 0.127 

9,000 0.007 0.178 0.005 0.127 

10,000 0.007 0.178 0.005 0.127 

11,000 0.007 0.178 0.005 0.127 

12,000 0.007 0.178 0.005 0.127 

13,000 0.007 0.178 0.005 0.127 

15,000 0.007 0.178 0.005 0.127 

17,000 0.007 0.178 0.006 0.152 

19,000 0.007 0.178 0.006 0.152 

21,000 0.007 0.178 0.006 0.152 

26,000 0.007 0.178 0.006 0.152 

31,000 0.008 0.203 0.006 0.152 

36,000 0.008 0.203 0.006 0.152 

41,000 0.008 0.203 0.006 0.152 

51,000 0.008 0.203 0.006 0.152 

61,000 0.009 0.229 Pin Fractured 

71,000 0.009 0.229   

81,000 0.009 0.229   

83,384 0.009 0.229   

91,000 0.009 0.229   

110,000 0.01 0.254   

120,000 0.01 0.254   
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Table 6.5:  Hole elongation measured for the reference specimens that were cycled at 50% ultimate 

bearing stress. 

 

 

 

 

 

 

 

 

 

 

 

Number of Cycles Specimen 3  Specimen 4 

 in mm in mm 

0 0 0 0 0 

1000 0 0 0 0 

2000 0.001 0.025 0.001 0.025 

5000 0.001 0.025 0.001 0.025 

10000 0.005 0.127 0.002 0.051 

20000 0.005 0.127 0.003 0.076 

30000 0.006 0.152 0.003 0.076 

40000 0.006 0.152 0.004 0.102 

50,000 0.006 0.152 0.004 0.102 

60,000 0.006 0.152 0.004 0.102 

80,000 0.006 0.152 0.005 0.127 
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Table 6.6: Hole elongation measured for the specimen with large groupings of 0° plies that were 

cycled at 50% ultimate bearing stress. 

Number of 

Cycles 
Specimen 1 Specimen 2 Specimen 3  

 in mm in mm in mm 

0 0 0 0 0 0 0 

2000 0.003 0.076 0.004 0.102 0.001 0.025 

3000 0.004 0.102 0.007 0.178 0.001 0.025 

4000 0.006 0.152 0.01 0.254 0.001 0.025 

5000 0.007 0.178 0.016 0.406 0.001 0.025 

6000 0.007 0.178 0.016 0.406 0.001 0.025 

7000 0.008 0.203 0.016 0.406 0.001 0.025 

8000 0.009 0.229 0.017 0.432 0.002 0.051 

9,000 0.01 0.254 0.017 0.432 0.002 0.051 

10,000 0.01 0.254 0.017 0.432 0.002 0.051 

11,000 0.01 0.254 0.017 0.432 0.002 0.051 

12,000 0.01 0.254 0.017 0.432 0.002 0.051 

13,000 0.011 0.279 0.017 0.432 Pin Fractured 

15,000 0.011 0.279 0.017 0.432   

17,000 0.011 0.279 0.018 0.457   

19,000 0.011 0.279 0.018 0.457   

21,000 0.011 0.279 0.018 0.457   

26,000 0.011 0.279 0.018 0.457   

31,000 0.011 0.279 0.018 0.457   

36,000 0.011 0.279 0.018 0.457   

41,000 0.011 0.279 0.018 0.457   

51,000 0.012 0.305 0.018 0.457   

61,000 0.012 0.305 0.018 0.457   

71,000 0.013 0.330 0.018 0.457   

81,000 0.013 0.330 0.019 0.483   

101,000 0.013 0.330 0.019 0.483   

116,000 0.013 0.330 0.019 0.483   

120,000 0.013 0.330 0.019 0.483   
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Table 6.7: Hole elongation measured for the specimen with large change in angle plies that were 

loaded to 50% ultimate bearing stress. 

Number of 

Cycles 
Specimen 1 Specimen 2 Specimen 3  

 in mm in mm in mm 

0 0 0 0 0 0 0 

2000 0.002 0.051 0.01 0.254 0.006 0.152 

3000 0.004 0.102 0.024 0.610 0.006 0.152 

4000 0.005 0.127 0.026 0.660 0.007 0.178 

5000 0.006 0.152 0.036 0.914 0.008 0.203 

6000 0.006 0.152 0.032 0.813 0.013 0.330 

7000 0.007 0.178 0.032 0.813 0.013 0.330 

8000 0.008 0.203 0.032 0.813 0.013 0.330 

9,000 0.008 0.203 0.034 0.864 0.013 0.330 

10,000 0.008 0.203 0.039 0.991 0.013 0.330 

11,000 0.008 0.203 0.04 1.016 0.013 0.330 

12,000 0.008 0.203 0.041 1.041 0.013 0.330 

13,000 0.008 0.203 0.041 1.041 0.028 0.711 

15,000 0.008 0.203 0.041 1.041 0.028 0.711 

17,000 0.008 0.203 0.041 1.041 0.028 0.711 

19,000 0.008 0.203 0.041 1.041 0.029 0.737 

21,000 0.008 0.203 0.041 1.041 0.029 0.737 

26,000 0.008 0.203 0.041 1.041 0.029 0.737 

31,000 0.008 0.203 0.041 1.041 0.029 0.737 

36,000 0.008 0.203 0.041 1.041 0.029 0.737 

41,000 0.008 0.203 0.041 1.041 0.029 0.737 

51,000 0.008 0.203 0.042 1.067 0.029 0.737 

61,000 0.008 0.203 0.043 1.092 Pin Fractured 

71,000 0.008 0.203 0.043 1.092   

81,000 0.009 0.229 0.043 1.092   

101,000 0.009 0.229 0.044 1.118   

116,000 0.01 0.254 0.044 1.118   

120,000 0.01 0.254 0.044 1.118   
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Table 6.8: Hole elongation measured for the specimen with large change in angle plies that were 

loaded to 50% ultimate bearing stress. Continuation of Figure 6.5. 

 

 

 

 

 

 

 

 

 

Table 6.9: Hole elongation measured for all specimens that were loaded to 66% ultimate bearing 

stress. 

 

 

 

Number of Cycles Specimen 3  Specimen 4 

 in mm in mm 

0 0 0 0 0 

1,000 0 0 0 0 

2,000 0.001 0.025 0.001 0.025 

5,000 0.001 0.025 0.001 0.025 

10,000 0.005 0.127 0.002 0.051 

20,000 0.005 0.127 0.003 0.076 

30,000 0.006 0.152 0.003 0.076 

40,000 0.006 0.152 0.004 0.102 

50,000 0.006 0.152 0.004 0.102 

60,000 0.006 0.152 0.004 0.102 

80,000 0.006 0.152 0.005 0.127 

Number of 

Cycles 
Reference Laminate 

Large Groupings of 0° 

Plies 

Large Change in 

Angle Plies 

 in mm in mm in mm 

0 0 0 0 0 0 0 

1 0.025 0.635 0.005 0.127 0.008 0.203 

1,000 0.052 1.321 0.047 1.194 0.011 0.279 

2,000 0.052 1.321 0.051 1.295 0.011 0.279 

3,000 0.052 1.321 0.054 1.372 0.012 0.305 

4,000 0.063 1.600 0.059 1.499 0.012 0.305 
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Table 6.10: Hole elongation measured for specimen with large groupings of 0° plies that were 

loaded to 66% ultimate bearing stress. Continuation of Table 6.9, but for this laminate type. 

 

 

 

 

 

 

 

 

 

Table 6.11: Hole elongation measured for the reference lamiante and one with large chagne in 

angle plies that were loaded to 66% ultimate bearing stress. Continuation of  

 

 

Table 6.10, but for these laminate type. 

 

 

Number of Cycles Large Groupings of 0° Plies 

 in mm 

0 0 0 

1,300 0.003 0.076 

2,300 0.004 0.102 

3,300 0.016 0.406 

4,300 0.047 1.194 

5,300 0.068 1.727 

6,300 0.07 1.778 

7,300 0.072 1.829 

Number of 

Cycles 
Reference Laminate 

Large Change in Angle 

Plies 

 in mm in mm 

0 0 0 0 0 

2,000 0.002 0.051 0.003 0.076 

3,000 0.007 0.178 0.008 0.203 

4,000 0.008 0.203 0.008 0.203 

6,000 0.046 1.168 0.048 1.219 

7,000 0.047 1.194 0.069 1.753 

8,000 0.06 1.524 0.106 2.692 

9,000 0.068 1.727 0.107 2.718 

10,000 0.073 1.854 0.107 2.718 




