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ORIGINAL ARTICLE
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Abstract

Rationale: The decades-long progression of chronic obstructive
pulmonary disease (COPD) renders identifying different trajectories
of disease progression challenging.

Objectives: To identify subtypes of patients with COPD with
distinct longitudinal progression patterns using a novel machine-
learning tool called “Subtype and Stage Inference” (SuStaIn) and to
evaluate the utility of SuStaIn for patient stratification in COPD.

Methods:We applied SuStaIn to cross-sectional computed
tomography imaging markers in 3,698 Global Initiative for Chronic
Obstructive Lung Disease (GOLD) 1–4 patients and 3,479 controls
from the COPDGene (COPD Genetic Epidemiology) study to
identify subtypes of patients with COPD. We confirmed the
identified subtypes and progression patterns using ECLIPSE
(Evaluation of COPDLongitudinally to Identify Predictive Surrogate
Endpoints) data. We assessed the utility of SuStaIn for patient
stratification by comparing SuStaIn subtypes and stages at baseline
with longitudinal follow-up data.

Measurements and Main Results:We identified two trajectories
of disease progression in COPD: a “Tissue→Airway” subtype
(n= 2,354, 70.4%), in which small airway dysfunction and
emphysema precede large airway wall abnormalities, and an
“Airway→Tissue” subtype (n= 988, 29.6%), in which large airway
wall abnormalities precede emphysema and small airway
dysfunction. Subtypes were reproducible in ECLIPSE. Baseline stage
in both subtypes correlated with future FEV1/FVCdecline (r=20.16
[P, 0.001] in the Tissue→Airway group; r=20.14 [P= 0.011] in the
Airway→Tissue group). SuStaIn placed 30% of smokers with normal
lung function at elevated stages, suggesting imaging changes
consistent with early COPD. Individuals with early changes were
2.5 times more likely to meet COPD diagnostic criteria at follow-up.

Conclusions:We demonstrate two distinct patterns of disease
progression in COPD using SuStaIn, likely representing different
endotypes. One third of healthy smokers have detectable imaging
changes, suggesting a new biomarker of “early COPD.”

Keywords: clustering; CT imaging; emphysema; bronchitis;
chronic obstructive pulmonary disease
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Chronic obstructive pulmonary disease
(COPD) can be characterized as the
consequence of a genetically susceptible
individual being exposed to sufficient
environmental exposures (1). The pulmonary
components are heterogeneous (2) and
include emphysema, small airway loss and
obstruction, and larger airway inflammation.
COPD progresses over decades and often
remains subclinical until the later
development of symptoms or exacerbations.
Slow progression and heterogeneous
manifestations make it challenging to
construct long-term models of disease
progression, as most studies collect only cross-
sectional or short-term longitudinal data.

Incomplete understanding of disease
progression and heterogeneity in
COPD has consequences for clinical
practice and drug development. First, we
are currently unable to identify early stages
of disease in healthy smokers, preventing
interventions in early COPD where
disease-modifying treatments may be most
effective. Second, clinically relevant
populations with severe airflow

obstruction may have arrived at this point
through different early mechanisms
(endotypes), which may therefore have been
amenable to different interventions (2).

Quantitative imaging of the lung
through computed tomography offers the
opportunity to better evaluate the complex
relationship between structure and
function in COPD. Specifically, airway
wall geometry informs on chronic
bronchitis, whereas emphysematous tissue
destruction and gas trapping due to small
airway obstruction and destruction can be
quantified using density thresholds.
Although this facilitates direct disease
quantification, understanding the
progression and heterogeneity of pathology
detected by imaging measures has
remained limited (3).

Previous imaging studies attempting
to disentangle the heterogeneity of COPD
have used clustering techniques (4, 5),
probabilistic modeling (6, 7) or
dimensionality reduction (8, 9). Clustering
does not naturally group individuals on
the same trajectory because patients at
early and late stages of a cluster may look
very different. Thus, these approaches
confound disease subtypes with stage (see
GLOSSARY), preventing the identification of
specific phenotypes independently of
temporal progression. The ability to identify
disease subtypes independently of disease
stage has been a long-standing unmet need.

Significant progress in the
understanding of neurodegenerative
diseases has been made using
techniques, collectively called “Disease
Progression Modeling,” that reconstruct the
long-term temporal progression of disease
from cross-sectional data via unsupervised
learning (10–15). Subtype and Stage and
Inference (SuStaIn) (16) is a recent
innovation arising from the study of
dementia that integrates clustering and
disease progression modeling, offering
new ability to disentangle the
heterogeneity of disease subtypes from
assessment of disease stages. SuStaIn
identifies subgroups of individuals (disease
subtypes) with distinct progression patterns,
while simultaneously reconstructing the

trajectory (stage progression) of each subtype.
Such data-driven progression models have
not previously been applied in the field of
respiratory medicine and offer a major
opportunity to explain disease heterogeneity
and enhance precision medicine in conditions
of long natural history such as COPD.

Some results related to this study have
been previously reported in the form of an
abstract (17).

Methods

This is an abbreviated version of
the method; please see the online
supplement for further detail about each
analysis step.

Definitions and Overview
Key terminology is defined in the GLOSSARY.

Model development used computed
tomography (CT) data from COPDGene
(COPD Genetic Epidemiology) phase 1
(18), comprising a cross-sectional dataset of
baseline measurements from 3,479 smoking
controls and 3,698 patients with COPD.
We repeated the SuStaIn algorithm using
baseline data from 303 smoking controls
and 1,809 patients with COPD in the
ECLIPSE (Evaluation of COPD
Longitudinally to Identify Predictive
Surrogate Endpoints) study (19) to verify
consistency of SuStaIn output in an
independent dataset. We evaluated
longitudinal progression using follow-up
(phase 2) COPDGene scans and data to
verify the SuStaIn subtype progression
patterns (reconstructed from cross-sectional
data) against true longitudinal progression
of individual subjects. This included 1,929
subjects with COPD and 2,158 controls who
had all imaging biomarkers available from
the initial scan together with measures of
lung function from both time points and a
second dataset of 1,675 subjects with COPD
and 1,939 controls who had all imaging
biomarkers available at both phases of the
COPDGene study.

Imaging features
A set of four imaging features were derived
in COPDGene: 1) emphysema, obtained
using parametric response mapping (20),

A complete list of COPDGene (COPD Genetic Epidemiology) Investigators members may be found before the beginning of the REFERENCES.

Author Contributions: All authors meet criteria for authorship as recommended by the International Committee of Medical Journal Editors. A.L.Y., F.J.S.B.,
D.J.H., D.C.A., and J.R.H. designed the study. A.L.Y. and F.J.S.B. performed the modeling and statistical analysis and wrote the initial manuscript.
COPDGene Investigators including M.K.H., C.J.G., and D.A.L. assisted with collection and analysis of COPDGene data. B.R. designed and generated
visualizations for Figure 1. All authors contributed to the production of the final manuscript with revision for important intellectual content.

At a Glance Commentary

Scientific Knowledge on the
Subject: Chronic obstructive
pulmonary disease (COPD) progresses
over decades, so little is known about
longitudinal changes in individual
patients and whether there are different
patterns of disease progression in
different patient subgroups.

What This Study Adds to the Field:
Computational modeling of computed
tomography biomarkers suggests there
are two patterns of disease progression
in COPD. These disease progression
patterns or “subtypes” can be used to
stratify individuals into two groups
with distinct clinical characteristics
and to stage individuals along their
disease time-course. Early stages of
both subtypes are identifiable in a
proportion of “healthy smokers,”
providing a biomarker of early COPD.
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2) functional small airway disease (fSAD)
obtained from parametric response
mapping, 3) Pi10 square root wall area
(SRWA) (21), and 4) segmental airway wall
thickness. CT analysis to obtain the
imaging features was performed using
Thirona lung quantification software
(Thirona, http://www.thirona.eu) (18).
There were only two imaging features
available in the ECLIPSE study:
emphysema and Pi10 SRWA, obtained
using VIDA software (22).

Disease Progression Modeling
Given a cross-sectional dataset, SuStaIn
simultaneously identifies a set of disease
subtypes, each defined by a distinct
trajectory of biomarker evolution with a
probabilistic assignment of each subject to
a subtype and stage along the corresponding
trajectory. The trajectory of each subtype is
described as a linear z-score model (16),
consisting of a series of stages, in which
each stage corresponds to a biomarker
reaching a particular z-score relative to a
control group. The optimal number of
subtypes is determined using information
criterion (a statistical technique that
balances model complexity with model
accuracy). This provides a population-level
disease progression model, which can be
used to assign individuals to subtypes and
stages probabilistically. A conceptual
overview is provided as Figure E1 in the
online supplement (16).

Identification of COPD subtypes. We
applied the SuStaIn algorithm (16) to
COPD Global Initiative for Chronic
Obstructive Lung Disease (GOLD)1–4
patients from the COPDGene dataset. As
SuStaIn requires monotonic measurements
(biomarkers that change over time in one

direction only; see DISCUSSION), we replaced
fSAD, which may convert to emphysema at
later stages of COPD (20), with a combined
measure we term “overall tissue damage.”
This was computed as the sum of fSAD and
emphysema (and thus is similar to a
measure of air trapping). As SuStaIn
requires input features expressed as z-scores
relative to a control population, we
transformed each dataset into z-scores
relative to the smoking controls in
COPDGene. Prior to performing the z-score
transformation, imaging measures were
log-transformed to improve normality.

Independent evaluation of COPD
subtypes. To evaluate the subtypes in an
independent dataset we repeated our
analysis in COPD GOLD 1–4 patients from
ECLIPSE using the subset of CT metrics
available from inspiratory scans and the
corresponding ECLIPSE smoking controls
to perform z-score transformation. As
ECLIPSE only has inspiratory scans we
refitted the SuStaIn algorithm to a
COPDGene cross-sectional dataset
consisting of baseline measurements from
4,102 smoking controls and 4,152 patients
with COPD with inspiratory measurements
available for emphysema and Pi10 SRWA.
We refer to these data as the “Inspiratory
COPDGene” dataset.

Subtyping and staging. We used the
SuStaIn model (i.e., the subtype progression
patterns identified using the SuStaIn
algorithm) to automatically assign
individuals to their most probable subtype
and stage. We did this for all COPDGene
patients with COPD and control subjects at
each of the two visits. We repeated the same
process of assigning individuals to SuStaIn
subtypes and stages in the ECLIPSE and
Inspiratory COPDGene datasets. We

further assigned individuals from
COPDGene phase 2 to subtypes and stages
using the same procedure described above,
identifying the subtypes and stages from the
subtype progression patterns estimated
using the COPDGene phase 1 dataset.

Statistical Analysis

Clinical characteristics of the subtypes. We
compared the clinical characteristics of
individuals assigned to each subtype using
two sample t tests for continuous variables,
chi-squared tests for categorical variables, and
Mann-Whitney U tests for frequency data.

Relationship between SuStaIn stage and
lung function. We verified that SuStaIn
stage could be used as a measure of disease
severity in COPD by examining whether
SuStaIn stage correlated with spirometric
impairment as assessed by FEV1/FVC and
FEV1% predicted. We further evaluated
whether a higher SuStaIn stage could be
used as an indicator of future lung function
decline (disease progression at an individual
level) by assessing whether baseline SuStaIn
stage was correlated with change in lung
function between baseline and follow-up.

Longitudinal consistency of subtype and
stage. Over time we would expect that
subtype remains consistent but that stage
will progress. We assessed whether the
SuStaIn subtypes remained consistent at
5-year follow-up, quantifying consistency as
the percentage of individuals in which the
subtype assignment remained the same. We
assessed whether individuals progressed in
SuStaIn stage between baseline and follow-
up by comparing the distribution of SuStaIn
stages at baseline and follow-up in GOLD
1–2 and GOLD 3–4 patients using two
sample t tests.

Analysis of smoking controls. We
repeated the above analyses in the
COPDGene smoking control group to test
whether SuStaIn subtype and stage might be
useful for identification of otherwise healthy
individuals at risk of developing COPD.

Results

Subject Characteristics
The baseline data of the COPDGene study
participants used to develop the model are
reported in Table 1. The control population
(n= 3,479) was used to derive the z-scores,
whereas the GOLD 1–4 patients (n= 3,698)
were used to produce the subtypes.

GLOSSARY

SUBTYPE – a group of subjects who share a particular trajectory of biomarker
evolution.
STAGE – the position on a subtype trajectory of an individual subject at a specific
time. In Subtype and Stage Inference (SuStaIn) this represents the degree of
abnormality in imaging biomarkers, and a change in stage occurs when an imaging
biomarker becomes more abnormal relative to a control population.
DISEASE PROGRESSION – change in stage with time as the natural history of the
condition unfolds. We use the term in two distinct contexts:
1. GROUP (SUBTYPE) LEVEL – referring to the sequence of changes that the typical
patient undergoes from start to finish.
2. INDIVIDUAL LEVEL – change in stage or severity of an individual subject as
biomarkers become increasingly abnormal.
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Cross-sectional analyses in COPD.
COPD SUBTYPES. SuStaIn identified two
distinct COPD progression patterns
or “subtypes” (Figure 1). We have
termed these “Tissue→Airway” and
“Airway→Tissue.” In the Tissue→Airway

group (n= 2,354, 70.4%), fSAD and
emphysema are the earliest disease stages.
Only subsequent to this do pathological
alterations in larger airways become
apparent. In the Airway→Tissue subgroup
(n= 988, 29.6%), the earliest stages

comprise abnormalities in larger airways,
followed by fSAD and emphysema. These
subtypes were reproducible in the ECLIPSE
study (Figure E2 and online supplement,
RESULTS).

CLINICAL CHARACTERISTICS OF THE

COPD SUBTYPES. We next investigated
differences in the clinical characteristics of
patients between the two subtypes (Table 2).
There was a smaller proportion of men in
the Tissue→Airway subtype, compared
with the Airway→Tissue subtype (52.3%
vs. 66.5%; P, 0.001). Patients in the
Tissue→Airway group had a significantly
lower body mass index (BMI) than those in
the Airway→Tissue group (26.65 vs. 30.54
kgm22; P, 0.001) and a lower prevalence
of chronic bronchitis (25.1% vs. 31.8%;
P, 0.001). Detailed relationships between
subtype, stage, breathlessness, and
exacerbations are reported in Table E3.
Patients in the Tissue→Airway group had
marginally more severe spirometric
impairment (FEV1% predicted 53.63% vs.
58.64%; P, 0.001; FEV1/FVC ratio 0.49 vs.

Table 1. Basic Demographics for the COPDGene Control and COPD Populations
Used in Deriving the SuStaIn Subtype Trajectories

Parameter Control Subjects Subjects with COPD

Subjects, n 3,479 3,698
Age, yr, mean (SD) 56.90 (8.45) 63.13 (8.61)
Sex, M, n (%) 1,816 (52) 2,087 (56)
Sex, F, n (%) 1,663 (48) 1,611 (44)
GOLD stage 1, n (%) NA 643 (17)
GOLD stage 2, n (%) NA 1,616 (44)
GOLD stage 3, n (%) NA 960 (26)
GOLD stage 4, n (%) NA 479 (13)
Smoking history, pack-year, mean (SD) 37.33 (20.04) 51.91 (26.99)
Exacerbations, n/yr, mean (SD) 0.13 (0.53) 0.64 (1.18)

Definition of abbreviations: COPD=chronic obstructive pulmonary disease; COPDGene=COPD
Genetic Epidemiology; GOLD=Global Initiative for Chronic Obstructive Lung Disease; NA=not
applicable; SuStaIn =Subtype and Stage Inference.

Tissue→→Airway, N=2354 (70.4%)

1 2 3 4 5 6 7 8

Emphysema

Tissue Damage

Airway Wall Area

Airway Wall Thickness

SuStaIn Stage 

Airway→Tissue, N=988 (29.6%)

1 2 3 4 5 6 7 8

Emphysema

Tissue Damage

Airway Wall Area

Airway Wall Thickness

SuStaIn Stage 

Minimum population
airway wall
thickness   

Maximum population
airway wall
thickness   

Normal tissue 

fSAD

Emphysema 

Biomarker z-score 

z = 1 

z = 2 

Figure 1. Disease progression patterns predicted by Subtype and Stage Inference (SuStaIn). Chronic obstructive pulmonary disease is characterized by two
distinct disease progression models (top row). In the Tissue→Airway subtype (70%; top left) the presence of emphysema and functional small airway disease (fSAD)
initiates disease progression followed by later emergence of pathology in larger airways. (The overall tissue damage measure captures the presence of both
fSAD and emphysema.) In the Airway→Tissue subtype (30%; top right), disease progression is initiated by pathology in the larger airways before the development of
fSAD and emphysema. At each SuStaIn stage a new z-score event occurs when a feature transitions to a new severity level, as indexed by a z-score with respect to
the control population; z-scores of z=1 (orange) and z=2 (red). Higher opacity represents a higher confidence in the ordering. The bottom row visualizes the
parametric response mapping images and airway wall thickness values for representative patients at different SuStaIn subtypes and stages. The airway wall
thickness values are visualized using a purple color scale on top of an airway tree segmentation, with the minimum value of the color scale corresponding to the first
percentile of airway wall thickness values across the population and themaximum value of the color scale corresponding to the 99th percentile. In the Tissue→Airway
subtype, the first individual (early stage) has early tissue damage visible at the outer edges of the lung but no airway wall changes, the second individual (middle stage)
has visible tissue damage but no airway changes, and the third individual (late stage) has severe tissue damage together with airway wall thickening. In the
Airway→Tissue subtype, the first individual (early stage) has early signs of airway wall thickening but no visible tissue damage, the second individual (middle stage) has
clear signs of airway wall thickening but very little visible tissue damage, and the third individual (late stage) has severe airway wall thickening and tissue damage.
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0.56; P, 0.001). The clinical characteristics
of the SuStaIn subtypes were broadly
replicable in the ECLIPSE dataset (Tables
E4 and E5).

RELATIONSHIP OF COPD SUBTYPE

STAGE WITH BASELINE LUNG FUNCTION. We
investigated whether SuStaIn stage could be
used as a measure of disease severity in
COPD by examining correlations between
SuStaIn stage and baseline spirometry. We
found a significant correlation between
SuStaIn stage and FEV1/FVC (Figure 2A)
and FEV1% predicted (Figure E3A). The
relationship was stronger in the
Tissue→Airway group: SuStaIn stage
correlation with FEV1/FVC and FEV1%
predicted r=20.63 (P, 0.001) and
r=20.66 (P, 0.001), respectively. In the
Airway→Tissue group, the correlation
coefficients were 20.58 (P,0.001) for
FEV1/FVC and 20.51 (P, 0.001) for
FEV1% predicted. The relationship between
SuStaIn stage and baseline lung function was
nonlinear in the Tissue→Airway subtype and
linear in the Airway→Tissue subtype (online
supplement, RESULTS). The correlations
between baseline lung function and SuStaIn
stage were replicable in the ECLIPSE dataset
(Figures E4 and E5).

Longitudinal analyses in COPD.
RELATIONSHIP OF SUSTAIN STAGE WITH

LONGITUDINAL DECLINE IN LUNG FUNCTION. We
tested whether baseline SuStaIn stage
correlated with future decline in lung
function in the subset of individuals with
spirometry available at both time points
(patient characteristics reported in Table
E6). Earlier SuStaIn stages were associated
with more rapid future, measured individual
level progression of FEV1/FVC ratio and
FEV1% predicted. Considering the
annualized change in spirometry after
5-year follow-up in GOLD 1–2 patients
(Figure 2B for FEV1/FVC ratio and Figure
E3B for FEV1% predicted), we found that
baseline SuStaIn stage correlated with rate
of decline in FEV1/FVC and FEV1%
predicted in both subtypes: r=20.16
(P, 0.001) and r=20.14 (P= 0.011) for
baseline SuStaIn stage and change in
FEV1/FVC in the Tissue→Airway and
Airway→Tissue groups, respectively; and
r=20.20 (P, 0.001) and r=20.14
(P= 0.011) between baseline SuStaIn
stage and change in FEV1% predicted. In
GOLD 3–4 patients assigned to the
Tissue→Airway subtype there was no
significant correlation between baseline

SuStaIn stage and change in FEV1/FVC
(r=20.001; P= 0.98) or FEV1% predicted
(r=20.019; P= 0.69). In GOLD 3–4
patients assigned to the Airway→Tissue
subtype there was a significant correlation
between baseline SuStaIn stage and change in
FEV1/FVC (r=20.23; P=0.005), but this
was not reflected in the FEV1% predicted
measure (r=20.15; P=0.069).

STABILITY OF COPD SUBTYPE AND

PROGRESSION OF COPD STAGE OVER TIME.
SuStaIn assumes that individuals
belong to a single disease subtype,
progressing only in stage with time. We
verified that the SuStaIn subtypes remained
the same at 5-year follow-up using a
longitudinal validation dataset consisting of
COPDGene individuals who had all imaging
biomarkers available at both phases (Tables
E7–E9). The assignment to Tissue→Airway
and Airway→Tissue subtypes remained
consistent in 1,283/1,472 (87%) individuals.
SuStaIn stages showed a strong correlation
between baseline and follow-up, but
individuals tended to progress in stage
within each subtype (Figure E6), giving
confidence that the model is a good
representation of disease. Individual stage
progression was more rapid in GOLD 1–2
patients than GOLD 3–4 patients (online
supplement, RESULTS), supporting the
clinically important hypothesis that disease
activity is greatest earlier in disease, whereas
spirometrically more severe disease may be
considered less active.

Analyses in control smokers without
COPD. EARLY DETECTION OF INDIVIDUALS AT RISK

FOR COPD IN THE CONTROL POPULATION. We
hypothesized that a subset of the smoking
control population would exhibit features
of early COPD SuStaIn stages despite
spirometry within the normal range. The
majority of control patients were staged at
SuStaIn stage 0 (n= 2,457, 71%). By
considering control subjects assigned a
stage .0, we were able to identify a group
of control subjects (29%) with imaging
abnormalities. There were 641 control
subjects (18% of the control population) in
the Tissue→Airway subtype and 381
subjects (11% of the control population) in
the Airway→Tissue subtype. Moreover,
within each respective subtype, there were
37 (6%) and 40 (10%) individuals at
SuStaIn stages >3.

RELATIONSHIP OF SUSTAIN STAGE WITH

LUNG FUNCTION IN THE CONTROL POPULATION. We
tested whether nonzero SuStaIn stage could
be used as a marker of early disease in the

Table 2. Demographics of Patients in the Tissue→Airway and Airway→Tissue
Subtypes

Feature Tissue→Airway Airway→Tissue P Value

Number of patients, n (%) 2,354 (70.4%) 988 (29.6%)
Sex, M, n (%) 1,230 (52.3) 657 (66.5) P,0.001
Sex, F, n (%) 1,124 (47.7) 331 (33.5)
Age, yr, mean (SD) 63.18 (8.14) 63.17 (9.49) P=0.92
BMI, kg/m2, mean (SD) 26.65 (5.43) 30.54 (6.28) P,0.001
FEV1, % predicted, mean (SD) 53.63 (23.05) 58.64 (17.74) P,0.001
FEV1/FVC ratio, mean (SD) 0.49 (0.14) 0.56 (0.11) P,0.001
GOLD stage 1, n (%) 340 (14.4) 103 (10.4) P,0.001
GOLD stage 2, n (%) 908 (38.6) 559 (56.6)
GOLD stage 3, n (%) 680 (28.9) 273 (27.6)
GOLD stage 4, n (%) 426 (18.1) 53 (5.4)
Smoking history, pack-year, mean (SD) 53.10 (26.42) 50.35 (26.12) P=0.006
Exacerbations, n/yr, mean (SD) 0.71 (1.23) 0.62 (1.16) P=0.018
Chronic bronchitis, n (%) 591 (25.1) 314 (31.8) P,0.001
Percent emphysema, mean (SD) 15.17 (13.67) 4.08 (6.46) P,0.001
Percent fSAD, mean (SD) 28.89 (11.86) 20.18 (12.83) P,0.001
Percent tissue damage, mean (SD) 44.06 (20.79) 24.26 (17.57) P,0.001
Airway wall area percentage, mean (SD) 51.94 (6.81) 61.77 (6.21) P,0.001
Pi10 SRWA, mm, mean (SD) 2.52 (0.48) 3.13 (0.56) P,0.001
Airway wall thickness, mm, mean (SD) 1.06 (0.19) 1.34 (0.21) P,0.001

Definition of abbreviations: BMI =body mass index; fSAD= functional small airway disease;
GOLD=Global Initiative for Chronic Obstructive Lung Disease; SRWA=square root wall area.
We report two sample t tests for continuous variables, chi-squared test for categorical variables,
and Mann-Whitney U test results for frequency data. Only patients at Subtype and Stage Inference
stages >1 were included.
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control population by testing for
associations with lung function. SuStaIn
stage was associated with baseline lung
function and longitudinal decline in lung
function in the control population (see
Figure 3 for FEV1/FVC ratio, Figure E7 for
FEV1% predicted, and online supplement,
RESULTS).

LONGITUDINAL SUSTAIN SUBTYPE AND

STAGE IN THE CONTROL POPULATION. We tested
the consistency of the SuStaIn subtype
assignments in the smoking controls at
5-year follow-up (Table E10). At
5-year follow-up the assignment to
Tissue→Airway and Airway→Tissue
subtypes remained consistent in 86% of
individuals. We verified that the SuStaIn
stages were broadly similar at follow-up in
the control population. The SuStaIn stages
at baseline and follow-up showed a strong
correlation (Figure E8): r = 0.48
(P, 0.001) in the Tissue→Airway

subgroup, and r = 0.61 (P, 0.001) in the
Airway→Tissue subgroup.

PROGRESSION TO COPD IN THE

CONTROL POPULATION. Finally, we tested
whether those controls assigned to
Tissue→Airway and Airway→Tissue
subtypes had a greater individual risk of
disease progression compared with those
who were normal (SuStaIn stage 0), as
measured by a classification of GOLD
stage 1 or greater at follow-up. Of the
SuStaIn 0 controls, 8.7% progressed to
GOLD stage 1 at follow-up, compared with
23.0% of the Tissue→Airway subtype and
20.9% of the Airway→Tissue subtype.
This represents a significantly higher
rate of progression to COPD among those
assigned to SuStaIn subtypes compared
with those with normal imaging metrics
(P, 0.001, chi-squared test) and
therefore that SuStaIn provides a
biomarker of early COPD.

Discussion

We report the first application of SuStaIn
in COPD, replicating the subtypes identified
by SuStaIn in a separate cohort at baseline,
and over time in the original cohort. SuStaIn
identifies two distinct patterns (subtypes) of
COPD disease progression, and early stages
of both subtypes were detectable in 29% of
healthy smokers. Seventy percent of subjects
with COPD comprise a Tissue→Airway
subtype that follows a progression model in
which abnormalities in the small airways
(fSAD) and emphysema develop before
measurable changes in larger airways. A
minority of subjects (30%) comprise an
Airway→Tissue subtype in which disease
starts in the larger airways before the later
development of emphysema and small
airway dysfunction. SuStaIn disease stages
correlate with cross-sectional and
longitudinal markers of spirometric
impairment, with greater loss of lung
function at earlier SuStaIn stages of
disease. The assignment to Tissue→Airway
and Airway→Tissue subtypes remained
consistent at 5-year follow-up, whereas
individuals tended to progress in stage.
Progression through stages was more
rapid in earlier disease. We therefore
identify two distinct patterns of subtype
progression in COPD, of potential utility in
the clinic and clinical trials, and provide a
biomarker of early COPD in smoking
controls.

The long natural history of COPD, over
decades, has prevented any single study
reporting on longitudinal disease
progression in individual patients. Disease
progression modeling provides a potential
solution. Our findings are important for a
number of reasons. First, we show that
different subjects are on different disease
trajectories and may therefore represent
distinct endotypes requiring different
interventions. Second, we provide early
identification of people at risk of developing
COPD, while spirometry is still normal.
Reducing the future burden of COPD requires
both early identification of smokers likely to
develop the condition and targeted therapy.
Finally, our modeling suggests that later stages
of COPD progress more slowly and therefore
that disease activity may be greatest in early
disease, where treatment and prevention
should be targeted.

The Tissue→Airway and
Airway→Tissue subtypes we have defined
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Figure 2. Relationship between Subtype and Stage Inference (SuStaIn) stage and lung function. (A)
Scatterplot of cross-sectional spirometry versus SuStaIn stage for the Tissue→Airway and
Airway→Tissue subtypes. A linear and a quadratic model are fitted to the data via a least-squares
estimation to gauge the relationship between SuStaIn stage and markers of lung function. In the
Tissue→Airway subtype, there is a visible nonlinear relationship between lung function and SuStaIn
stage, with a more rapid decrease in lung function at earlier SuStaIn stages. The decline in lung
function in the Airway→Tissue subgroup is linear and less rapid at earlier SuStaIn stages. (B)
Scatterplot of measured decline in spirometry versus baseline SuStaIn stage for the Tissue→Airway
and Airway→Tissue subtypes in Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1–2
subjects. In both the Tissue→Airway and Airway→Tissue subtypes, SuStaIn stage at baseline
correlated with future decline in lung function measured using FEV1/FVC.
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mirror, to some extent, recognized
descriptions of COPD, while providing a
novel imaging biomarker for early disease
stratification. Historically, typical
phenotypes of COPD have been referred to
as “pink puffers” and “blue bloaters” (23).
The relative presence of chronic bronchitis
or emphysema in addition to significant
differences in BMI characterized these
classic phenotypes. Such features are also
seen in our results, with patients in the
Tissue→Airway subtype having a
significantly lower BMI and lower
incidence of chronic bronchitis compared
with those in the Airway→Tissue subtype.

Various studies have shown that
inflammatory changes in the small airways
are fundamental processes driving the
progression and severity of COPD (24). Our
results also suggest that the small airways,
emphysema, and bronchitis are the
principal drivers of COPD progression but
that these occur in different proportions
and at different times in the two different
groups. Just as Hogg and colleagues (24)

showed that a cascade of inflammatory
processes lead to small airway disease and
lung function impairment, it is possible that
the distinct subtypes we have identified are
a function of distinct inflammatory
mechanisms (25) with consequent
differences in progression patterns. The
ability of SuStaIn to separate patients into
distinct subtypes at early stages could
enable the characterization of different
COPD endotypes.

SuStaIn posits that cross-sectional
patient measurements arise from different
stages along a disease time course and that
there are distinct groups of individuals
(disease subtypes) that undergo different
patterns of disease progression. The
assumption is that variation in both subtype
and stage produces heterogeneity in
observed disease biomarkers. Previous
findings align with this assumption.
The study by Vestbo and colleagues (2)
demonstrates highly variable decline in
FEV1 in 3-year longitudinal data. As lung
function impairment arises from the

bulk effect of complex pathological
abnormalities in lung structure, different
proportions and types of structural damage
could explain this variability across
patients. The fact that we observed different
rates of FEV1 decline within different
subtypes supports this explanation. We
therefore demonstrate that changes
measured solely by imaging may be used to
disentangle subtypes of patients who
experience different trajectories of lung
function impairment, imperceptible with
bulk physiological measurements. Early-life
factors might also affect the trajectory of
lung function decline and risk of
developing COPD, but information on
these is unfortunately not available in the
COPDGene and ECLIPSE cohorts.

Previous research has provided a strong
case for early detection of COPD, yet this
remains challenging in practice. Fletcher
and Peto (26) described the rate of lung
function decline in COPD, suggesting slow
decline at onset followed by a more rapid
phase in advanced disease. Recent studies
have suggested that faster decline in lung
function impairment occurs earlier in
disease (27), particularly in mild-to-
moderate COPD (27, 28). These results are
mirrored in studies showing that smokers
may develop emphysema on CT before
abnormal lung function (29, 30).
Undetected structural alterations may be
critical in the early, accelerated decline of
lung function and the subsequent course of
COPD. Our results support this, as we
show that early, undetected pathological
changes are present in a proportion of
healthy smokers, whereas lung function
decline is accelerated at earlier stages of
disease in the Tissue→Airway subtype.
Moreover, our work adds a new
dimension to existing models of disease
progression in COPD (26, 27) by
disentangling how lung function changes
with disease across the COPD population,
helping to explain heterogeneity in lung
function decline (2).

Our findings are clinically and
statistically significant despite the limited
precision of some CT metrics. The
attenuation value of a voxel is dependent on
several factors, such as radiation dose,
scanner modality, the reconstruction kernel,
and inspiration level (31). CT scans in
COPDGene were not spirometrically gated.
Variations in inspiration across patients
may cause errors in the measurement of
emphysema. Moreover, measurements
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Figure 3. Relationship between lung function and Subtype and Stage Inference (SuStaIn) stage in
smoking controls. Baseline SuStaIn stage is associated with cross-sectional and longitudinal changes
in airflow obstruction in smoking controls. (A) Scatterplot of baseline values FEV1/FVC versus SuStaIn
stage in the control population. (B) Scatterplot of longitudinal change in FEV1/FVC per year versus
SuStaIn stage in the control population.
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relating to the airway tree are averages of
six bronchial paths in the upper and
intermediate zones of the lung (18).
Nonetheless, we demonstrate that the
SuStaIn subtype trajectories derived from
these imaging metrics are reproducible in
both a separate cohort and in the same
cohort over time and have strong
stratification capabilities in separating
individuals with distinct clinical
characteristics and patterns of lung
function decline. SuStaIn does assume that
progression is one directional and that
disease cannot regress—it is not
known if this may occur in early stages of
disease, and the explanation for CT
abnormalities in a proportion of people
with normal spirometry requires further
study.

In conclusion, we report the first use of
SuStaIn to study disease progression in
COPD, as an exemplar chronic respiratory
disease. Using this technique, we report the
following novel findings. First, there are two
distinct subtypes of COPD—the majority of
patients develop small airway disease and
emphysema before large airway wall
changes, but a significant minority (30%)
develop large airway wall changes first.
Second, the relationship with lung function
in these subtypes is different, with a more
rapid initial decline in lung function
(greater disease activity) observed in
the Tissue→Airway group. This may
explain the heterogeneity observed in FEV1

decline across COPD populations. Finally,
the technique suggests that a group of
healthy subjects with early COPD at risk
of disease progression can be identified
using CT biomarkers. In heterogeneous
long-term conditions such as COPD
there is a real need to better stratify
patients for targeted therapy. SuStaIn
provides a novel technique to achieve this
and a mechanism for detection of early
disease. n
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