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Abstract

Glassy Dynamics on a Lattice and in Nature

by

Kelsey Carle Schuster

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor David Chandler, Chair

When a liquid is cooled below its melting temperature under conditions that prevent
it from crystallizing, it forms an amorphous solid, or “glass.” Glass-forming materials are
ubiquitous, ranging from familiar silica glasses of which everyday windows are composed,
to liquid water. While structurally indistinguishable from high-temperature liquids, su-
percooled liquids exhibit rich and complex dynamics. For instance, as the temperature is
lowered, structural reorganization within supercooled liquids occurs over increasingly long
time scales. Inspecting atomistic mobility over an interval of time reveals that dynamics
is “heterogeneous,” with distinct regions of mobility and immobility in space-time. In this
dissertation, we characterize glassy dynamics in experimental systems and in coarse-grained
lattice models. We show how the characteristic dynamics of atomistic glass-forming materi-
als can be reproduced using a kinetically constrained lattice model referred to as the Arrow
model, and thus present glassy dynamics “on a lattice.” We then show that combining the
Arrow model with a second lattice model that undergoes a thermodynamic phase transi-
tion captures the competition between crystallization and glass formation experienced by a
material cooled below its melting temperature. With this combined model, we demonstrate
how specific cooling protocols influence polycrystalline structure, and we qualitatively repro-
duce the non-monotonic temperature dependence of crystallization time scales. Finally, we
explore glassy dynamics “in nature” by applying many of the same tools and ideas used to
characterize glasses to study dynamical features of protein side-chains. We demonstrate the
presence of supercooled liquid-like dynamics in a biomolecular system.
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Chapter 1

Introduction

1.1 The Glass Transition

The characteristic dynamics of glass-forming materials is the unifying theme of the research
presented in this dissertation. When a liquid is cooled below its melting temperature Tm

in a manner that allows the constituent molecules to reorganize into a crystalline structure,
it undergoes a first-order phase transition to an ordered solid. However, some preparations
of the material may not permit this reorganization. For example, cooling the liquid to
temperatures below Tm at a fast rate may result in a supercooled liquid state below the
melting temperature. The supercooled liquid state is structurally indistinguishable from a
high-temperature (T > Tm) liquid but has rich dynamics, as discussed below in Section 1.1.1.

The crystal state is the thermodynamically stable state below Tm (i.e., the free energy of
the crystal state is lower than that of the supercooled liquid state), and so the supercooled
liquid is said to be “metastable.” There is a significant enough barrier to crystallization that
the supercooled liquid is only able to crystallize over very long time scales. As the supercooled
liquid is cooled further, particles in the metastable liquid are no longer able to relax over time
scales relevant to the experiment. It is at this point that the liquid falls out of equilibrium
and forms a “glass,” a solid material with amorphous structure. The temperature at which
this transition occurs is known as the “glass transition temperature” Tg; the specific value
of Tg depends on both the material and its preparation [1]. The glass transition is not a
first-order thermodynamic phase transition like that from liquid to crystal, where the phase
transition occurs in configuration space. Rather, it is a first-order dynamical transition and
occurs in trajectory space [2]. Fig. 1.1 shows a schematic of the glass transition, where the
freezing transition and glass transitions corresponding to two different cooling protocols are
indicated.

1.1.1 Dynamical Properties of Supercooled Liquids

While supercooled liquid structure cannot be distinguished from high-temperature liquid
structure, their dynamical properties are distinct [1, 5]. Here we discuss several of the
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Figure 1.1: Illustration of the glass transition. As a liquid is cooled through its melting temper-
ature Tm, it will either crystallize and experience a sudden decrease in volume, or it will become
supercooled [3, 4]. Continuing to cool the supercooled liquid will eventually result in the liquid
falling out of equilibrium to form an amorphous solid, or glass. The temperature Tg at which the
glass transition occurs depends on the cooling protocol.
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most important dynamical changes that take place when a liquid is cooled below its melting
temperature in a manner that prevents it from crystallizing.

Super-Arrhenius Relaxation

The structural relaxation time τ gives the timescale over which microscopic reorganization
occurs in a liquid. At temperatures above the melting temperature Tm, τ grows exponentially
with temperature

τ ∝ exp(E/kBT ) (1.1)

where E is the energetic barrier to relaxation and kB is Boltzmann’s constant. Below Tm, the
time to reorganize a microscopic region of the liquid grows significantly faster with decreasing
temperature [1, 6]. The temperature-dependence becomes super-Arrhenius

τ ∝ exp(A[1/kBT − 1/kBTo]2) (1.2)

where A is a constant that incorporates the energy scale for facilitating new dynamics, and
To ≈ Tm is the onset temperature of glassy dynamics. Fig. 1.2 shows a representative plot
of structural relaxation time as a function of inverse temperature, where the onset of glassy
dynamics is indicated.

●●●●●●
●●●●

●●●●
●●●●●●●●●

●●●
●●●

●●●
●●●

●
●●
●●
●●
●
●●
●
●●

●
●
●●
●

●
●●
●●
●
●
●

1/T

lo
g
⌧

Arrhenius 
relaxation

Super-Arrhenius 
relaxation

1/To

Figure 1.2: Structural relaxation time as a function of temperature. The logarithm of the structural
relaxation time of boron oxide [7] is plotted as a function of inverse temperature. At temperatures
above To, relaxation is Arrhenius. Below To, reorganization in the liquid becomes increasingly
sluggish, and relaxation occurs over significantly longer timescales.

The full form of Super-Arrhenius relaxation at temperatures T < To is known as the
“parabolic law” [8, 9], which is introduced in Section 1.2.2 and is the subject of Chapter



1.1. THE GLASS TRANSITION 4

2. The parabolic law collapses structural relaxation and viscosity data from a diverse set
of experimental and numerical systems, demonstrating a universality in supercooled liquid
dynamics.

Heterogeneous Dynamics

At temperatures above the onset of glassy dynamics, microscopic reorganization of liquid
particles occurs relatively unhindered throughout the spatial extent of the liquid. However,
upon supercooling the liquid, spatial regions of mobility and immobility emerge; specifically,
different spatial regions of the liquid relax over different timescales [10]. Dynamics is said to
be “heterogeneous.” Fig. 1.3 shows a visualization of a two-dimensional supercooled liquid,
where particles are colored based on how far they have displaced over a time interval ∆t.
Relatively immobile particles are colored dark blue, and particles that have displaced at least
a particle diameter are colored red.

Figure 1.3: Heterogeneous dynamics in a supercooled liquid. Supercooled liquid particles in
a 2D-68:32 system [11] are colored from dark blue to dark red depending on how far they
have displaced over a time window ∆t. Dark red particles have traveled at least one par-
ticle diameter; the darkest blue particles are immobile. This figure was originally published
as Figure 1 in Ref. [10] under the terms of the Creative Commons Attribution 3.0 License
(https://creativecommons.org/licenses/by/3.0/). The original figure was cropped for inclusion in
this dissertation.

Fig. 1.3 clearly reveals clustering of mobile and immobile regions. Each mobile region of
the supercooled liquid emerges from an “excitation,” a small region of the liquid where, due to

https://creativecommons.org/licenses/by/3.0/
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underlying structural features, microscopic reorganization is possible. Above To, excitations
exist throughout the liquid and so all particles are free to reorganize. The concentration of
excitations decreases as the temperature decreases and so mobile regions become sparse [10],
as illustrated in Fig. 1.3.

Temporal Correlations

It is clear from Fig. 1.3 that particle mobility in a supercooled liquid is correlated in space.
Particles that were very mobile over ∆t tend to be clustered together, while the least mobile
particles are surrounded by other immobile particles. In addition to exhibiting correlations in
space, supercooled liquid dynamics are also correlated in time [12]. This is intuitive when we
consider that particles in a mobile region of the liquid will likely experience many relaxation
events over a relatively short period of time, while particles in a region of immobility may
wait for a long time to relax. In other words, a relaxation event is indicative of a particle’s
presence in a mobile region, and so subsequent relaxation events are likely to follow.

Exchange and persistence times [13, 14, 12] are frequently used to quantify the degree
to which time-correlated dynamics exists in systems with glassy dynamics. Exchange and
persistence times are defined mathematically and discussed in more detail in Chapters 3
and 5; here, we give a qualitative description of these metrics and what they reveal about
correlated dynamics at low temperatures.

A “persistence time” for a particle in the liquid is defined as the waiting time until that
particle relaxes, and an “exchange time” is the time between subsequent relaxation events.
In a system without temporal correlations, distributions of persistence and exchange times
for all particles in the system will be the same. In a system where relaxation events are
correlated in time, the persistence distribution will be dominated by long waiting times
from spatial regions of immobility. The exchange and persistence distributions will therefore
appear decoupled, with mean persistence and mean exchange times differing by up to several
orders of magnitude. Decoupling is a key indicator of heterogeneous dynamics.

1.1.2 Theories of the Glass Transition

The nature of the glass transition is a rich and controversial subject, and significant effort
has been devoted to understanding the underlying physics [1]. Several prominent theories
exist in the literature, including mode-coupling theory (MCT) [15], Adam-Gibbs theory [16],
random first order transition theory (RFOT) [17], and dynamical facilitation theory [18, 19].
While MCT, Adam-Gibbs theory, and RFOT are concerned with free energy landscapes
of configurations, dynamical facilitation theory is unique in that it focuses on microscopic
dynamics. Dynamical facilitation theory has been successful in predicting a universal collapse
of transport properties of glass-forming materials [8, 9], as well as explaining heat capacity
behavior when cooling and warming through the glass transition [20], and so is the only
theory discussed here. The dynamical facilitation theory of the glass transition is described
below and motivates work in subsequent chapters.
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1.2 Dynamical Facilitation Theory

The dynamical facilitation theory of the glass transition [18, 19] is motivated by a microscopic
view of particle dynamics. Specifically, supercooled liquid particles moving in a specific
direction facilitate mobility of neighboring particles, which displace in that same general
direction. In this sense, dynamics is both facilitated and exhibits directionality. Fig. 1.4
shows a close-up view of simulated particle dynamics in the system shown in Fig. 1.3, with
color once again indicating how far each particle has displaced, and arrows indicating the
directions of displacement.

Figure 1.4: Facilitated, directed dynamics in a supercooled liquid. Supercooled liquid particles in
a 2D-68:32 system [11] are colored from dark blue to dark red depending on how far they have
displaced after a time window ∆t. Dark red particles have traveled at least one particle diameter;
dark blue particles are immobile. Arrows indicate the directions of displacement for individual
particles. This figure was originally published as Figure 1 in Ref. [10] under the terms of the
Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/). The
original figure was cropped for inclusion in this dissertation.

1.2.1 Kinetically-Constrained Models

The dynamical predictions of dynamical facilitation theory are captured by a class of lattice
models with kinetic constraints. These kinetically-constrained models (KCMs) incorporate
the key phenomena of dynamical facilitation and directionality observed in atomistic systems.
The one-dimensional East model is one of the simplest and most utilized of these KCMs and
is described below.

https://creativecommons.org/licenses/by/3.0/
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East Model

The East model [21, 22] is a simple kinetically-constrained lattice model with the thermo-
dynamics of a lattice gas [3]. While typically implemented as a one-dimensional model,
higher-dimension implementations exist [23, 24, 18], and generalizations can be made to
apply East model results to two and three dimensions [20].

The one-dimensional East model has N sites with labels i = 1, 2, . . . , N . Each lattice
site has an occupation variable ni ∈ {0, 1}, where sites with ni = 1 correspond to “excita-
tions.” As in atomistic systems, excitations facilitate dynamics (and therefore relaxation) in
neighboring regions. The energy of the system is dependent only on the lattice occupation
variables

H =
N∑

i=1

ni (1.3)

and so there are no energetic interactions between sites. While the Hamiltonian is simple,
the imposed dynamical constraints allow for non-trivial behavior. Dynamics at site i can
only be facilitated (or destroyed) by the site to its “east,” site i − 1, and only if site i − 1
is itself active. The rates of interconversion between active (1) and inactive (0) states are
generally implemented as

k0→1 = e−βni−1

k1→0 = ni−1

(1.4)

though any rates that satisfy the condition k0→1/k1→0 = e−β are acceptable, where β =
1/kBT is the inverse temperature of the model. Consequently, not all states are allowed to
undergo a dynamical change at a time t. Dynamics is therefore facilitated and directional.
Fig. 1.5 shows both the creation and destruction of excitations in a one-dimensional East
model lattice.

The equilibrium concentration of excitations is

c = 〈ni〉 =
1

1 + eβ
(1.5)

at an inverse temperature β. As in atomistic systems, the concentration of excitations
decreases with decreasing temperature, and domains of inactivity therefore grow larger.
An East model site is said to relax if it undergoes a transition 0 → 1 or 1 → 0, and so
the structural relaxation time τ grows larger at low temperatures due to the presence of
large domains of immobile sites. When structural relaxation time is plotted against inverse
temperature as in Fig. 1.2, the East model also shows super-Arrhenius growth, as elaborated
on in Section 1.2.2. However, it is important to establish that with its kinetic constraints,
East model dynamics are facilitated at all temperatures. The East model is thus only relevant
as a model of atomistic dynamics below the onset temperature.

While not utilized in the research presented in this dissertation, the Fredrickson-Andersen
(FA) model [21] is closely related to the East model and shares the same Hamiltonian.
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… …

… …

… …

time

space

relaxed domain

Figure 1.5: Schematic of East model dynamics. A segment of a one-dimensional East model lattice
is shown at three subsequent times during a simulation. Arrows indicate sites with an excitation
(i.e., “active” sites) and point in the direction of facilitation. Excitations are created and destroyed
in the second and third time frames; blue arrows denote new excitations. Note that the process of
creating and destroying dynamics can relax domains in the East model, as indicated.

However, the dynamical constraints are less strict. In the one-dimensional model, both
excitations to the “east” and to the “west” of the site of interest may facilitate or suppress
dynamics. The Arrow model [18] is a high-dimensional generalization of the one-dimensional
East model (or FA model) and is the topic of Chapter 3.

1.2.2 East Model Scaling and the Parabolic Law

Kinetically constrained models, and the East model in particular, incorporate the fundamen-
tal features of glass-forming material phenomenology: facilitation and directionality. Despite
their simplicity, KCMs exhibit behavior observed in glassy atomistic systems, such as de-
coupling of persistence and exchange times. Remarkably, KCMs also successfully predict
the universal collapse of atomistic relaxation data to a super-Arrhenius form known as the
parabolic law [8, 9, 10].

In the context of atomistic glass-formers, dynamical facilitation theory seeks to explain
how a particle in the liquid displaces a distance a between two enduring (i.e., relatively long-
lived) states. When a is on the order of a particle diameter σ, displacements that persist
are indicative of an underlying excitation. Excitations consist of a handful of particles
at all temperatures, and are distributed spatially as an ideal gas [10]. The equilibrium
concentration of excitations for a displacement length a has a Boltzmann dependence on
temperature

ca ∝ exp[−Ja(1/T − 1/To)], T < To (1.6)

where Ja is the energy barrier to a displacement of length a. From the one-dimensional East
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model [23], we know that this energy scale grows logarithmically with a

(Ja − Ja′)/Ja′ = γ ln(a/a′) (1.7)

where a′ is a second length scale and γ is a material-dependent parameter of order unity.1

Using transition state theory, we express the rate at which an excitation of displacement a
connects to neighboring excitations as

1/τa ≈ ν exp[−(J`a − Ja)(1/T − 1/To)], T < To (1.8)

where the energy required to connect excitations is the activation energy of displacements.
The typical distance between excitations depends on the total concentration of excitations,
and so

`a/a = (caa
d)−1/df (1.9)

is the distance between neighboring pairs of excitations with displacement a. The fractal
dimension df is a measure of the linearity of paths connecting excitations and is typically
close to the physical dimension d. For the one-dimensional East model, df = 1; for two-
and three-dimensional atomistic systems, the fractal dimension is approximately 1.8 and
2.6, respectively [10]. Combining Eqns. 1.8, 1.9 and 1.7, we have

τaν = exp[J2
a(γ/df)(1/T − 1/To)2], T < To (1.10)

We set the length scale a = σ when computing the structural relaxation time, and so define

J = Jσ

√
γ

df

(1.11)

where Jσ is the energy scale for a displacement of length σ, a particle diameter. As the
temperature is lowered and excitations grow farther apart, the energy scale to relax domains
of immobility also grows. Specifically, combining Eqns. 1.10 and 1.11, we arrive at

τ = τo exp[J2(1/T − 1/To)2], T < To (1.12)

which gives the growth in structural relaxation time τ as a function of temperature. Eqn.
1.12 is known as the parabolic law and is the subject of Chapter 2.2

1The parameter γ measures the entropy of pathways between excitations.
2In Chapter 2, we introduce a modified form of the parabolic law, but the dominant behavior is captured

by Eqn. 1.12.
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Chapter 2

Corresponding States of
Glass-forming Materials

2.1 The Parabolic Law

While all glass-forming materials exhibit a drastic slowing of dynamics below their melting
temperatures, their respective material properties can differ greatly. Despite this diversity,
the temperature-dependent transport properties of glass-forming materials can be neatly
collapsed using the parabolic form

log

(
τ

τo

)
= J2

(
1

T
− 1

To

)2

(2.1)

for temperatures T < To, where To is the material-specific onset temperature for glassy
dynamics [8, 9]. The parameter J sets the energy scale for excitations of correlated dynamics,
and τo is the structural relaxation time at the onset temperature To. The onset temperature
is typically commensurate with the melting temperature Tm and marks a crossover from
Arrhenius liquid dynamics to the hierarchical super-Arrhenius dynamics characteristic of
fragile glass-formers. There exists a separate crossover temperature Tx < To. Below Tx,
dynamic constraints of glassiness can be avoided at a constant energy cost Ex, yielding a
structural relaxation time

τ = τx exp

(
Ex

T

)
(2.2)

where τx is the relaxation time at Tx [1]. In this chapter, we consider temperatures T > Tx

unless explicitly noted.
Eqn. 2.1—the “parabolic law”—is used to fit temperature-dependent transport proper-

ties, specifically viscosity η and structural relaxation time τ . These quantities are propor-
tional

η = G∞τ (2.3)
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where G∞ is the instantaneous shear modulus, which varies little with temperature [25].
This relationship allows us to simply replace τ and τo in Eqn. 2.1 with η and ηo when work-
ing with viscosity measurements. In addition to viscosities and relaxation times, diffusion
measurements are also frequently used to monitor the slowdown of dynamics and are related
to viscosity measurements via the Stokes-Einstein relation. This relationship is known to
break down at low temperatures, however, and a fractional version of the Stokes-Einstein
relation is used in its place [26, 13, 27]. Treatment of diffusivity data and conversion between
diffusivities and viscosities is discussed later in this chapter.

A recent modification of the parabolic law as expressed in Eqn. 2.1 is the explicit consid-
eration of an Arrhenius contribution to supercooled liquid dynamics. Arrhenius relaxation
characteristic of temperatures T > To can be thought of in terms of a mean-field (MF) pic-
ture. Excitations facilitating motion are present throughout the system, and thus regions of
the system do not wait long to relax. Below To, however, the dynamics becomes hierarchical
such that correlated, cooperative dynamics is necessary for relaxation. This low-temperature
mechanism is fundamentally different from the MF picture, and relaxation is dominated by
the super-Arrhenius term. With this in mind, we alternatively express the parabolic law as

log τMF = E

(
1

T
− 1

To

)
+ log τo, T > To

log

(
τ

τMF

)
= J2

(
1

T
− 1

To

)2

, Tx < T < To

(2.4)

where E is the activation energy for Arrhenius dynamics, and the remaining parameters
assume the same meaning as in Eqn. 2.1. The Arrhenius term is typically far outweighed by
the super-Arrhenius dynamics at supercooled temperatures, but we include it nonetheless.

For convenience, we refer to temperatures T > To as the “high-temperature” or “linear”
regime, and to temperatures Tx < T < To as the “low-temperature” or “parabolic” regime.1

Whereas fitting datasets to Eqn. 2.1 requires only temperature points below the onset of
glassy dynamics, fitting to Eqn. 2.4 requires data at temperatures in both the linear and
parabolic regimes.

2.2 Fitting Procedure

In this section, we detail the procedure used to fit Eqn. 2.4 to experimental and numeri-
cal datasets. Note that the fitting procedure outlined below closely resembles the method
described in Refs. [8, 9]. However, additional steps are necessary when considering temper-
atures both above and below the onset of glassy dynamics and are included here. The steps
used to fit datasets with sufficient data both above and below the onset are as follows:

1Note that temperatures T < Tx also constitute an Arrhenius, “linear” regime. To avoid confusion, we
refer to these temperatures explicitly as the low-temperature Arrhenius regime.
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1. Visually inspect log τ vs. 1/T and identify the general linear and parabolic regimes,
thereby obtaining an approximate location of the onset separating the two.

2. Fit the high temperature data to the linear equation log τMF = E/T + b, where b is
the y-intercept. Starting at the highest temperatures, gradually add points until the
values of E and b appear to have converged.

3. With E and b set, fit the low temperature data to log τ = J2(1/T − 1/To)2 + log τMF.
Starting at the lowest temperatures, gradually add points until the values of J and To

appear to have converged.

4. For some datasets, following steps 1-3 will result in a value of To that doesn’t properly
separate the points used in the linear fit from the points used in the parabolic fit. In
this case, repeat steps 1-3, adjusting the number of points included in the linear and
parabolic fits, until To lies between these two sets of points.

5. Once we have values for J , To, E, and b, the value of log τo = E/To + b is easily
obtained.

Fig. 2.1 illustrates the series of steps to fit the linear and parabolic regimes of boron oxide
(B2O3) data [7].
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Figure 2.1: Fit to Eqn. 2.4 illustrated for boron oxide (B2O3) data. In the first panel, the logarithm
of the relaxation time log τ is plotted over the full temperature range so that the approximate onset
of glassy dynamics can be determined. This is Step 1 of the fitting procedure. In the middle panel,
the high-temperature (T > To) regime is fit to a linear equation, as detailed in Step 2. The
third panel shows the fit to the parabolic regime with the linear fit fixed; this is Step 3 of the
fitting procedure. The vertical dashed line indicates the value of 1/To determined by the fit, which
separates the subsets of data points included in the Arrhenius and super-Arrhenius fits.

For some datasets, it is difficult to reach convergence with all parameter values, partic-
ularly when there are few data points available in one or both temperature regimes. The
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Arrhenius contribution to the low-temperature fit tends to improve the fit at intermediate
temperatures T ≈ To, allowing all temperature points in the dataset to be included in either
the linear or the parabolic fit. We find that there is typically a single fit (and therefore,
set of parabolic law parameters) where all data points are utilized and To lies between the
points included in the linear fit and those in the parabolic fit. Even if visual inspection of
parameter values for convergence is inconclusive, this single fit is taken to be the ideal fit
to the available data. If more than one fit exists that satisfies the necessary conditions, the
fit that minimizes the standard deviations to the linear and quadratic forms (ΣL and ΣQ in
Tables 2.1 and 2.2) is chosen.

A feature that distinguishes the fitting procedure presented here from that utilized by
Elmatad et al. is the use of only two free fit parameters in the parabolic regime. In Refs.
[8, 9], only the super-Arrhenius regime (Tx < T < To) is considered, for which there are
three fit parameters: To, J , and τo. Here, using Eqn. 2.4, the Arrhenius regime (T > To) is
fit first with two free parameters: E and b. With E and b fixed, the super-Arrhenius regime
is then fit to obtain To and J . There are two free parameters for each temperature regime,
as opposed to three free parameters for a fit to Eqn. 2.1. However, using Eqn. 2.4 requires
sufficient data at temperatures both above and below the onset of glassy dynamics. In some
cases, high temperature data is unavailable and so Eqn. 2.1 must be used.

2.3 Collapse of Liquid Relaxation Data

In the following sections, we demonstrate a universal collapse to the parabolic law (Eqn.
2.4) for both experimental and numerical liquid datasets. Values of the onset temperature
To, the energy scale J , the relaxation time at the onset τo, and the Arrhenius energy barrier
E resulting from these fits are included in accompanying tables. In general, the parameter
values obtained from fitting with Eqn. 2.4 are commensurate with parameter values obtained
with Eqn. 2.1 [8, 9] for the same material. However, there are some differences, which will
be discussed in the following sections. It is important to specify that all fits to Eqn. 2.4 in
the following sections use base 10 logarithms; the choice of base does not change To but does
affect the values obtained for J , E, and log τo.

2.3.1 Experimental Data

Fig. 2.2 shows a universal collapse of 13 experimental liquid datasets to Eqn. 2.4. The
corresponding fit parameters are shown in Table 2.1.2

With the exception of methanol and toluene, all of the datasets featured in Fig. 2.2 and
Table 2.1 were also studied by Elmatad et al. [8]. However, a significant number of the
datasets included in Ref. [8] cannot be studied here because they include only temperature
points below the onset temperature. For datasets with temperatures both above and below

2Datasets that are also featured in Refs. [8, 9] have the same labels here for ease of comparison. For
instance, salol is labeled “Sal-1” here even though we only consider one salol dataset.
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Figure 2.2: Collapse to a parabolic form of the structural relaxation times, τ , and viscosities, η, as
functions of temperature T for fragile glass-forming liquids. Parameters To, J , and E are listed in
Table 2.1. The inset shows data for temperatures T < To graphed as a function of the square of
the collapse variable. The key lists the 14 liquid data sets considered in the graphs. The meaning
of each acronym is given in Table 2.1.
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systema full name To/K
b J/To

c E/To
d log10 τo/s

e log10 ηo/P
f

∑
L

g
∑

Q
h Tm/K

i Tg/K
j range/Kk

3BRP [28] 3-bromopentane 180 4.5 3.6 -9.5 0.046 0.13 147 108 107− 289
B2O3 [7] boron oxide (B2O3) 937 3.7 4.0 3.0 0.042 0.1 723 544 533− 1665
CaKNO3 [29] Ca−K−NO3 432 11.3 5.4 0.4 0.23 0.35 334 341− 668
CN60.0 [30] soda lime silicate glass.0 1501 6.1 6.3 2.1 0.0064 0.046 1030 1012− 1809
Cum-2 [7] isopropylbenzene 191 6.7 3.5 -0.8 0.04 0.21 177 126 129− 306
DBP-2 [7] di-n-butylphthalate 285 4.7 4.4 -0.6 0.036 0.2 169 178− 369
MeOH [31, 32, 33] methanol 146 6.2 3.5 -0.3 0.023 0.093 176 95 100− 328
MTHF-2 [34] 2-methyltetrahydrofuran 126 7.6 5.7 -9.4 0.069 0.14 137 90 94− 179
NBB [7] n-butylbenzene 202 5.3 3.9 1.3 0.059 0.15 185 128 135− 306
Sal-1 [35] salol 298 8.3 5.0 -8.4 0.028 0.058 315 220 218− 382
TANAB-1 [36] tri-α-naphtylbenzene 492 7.2 5.3 -0.8 0.029 0.081 335 332− 584
TANAB-2 [7] tri-α-naphtylbenzene 492 6.8 4.6 -0.6 0.034 0.1 329 333− 588
Tol [37, 38] toluene 183 5.1 2.6 -1.0 0.014 0.17 178 109 113− 325

Table 2.1: Parabolic Law fits for experimental glass-formers.

aNumbered footnotes refer to references with numerical data. bTo is the fitted onset temperature in K.
cJ is the fitted energy scale over kB. dE is the fitted relaxation energy barrier over kB. eτo is the fitted

onset relaxation time in seconds. fηo is the fitted onset viscosity in Poise. gΣL is the standard deviation

of the linear fit given by:
(

1/(N − n)
∑
i (log10 τlinFit,i − log10 τdata,i)

2
)1/2

. N is the number of fitted data

points, n = 2 is the number of degrees of freedom. i = {1, N} indexes the fitted points. hΣQ is the

standard deviation of the quadratic form given by:
(

1/(N − n)
∑
i (log10 τquadFit,i − log10 τdata,i)

2
)1/2

. N

is the number of fitted data points, n = 2 is the number of degrees of freedom. i = {1, N} indexes the fitted

points. iTm is the melting temperature. jTg is the glass transition temperature i.e., where η = 1013 P or

τ = 102 s. kThe range of temperature for data reported in K.
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the onset, comparison of fit parameters in Table 2.1 with parameters listed in Ref. [8] reveals
only slight differences. Fig. 2.3 shows this comparison, where we plot values of To and J
for the “previous” (“P”) fits to Eqn. 2.1 against values from the “new” (“N”) fits to Eqn.
2.4. Each point corresponds to one of the 11 systems included in Ref. [8] that was fit here.
Typically, including the Arrhenius term for temperatures below the onset results in a slightly
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Figure 2.3: Comparison of parameter values obtained from fits to Eqn. 2.1 with values from fits to
Eqn. 2.4 for experimental glass-formers. The 11 datasets that were both studied in Ref. [8] and
featured in this chapter are included in the plot; the same colors and symbols are associated with

each material as in Fig. 2.2. The diagonal dashed lines indicate that T
(N)
o = T

(P)
o in the left plot

and J (N) = J (P) in the right plot. Note the logarithmic scale on both axes.

lower onset temperature, while the J parameter remains largely unchanged. This is true for
the majority of the datasets in Fig. 2.3. However, the data points representing J values for
MTHF-2 and NBB appear to be exceptions and deviate from the dashed line representing
an unchanged J value.

2.3.2 Numerical Data

Fig. 2.4 shows a collapse of 4 numerical datasets3 to Eqn. 2.4. Fit parameters are listed in
Table 2.2. All four numerical datasets featured here were also studied in Ref. [8]. Fig. 2.5
presents a comparison, where values of To and J for the “previous” (“P”) fits to Eqn. 2.1
are plotted against values from the “new” (“N”) fits to Eqn. 2.4. The fit to the Lennard-
Jones 50:50 mixture data appears to be an outlier, as To actually increases and J decreases
significantly from the previous fit to the new fit.

3The numerical datasets considered here were obtained from Monte Carlo and Molecular Dynamics sim-
ulations. See Appendix A for general information on these simulation methods.
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Figure 2.4: Collapse to a parabolic form of the structural relaxation times, τ , as a function of
temperature T for simulations of models of fragile glass-forming liquids. Parameters To, J , and E
are listed in Table 2.2. The inset shows data for temperatures T < To graphed as a function of the
square of the collapse variable. The key lists the 4 simulation data sets considered in the graphs.
The meaning of each acronym is given in Table 2.2.
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systema description TokB/ε
b J/To

c E/To
d log10[τo/(mσ

2/ε)1/2]e
∑

L
f

∑
Q

g range (kB/ε)
h

FLJ [39] Frustrated Lennard-Jones 0.3 1.3 2.0 1.2 0.011 0.039 0.18− 0.8
LJ 50:50 [40] Lennard-Jones 50:50 mixture 0.9 2.7 1.2 0.5 - 0.081 0.59− 2
LJ 80:20 [41] Lennard-Jones 80:20 mixture (MC) 0.7 2.3 1.7 2.7 0.041 0.056 0.43− 2
WCA 50:50 [12] Weeks-Chandler-Andersen 50:50 mixture 0.6 2.5 1.5 0.7 0.039 0.057 0.36− 5

Table 2.2: Parabolic Law fits for numerical glass-formers.

aNumbered footnotes refer to references with numerical data. bTo is the fitted onset temperature in

kB/ε.
cJ is the fitted energy scale over kB. dE is the fitted relaxation energy barrier over kB. eτo

is the fitted onset relaxation time in
√
mσ2/ε. fΣL is the standard deviation of the linear fit given by:(

1/(N − n)
∑
i (log10 τlinFit,i − log10 τdata,i)

2
)1/2

. N is the number of fitted data points, n = 2 is the num-

ber of degrees of freedom. i = {1, N} indexes the fitted points. gΣQ is the standard deviation of the

quadratic form given by:
(

1/(N − n)
∑
i (log10 τquadFit,i − log10 τdata,i)

2
)1/2

. N is the number of fitted data

points, n = 2 is the number of degrees of freedom. i = {1, N} indexes the fitted points. hThe range of

temperature for data reported in units of kB/ε.
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2.3.3 Comment on the Crossover Regime

The inclusion of an Arrhenius contribution to the parabolic law (Eqn. 2.4) typically im-
proves the fit to temperature points in the crossover regime from simple liquid dynamics to
hierarchical glassy dynamics. However, it is clear in Fig. 2.2 that some of the the glass-
forming materials studied here (e.g., MTHF-2 and NBB) deviate from the parabolic form
in this moderately supercooled regime. The parabolic law assumes an abrupt crossover to
hierarchical dynamics at the onset temperature, but fits for the aforementioned materials
may instead be consistent with a broader crossover.

Currently, there is no theory that satisfactorily explains the physics of the onset of glassy
dynamics. Such a theory would help elucidate the crossover from simple liquid dynamics to
glassy dynamics, and could reveal whether certain materials are expected to have broader
crossovers than others. Further study is required.

2.4 Breakdown of the Stokes-Einstein Relation

Along with measurements of viscosities and structural relaxation times, diffusion measure-
ments quantify the drastic slowing in dynamics that occurs at supercooled temperatures.
Diffusion and viscosity are related and can be easily interconverted via the Stokes-Einstein
relation (SER). The methanol and toluene datasets in Fig. 2.2 and Table 2.1 were converted
from diffusivities to viscosities using the SER. In this section, we begin with a general discus-
sion of the SER and the fractional form that becomes relevant at supercooled temperatures.
Finally, we detail the conversion process for methanol and toluene datasets.

The SER relates the diffusion constant D for a material to its viscosity η

D ∝ T

η1−ω (2.5)

at a temperature T , where ω = 0 at temperatures above the onset of glassy dynamics To.
Below To, when dynamics becomes correlated, this relation with ω = 0 no longer holds
[26, 13, 27]. The viscosity η increases faster than the self diffusion constant D decreases.
At supercooled temperatures, ω > 0, and we therefore refer to Eqn. 2.5 as the fractional
SER. From simulation studies of high-dimensional East models 4 with probe particles to
measure diffusion, we find ω ≈ 0.17 for d = 3 [42]. The switch from the SER (ω = 0) to
the fractional SER (ω > 0) is not instantaneous at the onset temperature. Ref. [37] plots
toluene diffusivities against the corresponding ratio of viscosities to temperatures in order
to empirically determine the value of ω across a temperature range 113− 325 K. They find
that ω ≈ 0 through the melting temperature Tm ≈ To, but the SER breakdown does not
occur until much lower temperatures are reached.

Although we include only viscosity and structural relaxation time values in Figs. 2.2 and
2.4 and Tables 2.1 and 2.2, we can also fit diffusion data to the parabolic law. We use a

4If unfamiliar with the East model, see Section 1.2.1 for a brief overview.
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modified form

log

(
D

Do

)
= (ω − 1)

[
J2

(
1

T
− 1

To

)2

+ E

(
1

T
− 1

To

)]
, Tx < T < To

log

(
D

Do

)
= −E

(
1

T
− 1

To

)
, T > To

(2.6)

which takes into account this breakdown at supercooled temperatures. At temperatures
above the onset of glassy dynamics, ω is always equal to zero and thus is not included
explicitly in Eqn. 2.6. Diffusivity at temperature T and onset diffusivity are represented by
D and Do, respectively; all other parameters maintain their previous definitions.

For a small number of the systems included in Fig. 2.2 and Table 2.1, neither viscosity
nor relaxation time data is available. Instead, diffusivities are provided over a range of
temperatures above and below To. Using the SER and fractional SER, we convert these
diffusivity values to viscosities.

Converting Toluene and Methanol Diffusivities to Viscosities

The toluene data from Refs. [37, 38, 43] consists of diffusivity measurements over a combined
temperature range 113 − 325 K. Diffusivities at the lowest temperatures (113 − 135 K)
were measured by depositing a layer of inert gas (Argon, Krypton, and Xenon) beneath an
amorphous solid toluene layer at an even colder temperature [37]. As the system is warmed
and the amorphous solid toluene melts into a supercooled liquid, the inert gas begins to
permeate the liquid, with a desorption rate related to the toluene diffusivity. This method
allows measurements at temperatures much lower than can be accessed by simply cooling
liquid toluene from its melting temperature.

The onset temperature To = 183 K for toluene can be determined by fitting the diffusivity
data to Eqn. 2.6.5 The temperature points over 219 − 325 K [38] are decidedly above the
onset temperature for toluene, so the diffusivity values are converted to viscosities using the
full form of the SER

D =
kBT

6πrη1−ω (2.7)

with ω = 0. Ref. [37] provides the hydrodynamic radius of the diffusing species r = 0.1
nm. The low-temperature points over 113 − 135 K [37] are significantly below the onset
temperature, so we convert the diffusivities to viscosities via Eqn. 2.7 with ω = 0.17. Fig.
2.6 shows the toluene diffusivity data, where temperature points have been colored according
to the values of ω used for their conversion to viscosities. The intermediate data, for which
the appropriate value of ω is unclear, is omitted from our analysis.

We follow the same procedure when converting methanol diffusivities. The methanol
data [31, 32, 33] consists of diffusivity measurements over the temperature range 100− 328
K. Similar to the toluene measurements [37], the lowest temperature data (100 − 117 K)

5The choice of ω for a fit to Eqn. 2.6 does not affect the value for To.



2.4. BREAKDOWN OF THE STOKES-EINSTEIN RELATION 21

Toluene

1/T (K)

! = 0 ! = 0.17

1/To

Methanol

! = 0.17! = 0

1/To

1/T (K)

●●●●
●●●●

0.003 0.005 0.007 0.009

−16

−14

−12

−10

−8

−6

−4

●
●
●●
●●●●

●●●
●●
●
●●
●
●

0.003 0.005 0.007 0.009

−16

−14

−12

−10

−8

−6

−4

lo
g

D
(c

m
2
/s

)

Figure 2.6: Toluene and methanol diffusivity datasets. Red shaded regions indicate high-
temperature regimes where the SER with ω = 0 is used to convert to the appropriate viscos-
ity values. Blue shaded regions indicate low-temperature regimes where the fractional SER with
ω = 0.17 is used to convert to viscosities. Temperature points outside these shaded regions are ex-
cluded from our analysis and did not contribute to the fits reported in Fig. 2.2 and Table 2.1. Onset
temperatures for toluene and methanol (183 K and 146 K, respectively) are denoted with dashed
lines. For both materials, at least three datasets were combined to cover the full temperature range;
these separate datasets are plotted with different symbols.
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was obtained using the method of inert gas permeabilities. Fitting Eqn. 2.6 to the data
yields an onset temperature To = 146 K. High temperature diffusion data (154 − 328 K) is
converted to viscosities using the SER with ω = 0, and low temperature data (100− 117 K)
is converted using the fractional SER with ω = 0.17. This is illustrated in Fig. 2.6.

2.5 Challenges of Fitting Water Data

Due to a lack of low-temperature data in the literature, it is difficult to conclusively determine
the value of the energy scale for hierarchical dynamics in supercooled water. As we saw in
previous sections for different materials, measurements at sufficiently low temperatures—
such that relaxation times or viscosities span several orders of magnitude—are essential for an
accurate determination of J . It is relatively straightforward to measure transport properties
for water cooled from its melting temperature of 273 K down to temperatures around 240
K. Below this temperature, liquid water is no longer stable and it becomes exceedingly
difficult to avoid crystallization. However, diffusion at significantly lower temperatures has
been measured by first preparing amorphous solid water at an even colder temperature
and then warming it to a supercooled liquid state. Ref. [44] uses this method to measure
supercooled water diffusivities at temperatures between 150 and 157 K. In this section,
we present several representative supercooled water datasets available in the literature and
discuss the corresponding parabolic fit parameters, elaborating on any conflicting values.
We also comment on the data required to conclusively determine the value of J , the energy
scale for excitations of correlated dynamics.

2.5.1 Simulated Water Models

Water has a variety of unique properties and is essential for life, making it a popular subject
of study in both lab and computer experiments. A variety of simulated models have been
developed to study water on a computer, each with different features and optimized for
specific purposes. Simulated models can allow us to explore a larger range of temperatures
for supercooled water, where crystallization can be more easily avoided. For close agreement
between the behavior of transport properties in experimental and simulated water, fits to
the parabolic law should yield roughly the same parameters.

Ref. [45] fits structural relaxation time data from a variety of simulated (explicit) water
models—including TIP5P, mW, and ST2—to the parabolic law.6 Overall, these models
show marked agreement of fit parameters. For each of the five models, To ≈ 0.99Tmax, where
Tmax is the temperature of maximum density for the specific model,7 and J/To ≈ 7.5. If
experimental water and simulated water indeed exhibit similar transport property behavior
with decreasing temperature, these are the values we hope to confirm for liquid water.

6Ref [45] fits data to the parabolic law as expressed in Eqn. 2.1.
7Each model has a unique temperature scale, so we normalize temperatures by the temperature at which

the specific model is at its maximum density. For experimental water, this value is 277 K.
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2.5.2 Experimental Water

Here, we evaluate several existing water datasets in the literature and present fits to the
parabolic law with corresponding parameter values. For all fits, we fix the onset temperature
To = 271 K, which we know to be the approximate true value. We are primarily interested
in determining the value of J . Note that for some fits in this section, we revert to the version
of the parabolic law in Eqn. 2.1 for diffusivities

log

(
D

Do

)
= (ω − 1)J2

(
1

T
− 1

To

)2

, T < To (2.8)

if the dataset considered does not include suitable high-temperature data for determination
of the Arrhenius activation energy E. Because we are only interested in determining whether
data is consistent with a specific parabolic form, any small changes in J/To between fits to
Eqn. 2.1 and Eqn. 2.4 will not affect our conclusions.

1. Reported parabolic law parameter values in Ref. [45] (Limmer et al.)

We begin with the parabolic law fit parameters for experimental water presented in Ref.
[45]. The reported values are To = 0.98Tmax = 271 K and J/To = 7.4, which are in very good
agreement with the simulated water models. For experimental water, we know Tmax = 277
K, so To = 271 K; this onset temperature is commensurate with the melting temperature,
as expected. These values are supported by a combination of data sources. Viscosity data
is reported in Ref. [46, 6] for a range of moderately supercooled temperatures 244 − 265
K. Fig. 2.7 shows a plot of this dataset alongside the parabolic form with To = 271 K
and J/To = 7.4. We see that the dataset is in good agreement with this choice in J , and
thus with the simulation values. However, the temperature range is narrow (all data is in
the “moderately supercooled” temperature regime) and viscosities span only an order of
magnitude, and so our fit to the parabolic law is less than satisfying. We show Eqn. 2.8
with ω = 0 because the data is close enough to the onset temperature that we would expect
this form to fit better than the ω = 0.17 parabola.8

Experimental confined water data reported in Ref. [47] also supports the value J/To =
7.4. Water confined in nanopores can avoid crystallization at lower temperatures with
help from the disorder introduced by the nanopore walls, which destabilizes ordered wa-
ter structure. Measurements of the energy scale J are reported for a range of cavity radii
[48, 49, 50, 51, 52]; extrapolating the value of J to infinite nanopore radius gives a value
J/To = 7.4.

2. Diffusion data in Ref. [44] (Smith et al.)

While the viscosity data in Fig. 2.7 only includes measurements in the moderately super-
cooled regime, Ref. [44] reports diffusion data at highly supercooled temperatures 150− 157

8This is analogous to our previous conversion of moderately supercooled methanol and toluene diffusivities
to viscosities using the SER (Eqn. 2.5 with ω = 0).
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Figure 2.7: Water diffusivities at moderately supercooled temperatures from Ref. [6]. The dashed
parabola corresponds to the parabolic law (Eqn. 2.8 with ω = 0) with J/To = 7.4 and To = 271 K
is fixed. The solid vertical line indicates 1/Tm, where Tm = 273 K. The dashed vertical line marks
1/To.
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K. To obtain measurements at such low temperatures, Smith et al. deposit water isotopes
H2

16O and H2
18O on a cold substrate (< 140 K) to form an amorphous solid phase, which

is metastable with respect to crystalline ice. When the substrate is warmed above 150 K,
the amorphous solid melts to form a supercooled liquid, and diffusivities can be determined
by studying isotope mixing. The sample crystallizes above 157 K, so Ref. [44] provides
diffusivities over the temperature range 150 − 157 K, in addition to high-temperature and
moderately supercooled data (243 − 498 K) [53, 54, 55] measured by cooling liquid water.
Fig. 2.8 shows supercooled water and ice diffusion data [56, 57] featured in Ref. [44], along
with a parabolic fit to Eqn. 2.6 with To = 271 K fixed. We use ω = 0 for the high temper-
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Figure 2.8: Water diffusivities at deeply supercooled temperatures from Ref. [44]. Parabolas
corresponding to two distinct parameterizations of the parabolic law (Eqn. 2.8 with ω = 0 for high-
temperature and moderately supercooled data [53, 54, 55] and ω = 0.17 for deeply supercooled data)
are given by dashed lines; in both cases To = 271 K is fixed. The parabola pieces corresponding
to J/To = 4.1 is a fit to the supercooled liquid data; the parabola pieces with J/To = 7.4 is shown
to demonstrate incompatibility with the values reported for simulated water models. Ice diffusion
data (open squares) [56, 57] are shown for reference.

ature and moderately supercooled data and use ω = 0.17 only for the data at temperatures
150 − 157 K. This fit yields J/To = 4.1, significantly smaller than the ratio of 7.4 reported
for simulated water systems. The parabolic form with To = 271 K and J/To = 7.4 is also
included in Fig. 2.8 to illustrate that the lowest temperature data is clearly inconsistent
with the higher value of J .
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3. Diffusion data in Ref. [58] (Dehaoui et al.)

Ref. [58] reports water diffusivities measured over temperatures 239 − 293 K.9 All tem-
peratures in this range are decidedly in the high temperature and moderately supercooled
regimes. Fig. 2.9 shows a best fit to Eqn. 2.6 with ω = 0, To = 271 K fixed, and J/To = 4.4.
For reference, we also include the parabola with J/To = 7.4 to demonstrate the incompati-
bility of the data with the higher value of J .
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Figure 2.9: Water diffusivities at moderately supercooled temperatures from Ref. [58]. The dashed
parabola corresponds to the parabolic law (Eqn. 2.6 with ω = 0) with J/To = 7.4 and To = 271
K is fixed. The solid vertical line indicates 1/Tm, where Tm = 273 K. The dashed vertical line
indicates 1/To. The fit parameters E/To = 4.3 and logDo = −12.3; for clarity, we have not plotted
the high-temperature Arrhenius fit.

The authors of Ref. [58] present their own fit to the parabolic law. However, they obtain
a clearly incorrect value of 305 K for the onset temperature, which corresponds to water well
above the melting temperature. It should be noted that Ref. [58] fit viscosity data using an
incorrect version of the parabolic law,10 though this has no effect on the resulting values of
To and J/To.

9Although Ref. [58] reports viscosity data in the corresponding Supplementary Information, it is clear
from the methods section that diffusivity is the measured quantity. Diffusivities were converted to viscosities
using the proportionality η(T ) = η(T0)[T/T0][D(T0)/D(T )] with reference temperature T0 = 293.15 K.
Viscosities in the SI were back-calculated to diffusivities for inclusion in this chapter.

10The form of the parabolic law used to fit water viscosity data, as written in Ref. [58], is equivalent to
the expression in Eqn. 2.4 without the −E/To term for temperatures both above and below the onset.
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4. Diffusion data in Ref. [59] (Price et al.)

Ref. [59] reports water diffusivities measured over temperatures 238− 298 K. All tempera-
tures in this range are decidedly in the high temperature and moderately supercooled regimes.
Fig. 2.10 shows a best fit to Eqn. 2.6 with ω = 0, To = 271 K fixed, and J/To = 4.0. For
reference, we also include the parabola with J/To = 7.4 to demonstrate the incompatibility
of the data with the higher value of J .
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Figure 2.10: Water diffusivities at moderately supercooled temperatures from Ref. [59]. The dashed
parabola corresponds to the parabolic law (Eqn. 2.6 with ω = 0) with J/To = 7.4 and To = 271 K
is fixed. A second dashed parabola corresponds to a fit to the parabolic law (Eqn. 2.6 with ω = 0)
with J/To = 4.0; To = 271 K is fixed. The solid vertical line indicates 1/Tm, where Tm = 273 K.
The dashed vertical line indicates 1/To. The fit parameters E/To = 3.6 and logDo = −9.0. For
clarity, we have not plotted the high-temperature Arrhenius fit.

2.5.3 Concluding Remarks

In the previous sections, we attempt to determine the true value of the hierarchical energy
scale J for experimental supercooled water. Fits to data from Ref. [58], Ref. [59], and Ref.
[46, 6] lead to two distinct values, J/To ≈ 4.2 and J/To = 7.4, respectively. However, fitting
only moderately supercooled data cannot reliably determine the curvature of the parabolic
form; data at much colder temperatures is required. To our knowledge, Ref. [44] is the only
source of data at sufficiently low temperatures (T � 240 K). Analysis of this dataset suggests
J/To = 4.1, a ratio significantly lower than that reported for simulated water models. The
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current lack of data at temperatures below 240 K makes it impossible to verify this value.
There is a clear need for more experimental data at deeply supercooled temperatures if we
hope to confidently determine J/To for supercooled water.

2.6 Fitting High-Dimensional Hard Sphere Models

In previous sections, we detail fits to the parabolic law with data from experimental liquids
and from numerical liquid models, specifically Lennard-Jones mixtures. These numerical
models balance accuracy of intermolecular potentials with computational efficiency, and in-
clude both repulsive and attractive terms to describe interactions between particles. Hard
sphere (HS) liquids provide a further simplification of the actual intermolecular forces expe-
rienced by including only a rigid repulsive term. The intermolecular pair potential between
spheres i and j at coordinates ri and rj, respectively, is simply

U(|ri − rj|) =

{
∞, |ri − rj| < σ

0, |ri − rj| ≥ σ
(2.9)

where σ is the particle diameter. Like Lennard-Jones mixtures, systems of hard spheres
can exhibit sluggish dynamics and crystallize under certain conditions. When the goal is
to study dynamics under glassy conditions, binary mixtures of hard spheres with diameters
σ1, σ2, where σ1 > σ2, are typically required to avoid crystallization. An alternative approach
to preventing crystallization at high packing fractions is to modify the potential in Eqn. 2.9
such that a disorder incompatible with ordered structure is introduced. In this section, we fit
relaxation time measurements from simulations of such a modified HS model in dimensions
d = 3 − 6 [60] to the parabolic law. We then comment on the relationship between liquid
dimension and the packing fraction at the onset of glassy dynamics, and we explore how this
onset is related to a presumed dynamical transition in mode-coupling theory.

2.6.1 The Mari-Kurchan Model

The Mari-Kurchan (MK) model [61] is a modified HS model that greatly simplifies the
liquid structure in high dimensions. The MK hamiltonian introduces an additional quenched
random shift to the intermolecular potential in Eqn. 2.9

H =
N∑

i<j

U(|ri − rj + Λij|) (2.10)

where Λij is a random uniformly distributed vector over the volume of the system. (In
the standard HS model, Λij = 0.) Incorporating the random shift eliminates higher-order
correlations in the liquid, particularly important for high d. For example, two particles can
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each be close to a third particle, but it is unlikely they are also close to each other because
their distance is shifted by Λ, which is of the order of the system size.11

Several features of the MK model distinguish it from the standard HS model and make
it particularly well-suited for studying high-dimensional supercooled liquids. The most sig-
nificant implication for studying glassy dynamics is that the crystal phase is suppressed by
the quenched disorder introduced by random shifts. A second consequence of using the MK
model is related to the equation of state. Whereas the equation of state for a standard HS
system must be approximated [62], the absence of higher-order correlations in the MK model
allows for a simple expression that holds for all d [60]. This simplification aids us in our fit
of the data to the parabolic law, as described in the following section. The pressure equation
of state is

βP

ρ
= 1 +B2ρ (2.11)

where B2 = Vd(1)σd/2 is the second virial coefficient for d-dimensional hard spheres, Vd(R)
is the volume of a d-dimensional ball of radius R, ρ is the number density, and the inverse
temperature β is set to unity [60]. The packing fraction ϕ is expressed as

ϕ = ρVd(σ/2) (2.12)

where σ = 1 is the particle diameter.

2.6.2 Collapse to the Parabolic Law

In order to fit relaxation data to the parabolic law, we must first specify the conjugate field
that controls the mean value of the relevant local order parameter field. For experimental
and numerical systems considered in Sections 2.3 and 2.5, we utilize inverse temperature 1/T ,
which is conjugate to the energy density order parameter. For a hard sphere system, and
the MK model in particular, the relevant order parameter is particle density. The variable
conjugate to the particle density is P/T . The use of the MK model allows us to determine
the value of P/T as a function of system density via an equation of state. From Eqn. 2.11,
we have

P

T
= ρ

(
1 +

ρVd(1)σd

2

)
(2.13)

For each dimension, we plot the values of log τα reported in Ref. [60] as a function of P/T
and fit to Eqn. 2.4, where the ratio P/T takes the place of 1/T . Fig. 2.11 shows the
collapse of all dimensions to the parabolic law, with the corresponding fit parameters listed
in Table 2.3. We see that the onset value of (P/T )o (and therefore the value of the onset
packing fraction) decreases with increasing dimension. This agrees with the results of a
previous study [63], which found that the packing fraction required to freeze hard spheres

11The addition of the random shift affects the degree to which dynamics is facilitated in the MK model.
While in a standard HS system a displaced particle makes room for a neighboring particle to displace, this
may not happen in the MK model due to allowed overlapping of particles.
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is lower than that required to freeze hard discs. Recall that the freezing point is generally
commensurate with the onset of glassy dynamics.
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Figure 2.11: Collapse to a parabolic form of the structural relaxation times τ as a function of P/T
for Mari-Kurchan systems in dimensions 3-6 [60]. Parameters (P/T )o, J , and E from Eqn. 2.4 are
listed in Table 2.3. The legend gives the dimension of each dataset.

2.6.3 Comparison with East Model Results

Here we elaborate on what seems to be an inconsistency between the MK model results
shown in Fig. 2.11 and Table 2.3 and high-dimensional East model results reported in Ref.
[42]. In the MK model, the onset packing fraction clearly decreases with increasing liquid
dimension. However, the East model must become progressively colder—analogous to a more
densely packed hard sphere liquid—in higher dimensions in order to reach the onset of glassy
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dimensiona (T/P )o
b J(P/T )o

c E(P/T )o
d log10 τo

e
∑

L
f

∑
Q

g rangeh

3 0.048 3.923 0.172 3.489 0.03832 0.09867 0.034-0.065
4 0.032 4.756 0.091 3.334 0.1066 0.13394 0.023-0.067
5 0.022 5.033 0.068 3.466 0.08392 0.07664 0.016-0.037
6 0.015 5.053 0.044 3.389 0.06231 0.17202 0.011-0.025

Table 2.3: Parabolic Law fits for the Mari-Kurchan model in dimensions 3-6.

aData for all dimensions is found in Ref. [60]. b(T/P )o is the fitted onset. cJ is the fitted energy scale.
dE is the fitted relaxation energy barrier. eτo is the fitted onset relaxation time. fΣL is the standard

deviation of the linear fit given by:
(

1/(N − n)
∑
i (log10 τlinFit,i − log10 τdata,i)

2
)1/2

. N is the number of

fitted data points, n = 2 is the number of degrees of freedom. i = {1, N} indexes the fitted points. gΣQ is

the standard deviation of the quadratic form given by:
(

1/(N − n)
∑
i (log10 τquadFit,i − log10 τdata,i)

2
)1/2

.

N is the number of fitted data points, n = 2 is the number of degrees of freedom. i = {1, N} indexes the

fitted points. hThe range of values of T/P for data.

dynamics.12 This East model trend can be understood by recognizing that with increasing
dimension, there are more relaxation pathways by which one spin can relax another.

In order to understand the inconsistency between MK model and East model relaxation
trends, we consider the the effects of fluctuations and local rigidity in glass-forming materi-
als. In low dimensions, liquid dynamics are dominated by fluctuations, and liquid configu-
rations are locally rigid. As the dimension increases, liquid dynamics becomes increasingly
mean-field in nature, while local configurations become more rigid. The MK model experi-
ences both fluctuations and rigidity, and so the increase in dimension causes a decrease in
the packing fraction for the onset of collective behavior. In the East model, dynamics is
fluctuation-dominated in all finite dimensions [42], but there is no concept of local structural
rigidity. The increase in relaxation pathways between spins in high dimensions is responsible
for the decrease in onset temperature. While qualitative, this argument provides an intuitive
explanation for the seemingly contradictory results.

12Hierarchical, facilitated dynamics are present in the East model at all temperatures, and so there is no
true onset of glassy dynamics. The onset temperature T ∗ considered in Ref. [42] is the temperature at which
the energy scale for hierarchical dynamics in the East model crosses some finite threshold. Specifically, T ∗

is defined as the temperature at which the slope of the relaxation time τ versus inverse temperature 1/T is
equal to 2. This metric is a reasonable way to compare East model dynamics to that of real glasses.
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Chapter 3

Supercooled Liquid Dynamics on a
Lattice

3.1 Introduction

Studies of atomistic systems reveal that dynamics in jammed-up materials proceeds via a
complex and highly correlated mechanism [10]. Central to this mechanism are the dynamical
principles of facilitation and directionality. A mobile particle, displacing in a specific direc-
tion, can facilitate the dynamics of its neighbors in the same general direction. However,
simulations of atomistic systems are computationally expensive and can be unfeasible for
large system sizes or very low temperatures. A model with additional coarse-graining could
provide a solution to these bottlenecks and therefore contribute to computational studies of
glassy physics. Kinetically constrained lattice models such as the East and FA models [21, 22]
have been used successfully to model the fundamental mechanisms of motion in supercooled
systems and understand the calorimetric glass transition [20]. These models are simple and
relatively fast to simulate, but their original formulations are in one dimension. A more
natural lattice model to represent a supercooled atomistic system should be isotropic in two
and three dimensions, while still including the essential ingredients of facilitated dynamics
and directionality of particle flow.

In this chapter, we characterize the dynamical behavior of the Arrow model, a kineti-
cally constrained lattice model for atomistic glass formers that incorporates both dynamical
facilitation and directionality of particle flow [18]. The Arrow model can be thought of as
a higher-dimensional generalization of the East model with the advantage of being isotropic
for all parameter choices. We begin by introducing the dynamical rules associated with the
Arrow model, which enforce the facilitated and directional dynamics. We then explore a
variety of dynamical features, comparing them to what is observed in atomistic systems.
Finally, we present a mapping between the Arrow model and atomistic models that allows
us to parameterize the Arrow model to describe a specific experimental supercooled liquid.
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3.2 The Arrow Model

In dimension d, the Arrow model consists of a d-dimensional lattice with N lattice sites
labeled i = 1, 2, . . . , N , each in one of two dynamical states, ni = 0 or 1. The former
represents an inactive state, and the latter an active or “excited” state. Excited states have
a direction of facilitation associated with them, a d-dimensional unit vector vi pointing along
the diagonal of the lattice site. The number of possible directions for a given arrow is g = 2d,
and site i can therefore exist in one of g + 1 states which we denote as ni = nivi.

The Arrow model has the Hamiltonian

H = J0

N∑

i=1

ni (3.1)

where J0 is the fundamental energy scale for creating a new excitation (we set J0 = 1
unless otherwise noted). There are no energetic interactions between neighboring sites,
and thermodynamics is trivial. However, like the East and FA models, the Arrow model
incorporates dynamical facilitation rules that result in nontrivial dynamics. An active site
can facilitate (or eliminate) activity in one of d neighboring sites located in its specific
direction of facilitation. A site must be dynamically facilitated in order to undergo a change
in state. The schematic in Figure 3.1 illustrates these dynamical rules.

 

t

ni = 0

ni = 1
vi = (1,�1)/

p
2

Nx

Ny

Figure 3.1: Schematic of f = 0 Arrow model dynamics in two dimensions. An inactive site i has
ni = 0, and an excited state has ni = 1 with an associated direction of facilitation described by vi,
a unit vector in one of g = 2d directions. This direction of facilitation is denoted with an arrow.
The three frames are subsequent points in time, and a site at which dynamical changes take place
is outlined in black. The outlined site in the leftmost frame is facilitated by the site above it and
becomes activated (i.e., an arrow is created) in the center frame. In the final frame, the arrow in
the outlined site has been destroyed; this dynamical change is once again facilitated by the site
directly above it. Note that the facilitation direction of the created and then destroyed excitation
matches the facilitation direction of the facilitating site.

The facilitated nature of this model is implemented by setting the rates between active
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and inactive states as

ni = 0
Ci[vi]c/g

Ci[vi](1− c)
ni = vi (3.2)

where c is the equilibrium concentration of excitations and

Ci[vi] = f

[
1−

∏

〈j,i〉

(1− δ√d(i−j)·nj ,1
)

]
+ (1− f)

[
1−

d∏

k=1

(1− δni−
√
dvk

,vi
)

]
(3.3)

enforces the kinetic constraints and depends only on the states of site i’s neighbors. Nearest
neighbor sites are denoted by 〈j, i〉. The Arrow model incorporates a parameter f ∈ [0, 1]
analogous to the directional persistence of atoms or molecules in a real system. The value
of f sets the probability P(f) that a newly created arrow will have the same direction as its
facilitating arrow

P(f) = [1 + f(g − 1)]−1. (3.4)

In the f = 1 limit, this probability is equal to 1/g, and excitations of any direction can
be created or destroyed if facilitated by a neighbor. In the f = 0 limit, this probability is
equal to 1, and excitations can be created or destroyed only if their direction of facilitation
matches that of its facilitating neighbor.1 In this chapter we consider the f = 0 limit of the
model, unless stated otherwise.

The temperature of the lattice sets the equilibrium concentration of excitations

c = 〈ni〉 =
g

g + eβJ0
(3.5)

where β = 1/T is the inverse temperature. The concentration in Eqn. 3.5 includes excitations
in all directions. As in a real liquid, the system is isotropic, and 〈vi〉 = 0. Distinct sites on
the lattice are uncorrelated, and so the equilibrium distribution for the field of vectors is

P({ni}) =
N∏

i=1

ρ(ni) (3.6)

where
ρ(n) ≡ g−n(1− c)1−ncn. (3.7)

Dynamical events within the Arrow model are defined below.

Mathematical Description of Dynamical Events

For mathematical convenience, we express Arrow model dynamics in terms of “kinks,” or
dynamical events, occurring at specific lattice sites. A kink corresponds to the creation or
destruction of an excitation at a lattice site. We define a kink operator

κi(t) = |ni(t)− ni(t− δt)| (3.8)

1Arrow model relaxation in the f = 0 (f = 1) limit is analogous to that of a “fragile” (“strong”) glass-
former.



3.3. SUPER-ARRHENIUS RELAXATION 35

for a lattice site i at time t, where δt is an elementary time step. As defined in the previous
section, ni(t) is an arrow occupation variable denoting the activity of the lattice site; note
that direction of facilitation has no effect on the kink operator. When κi(t) = 1, we say that
a kink has occurred at site i at time t.

3.3 Super-Arrhenius Relaxation

We say that a lattice site has “relaxed” if a kink occurred during a time interval of interest.
On average, lattice sites behave identically, so we can express an overall structural relaxation
time for the system. We use Metropolis Monte Carlo simulations to compute the structural
relaxation time, as well as all subsequent Arrow model calculations.2

The relaxation time τ of the Arrow model at a specific temperature is defined as the 1/e
decay of the persistence function, a correlation function expressing the probability that a
site has not had a kink up until that time [64, 65, 66]. To define the persistence function,
we first measure the binary immobility value for lattice site i in terms of the kink operator
in Eqn. 3.8

pi(t) =
t∏

t′=0

[1− κi(t′)] (3.9)

which is 0 if site i has undergone at least one dynamical event before time t and is 1 otherwise.
When pi(t) is summed over all N lattice sites, we obtain a function

P (t) =
N∑

i=1

pi(t) (3.10)

that decays from N to zero over time as more sites undergo dynamical events. The decay of
the time average of P (t)

〈P (t)〉 =
1

tobs

tobs∑

t′=0

P (t′) (3.11)

is shown in Fig. 3.2a, along with an illustration of how the relaxation time τ is defined. Fig.
3.2b shows the resulting values of the relaxation time τ for d = 2 and d = 3 as a function
of inverse temperature β = 1/T . We see that the relaxation behavior of the f = 0 Arrow
model is super-Arrhenius, as is the case for atomistic glass-formers at temperatures below
the onset of glassy dynamics To and above the crossover to Arrhenius relaxation Tx.

The specific definition of τ detailed above has historically been used for similar kinetically-
constrained models like the East and FA models. However, there is nothing inherently special
about the choice of 1/e as the decay threshold. The important feature to consider when
choosing the threshold is how the shape of the persistence function changes with temperature
in the neighborhood of that threshold value. For example, Fig. 3.8a (to be discussed in a

2See Appendix A for a general discussion of Monte Carlo methods.
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later section) shows persistence functions for the d = 3 Arrow model for the temperature
range T = 0.19−0.38. As the temperature decreases, the short-time shape of the curves (on
a logarithmic scale) changes due to evolving relaxation mechanisms. However, these changes
in form do not affect how the persistence functions decay around 〈P (t)〉/N = 1/e ≈ 0.37,
and 1/e is therefore a suitable choice for our decay threshold.
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Figure 3.2: Super-Arrhenius relaxation in the f = 0 Arrow model. (a) Decay of the time-averaged
persistence function 〈P (t)〉 over time as more sites have a chance to relax. We define the relaxation
time τ , denoted by the intersection of the red dashed line with the time axis, as the time at which the
persistence function decays to 1/e (black dashed line). (b) Relaxation times plotted as a function
of inverse temperature for the d = 2 and d = 3 Arrow model. All times are expressed in units of
Monte Carlo sweeps.

3.4 Dynamical Heterogeneity

At temperatures above the onset of glassy dynamics, essentially all regions of the liquid are
mobile. At supercooled temperatures, however, the mechanism for liquid relaxation changes
such that dynamical facilitation is critical for particle motion [19]. Dynamical facilitation
refers to local rearrangements of liquid structure that make motion possible nearby in space.
As a result, distinct regions of mobility and immobility emerge within the same liquid system;
this is known as “dynamical heterogeneity” [65].

As the temperature is lowered further below the onset, heterogeneous dynamics persists,
but the concentration of excitations (i.e., mobile regions) decreases. The typical distance
between any two regions of mobility in the system grows as a result. The nature of dynamical
heterogeneity is well-characterized in atomistic liquids [10]. Here, we explore heterogeneous
dynamics in the Arrow model to see if the same complex dynamical behavior is present in a
much simpler lattice model.
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3.4.1 Exchange and Persistence Times

In a supercooled liquid exhibiting heterogeneous dynamics, both mobile and immobile regions
exist within the system. A particle in a mobile region is likely to experience a period of high
mobility, characterized by many dynamical transitions. This mobile period may be followed
and preceded by relatively long periods of immobility if the particle is no longer found in
a mobile region of the liquid. In this sense, dynamical events are correlated in time, and a
time series of kinks for a particular particle will appear clustered.

Exchange and persistence times [14, 12] allow us to quantify the observed clustering of
kinks for a particle or lattice site in a glassy system. Here, we express these quantities
mathematically in terms of dynamical events at lattice sites. A persistence time tp is the
waiting time until the next dynamical event at the same lattice site, and an exchange time
tx is the time between two consecutive events. Persistence and exchange functions can be
expressed in terms of the kink operator defined in Eqn. 3.8, where

Pi(t
′, t) = κi(t

′ + t)
t′+t−δt∏

t′′=t′+δt

[1− κi(t′′)] (3.12)

indicates a persistence time tp = t given a time origin t′, and

Xi(t
′, t) = κi(t

′)κi(t
′ + t)

t′+t−δt∏

t′′=t′+δt

[1− κi(t′′)] (3.13)

gives an exchange time tx = t for a time origin t′. The difference between these expressions
is that the persistence function considers all possible time origins, whereas the exchange
function only considers starting times coinciding with dynamical events. In general, decou-
pling of persistence and exchange distributions is characteristic of heterogeneous dynamics.
Decoupling implies that if a dynamical event occurs at a lattice site, more are likely to follow.
In the case of uncorrelated dynamics, the distributions will be very similar to each other and
appear to be drawn from a Poisson process.

Fig. 5.6 shows distributions of exchange and persistence times for the two-dimensional
Arrow model at temperatures T = 1.0, T = 0.5, and T = 0.33. At low temperatures, the
exchange and distributions exhibit a multi-peak structure. This phenomenon is described
for the East and FA models by Jung et al. [14] and is shown to arise from the presence of
multiple relaxation processes.

3.4.2 Enduring Transitions

A particle in a supercooled liquid may undergo displacements over a range of distances.
The majority of displacements are small and quickly reversed, however, resulting only in
fleeting changes in the underlying configuration of excitations. Displacements that result
in a lasting reorganization are more rare, particularly in very cold systems, and are said to
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Figure 3.3: Distributions of exchange (dashed) and persistence (solid) times for the Arrow model
in two dimensions for temperatures T = 1.0 (red), T = 0.5 (green), and T = 0.33 (blue). A system
size of N = 10, 000 was used for this calculation. Exchange and persistence times are expressed in
units of Monte Carlo sweeps.
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“endure.” These enduring transitions are the significant dynamical events we wish to study.
In atomistic systems, we therefore coarse-grain away displacements that do not endure for
a chosen sojourn time ts in order to resolve heterogeneous dynamics [10]. Similarly, for the
Arrow model and other lattice models, the majority of kinks at a lattice site are short-lived,
and do not contribute to the overall reorganization of the lattice. We consider the enduring
kinks to resolve significant dynamics [67].

To find the enduring kinks in an Arrow model trajectory, we follow the procedure in Ref.
[67] for identifying enduring kinks in the East model. For a site i, we can define a set of
enduring kinks occurring at times t that endure for a sojourn time ts. Enduring kinks must
satisfy the following three conditions:

• Kinks must occur at both the beginning and the end of the enduring kink event.

• No kinks may be present within a time ts of either the beginning or end of the enduring
kink event.

• The initial state (before the enduring kink event) and the final state (after the enduring
kink event) of the lattice site in question must be opposite, i.e. go from “excited” to
“unexcited,” or vice-versa.

This final condition requires that there be an odd number of kinks contained in any enduring
kink event. When the number of such kinks is greater than one, the midpoint of the enduring
kink event is chosen as the enduring kink time. Fig. 3.4 illustrates these rules for a time
trajectory of a single lattice site.

enduring kink example, 
t_s = 5

enduring kink event

… …

enduring kink� ts < ts

Figure 3.4: Enduring kink schematic for a single Arrow model lattice site. The series of squares
represent dynamical states of the lattice site at consecutive points in time; black squares denote
the ni(t) = 1 state, and empty squares denote ni(t) = 0. The arrows and corresponding direction
of facilitation are omitted for simplicity. Kinks occur whenever the dynamical state changes, but
the majority of these kinks do not endure. We set ts = 5. The red outlined region contains three
kinks that constitute a single enduring kink event, with a red “X” marking the enduring kink time.

In Ref. [67], this procedure is used to find the enduring kinks for a one-dimensional
East model, where the sojourn time ts = τx, the average time scale for dynamical exchange
events. Here, for the d = 2 and d = 3 Arrow models, we also set ts = τx. Fig. 3.5 shows
exchange time distributions for the Arrow model in two and three dimensions over a range
of temperatures; the mean exchange time at each temperature (our chosen sojourn time) is
indicated by a vertical dashed line.
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Figure 3.5: Distributions of exchange times for the Arrow model in two (top figure) and three
(bottom figure) dimensions for a range of temperatures T . Each vertical dashed line indicates the
mean of the exchange time distribution τx of the same color; these mean times are used for the
sojourn time ts at each temperature. The system sizes used for these calculations are N = 10, 000
lattice sites for d = 2, and N = 9261 for d = 3. Exchange times tx are expressed in units of Monte
Carlo sweeps.
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3.4.3 Visualizing Heterogeneous Dynamics

Heterogeneous dynamics in supercooled liquids can be visualized by coloring regions of the
liquid according to their mobilities. For atomistic systems, a particle’s displacement is mea-
sured simply as the Euclidean distance between its initial and final coordinates over some
time window. For the Arrow model lattice, displacements are measured in terms of kinks.
However, we do not wish to resolve the lattice equivalent of trivial atomistic vibrations, so
we consider only kinks that endure.3 The “displacement” associated with a lattice site i over
a time window ∆t = t′ − t can be expressed as the sum of enduring kinks

hi(t, t
′) =

t′∑

t′′=t

κ̄i(t
′′) (3.14)

occurring during ∆t [67], where the overbar in κ̄i(t) denotes an enduring kink. Fig. 3.6
shows a series of three snapshots from a single simulation at increasing ∆t, where lattice
sites have been colored according to Eqn. 3.14. Blue sites indicate very few or no enduring
kinks over ∆t; red sites indicate many enduring kinks. This coloring protocol clearly resolves
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Figure 3.6: Visualization of Arrow model site displacements as a function of time. Sites are colored
from blue to red depending on their mobility over a time interval ∆t; the color key is shown to the
right of the images. Displacements over ∆t, hi(0,∆t), are normalized by a constant value C = 30
to better resolve mobile and immobile regions. The time intervals ∆t are expressed in terms of
the structural relaxation time τ corresponding to the temperature of the lattice; note that only
enduring kinks are represented in the images, but τ is computed using all kinks. Significant regions
of dark blue sites indicate immobile regions of the liquid, while brighter regions indicate higher
liquid mobility. This is what is meant by dynamical heterogeneity. A single N = 10000, d = 2
Arrow model simulation at T = 0.24 was used to create this visualization.

regions of mobility and immobility within the system, reflective of facilitated Arrow model
dynamics.

3In atomistic systems, this effect is achieved by coarse-graining particle trajectories over time or computing
inherent structures [10].
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Resolving Fundamental Excitations

In atomistic systems, elementary excitations are resolved by running many independent
trajectories from the same initial configuration and averaging over the resulting particle dis-
placements.4 This technique, called “isoconfigurational averaging” [68], highlights regions
of the initial liquid configuration that consistently become mobile due to the underlying
structure. However, we are only interested in significant, enduring displacements. Ref. [68]
performed isoconfigurational averaging on short raw trajectories—analyzing trivial vibra-
tions along with enduring displacements—therefore obscuring any information on meaning-
ful dynamical events. Here, we adapt the technique as carried out by Ref. [10], where only
enduring kinks are considered, for use with the Arrow model.

The isoconfigurational average displacement is the average displacement of each site i
over M independent trajectories originating from the same initial configuration

Ii(t, t
′) =

1

M

M∑

j=1

h
(j)
i (t, t′) (3.15)

where the superscript j indicates the specific trajectory from which the displacement is
measured. We generate independent trajectories from an initial configuration by randomly
selecting vectors vi to reassign the facilitation directions for all lattice sites containing exci-
tations (ni = 1).5 Each trajectory then has a distinct set of facilitation directions {vi}.

The visualization protocol detailed in Eqn. 3.14 and used to make Fig. 3.6 will still resolve
the excitations featured by isoconfigurational averaging, but they will be more irregular.
We return to this technique later in Chapter 5, in the context of side-chain motions in
biomolecules.

3.4.4 Fractal Dimension

The shapes of dynamical heterogeneities in a glassy system can be quantified with the fractal
dimension df . In general, the fractal dimension gives a measure of spatial complexity for an
object, which in this case is a mobile region on the Arrow model lattice. The quantity df

can be computed directly [69] by clustering neighboring lattice sites that have experienced
at least one dynamical event, or kink, over a time window ∆t. Here, we use ∆t = τ̄ , the
structural relaxation time computed using only enduring kinks. The fractal dimension can
then be computed as

df =
d ln(n)

d ln(r)
(3.16)

4In atomistic systems, independent trajectories are obtained by randomly drawing particle velocities for
each trajectory (originating from the same initial configuration) from the appropriate Maxwell-Boltzmann
distribution.

5Vectors are drawn from a uniform distribution of the g discrete directions.
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where n is the number of relaxed lattice sites over ∆t contained within a spherical volume
of radius r positioned at the cluster centroid. Fig. 3.7a demonstrates this procedure for a
d = 2 Arrow model at T = 0.31.
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Figure 3.7: Computing fractal dimension for the Arrow model. (a) A schematic illustrating how
the fractal dimension is computed for a hypothetical configuration of relaxed sites on a d = 2
Arrow model. The dark shaded sites have relaxed over time ∆t via enduring kinks and compose
the cluster of interest; the cluster centroid is marked with an “X.” The quantity n is the number
of relaxed sites within a radius r of the cluster centroid (in this case, n = 8). (b) Plots of lnn vs.
ln r for 2 (blue squares) and 3 (red squares) dimensions with error bars obtained from averaging
independent configurations. The slopes of these lines are the computed fractal dimensions df , as
expressed in Eqn. 3.16.

This procedure is carried out for d = 2 (N = 1 × 104 sites) and d = 3 (N = 9261 sites)
Arrow models simulated at T = 0.31 and T = 0.28, respectively.6 In both cases, ∆t = τ̄
for the specific model dimension and temperature. We run independent realizations of the
Arrow model and compute n vs. r for the final configuration of each simulation; we then
average the results from all samples and compute the standard deviation.7 Fig. 3.7b shows
plots of lnn vs. ln r, with error bars equal to a single standard deviation from the mean. We
find df = 1.74±0.01 and df = 2.65±0.03 for dimensions d = 2 and d = 3, respectively, values
comparable to those reported for atomistic systems [10]. This result implies that the general
shapes of mobile regions within atomistic systems and the Arrow model are the same. In
the following sections, we use df(d) = 1.8(2), 2.6(3) unless otherwise noted.8

6We find that the temperature at which we run the system does not significantly affect our values for df .
7We consider 100 independent simulations for d = 3 and 1000 for d = 2.
8These values for df have been used in atomistic system calculations [10] and are commensurate with our

results from the Arrow model, so we choose to use them here.
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3.4.5 Mobility Susceptibility

In Section 3.4.4, we compute the fractal dimension of the Arrow model in order to demon-
strate that the general shapes of its dynamical heterogeneities are commensurate with those
of atomistic systems. Here, we utilize a quantitative measure of how the spatial fluctuations
in mobility change with temperature. The specific correlation function computed in this
section is motivated by susceptibilities measured for static thermodynamic phase transitions
and is a generalization for transitions in space and time.

As a system approaches a general thermodynamic phase transition, namely one that oc-
curs in configuration space and is not dynamical in nature, the growth of a linear response
function, or “susceptibility,” is observed [3]. For a first-order transition, growing suscepti-
bilities are associated with increased fluctuations in an order parameter. For instance, the
Ising model—a lattice model consisting of “up” and “down” spins that is often invoked to
study phase transitions—experiences a growth in the size of domains of sites with the same
spin orientation as the model approaches a first-order phase transition.9 The magnetization
of the Ising lattice is defined as the difference between the number of “up” spins and number
of “down” spins and serves as an order parameter. A susceptibility is computed by mea-
suring the degree to which this order parameter changes in response to small perturbations
by an external field coupling to the magnetization. This susceptibility diverges at the phase
transition.

While the susceptibility described above corresponds to a standard thermodynamic phase
transition, the glass transition as described in Section 1.1 is instead a transition in space and
time [70, 19, 2]. That is, a supercooled liquid approaching the glass transition is characterized
by a growth in dynamical heterogeneities and thus requires consideration of both space and
time. Quantities typically used to characterize standard thermodynamic transitions have
been generalized to describe space-time transitions [71, 72] such that dynamics is included.
In the case of a supercooled liquid, an analogous susceptibility is the χ4(t) function [40,
73], which measures the variance in lattice site mobilities and reflects the presence of large
domains of mobility and immobility.

To calculate χ4(t) for the Arrow model, we simply compute the variance in the persistence
function defined in Eqn. 3.10

χ4(t) = 〈P (t)2〉 − 〈P (t)〉2 (3.17)

where the angled brackets denote a time average as in Eqn. 3.11. The variance in P (t)
resolves spatial correlations among lattice sites and peaks at the time of maximum dynamical
heterogeneity. Fig. 3.8a shows the decay in 〈P (t)〉 for a range of temperatures, and Fig. 3.8b
plots the corresponding χ4(t), with curves ranging from red to dark purple as the temperature
is lowered. As expected, the peak of χ4(t) gets larger with decreasing temperature as domains
of immobility grow larger. Additionally, the time at which this peak occurs is pushed out to
longer timescales.

9For a summary of the Ising model and its associated phase transitions, see Section 4.2.2.
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Figure 3.8: Mobility susceptibilities for the d = 3 Arrow model over a range of temperatures. (a)
The decay of the persistence function 〈P (t)〉/N as a function of time, where N is the total number
of lattice sites. Temperatures range from T = 0.38 (dark red) to T = 0.19 (dark purple). (b) The
variance χ4(t) for the same range of temperatures. Times are expressed in units of Monte Carlo
sweeps.

3.5 Mapping to Atomistic Systems

The previous sections demonstrate that the Arrow model exhibits super-Arrhenius relaxation
and heterogeneous dynamics similar to that of atomistic supercooled liquids. However, in
order to simulate the Arrow model to correspond to a specific atomistic system, generalization
is required to account for differing energy scales of characteristic excitations. To illustrate
this, we perform a mapping derived from East-like scaling to determine the energetics and
lattice length scale of the Arrow model corresponding to a specific atomistic system.

The mapping analysis with the scaling equations described in this section was originally
formulated for the East model [20], but it is straightforward to extend it to the Arrow model.
The East model exhibits logarithmic scaling of activation energy required to relax domains
of length ` [10]

J` = Jσ[1 + γ ln(`/σ)] (3.18)

where Jσ is the activation energy to relax domains of a fundamental length scale σ, and
γ accounts for entropy of relaxation pathways. For the one-dimensional East model, these
material properties take the values Jσ = 1, σ = 1, and γ = (ln 2)/2 [74, 75]. Here, we wish
to relate the fundamental energy scaling of an atomistic system to the Arrow model. We
denote the material parameters for the atomistic system as σ, Jσ, and γ; and choose `0, J0,
and γ0 to refer to these same material properties for the Arrow model. Treating σ and `0 as
distinct length scales, each with a corresponding energy scale Jσ and J0, we obtain

J0 =
Jσ

1 + γ0 ln(σ/`0)
(3.19)
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and
γ =

γ0

1 + γ0 ln(σ/`0)
(3.20)

from Eqn. 3.18. These scaling relations allow us to determine the correct Arrow model energy
scale J0 that corresponds to the set of specific material properties Jσ and γ for an atomistic
system. The parameter γ0 can be determined empirically from Arrow model relaxation data.

We can also express the corresponding equilibrium Arrow model excitation concentration
in units of lattice length `0 as

ceq`
d
0 =

g

g + exp(β̃J0)
(3.21)

where
β̃ = 1/T − 1/To (3.22)

corresponds to inverse temperatures for the atomistic system, and g = 2d.10

3.5.1 Determination of Parameter Values

Application of Eqns. 3.19 and 3.20 requires values for several material parameters, as well
as a measure of the entropy of relaxation pathways in the Arrow model. In this section, we
discuss how these values are computed.

Atomistic Material Parameters

The value of σ is a particle diameter for all systems studied here, as is done in Ref. [10],
but the values of γ and Jσ are unique to each material. In simulated liquids, the value of Jσ
can be determined by considering the Boltzmann temperature dependence of the excitation
concentration and fitting data to

cσ ∝ exp

[
−Jσ

(
1

T
− 1

To

)]
(3.23)

where cσ is the concentration of particles displacing at least a distance σ over a window of
time [10]. The parameter γ is of order unity and can be computed using the relationship

J = Jσ

√
γ

df

(3.24)

where J is the fit parameter from the parabolic law in Eqn. 2.4. Values of Jσ and γ are
material-specific but are typically of order unity for three-dimensional liquids (Jσ is typically
of order 10 in two-dimensional systems).

10In an earlier section, we defined the equilibrium concentration similarly (Eqn. 3.5), where 1/T for the
Arrow model is representative of β̃ (Eqn. 3.22) in atomistic systems. In this earlier definition, expressing
the concentration in terms of `0 = 1 is implied.
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Arrow Model Parameter

To calculate the value of γ0 for the Arrow model, we use Eqn. 3.24, substituting γ0 for γ and
J0 for Jσ. In order to distinguish between values of the curvature parameter J for atomistic
and Arrow models, we represent this value as “JA” for the Arrow model. The value of JA

is determined by fitting temperature-dependent structural relaxation data as plotted in Fig.
3.2b; however, we do not fit relaxation data to the parabolic law as expressed in Eqn. 2.4.
Hierarchal dynamics is an essential component of the Arrow model at all temperatures, and
so there is no defined onset temperature. Instead, we fit the data to a general quadratic
equation as is done for the East model in Ref. [75], where the coefficient of the quadratic
term is equal to J2. When we follow this procedure, we obtain a value γ0 = 1.1.

3.5.2 Mapping Procedure

Given the measured values of Jσ and γ for the atomistic system and the value of γ0 for
the Arrow model, we can map Arrow model simulations with specific concentrations of
excitations to the corresponding temperature in the atomistic system. From Eqns. 3.19 and
3.20, we see that the energy scale J0 for the Arrow model which corresponds to the energetics
of the specific atomistic system is given by

J0 = Jσ

(
γ

γ0

)
(3.25)

Combining Eqn. 3.21 with Eqn. 3.24 and rearranging, we obtain

β = βo +

(
γ0

Jσγ

)
ln

(
g[1− ceq`

d
0]

ceq`d0

)
(3.26)

where β = 1/T and βo = 1/To denote the inverse temperature and the onset inverse tem-
perature for the atomistic system, respectively, that correspond to the specific values of Jσ,
γ, γ0, and the equilibrium Arrow model concentration. From here, we simply plug in the
concentration of excitations for a specific Arrow model simulation to find the corresponding
atomistic system temperature.

The ratio between the length scales of the atomistic system and the Arrow model can be
obtained by considering either Eqns. 3.19 or 3.20 with our measured parameters. We find

σ

`0

= exp

(
1

γ
− 1

γ0

)
. (3.27)

We consider the 12 atomistic model and density combinations studied in Ref. [10]. Table 3.1
summarizes the systems used in our study with their corresponding material parameters as
reported in Table 2 of Ref. [10]. For all of the two and three dimensional atomistic systems
considered , we find that the Arrow model lattice length is roughly half to one-fifth the size
of the fundamental length scale of the atomistic system. In order words, multiple Arrow
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model [10] ρ Jσ γ To J0 σ/`0

2D-68:32 0.7 11.3 0.62 1.36 5.6 1.81
0.75 21.8 0.57 2.13 9.9 2.09

KA 1.15 4.0 0.55 0.67 2.2 2.23
1.2 5.3 0.41 0.87 2.2 4.14
1.25 7.4 0.39 1.06 2.9 4.69
1.3 8.4 0.39 1.34 3.3 4.69

W 1.2 4.5 0.59 0.66 2.7 1.97
1.25 6.9 0.42 0.78 3.0 3.91
1.296 9.4 0.36 0.88 3.5 5.81

WCA3D 1.2 2.1 0.51 0.32 1.1 2.57
1.25 3.5 0.51 0.45 1.8 2.57
1.296 5.0 0.47 0.58 2.4 3.03

Table 3.1: Table of atomistic systems and corresponding model parameters [10] for Arrow model
mappings. The 2D-68:32 model is two-dimensional; the rest of the models are three-dimensional.

model sites are needed to correspond to a single particle in an atomistic liquid. Table 3.1
summarizes these results.

Although we do not utilize this mapping between atomistic liquids and the Arrow model
in the remainder of this chapter, we do revisit it later in this dissertation. In Chapter 4, we
incorporate this Arrow model parameterization into the parameterization of a new lattice
model, the “Arrow-Potts” model.

3.6 Cooling Experiments

Now that we have established a correspondence between Arrow model parameterizations and
atomistic system energy and length scales, we can explore Arrow model experiments that
have relevance for atomistic models. Ref. [10] presents results from cooling experiments for
the materials listed in Table 3.1 and finds that the concentration of excitations, or mobile
regions, within the liquid decreases as the temperature decreases along the cooling trajectory.
They also find that the distribution of lengths for an equilibrium system is exponential and
excitations are distributed as an ideal gas. Ref. [76] presents similar results from one-
dimensional East model simulations, where spatial distributions of excitations are computed
for both equilibrium and nonequilibrium configurations along a cooling trajectory. The
nature of the nonequilibrium configurations is dependent on the temperature at which the
East model fell out of equilibrium. In this sense, the specific cooling protocol is reflected in
the resulting excitation structure out of equilibrium.

We carry out similar calculations for the two-dimensional Arrow model. The model is
cooled from a temperature T > To through its onset temperature to T = 0 at a rate ν where
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we define

ν =
∆T

∆t
(3.28)

as the temperature decrease per time step (measured in Monte Carlo sweeps for the Arrow
model). As long as the cooling rate is slow enough to allow the system to relax at each
temperature, the system remains in equilibrium, and an equilibrium length is associated with
the characteristic distance between nearest excitations for a specific temperature. At some
point, however, the model will fall out of equilibrium. In the following sections, we explore
the implications of falling out of equilibrium during a cooling trajectory and characterize
Arrow model configurations from both equilibrium and nonequilibrium states.

3.6.1 The Glass Transition

As long as the cooling rate ν is slow enough to allow for microscopic reorganization at each
temperature decrease, a supercooled liquid remains in equilibrium. The liquid goes through
a glass transition—and therefore falls out of equilibrium—at temperature Tg when

1

ν
≈
∣∣∣∣
dτ

dT

∣∣∣∣
T=Tg

(3.29)

where τ is the temperature-dependent structural relaxation time for the model. The glass
transition temperature is therefore dependent on the specific cooling rate used to prepare
the system.

We carry out cooling experiments for the Arrow model where the model is cooled from
T = 0.7 to T = 0 and then warmed to its initial temperature at different rates ν spanning
several orders of magnitude. When excitation concentration is plotted as a function of
temperature, we observe that the concentration remains essentially unchanged once the
model falls out of equilibrium during a cooling trajectory. Fig. 3.9 shows data from cooling
(solid lines) and subsequent warming (dashed lines) trajectories for values of ν that span
four orders of magnitude, where the natural logarithm of excitation concentration

c =
1

N

N∑

i=1

ni (3.30)

is plotted against inverse temperature. Initially, as the model is cooled but remains in equi-
librium, the concentration decreases and c ≈ ceq for a given temperature. Once the model
falls out of equilibrium, the concentration remains relatively constant at a value c > ceq

throughout the remainder of the cooling trajectory. This behavior is observed for the one-
dimensional East model, where the space-time structure of excitations is more easily visu-
alized [76]. While short-lived kinks may still occur, enduring kinks (which correspond to
enduring displacements of approximately a particle diameter in atomistic systems) are ex-
ceedingly rare. The space-time excitation structure is therefore relatively static for tempera-
tures below the glass transition, characteristic of frozen amorphous regions in a supercooled
liquid.
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Figure 3.9: Cooling and warming trajectories for the d = 2 Arrow model to illustrate hysteresis.
The natural log of excitation concentration c is plotted as a function of inverse temperature for
trajectories with cooling/warming rates that span four orders of magnitude. The system is cooled
from an equilibrated liquid configuration at T = 0.7 to T = 0 at a rate −ν; the system is then
warmed back to the initial temperature at rate ν. Each curve is the average over 16 independent
cooling/warming runs for systems of size N = 10000 (ν = 10−5, 10−6, 10−7) and N = 5000 (ν =
10−8). For each rate ν, the warming and cooling curves do not lie on top of each other in the
intermediate temperature regime; Tg is found in this region.
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After cooling to T = 0, the Arrow model is warmed at the same rate from the final con-
figuration of excitations. However, excitation concentrations at the same temperature along
corresponding cooling and warming trajectories need not be the same; Fig. 3.9 resolves hys-
teresis in the neighborhood of Tg. Note that as the cooling/warming rate decreases, the glass
transition occurs at lower temperatures due to increased time for structural reorganization
to occur.

3.6.2 Equilibrium and Nonequilibrium Lengths

As a supercooled liquid is cooled, the concentration of excitations decreases. As long as the
system is in equilibrium, there is a typical length scale `eq separating nearest excitations,
where the subscript indicates that the length corresponds to an equilibrium liquid. This
length scale is related to the concentration of excitations

`eq ∝ c−1/df
eq (3.31)

where ceq is the equilibrium concentration of excitations. Excitations are uncorrelated, and
distributions Peq(`) of nearest-excitation distances ` are exponential. Lengths ` < `eq corre-
spond to regions in which excitations can readily create and destroy neighboring excitations;
lengths `� `eq correspond to large immobile regions of the liquid [76].

As described in the previous section, a supercooled liquid falls out of equilibrium at the
glass transition temperature Tg. The characteristic, or most probable, length separating
neighboring excitations at a temperature T < Tg is the equilibrium length at Tg

`neq = `eq(Tg) (3.32)

where the subscript “neq” indicates that the length is a nonequilibrium length. The length
`neq is therefore intimately related to the cooling protocol.

Out of equilibrium, distributions Pneq(`) of distances ` between nearest excitations are
no longer exponential. Excitations within close proximity have relaxed each other, and so
the nonequilibrium structure is characterized by large regions of immobility. Excitations are
no longer uncorrelated; there is a depletion of mobility surrounding each excitation, with
`neq giving the most probable distance between excitations.

We compute distributions of lengths between neighboring excitations for Arrow model
configurations taken along a cooling trajectory. Recall that in the Arrow model, an excitation
is present at site i if the occupation variable ni = 1, i.e. site i is occupied by an arrow. Fig.
3.10 shows three example Arrow model configurations for two different temperatures along
cooling trajectories corresponding to two different rates. We see that decreased temperature
and slower cooling rate correspond to greater distances between excitations. Below, we
consider two different ways in which nearest neighbor distances between excitations in the
Arrow model may be defined.
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Figure 3.10: Configurations of excitations in a two-dimensional Arrow model. Three Arrow model
configurations are shown for two cooling rates and two temperatures. The Arrow model is cooled at
rate ν, and the configuration at temperature T is shown. As the temperature decreases, the typical
distance between excitations increases. Similarly, a slower cooling rate results in an increased
distance between excitations.

Importance of Directionality

The simplest way to compute distributions of nearest neighbor lengths for the Arrow model
is to consider every other excitation on the lattice as a candidate nearest-neighbor for a given
target excitation. This method gives no consideration to directions of facilitation. However,
recall that in the hierarchical (f = 0) limit of the Arrow model, excitations may only interact
with other excitations with the same facilitation direction. Specifically, excitations can be
created or destroyed only by excitations pointing in the same direction. Thus, even if the
target excitation is directly next to an excitation of a different direction, one cannot destroy
the other and deplete the density of excitations in the surrounding area. The top panel of Fig.
3.11 shows probability distributions for the Arrow model over a range of temperatures as the
system is cooled at a rate ν = 1×10−6. The label “any vector” indicates that specific values
of vi were not considered when determining nearest neighbor excitations, and distributions
are colored from red (high temperature) to dark purple (low temperature). While the model
has clearly fallen out of equilibrium by the time it has been cooled to T = 0.1, there is no
evidence of excitation depletion.

The plot in the top right of Fig. 3.11 plots an exponential distribution in dimension d

Pd(`) =
`d−1

〈`〉d exp[−(`/〈`〉)d] (3.33)

where the angled brackets denote an average over all nearest excitation lengths for a config-
uration at a given temperature. If the distribution P (`) is exponential, a plot of
ln[P(`)〈`〉d/`d−1] versus (`/〈`〉)d will yield a straight line. We therefore expect deviations
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Figure 3.11: Distributions of distances to nearest excitations in the d = 2 Arrow model. The
system is cooled from T = 0.9 (red) to T = 0.1 (dark purple) at a rate ν = 1×10−6. At each of the
nine temperatures shown, the distribution of distances between nearest excitations is computed,
both with consideration of excitation direction and without. The top plots (“any vector”) show
distributions of distances between nearest excitations of any directionality, or Arrow model site
vector. In the bottom plots (“same vector”), only excitations in the same direction are considered.
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from linearity in the event of correlations between excitations. Curves for the “any vector”
case appear linear at all temperatures and do not indicate the presence of correlations in the
excitation structure.

Now, we choose to compute distributions of nearest neighbor lengths in the Arrow model
by requiring that any nearest neighbor excitations have the same direction of facilitation.
We obtain distributions of lengths like those in the lower panel of Fig. 3.11. Here we find
that there is a clear depletion of excitations at small lengths. Furthermore, the plot on the
right reveals marked deviations from linearity (and thus correlations between neighboring
excitations) at low temperatures.

Consideration of excitation directionality is therefore required in order to resolve correla-
tions between excitations in out-of-equilibrium configurations. This is not terribly surprising,
as excitations of different orientations have no chance of relaxing each other in the hierar-
chical version of the Arrow model utilized here.

Emergence of Correlated Excitations

Recall that in Section 3.4.1 we utilized persistence and exchange times to resolve temporal
correlations in relaxation events in the Arrow model. A persistence time was the time
until the next excitation from a randomly chosen time origin, while an exchange time was
the time between subsequent excitations. Here we use an analogous approach to resolve
spatial correlations in configurations of excitations. For an Arrow model configuration at
temperature T along a cooling trajectory, we compute distributions of lengths to nearest
excitations from both random sites on the lattice and other excitations. As discussed above,
we require that excitation-to-excitation lengths only be considered if the two excitations have
the same direction of facilitation. Fig. 3.12 shows the resulting probability distributions for
two different cooling rates, where dashed lines indicate distances from random sites, and solid
lines indicate distances from other excitations. We observe a decoupling of distributions at
low temperatures, when the system has fallen out of equilibrium and excitation structure is
correlated. At high temperatures, when excitations are uncorrelated, these distributions are
the same. Comparing the two different cooling rates ν = 1× 10−5 and ν = 1× 10−6, we see
that the distributions become decoupled at higher temperatures when the model is cooled
at the faster cooling rate.

3.7 Conclusions

In summary, we have characterized the dynamics and excitation structure of the Arrow
model, a kinetically-constrained model for glassy dynamics. The Arrow model contains only
facilitation and directionality of dynamics, and so captures the fundamental physics of par-
ticle motion according to the dynamical facilitation theory of the glass transition.11 In the

11See Section 1.2 for more information on the dynamical facilitation theory of the glass transition.
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Figure 3.12: Distributions of distances to nearest excitations in the d = 2 Arrow model from both
excitations and random points on the lattice. The system is cooled from T = 0.9 (red) to T = 0.1
(dark purple) at rates ν = 1×10−5 (left) and ν = 1×10−6 (right). At each of the nine temperatures
shown, the distribution of distances between nearest excitations is computed (solid lines), where
only excitations in the same direction as the origin excitation are considered. Distributions of
distances from random points on the lattice to the nearest excitation are shown in dashed lines.
These distributions become decoupled at low temperatures T ≈ Tg, which reflects correlations
between excitations.
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hierarchical (f = 0) limit of the model, relaxation is super-Arrhenius as is observed in ex-
perimental glass-formers. The nature of dynamical heterogeneities in the Arrow model is
shown to be commensurate with that observed in atomistic systems, and so we can define a
mapping between the two systems that takes into account differing energy scales of hierar-
chical dynamics. This mapping allows for direct correspondence between atomistic system
temperatures and specific excitation concentrations at which the Arrow model is simulated.

In the next chapter, we explore an application of the Arrow model in a hybrid “Arrow-
Potts” model. When combined with a Potts model—a lattice model capable of undergoing
a first-order thermodynamic phase transition—the Arrow model captures the sluggish dy-
namics that slows crystal growth in a system cooled below its melting temperature. It
also provides the kinetic constraints necessary for long-lasting polycrystalline structure as
observed in experimental systems.
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Chapter 4

A Coarse-grained Model for
Crystallization, Vitrification, and
Polycrystallinity

4.1 Introduction

In this chapter, we explore an application of the coarse-grained model for glassy dynamics
characterized in the previous chapter. We join the Arrow model [18]—which is discussed at
length in Chapter 3 and provides kinetic constraints fundamental to glassy dynamics—with
a second lattice model that undergoes a first-order thermodynamic phase transition. With
both glassy dynamics and the thermodynamics to crystallize, this model can simultaneously
exhibit sluggish dynamics and the drive to the crystal state experienced by a material cooled
below its melting temperature. We use this model to explore the competition between
crystallization and vitrification inherent to the formation of polycrystalline materials, as well
as the resulting material structure. We begin by describing the processes of crystallization
and vitrification, as well as the characteristic features of polycrystalline materials. This work
was done in collaboration with Kranthi Mandadapu.

4.1.1 Theory of Crystallization

The process of crystallization consists of two events: (1) nucleation of a nascent crystal
and (2) subsequent growth of that crystal. The overall timescale for crystallization, τxtl, is
dependent on the timescales of these events and has the approximate form

τxtl = Γ(V )ν−1(T )e∆F (T )/kBT (4.1)

where ∆F (T ) is the free energy cost to grow a critical nucleus of the crystal at temperature
T , and ν−1(T ) is the temperature-dependent timescale at which new material is added to the
growing crystal [45]. This timescale ν−1 corresponds to molecular reorganization at small
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length scales. Γ(V ) is a system size correction dependent on liquid volume V , as discussed
later in this section. kB is Boltzmann’s constant.

At moderately supercooled temperatures, the crystalline phase is separated from the
metastable liquid phase by a free energy barrier ∆F (T ) [77]. The form of ∆F (T ) is motivated
by classical nucleation theory (CNT), which has been used to successfully estimate nucleation
rates at moderately supercooled temperatures [78]. The general form of the free energy term
can be written as

∆F (T ) = Φ(γ/∆h)(T − Tm)−2 (4.2)

where Φ(γ/∆h) is a function of surface energy γ and bulk energy ∆h [45]. To lowest order,
this quantity is independent of temperature [6]. The dependence on (T − Tm)−2 ensures
a free energy function that increases with temperature until the melting temperature Tm,
where ∆F (T ) goes to infinity.

The prefactor for the timescale for crystal growth, ν(T )−1, is related to how quickly
material can reorganize and add to the burgeoning crystal. This reorganization time is
approximately the time for molecules to diffuse a characteristic microscopic length. At high
temperatures, there is little temperature dependence, as molecules can easily reorganize.
At temperatures below the melting temperature Tm, however, the drastic slowing of liquid
dynamics results in diffusion with a super-Arrhenius dependence on temperature

D ∝ exp

[
−ξJ2

(
1

T
− 1

To

)2]
(4.3)

where the onset temperature To is commensurate with Tm, and ξ ≤ 1 is a constant that
reflects the extent to which the Stokes-Einstein relation D ∝ T/η is violated.1

For decreasing T < Tm, the slowing of liquid dynamics relevant to crystal growth com-
petes with the increasingly favorable free energy for crystal nucleation. The result is a non-
monotonic curve for the crystallization timescale τxtl, an example of which is shown in Fig.
4.1. Contributions to Eqn. 4.1 from slowing liquid dynamics and increasing thermodynamic
favorability of crystallization are shown in blue and red dashed lines, respectively.

In addition to the ν−1(T ) term in Eqn. 4.1, there is a second prefactor Γ(V ) that reflects
the system size dependence of τxtl. At moderately supercooled temperatures, the process
of crystallization is nucleation-limited; it can take awhile for a critical nucleus to form, but
once it does, the entire system quickly crystallizes. As the size of the system increases,
there are more opportunities for such nuclei to form. In this sense, an increase in system
size contributes to a decrease in the crystallization timescale τxtl. At deeply supercooled
temperatures, critical nuclei form readily, and crystallization is instead diffusion-limited. In
this low-temperature regime, a larger system volume means that more material that has to
be reorganized, contributing to a longer τxtl. The dependence on system size is thus non-
monotonic with respect to volume, though its effect in Eqn. 4.1 is insignificant relative to
the other two terms.

1The fractional Stokes-Einstein relation is D ∝ T/ηξ, where ξ < 1 at supercooled temperatures. See
Section 2.4 for more information on the breakdown of the Stokes-Einstein relation at low temperatures.
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Figure 4.1: Illustration of timescales for crystallization. The black curve shows the non-monotonic
temperature-dependence of τxtl in Eqn. 4.1. The dashed blue curve shows the contribution from
liquid dynamics that slows down with decreased temperature. The dashed red curve shows the
contribution from the decreasing nucleation time with decreasing temperature. The gray shaded
region indicates temperatures above the melting temperature Tm; the approximate location of Tm

is indicated. Forms for the three curves are taken from Ref. [45]. The system size correction Γ(V )
is not shown but is expected to be a non-monotonic contribution with respect to volume.
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4.1.2 Vitrification

The form in Eqn. 4.1 (shown in Fig. 4.1) implies that even if the crystal state is thermo-
dynamically favored at a particular temperature, sluggish liquid dynamics may drastically
increase the time required to add to a nascent crystal, resulting in a longer timescale for
crystallization. If the material is cooled or quenched such that molecules are unable to
reorganize into a crystalline structure before liquid dynamics becomes prohibitively slow,
the material may instead form a glass. The proximity in timescales between crystal forma-
tion and liquid dynamics influences whether the material crystallizes or forms an amorphous
solid, a concept illustrated by time-temperature-transformation plots. Fig. 4.2 shows a time-
temperature plot for the TIP5P water model featured in Ref. [45]. In a finite-sized system,

1/T
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⌧xtl

Liquid 
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Figure 4.2: Timescale separation of liquid dynamics and crystallization. The red curve, τliq, gives
the temperature-dependence of the structural relaxation time for the supercooled liquid. The black
curve, τxtl, gives the temperature-dependence of the timescale for crystallization. The symbol ∆
denotes the difference in timescales between liquid dynamics and crystal formation at the boundary
temperature of liquid metastability. Temperatures at which the supercooled liquid state is no longer
metastable are shaded gray.

the supercooled liquid state is metastable for some temperature range below Tm. The region
of supercooled liquid instability—where there is no longer a free energy barrier between liq-
uid and crystal—is shaded gray, and the gap between the liquid and crystal curves is given
by the gap parameter ∆ [45]. This parameter measures the difference in timescales between
liquid dynamics and crystal formation at the temperature below which there is no barrier to
crystallization. The magnitude of ∆ differs depending on the material.
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4.1.3 Polycrystallinity

Materials such as ice, iron, and many other inorganic solids exist as polycrystalline solids in
nature, meaning the solid does not consist of a single crystal. When a nascent crystal forms
in a liquid, it is comprised of ordered molecules with a particular orientation. However, there
can be many independent nucleation events throughout the liquid, and the orientations of
the crystals need not be the same. When these crystals grow larger and approach other
crystals, there is often a mismatch of orientations preventing them from growing together as
a single crystal. As a result, numerous crystallites make up the solid, each with its own size
and orientation. These crystallites are referred to as “grains,” and the interfaces separating
them are “grain boundaries,” which typically have disordered structure. In this section, we
explore the emergence and implications of polycrystallinity in greater detail.

We can think of grain growth in polycrystalline materials as occurring in three stages:
(1) nucleation, (2) coarsening, and (3) grain boundary annealing. As discussed in an earlier
section, nucleation involves the formation of a nascent crystal; in the case of polycrystalline
materials, many nucleation events occur throughout the liquid. Once these nascent crystals
form, coarsening takes place. The coarsening process involves the growth of nucleated crys-
tals until they meet other crystallites, likely with mismatched orientations. As mentioned in
the above section, the rate of grain growth is dictated by the timescale required for micro-
scopic reorganization, ν−1(T ). At the end of the coarsening stage, the initial microstructure
of the material is formed, complete with numerous crystallites in different orientations with
the associated grain boundaries. The final stage of crystal growth is controlled by the motion
or mobility of these grain boundaries. The crystallites have filled space, but molecules at
grain boundaries can reorganize to smooth the boundaries between crystallites, resulting in
only modest increases in grain size. Grain boundaries may move and merge with other grain
boundaries to give rise to a particular microstructure. Fig. 4.4 illustrates the growth of
average crystal size with respect to time for each of the three regimes.

Grain Boundary Structure

Until this point, we have made no mention of the types of orientation mismatch that can
occur when grains grow together in the coarsening stage. Here we go into greater detail
on the types of grain boundaries actually found in nature. Grain boundaries are typically
classified as low-angle grain boundaries (LAGB) or high-angle grain boundaries (HAGB)
[79, 80] depending on the degree of orientation mismatch of the grains. LAGBs are interfaces
between crystals with small orientation mismatch (< 15 degrees), while HAGBs are interfaces
between crystals with large orientation mismatch (> 15 degrees). LAGBs are considered to
be interfaces with an array of dislocations, where the energy of the grain boundary is a
property of the extent of mismatch of orientations [81]. However, the energy associated with
a HAGB is found to be independent of grain orientation, with the grain boundary highly
disordered in nature [79].

The mechanical properties of a polycrystalline material are intimately related to the ma-
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Figure 4.3: Stages of grain growth in a polycrystalline material. The first stage, “nucleation,”
involves the initial appearance of grains with a variety of orientations throughout the system. The
second “coarsening” stage involves the growth of the nascent grains to fill the volume of the system.
Once the grains have grown to fill the system, the final “annealing” stage takes place. Molecules
at the grain boundaries are able to reorganize such that the grains can continue to grow.

terial’s grain structure. One such property is the material-specific yield strength, the amount
of stress required to deform the polycrystalline material. Dislocations in a crystal increase
the propensity for permanent deformation. Grain boundaries impede the propagation of
these dislocations, as there is an energy cost associated with reorienting to align with the
adjacent grain [82, 83]. Yield strength therefore increases with decreasing grain size, as a
material with smaller constituent crystallites necessarily has more grain boundaries. The
Hall-Petch equation [84] relates the average grain size and yield stress of a material

σy = σ0 +
ky√
d

(4.4)

where σy is the yield stress, σ0 is a material-specific constant, ky is a material-specific
strengthening coefficient, and d is the average grain diameter. Many materials can be made
stronger by preparing them in a way that ensures smaller grains. A deeper understanding of
how cooling and quenching protocols influence average grain size could prove helpful in the
design of materials with specific mechanical properties.

Grain Boundary Dynamics

While the nucleation and coarsening stages of polycrystalline growth are straightforward,
the annealing stage warrants further discussion. The mobility of grain boundaries is depen-
dent on the nature of the grain boundaries (for instance, HAGB vs. LAGB), temperature,
and stress state. For example, grain boundaries have been found to exist in both smooth
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Figure 4.4: Grain growth regimes for a polycrystalline material. The material is cooled at a
constant rate from a liquid state to well below its melting temperature. The average grain size 〈N〉
is plotted over time to illustrate the three grain growth regimes considered in this chapter. Initially,
the increase in 〈N〉 is very gradual, as nascent crystals form during the “nucleation” regime. During
the “coarsening” regime, the size of clusters increases relatively quickly, and grains overtake the
system. Once the system is polycrystalline, the average cluster size is relatively constant, as regions
near grain boundaries rearrange and smooth the grain edges.
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and rough states and undergo a roughening transition; the nature of this transition can
influence the mobility of the interfaces [85]. It has been suggested that the presence of
smooth boundaries significantly impedes the overall grain boundary annealing process in a
mesocrystal, such that grain growth stops, and a polycrystalline microstructure is formed
[86]. These grain boundaries—particularly HAGBs—can also exhibit glassy dynamics akin
to bulk glassy dynamics [87, 88]. Relaxation is then super-Arrhenius, resulting in a signif-
icant slowdown of the grain boundary mobility. As in the case of smooth vs. rough grain
boundaries, the presence of glassy boundaries can again affect the grain growth significantly,
resulting in polycrystalline forms of the material. In this chapter, we consider the effects of
glassy grain boundaries on the overall crystal growth process.

4.2 The Arrow-Potts Model

A microscopic model to describe the process of crystallization should incorporate the slowing
of liquid dynamics below the melting temperature and should also exhibit polycrystallinity.
We utilize the Arrow model as a coarse-grained lattice model of glassy dynamics and combine
it with a Potts model, which is capable of forming polycrystalline domains. Coarse-grained
lattice models have been used previously to understand liquid-crystal phase transitions [3], as
well as the self-assembly of nanoparticle domains [89]. Here we incorporate kinetic constraints
of glassy dynamics. We refer to our hybrid model as the “Arrow-Potts model.” In the
following sections, we detail the components of the basic model and discuss the general
types of phenomena our model can exhibit.

4.2.1 The Arrow Model

As a coarse-grained model for supercooled liquid dynamics, the Arrow model [18] incorpo-
rates facilitation and directionality, and thus exhibits the same super-Arrhenius growth in
relaxation times observed in atomistic liquids.2 The Arrow model is characterized in Chapter
3 and is briefly summarized here, with minor changes in notation to allow for easier inclusion
in our hybrid model.

Each lattice site i in the system has an occupation variable ni indicating whether the
site contains an excitation and is therefore considered “mobile.” Each excitation also has
an associated direction of facilitation. For a lattice in d dimensions, there are 2d possible
facilitation directions for an excitation, corresponding to the number of corners in a lattice
site. In Chapter 3, we assigned d-dimensional vectors (“arrows”) to indicate direction; here
we combine occupation variable and facilitation direction into a single numerical value. Im-
mobile liquid sites have ni = 0, and mobile liquid sites have ni ∈ {1, 2, . . . , 2d}, where each
state indicates a distinct direction of facilitation.

2Here we use the f = 0 limit of the Arrow model, the hierarchical limit, which corresponds to fragile
glass-former dynamics [18].
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The facilitation directions of lattice sites have a significant role in Arrow model dynamics.
A mobile site can facilitate dynamics in d neighboring lattice sites located in the direction
its facilitation arrow is pointing. Excitations with the same facilitation direction as the
facilitating site can be created or destroyed at these neighboring sites. The equilibrium
concentration of excitations, ceq, is dependent on the system temperature such that as the
temperature decreases, so does the number of mobile sites. The value of the equilibrium
concentration is

ceq =
2d

2d + eJ0/T̃
(4.5)

where inverse temperature 1/T̃ > 0 in the Arrow model corresponds to inverse temperature
minus the inverse onset temperature of glassy dynamics 1/kBT − 1/kBTo in real systems.
The parameter J0 gives the energetic cost of creating an excitation and can be tuned to the
parameters of the atomistic system we hope to model, as demonstrated in Chapter 3. In
this chapter we present results for a general Arrow-Potts model, and so our specific choice
of J0 is not critical.

4.2.2 Potts Models

A Potts model [90] is a multi-state generalization of the Ising model, and so we motivate our
discussion of Potts models with a mapping from the more familiar Ising model. The general
form of the Hamiltonian for an Ising model of N spins is

H(I) = −
∑

〈i,j〉

J
(I)
ij xixj − µ

N∑

i=1

hixi (4.6)

where J
(I)
ij gives the energetic interaction between sites i and j, xi = ±1 is the value of the

spin at site i, µ is the chemical potential of the system, and hi is the magnetic field acting
upon the spin at site i. The first sum is over all pairs of nearest-neighbor lattice sites i and
j, where a d-dimensional lattice site has 2d nearest neighbors. Often the model is simplified
so that each site is equivalent by substituting J (I) ≡ J

(I)
ij and µH ≡ µhi for all i, j. The

magnetization of the system is defined as

〈M〉 =
N∑

i=1

µxi (4.7)

and is equal to zero at high temperatures, where the system is in a disordered state with
equal proportions of up spins and down spins, on average.

When J (I) > 0, it is energetically favorable for neighboring spins to be aligned. For this
choice in coupling constant, and for lattices in dimensions d ≥ 2, the Ising model exhibits
an order-disorder phase transition. Even in the absence of a magnetic field, spontaneous
magnetization from |M | = 0 to |M | > 0 occurs for low enough temperatures and high enough
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J (I). Nearest-neighbor interactions mediated by J (I) induce long-range correlations over
macroscopic distances. The order-disorder phase transition occurs at a critical temperature
Tc, which is dependent on both the value of J (I) and the lattice dimension. Below Tc, there
is a first-order phase transition between the spin-up state and the spin-down state when the
strength of an external field is varied. Fig. 4.5 illustrates the phase transitions that occur
in the Ising model.

H
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second-order phase 
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a) b)

Figure 4.5: First and second order phase transitions in the Ising model. (a) An order-disorder
phase transition occurs at T = Tc. In the absence of an external field (H = 0), the system will
spontaneously magnetize to either 〈M〉/N > 0 or 〈M〉/N < 0. When T = 0, 〈M〉/N = ±1. (b)
Below Tc, at H > 0, the system is in a phase with 〈M〉/N > 0, which tends to 〈M〉/N = 1 as
T → 0. At H < 0, the system is in a phase with 〈M〉/N < 0, which tends to 〈M〉/N = −1 as
T → 0. There is a first-order phase transition between these two phases at H = 0.

The Ising model is equivalent to a two-state Potts model. A general Potts model Hamil-
tonian with an external field h(P) applied to sites in a state k can be written as

H(P) = −J (P)
∑

〈i,j〉

δsi,sj − h(P)

N∑

i=1

δsi,k (4.8)

where si is the Potts state of site i and J (P) denotes the coupling constant for neighboring
sites in the same Potts state. In a two-state Potts model, we let k ∈ {0, 1}. We can show
the isomorphism between the two lattice models by writing a correspondence between Ising
and Potts variables in Eqns. 4.6 and 4.8

xixj ≡ 2δsi,sj − 1 (4.9)

and substituting into Eqn. 4.6. We find that the models are equivalent within a constant
factor with the mappings J (P) = 2J (I) and h(P) = 2µH.
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Like the Ising model, Potts models also undergo phase transitions. A two-state Potts
model is equivalent to the Ising model and therefore has a continuous order-disorder tran-
sition in the limit of zero applied field. In Potts models with at least four states in two
dimensions, and three states in three dimensions, there is instead a first-order phase transi-
tion [83, 90]. As the liquid-crystal transition is also first-order, we are interested in mapping
this first-order Potts transition to the liquid-crystal transition for a material of interest.

For inclusion in the Arrow-Potts model, we choose 2d+1 Potts states for a d-dimensional
lattice. The state si = 0 indicates that lattice site i is a liquid, while si ∈ {1, 2, . . . , 2d}
indicates that the site is a crystal in one of 2d orientations. While in atomistic systems, the
orientation of a crystal is a continuous value, we constrain the orientations in our model to
a number of discrete values in order to simplify our analysis.3

Studying Polycrystallinity with Potts Models

Potts models are frequently utilized to study grain growth in polycrystalline materials over
relatively short time scales [92, 93, 94, 95]. Such computer experiments are typically per-
formed by choosing an existing grain structure as the initial configuration and then analyzing
the evolution of grain sizes and boundaries over the course of a simulation. While this analy-
sis can be valuable, it is limited in that it lacks information on how the grains and boundaries
are formed in the first place. Furthermore, in the absence of kinetic constraints the dynamics
of the grain boundaries are essentially unhindered, and so the timescale over which the Potts
model falls into the thermodynamically favored single crystal state is much shorter than
what is observed in experiments. Fig. 4.6 shows the grain structure of a simulated d = 2
Potts model over time, where each color represents a distinct crystal orientation. The first
frame shows a grain structure with a variety of grains of different sizes. As time progresses
to the middle frame, the grains become larger because neighboring crystals that are aligned
are energetically favorable. Eventually, due to the lack of kinetic constraints, a single grain
(likely with small defects) overtakes the system. Studying polycrystallinity with only Potts
models is clearly limited, but the addition of kinetic constraints effectively arrests the growth
of crystal domains over long times.

4.3 Model Thermodynamics

In this section, we discuss the Hamiltonian for the Arrow-Potts model and describe the
required parameters for specifying the model’s behavior. We derive a mean field theory to
identify the first-order phase transition and construct a liquid-crystal phase diagram for a set
of model parameters. This phase diagram is then compared with Potts model simulations.

3In a Potts model where lattice sites have continuous orientations and interaction energies depend on
these orientations, there will be no first-order phase transition in d = 2 due to the presence of Goldstone
modes [91].
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t
Figure 4.6: Evolution of a d = 2 Potts model configuration. Three snapshots from a Potts model
simulation are shown, where each color represents a distinct crystal orientation. Initially, there are
many grains of a variety of sizes. Over time, larger grains dominate because aligned crystal sites
are energetically favorable. Eventually, a single grain (with small defects) overtakes the system.

4.3.1 Hamiltonian

When determining the energetics of a model to describe both glass formation and crystalliza-
tion, there are several essential parameters. First, we need to incorporate the energy scale
for hierarchical dynamics in glassy liquids. This energy scale, along with the temperature,
dictates the concentration of mobile regions in the system. Second, we need to include a
liquid-solid surface tension and grain boundary energy (i.e., the energetic penalty for mis-
aligned crystals). Finally, we must include a temperature-dependent field that drives the
system towards or away from the crystalline state. For example, the model should prefer to
be a liquid at temperatures above the melting temperature Tm and a solid at temperatures
below Tm; this preference must become stronger as the temperature moves further away from
Tm. With these requirements in mind, we define an Arrow-Potts Hamiltonian

H = −∆ε

2

∑

〈ij〉

[
(1− δsi,0)δsj ,0 + (1− δsj ,0)δsi,0

]
− ε
∑

〈ij〉

δsi,sj + h(p, T )
∑

i

δsi,0

+ J0

∑

i

(1− δni,0) +
∑

i

C[si, ni]
(4.10)

where si ∈ {0, 1, ..., 2d} represents the Potts model state of site i and ni ∈ {0, 1, ..., 2d} the
Arrow model state. The Potts state si = 0 corresponds to a liquid, and states si = 1, ..., 2d

correspond to crystals in 2d different orientations. Similarly, the Arrow model state ni = 0
is an immobile liquid, and states ni = 1, ..., 2d are mobile with one of 2d distinct facilitation
directions. The sum over 〈ij〉 denotes a sum over nearest neighbor sites. The C[si, ni] term



4.3. MODEL THERMODYNAMICS 69

in Eqn. 4.10

C[si, ni] =

{
∞, if si 6= 0, ni 6= 0

0, otherwise
(4.11)

enforces the constraint that if a lattice site is a crystal, it cannot facilitate mobility in
neighboring sites. The Kronecker delta function is defined as

δp,q =

{
0, p 6= q

1, p = q
(4.12)

where p and q represent state variables in our model.
The parameter ∆ε in Eqn. 4.10 defines the interaction energy between neighboring liquid

and crystal sites and thus reflects the value of the liquid-crystal surface tension. The param-
eter ε sets the interaction energy between two neighboring liquid sites or two neighboring
aligned crystal sites. The interaction energy between two misaligned crystals, or grains, is
set as the reference (i.e., zero) energy. h(p, T ) is the pressure- and temperature-dependent
field biasing the system towards or away from the crystal state; this field is equal to the
chemical potential difference between the liquid and crystal states at temperature T and
pressure p. J0 sets the energy scale for hierarchical glassy dynamics and is the energy re-
quired to create a new excitation in the liquid. As written, Eqn. 4.10 incorporates energy
scales for kinetically constrained dynamics at all temperatures and is therefore a physically
meaningful expression only when the system is below the onset of glassy dynamics.

We make the approximation that crystal orientations are discrete and choose 2d as the
arbitrary number of possible orientations, where all 2d crystal states are degenerate in en-
ergy. While in reality, crystal orientation is a continuous quantity, choosing discrete values
decreases the complexity of our model both analytically and numerically. We also make the
simplifying assumption that each pair of misaligned crystals interacts with the same energy.
In reality, high- and low-angle grain boundaries, which are defined by degree of misalignment
of the two neighboring grain orientations, are associated with different interface energies and
grain boundary dynamics (this is described in Section 4.1.3). We ignore any differences in
grain boundary energies in the current version of the Arrow-Potts model, but they could be
incorporated into the model by introducing additional parameters into Eqn. 4.10.

To study the thermodynamics of the Arrow-Potts model, we write a Potts model Hamilto-
nian for the system described by Eqn. 4.10 where we average over Arrow states and consider
only Potts states. First, we can more succinctly write Eqn. 4.10 as

H =
∑

〈ij〉

[
∆ε(δsi,0δsj ,0)− ε(δsi,sj)

]
+
[
h(p, T )− d∆ε

]∑

i

δsi,0 + J0

∑

i

(1− δ0,ni
) +
∑

i

C[si, ni]

(4.13)
Note that the representation in Eqn. 4.13 explicitly presents the field h(p, T )− d∆ε felt by
each liquid site. After integrating out the arrow variables (i.e., ni variables), we arrive at
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the Hamiltonian

H′ =
∑

〈ij〉

[
∆ε(δsi,0δsj ,0)− ε(δsi,sj)

]
+
[
h(p, T )− d∆ε− T log

(
1 + 2de−J0/T

)]∑

i

δsi,0 (4.14)

where the field felt by liquid sites has been modified. The portion of Eqn. 4.13 relating to
glassy dynamics has been absorbed into the liquid field, with the degeneracy in facilitation
directions taken into account by inclusion of the 2d factor. We are left with the Hamiltonian
for a Potts model, with no kinetic constraints.4 As such, we expect the same phase transition
as the generic Potts model described in Section 4.2.2, but with a shifted transition on the
phase diagram due to the renormalized field. The reduced Hamiltonian H′ enables us to
study the thermodynamics of the Arrow-Potts model both analytically and numerically.

4.3.2 Mean Field Approximation

We make use of the Potts model Hamiltonian in Eqn. 4.14 to derive a mean field theory. We
start by defining xk as the fraction of sites in the system with crystal state k ∈ {1, 2, . . . , 2d}.
The fraction of sites in the liquid state x0 is determined by the values of the crystal fractions

because we require
∑2d

k=0 xk = 1. With this definition and the Potts Hamiltonian in Eqn.
4.14, we can calculate the average energy and entropy of the system. We find

E(p, T ) = N
[(
heff(p, T )− d∆ε

)
x0 + d∆εx2

0 − dε
2d∑

k=1

x2
k

]
(4.15)

and

S = −NkB

2d∑

k=0

xk log xk (4.16)

where we define
heff(p, T ) = h(p, T )− T log(1 + 2de−J0/T ) (4.17)

as the effective field acting on liquid sites, for notational convenience. The free energy
function F = E − TS is then straightforward to compute

F (p, T )

N
=
(
heff(p, T )−d∆ε

)
x0+

(
∆ε−ε

)
dx2

0−εd
2d∑

k=1

x2
k+T

(
x0 log x0+

2d∑

k=1

xk log xk

)
(4.18)

for dimension d, specified parameters ε and ∆ε, and values of pressure p and temperature
T . For now, we choose arbitrary parameters ε = 0.46 and ∆ε = 0.37.5 We minimize the free
energy function to determine the energy basins for our model.

4Note that the Potts model Hamiltonian in Eqn. 4.14 is not equivalent to the generic Hamiltonian in
Eqn. 4.8. In Eqn. 4.14, state s = 0 has its own associated energetic interactions and so all Potts states are
not degenerate.

5We choose ε > ∆ε so that the favorable energetic interaction between like crystal sites is stronger than the
interaction between crystal and liquid, which is in turn stronger than the interaction between two misaligned
grains. This is a physically relevant relationship.
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The phase diagram is constructed by finding the value of h(p, T ) for a specific temperature
T such that the free energy of the liquid phase is equal to the free energy of the crystal phase.
The crystal phase corresponds to a xk = 1, where k > 0 is a single crystal orientation. In
the liquid phase, the fraction of liquid in the system x0 dominates the fraction of any one
crystal orientation, but all 2d crystal orientations exist in equal—albeit very small—fractions
(x1 = x2 = · · · = x2d). The amount of crystal with which the liquid phase is enriched depends
upon the value of the applied field (y-axis) along the phase transition line. The less negative
the field, the more crystal is present in the liquid phase. This is illustrated in Fig. 4.7,
which shows the fraction of liquid in the system x0 as a function of the value of heff for three
temperatures. The first-order phase transition is clearly shown for β = 1.5, 2.5, but there
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Figure 4.7: Fraction of liquid in d = 3 Potts model as a function of applied field and temperature.
The fraction of liquid in the system x0 is plotted as a function of h(p, T ) for three temperatures:
1/T = 1 (black), 1/T = 1.5 (red), and 1/T = 2.5 (blue). Sharp transitions from the liquid
state (predominantly liquid sites with small amounts of crystal) to the crystal state, where one
crystal orientation dominates, are shown for the two lower temperatures. In the absence of a
sharp transition to the crystal phase (as is shown for 1/T = 1), crystal orientations exist in equal
proportions.

is no such transition for β = 1. The symmetry is not broken and crystal exists in equal
proportions throughout the path through heff .

Figure 4.8 shows the d = 2 and d = 3 phase diagrams for parameter choices ε = 0.46,
∆ε = 0.37, and J = 1000 (“mean field” data points). We plot inverse temperature 1/T on
the x-axis, and the field [heff(p, T ) − d∆ε]/T that is felt by liquid sites on the y-axis. Note
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Figure 4.8: Arrow-Potts model phase diagram with mean-field approximation (black) and simula-
tion (red and blue) results. Results for dimension d = 3 are shown in the left panel, and results
for d = 2 in the right panel; note the difference in x-axis scales. The liquid-crystal transition as
determined by cooling trajectories is marked with blue lines, where dotted lines indicate one stan-
dard deviation from the average of 4 trials. The transition as determined by subsequent warming
trajectories is denoted by red lines in order to demonstrate the hysteresis observed in simulations.
The liquid phase is located to the left of the phase transition lines in each dimension, at higher
temperatures and more negative values of the field (y-axis). The crystal phase is located to the
right of the phase transition lines, at lower temperatures and less negative values of the field.
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that the dimension d is incorporated into the y-axis value and so a trivial shift between d = 2
and d = 3 transition lines is expected.

4.3.3 Potts Model Simulation

To test the extent to which the mean field analysis is commensurate with numerical results,
we perform Metropolis Monte Carlo simulations6 of a Potts model with the Hamiltonian in
Eqn. 4.14. We require crystal sites (si = 1, 2, . . . , 2d) to first become liquid (si = 0) before
adopting a new orientation.7 This rule is implemented later in the full Arrow-Potts model
and reflects the physical intuition that a crystal must melt before its constituent molecules
can reorient themselves.

First, we discuss the nature of the crystal and liquid states in our simulated Potts model.
As we observed in the mean-field approximation, the liquid phase consists primarily of lattice
sites with si = 0, but the remaining sites have si = 1, 2, . . . , 2d in equal and small proportions.
Large domains of aligned crystal sites do not form. The crystal state consists almost entirely
of aligned crystal sites with some small defects.

We simulate both cooling and warming trajectories to identify the location of the phase
transition between liquid and crystal states. Each set of cooling and warming runs has a
specific value of heff(p, T ) at each temperature to correspond with the y-axis in Fig. 4.8; this
amounts to horizontal paths across the phase transition line. The system is initialized in
the liquid state (all sites i have si = 0) and equilibrated such that the system composition
no longer changes in time. It is then cooled at a rate ν until it crystallizes, i.e., falls into a
single crystal state, to the right of the phase transition line. Each of the 2d crystal phases
may be formed with equal probability. The system is then warmed from the crystal at the
same rate ν until it melts and once again becomes a liquid.

The temperatures at which the liquid-to-crystal and crystal-to-liquid phase transitions
occur, for a specific value of the y-axis of Fig. 4.8, are not equivalent. We observe hysteresis
consistent with first-order phase transitions; this is due to the difference in time scales
between ordering from a metastable disordered liquid phase (cooling) and disordering from a
metastable ordered crystal (warming). This effect grows more prominent at low temperatures
in the phase diagram and is illustrated in Fig. 4.9.

Simulation results (“simulation” data points) are shown alongside analytical results in
Fig. 4.8, where we present data both from cooling and warming trajectories to construct
the Potts phase transition line [96]. The warming trajectory starts from a single crystal
state and melts into the liquid state, whereas the cooling trajectory could lead to one of
2d crystal orientations. The warming trajectory transition is thus a better indicator of the
actual transition because no “corrections” of nucleated crystals in opposing directions is
needed. This is confirmed by the locations of the warming lines relative to the cooling lines

6All Potts model and Arrow-Potts model (Section 4.4) simulations are performed using Monte Carlo
methods. See Appendix A for a general discussion of the simulation methodology.

7Note that this requirement affects only the dynamics (and not the thermodynamics) of the model.
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Figure 4.9: Potts model hysteresis for cooling and warming trajectories. The fraction of liquid x0

is plotted against the inverse temperature 1/T for a d = 3 Potts model cooled from 1/T = 2 to
1/T = 15 and then warmed back to 1/T = 2. The cooling and warming trajectories are run with a
value of heff(p, T ) such that [heff(p, T )−d∆ε]/T is constant. Phase transitions from liquid to crystal
and crystal to liquid occur at different temperatures for the cooling and warming runs. We keep
the phase transition temperature from the warming trajectory for comparison with the mean-field
theory.
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in the two panels of Fig. 4.8. Overall, the warming simulation and analytical results are
in good agreement, though we do expect some deviation because the mean-field analysis
neglects fluctuations in the system for temperatures T > 0. In the limit of T = 0, however,
there are no fluctuations and so we expect the mean field result to exactly match simulation.
Indeed, Fig. 4.8 shows that the disagreement between warming simulation results and theory
decreases with decreasing temperature for both d = 2 and d = 3. The fact that deviations
between cooling simulation results and theory instead increase is due to increased hysteresis
at low temperatures.

4.4 Simulating the Arrow-Potts Model

Now that we have explored the underlying thermodynamics of the Arrow-Potts model, we
discuss the kinetic constraints that are enforced while simulating the model. We also present
Monte Carlo simulation results to demonstrate important features of the Arrow-Potts model.

4.4.1 Lattice Initialization

Unless otherwise noted, each Arrow-Potts model simulation is initialized in an equilibrium
liquid state at a temperature T just below the melting temperature (as indicated by the
phase transition line in Fig. 4.8). State variables are initialized such that each site i has
si = 0, and a value ni 6= 0 is chosen with probability equivalent to the equilibrium excitation
concentration ceq for temperature T (Eqn. 4.5), where each of the 2d facilitation directions
is chosen with equal probability (ceq/2

d). All remaining N(1 − ceq) sites are assigned ni =
0. Hierarchical dynamics arises naturally from the dynamical rules for the Arrow model;
consequently, there is no onset temperature for the Arrow model above which hierarchical
dynamics is absent. The Arrow-Potts model is only a valid description of liquid dynamics
below the melting temperature (more precisely, the onset temperature To ≈ Tm) where glassy
dynamics is present.

4.4.2 Dynamical Rules

Here, we detail the kinetic constraints arising from the inclusion of the Arrow model and the
resulting dynamical rules that must be followed when simulating the Arrow-Potts model.
There are three categories of possible states for a lattice site i:

(1) Mobile (“facilitating”) liquid with ni ∈ {1, 2, . . . , 2d}, si = 0; can facilitate dy-
namics or a change in Potts state at neighboring sites according to its direction of
facilitation

(2) Immobile (“non-facilitating”) liquid with ni = 0, si = 0; cannot facilitate dynam-
ics
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(3) Crystal with ni = 0, si ∈ {1, 2, . . . , 2d}; inactive state that cannot facilitate dynamics

The dynamical rules and visual representations of these states are summarized in Fig. 4.10.
The three possible states with their respective Arrow and Potts variables are shown in
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Figure 4.10: Illustration of Arrow-Potts model states and the allowed transitions between them.
The three black rectangles represent the immobile (non-facilitating) liquid, mobile (facilitating)
liquid, and crystal states with the values of their corresponding Arrow and Potts variables. Arrows
denote allowed transitions between them. Note that a crystal site must first become a liquid before
adopting a different crystal orientation. We represent immobile liquid sites with an empty lattice
site; mobile liquid sites have arrows pointing in the appropriate direction of facilitation, and crystal
sites are include spheres colored according to its crystal orientation. In the bottom right of this
figure, we show facilitated neighboring sites (shaded gray) for an active liquid site in a d = 2 model.
Facilitated immobile liquid sites may transition to mobile liquid sites with the same direction of
facilitation as the facilitating site. A facilitated mobile liquid site may transition to a crystal of
any orientation or to an immobile liquid site only if its direction of facilitation matches that of
the facilitating site. A facilitated crystal site may transition to a mobile liquid site with the same
direction of facilitation as the facilitating site or an immobile liquid site (no direction of facilitation).
Only mobile liquid sites can facilitate dynamics.

rectangles, with arrows showing allowed transitions between them. Note that a crystal site
must first become a liquid before adopting a different crystal orientation. This choice makes
intuitive sense, as a molecule must be in a liquid state in order to reorganize and adopt
a crystalline structure. In visualizations of the Arrow-Potts models in upcoming sections,
we represent immobile liquid sites with empty lattice sites, active liquid sites with arrows
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pointing in the appropriate direction of facilitation, and crystal sites with spheres in the
color corresponding to its orientation. These representations are shown alongside each state
in Fig. 4.10.

Each active liquid site has a direction of facilitation, which determines its d nearest
neighbors that are dynamically facilitated. Fig. 4.10 (lower right) shows a mobile liquid site
with the two neighboring sites that it facilitates. Any site transitioning to a new state must
first be facilitated by a mobile liquid site.

4.4.3 Simulation Results

With the dynamical rules of the Arrow-Potts model made clear, we demonstrate the types
of behavior our model is capable of exhibiting and the quantities that can be calculated
and compared to experimental results. In this section, we show that the timescale for our
model to crystallize has a non-monotonic dependence on temperature, which is observed in
atomistic systems. We also detail quenching and cooling experiments that reveal distinct
average grain sizes depending on the specific preparation of the material. Finally, we discuss
the nature of the grain structure in the polycrystalline materials.

Time-Temperature-Transformation Diagrams

In Section 4.1, we describe how the competition between crystallization and vitrification in
atomistic materials results in a non-monotonic temperature-dependence of the timescale for
crystallization. Here we calculate crystallization and liquid reorganization times as functions
of temperature for the Arrow-Potts model and show that our model is capable of exhibiting
this same behavior.

The liquid structural relaxation time τliq is computed by removing Potts dynamics in the
system, i.e., by simulating only the Arrow model as is done in Section 3.3. The Arrow model
is initialized with an equilibrium concentration of excitations (Eqn. 4.5) corresponding to the
temperature at which the model is simulated. The structural relaxation time τliq is computed
by considering the “persistence function” 〈P (t)〉, a correlation function that expresses the
probability that a liquid site has not yet relaxed at time t [64, 65, 66]. A liquid site i is said
to relax when the value of ni changes. The persistence function is described in detail for the
Arrow model in Section 3.3 and is only summarized here. 〈P (t)〉 is computed by averaging
over time and over lattice sites, and decays from 1 to 0 as more sites are able to relax. The
1/e decay of 〈P (t)〉 is chosen as the value of τliq.

We define the crystallization time τxtl at a specific temperature as the time required for
the system to become at least 50% crystal after quenching to that temperature from the
liquid state. The Arrow-Potts model is first equilibrated as a liquid just below the melting
temperature, where the liquid phase is metastable, and then quenched to a lower temperature
at time t = 0. At time t = τxtl, 50% of the lattice sites are crystalline. This quantity is
averaged over 10 quenching experiments. Note that crystal of any orientation counts towards
the 50%; kinetic constraints prohibit the formation of a single crystal phase.



4.4. SIMULATING THE ARROW-POTTS MODEL 78

Fig. 4.11 shows the temperature-time curves for the Arrow-Potts model with ε = 0.46,
∆ε = 0.37, Tm = 1, and J = 1. We observe the same non-monotonic temperature-
dependence as in atomistic systems, where there is a minimum in crystallization time at
moderately supercooled temperatures. This non-monotonicity in the Arrow-Potts model
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Figure 4.11: Temperature-time plots for liquid relaxation and crystal formation in the Arrow-
Potts model. The liquid relaxation curve τliq (in blue) is measured as the 1/e decay time of the
persistence function of liquid relaxation in the Arrow model. The crystal formation time τxtl (in
red) is computed as the time until 50% of the system consists of crystal domains. The temperature
is shifted by the inverse melting temperature 1/Tm for the model.

can be understood in terms of the decrease in concentration of active liquid sites as the
temperature decreases. Liquid dynamics slows dramatically, and because sites must be fa-
cilitated in order to crystallize, so does the growth of crystal in the system.

The liquid relaxation and crystallization curves in Fig. 4.11 are well-separated and do not
appear to meet in the low temperature limit. The crystal formation time τxtl clearly grows
faster than the liquid relaxation time τliq at temperatures below the temperature associated
with the minimum of τxtl. This is a consequence of the fact that the number of pathways
by which liquid can relax in the Arrow-Potts model (at low temperatures, where crystal
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growth is heavily favored) decreases relative to the number of pathways in the Arrow model,
due to confinement of the liquid sites between the growing crystal grains. Such confinement
slows the diffusion of the liquid, which in turn slows the addition of crystal sites to a growing
crystal. Confined liquid sites can be observed in the Arrow-Potts configurations in Fig. 4.12.

Quenching and Cooling Experiments

Depending on the way in which we prepare a polycrystalline material in the Arrow-Potts
model, we find different resulting microstructure. That is, the sizes and shapes of grains
depend upon the preparation of the material. We demonstrate this using quenching and
cooling protocols. Fig. 4.12 shows visualizations of the Arrow-Potts model for three cooling
protocols and three quenching protocols. The cooling simulations differ only in the rate at
which the system was cooled; we see that slower cooling rates allow for more reorganization
and thus larger grain sizes. The quenching simulations differ in the temperatures to which
the system was quenched. The deeper the quench, the smaller the resulting grain sizes, as
higher temperatures allow for a more active grain boundary annealing process. Fig. 4.13
provides a more quantitative measure of the effect of protocol on resulting grain structure,
where we plot the average grain size 〈N〉 of all grains in the configuration as a function of
quench depth and of cooling rate.

In Fig. 4.6, we show frames from a Potts model simulation that has been initialized
as a liquid and quenched to a lower temperature at which crystallization is favored. These
frames look strikingly different than the Arrow-Potts simulation frames shown in Fig. 4.12.
Specifically, the Potts model experiences continuous grain growth and relatively quickly falls
into a single crystal energy basin. The Arrow-Potts model, however, forms long-lasting
polycrystalline structure that persists for times longer than can be observed over reasonable
simulation time scales. Fig. 4.4 illustrates this eventual stagnation of grain sizes during an
Arrow-Potts cooling protocol. The difference between these two simulations is the inclusion
of kinetic constraints (in the form of the Arrow model) in the Arrow-Potts model; Arrow-
Potts dynamics is dependent on the presence of excitations in the amorphous phase. While
both models experience the initial nucleation and coarsening stages as described in Fig. 4.3,
once the models reach the annealing stage, excitations in the Arrow-Potts model become
trapped at grain boundaries. The timescales for motion of these grain boundaries depend
on the ability of excitations to connect with each other and relax regions of the system, and
so mobility slows significantly. In this way, a polycrystalline microstructure may become
effectively “locked” in place.

Such long-lived polycrystalline microstructures are observed in nature, but the cause
of arrested grain growth is not well understood. A current proposed mechanism involves
characterization of rough and smooth grain boundaries, where grain boundary roughening is
concluded to be responsible [86]. Our emphasis on kinetic constraints and glassiness at grain
boundaries is a novel explanation for why experimental materials remain polycrystalline even
over long time scales.
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Quench system from β = 2 to different temperatures
�Q = 4.5 �Q = 5 �Q = 6

Cool system from β = 2 to β = 5 at different rates
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Figure 4.12: Visualizations of cooling and quenching experiments in the Arrow-Potts model. The
four colors—blue, green, orange, and red—correspond to four distinct crystal orientations. White
sites correspond to inactive liquid, and tiny dark purple arrows denote active liquid sites. In the
top panel, the Arrow-Potts model is cooled from β = 2 to β = 5 at rates ν over three orders of
magnitude. Slower cooling rates result in larger grain sizes. In the bottom panel, the Arrow-Potts
model is quenched (i.e., instantaneously cooled) from β = 2 to three different temperatures βQ.
The deeper the quench, the smaller and more irregularly shaped grains. In all six simulations,
ε = 0.46, ∆ε = 0.37, and J = 1.
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Figure 4.13: Average grain size as a function of quench depth and cooling rate. The average grain
size 〈N〉 is measured as the average number of sites constituting grains in the configuration. A
grain is defined as a cluster of nearest-neighbor lattice sites of the same crystal orientation. For
all simulations represented in this figure, ε = 0.46, ∆ε = 0.37, and J = 1. (a) Average grain size
〈N〉 as a function of quench depth βQ, showing a clear decrease in grain size as the quench depth
increases. The model was quenched from β = 2 was aged until the value of 〈N〉 no longer changed
significantly. (b) Average grain size 〈N〉 as a function of cooling rate ν, showing a clear increase in
grain size at slower cooling rates. The model was cooled from β = 2 to β = 5 at a rate ν.

4.5 Model Parameterization

In the above section, we show that the Arrow-Potts model exhibits the same qualitative be-
havior as atomistic materials. Specifically, the time required for the system to crystallize has
a non-monotonic dependence on temperature, and the manner in which the system is cooled
below its melting temperature affects the resulting polycrystalline microstructure. However,
before we can quantitatively relate simulation results from the Arrow-Potts model to exper-
imental materials, we must parameterize the model with a specific material in mind. In this
section we present the parameterization for a generic material for which the relevant proper-
ties are known, properties including surface tension and melting temperature. We determine
parameters for both the Arrow (J0, `0) and Potts (ε, ∆ε, h, `) portions of the Arrow-Potts
model Hamiltonian (Eqn. 4.10), where `0 and ` denote lattice length scales resulting from
the Arrow model parameterization and Potts model parameterization, respectively. At the
end of this section, we discuss the case when these length scales are not commensurate.

4.5.1 Arrow Model Parameters

Here we determine the values of the Arrow-Potts model parameters that correspond to
supercooled liquid dynamics: the energy scale for excitations on the lattice J0, and the
Arrow model lattice length `0. We generalize the atomistic system-to-East model mapping
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described in Ref. [20] for use with two and three-dimensional Arrow models. The required
parameters from the atomistic system of interest are the fundamental length scale σ, the
energy associated with a displacement of that length Jσ, the onset temperature for glassy
dynamics To, and the parameter g, which accounts for entropy in relaxation pathways.8 We
utilize the empirically-determined g0 = 1.3 for the three-dimensional Arrow model.9 We use
the equations

J0 =
Jσ

1 + g0 ln(σ/`0)
(4.19)

g =
g0

1 + g0 ln(σ/`0)
(4.20)

to determine the Arrow model energy scale J0 and the ratio between fundamental length
scales in the material and in the Arrow model σ/`0. The Arrow model equilibrium excitation
concentration is then given in reference lattice units by

ceq`
d
0 =

2d

2d + exp(β̃J0)
, β̃ = 1/T − 1/To (4.21)

(Eqn. 3.21 in Chapter 3). We simulate the Arrow model with the concentration in Eqn.
4.21 to model the material at temperature T , using the specific value of To for the material.

4.5.2 Potts Model Parameters

In this section we determine the values of the energies ε and ∆ε, the temperature- and
pressure-dependent field h(p, T ), and the lattice length ` required to model a specific material.
The parameter h(p, T ) corresponds to the difference in chemical potentials of the liquid and
solid at pressure p and temperature T and can be approximated for a range of temperatures
and pressures. We use linear approximations for chemical potential [97]

µ(T ) = µ(T ∗) + α · (T − T ∗) (4.22)

µ(p) = µ(p∗) + η · (p− p∗) (4.23)

where µ(T ∗) is the known chemical potential at a reference temperature T ∗, and α is the
temperature coefficient for the material of interest (and similarly, for pressure). As of now,
we assume standard pressure (p∗ = 1 atm) and vary only temperature. We can write the
chemical potentials separately for liquid and crystal as

µxtl(p
∗, T ) = µxtl(p

∗, T ∗) + αxtl · (T − T ∗) (4.24)

µliq(p∗, T ) = µliq(p∗, T ∗) + αliq · (T − T ∗) (4.25)

8Ref. [20] uses the symbol γ for our g; we use γ later to refer to surface tension.
9Chapter 3, Section 3.5.1 gives the procedure used to calculate γ0 for the Arrow model.
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and thus set the field in our model as the difference in liquid and crystal chemical potentials

h(p∗, T ) = µliq(p∗, T )− µxtl(p
∗, T ) (4.26)

In the following sections, we use surface tension calculations from Potts model simulations
to determine the values of the energies ε and ∆ε and the lattice length `. The Arrow-Potts
parameters ε and ∆ε reflect the surface tension and grain-grain energies for the material, and
so we must ensure that their values are chosen such that the liquid-crystal interface behaves
appropriately.

Liquid-crystal interfaces at coexistence may be “rough” or “smooth” [98]. Rough in-
terfaces at coexistence experience interfacial fluctuations that scale as 1/γk2, where k is
a wavelength and γ is the surface tension; smooth interfaces do not exhibit such scaling.
For materials like water, for example, the liquid-crystal interface is rough [99], and so it is
important that we choose an Arrow-Potts parameter set such that this interface is repre-
sented appropriately. Ising models are known to have both rough and smooth interfaces
separated by a “roughening transition” [98, 100], and so we must first identify the rough
and smooth interface regimes of the Arrow-Potts phase diagram. We begin by deriving an
expression for the capillary spectrum of a fluctuating liquid-solid interface and then find the
correspondence between the analytical expression and the results computed from simulation
for specific choices of ε and ∆ε.

Capillary Spectrum of Soft Interfaces

We describe the fluctuating interface in a three-dimensional system at time t with the relation

h(x, y; t) = h0 + δh(x, y; t) (4.27)

where h0 is the average height of the interface, δh is the deviation from the average height,
and x and y are spatial coordinates. The Hamiltonian for a system consisting of a soft
interface can be approximated as

H[h(x, y)] = γ

L/2∫

−L/2

dx

L/2∫

−L/2

dy

√
1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

(4.28)

where L is the edge length of the interfacial surface and is assumed to be equal in both x
and y dimensions, such that Lx = Ly ≡ L. The parameter γ is the surface tension. Given
the mean height h0, the instantaneous height of the interface can be written as

h(x, y) = h0 + δh(x, y) (4.29)

Substituting Eqn. 4.29 into Eqn. 4.28, we obtain

H[h(x, y)] ≈ γL2 +
γ

2

L/2∫

−L/2

dx

L/2∫

−L/2

dy

[(
∂δh

∂x

)2

+

(
∂δh

∂y

)2]
(4.30)
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where we assume that fluctuations are small, i.e., δh
h0
� 1, and expand the Hamiltonian to

quadratic order in δh. We can write δh(x, y) in terms of a Fourier series representation

δh(x, y) =
∑

km

∑

kn

δhke
ikmx+ikny (4.31)

where km = 2πm/L and kn = 2πn/L are wavevectors in x and y dimensions, respectively.
Substituting Eqn. 4.31 into Eqn. 4.30, we obtain

H[h(x, y)] ≈ γL2 − γL2

2

[∑

km

∑

k′m

∑

kn

∑

k′n

δhkδh
′
k(kmk

′
m + knk

′
n)δ(km + k′m)δ(kn + k′n)

]

(4.32)

where we use the fact that integrals over x and y are periodic. We see from the Dirac delta
functions that km = −k′m and kn = −k′n, so we can simplify to obtain

H[h(x, y)] ≈ γL2 − γL2

2

∑

k

|δhk|2(k2
m + k2

n) (4.33)

The approximate partition function for our system is therefore

exp
[
−βH

]
= exp

[
−βγL2

]∏

k

exp

[
βγL2

2
|δhk|2(k2

m + k2
n)

]
(4.34)

and we can calculate the quantity 〈|δh2
k|〉 by taking the variance of the Gaussian distribution

in Eqn. 4.34

〈|δh2
k|〉 =

1

βγL2(k2
m + k2

n)
(4.35)

We compare this analytical result with results from Potts model simulations to determine
the parameter set that corresponds to a material-specific surface tension.

Capillary Scaling in Simulated Interfaces

In order to correctly model a liquid-crystal interface, we must identify the region of the
phase diagram where a stabilized interface has the correct fluctuation scaling. We simulate
the d = 3 Potts model with a stabilized liquid-crystal interface at coexistence. The system
is initialized as a two-component system (liquid and one crystal orientation) with two inter-
faces due to periodic boundary conditions. We simulate the Potts model with a harmonic
constraint on the system composition

Ccomp = κ

( N∑

j

δsj ,1 −N/2
)2

(4.36)
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which is added to the Potts Hamiltonian H′ in Eqn. 4.14, where N is the total number of
lattice sites in the model. Eqn. 4.36 ensures that the system is roughly composed of half
crystal sites (here, we arbitrarily choose s = 1) and prevents one phase from overtaking the
system. The value of κ is small, and a range of values can be used without any significant
change in results. Fig. 4.14 shows the qualitative nature of the liquid-crystal interface at
two different temperatures for the same parameter set. The interface on the left is noticeably

T

rough interfacebelow roughening 
transition

Figure 4.14: Potts model interfaces above and below the roughening transition. Pink spheres denote
lattice sites in the crystal phase s = 1. The image on the left shows the liquid-crystal interface at
1/T = 3.2 (ε = 0.46 and ∆ε = 0.37). The interface is smooth, and surface fluctuations do not give
the 1/k2 capillary scaling. The image on the right shows the liquid-crystal interface at a higher
temperature 1/T = 2.7 (ε = 0.46 and ∆ε = 0.37). This interface is noticeably rougher than the
first, and fluctuations at this interface do exhibit capillary scaling.

smoother than the interface on the right, which is simulated at a higher temperature. We
analyze the instantaneous heights of these interfaces and compute the Fourier components
[101] to determine whether they obey the correct scaling for rough interfaces. Fig. 4.15
shows the results of these calculations for the interfaces presented in Fig. 4.14. The low-
temperature interface clearly does not obey the 1/k2 fluctuation scaling derived in Eqn. 4.35;
this temperature is below the roughening transition for the model. The higher-temperature
interface does have the correct scaling for a rough interface. The Arrow-Potts parameters
that yield this scaling behavior are thus valid choices for representing interfaces such as the
ice-water interface at coexistence at standard pressure.

Determining Potts Model Parameters from Experimental Surface Tensions

To ensure that the Arrow-Potts model parameterization (namely, ε and ∆ε) corresponds
to an experimentally-determined surface tension for a rough interface, we fit the data in
Fig. 4.15 to our derived capillary scaling expression in Eqn. 4.35. We first discretize the
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Figure 4.15: Interfacial fluctuation scaling of liquid-crystal interfaces at two temperatures. Interface
height fluctuations are plotted versus wavelength k for Arrow-Potts simulations at coexistence at
two temperatures, β = 2.7 (blue circles) and β = 3.15 (red triangles), for the parameters ε = 0.46
and ∆ε = 0.37. Straight black lines indicate 1/k2 scaling of rough interfaces; the general equation
of the lines is indicated.
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Hamiltonian in Eqn. 4.30 to obtain

Hdisc = γL2 − γ`2

2

∑

〈jl〉

(h̃j − h̃l)2 (4.37)

where

h̃j =
δh(xj, yj)

`
(4.38)

is a unit-less quantity measuring interfacial height, ` is the lattice site length in Angstroms
such that `N1/3 = L in a three-dimensional system, and the sum is over nearest neighbor
pairs of lattice sites. We define

h̃k =
δhk
`

(4.39)

such that earlier capillary analysis yields

〈h̃2
k〉N2

x =
1

βγ`2(k̃2
m + k̃2

n)
(4.40)

where k̃m = 2πm/Nx, k̃n = 2πn/Ny, and m,n = 0,±1,±2, . . . are integers. The number
of lattice sites Nx and Ny along the edges of the interface are related as Nx = Ny = N1/3

for a three dimensional cubic lattice of N sites. β = 1/kBT is the experimental melting
temperature in SI units. The fluctuations 〈h̃2

k〉N2
x are plotted versus k̃2

m + k̃2
n in Fig. 4.15,

where the equation of the lines fit to the data is shown. The quantity 1/βγ`2 is the slope of
the β = 2.7 curve (the curve corresponding to a rough interface) in the limit of small k̃m and
k̃n. The Potts lattice length ` is the length in Angstroms corresponding to a Potts lattice
site. The surface tension γ for the material of interest is an experimental value in units
of millinewtons per meter. We make the reasonable assumption that the surface tension
associated with capillary fluctuations corresponds with the thermodynamic value measured
experimentally [100, 102].

4.5.3 Final Parameterization

After following the above procedure, we obtain material-specific values for the following
parameters: J0, `0, ε,∆ε, `. We also find the temperature-dependent field h(p0, T ) acting on
the liquid phase at a reference pressure p0. Note that two of the parameters are length
scales ` and `0 from the Potts and Arrow model lattices, respectively. If ` ≈ `0, we have a
single lattice length for the Arrow-Potts model, and all dynamical rules apply as written in
earlier sections. No further parameterization effort is required. If these lattice lengths differ
more significantly, however, some compromise in parameter values may be needed to avoid
modifying the model. If such a compromise is unrealistic, another option is to consider a case
in which the Arrow and Potts lattices are distinct; for example, an Arrow-Potts model in
which each Potts lattice site has a specific number (greater than one) of corresponding Arrow
lattice sites. This would require implementing new dynamical rules for the crystallization
kinetics that we do not discuss here.
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4.6 Conclusions and Future Work

In summary, we have introduced a lattice model which incorporates both glassy dynam-
ics and the thermodynamics of a liquid-crystal phase transition to study the formation of
polycrystalline materials. The parameters used to construct the model Hamiltonian are
representative of experimentally-determined quantities like surface tension, grain-grain en-
ergies, and the energy cost of creating a new mobile region in a supercooled liquid, and so
can be tuned to model a specific system of interest. In simulations, the Arrow-Potts model
exhibits a non-monotonic temperature-dependence of crystallization timescales, consistent
with experimental and atomistic simulation results. Furthermore, due to kinetic constraints,
our model is capable of forming long-lasting polycrystalline microstructures that reflect the
manner it which the polycrystalline material was prepared. Qualitatively similar microstruc-
tures are observed in experimental materials. The Arrow-Potts model has the potential to
predict resulting grain structures (or types of glass) that are formed for a specific material
and cooling protocol.

Section 4.5 presents a general procedure for parameterizing the Arrow-Potts model in
order to describe a specific material. In future work, we will carry out this parameteriza-
tion for liquid water and compare model results to those observed both experimentally and
in simulated atomistic models. From Ref. [45], we know the relevant melting and onset
temperatures, as well as the parameters needed to describe supercooled water dynamics.
With these values, we can follow the parameterization procedure outlined above to simulate
the Arrow-Potts model and obtain time-temperature-transformation diagrams that can be
directly compared to atomistic water simulation results. We note in Fig. 4.11 that in the
high-temperature limit, classical nucleation theory dominates the crystallization timescale
curve, while in the low-temperature limit, dynamical facilitation theory of glassy dynamics
dominates. Ref. [45] provides an interpolation formula for the τxtl curve to account for inter-
play between both theories in the intermediate temperature regime. This formula captures
the non-monotonic behavior of τxtl and is fit to data from atomistic water simulations. We
plan to fit this same formula to crystallization times measured from the Arrow-Potts model
parameterized for water and compare to the fits to atomistic results.
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Chapter 5

Glassy Dynamics in Protein
Side-chains

In previous chapters, we characterize lattice models designed to reproduce dynamics ob-
served in atomistic glass-forming liquids. Specifically, the Arrow and Arrow-Potts models
exhibit time-correlated and heterogeneous dynamics. While such dynamics is well-known in
liquids and kinetically constrained models, one can imagine other similarly dense, jammed-
up systems in which it may be present. One such dense system is a folded protein molecule.
In this chapter, we explore a biological application of many of the same tools and ideas used
to characterize dynamics in glassy materials. This work was completed in collaboration with
Gregory Bowman [103].

5.1 Introduction

When attempting to determine structure-function relationships, proteins are often assumed
to exist in a single, rigid structure. However, recent experimental and computational work
suggests that side-chains in both the core and near the exterior of the protein can sample
multiple conformational states, despite their dense surroundings [104, 105, 106, 107, 108, 109].
The mechanism by which such constrained side-chain dynamics occurs, however, remains
elusive. In this chapter, we study the side-chain dynamics of interleukin-2, β-lactamase,
and RNase H and find that the dynamical events of an individual side-chain dihedral angle
are temporally correlated due to the dense environment in a folded protein. For example,
Fig. 5.1 shows a time trace of a particular dihedral angle that exemplifies the bursts of
dynamics—separated by long periods of immobility—that we observe in all three proteins.
This behavior is distinct from dynamics with short memory, and it is suggestive of dynamical
heterogeneity within the protein. Indeed, we resolve correlations among different side-chains
in the same protein and find that localized clusters of side-chains can be particularly mobile
due to underlying structural features. These localized regions of mobility can then facilitate
dynamics within neighboring regions of the protein.
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Figure 5.1: Bursts of dynamical activity separated by periods of immobility. An example dihedral
angle i, where φ̄i(t) denotes φi(t) averaged from time t to time t+ δt, where δt = 1 ps. The shaded
regions call attention to periods in which the dihedral angle rotates several times within a relatively
short period of time. These regions are separated by long periods in which there are no rotations.

An understanding of how side-chains move in the dense protein interior is important as
side-chain dynamics play a critical role in protein function [110]. For example, communica-
tion across certain proteins has been found to proceed by dynamical mechanisms involving
side-chain motions within the framework of a relatively rigid backbone [111, 112].

To elucidate side-chain dynamics, we borrow ideas and tools from condensed matter
physics. In particular, in densely packed glass-forming liquids, dynamics proceeds via com-
plex and highly correlated mechanisms [10]. Localized soft spots within an otherwise rigid
material allow for mobility and facilitate dynamics of neighboring regions. Consequently,
particles transition between mobile regimes (wherein they can rapidly undergo many reor-
ganizational events) and immobile regimes (wherein they remain quiescent for an extended
period of time). Here, we show that similar temporal and spatial correlations occur within
the dense environment of a protein.

5.2 Dihedral Angle Dynamics

We simulate the dynamics of interleukin-2 (IL-2), β-lactamase, and RNase H (structural
representations shown in 5.2) for hundreds of nanoseconds to microseconds. The details of
these Molecular Dynamics simulations are presented in Appendix A. For each trajectory, we
follow the orientation of each side-chain dihedral angle and find that side-chain dihedrals are
often in distinct angular states due to steric constraints, with fleeting transitions between
these states. We classify large enduring rotations between these states as dynamical events
and examine these events for signatures of temporal and spatial correlations. Note that a
given protein residue may have zero (e.g., glycine) to four (e.g., lysine) affiliated side-chain
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dihedral angles. As a result, IL-2 has 273 total side-chain dihedral angles, β-lactamase has
481, and RNase H has 295. The inset in the lower panel of Fig. 5.3 illustrates the meaning
of the ith dihedral angle, φi.

Interleukin-2 β-lactamase RNase H

Figure 5.2: Native state crystal structures of interleukin-2 (128 residues), β-lactamase (263
residues), and RNase H (155 residues) in ribbon representations.

5.2.1 Coarse-graining Dynamics Over Time

There is a hierarchy of timescales associated with protein dynamics. Over milliseconds
and longer, proteins can undergo significant conformational changes and eventually even
unfold. Our focus on dihedral angle dynamics ensures that we study significantly shorter
timescales. Atomic vibrations occur much more rapidly, with periods of the order of 10 to
100 femtoseconds. These vibrations do not endure, so we coarse-grain each dihedral angle
trajectory φi(t) over time to obtain

φ̄i(t) =
1

δt

∫ δt

0

dt′φ(t+ t′), (5.1)

where φ̄i(t) is the value of dihedral angle φi(t) coarse-grained over δt = 1 ps. The value of
this coarse-graining time is large enough to project out most vibrational contributions to the
dihedral angle trajectory, leaving only enduring displacements. Side-chain dihedral angles
are calculated for all side-chains over the full duration of each protein simulation. Time
resolution of the original trajectories is 0.1 ps.

5.2.2 Defining Dynamical Events

In order to identify the times at which such long-lived transitions between angular basins
occur for a dihedral i, we utilize a transition function

κi(t) = Θ[|φ̄i(t)− φ̄i(t−∆t)| − ai], (5.2)
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where

Θ(x) =

{
1, x > 0

0, otherwise
(5.3)

denotes a Heaviside function. Eqn. 5.2 is equal to 1 if a transition of size ai occurs at time t,
and is 0 otherwise. The timescale over which we look for a transition is ∆t, and ai gives the
minimum displacement necessary for a dynamical transition for dihedral i. The behavior of
Eqn. 5.2 is illustrated in Fig. 5.3.
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Figure 5.3: Illustration of side-chain dihedral angle analysis. In the lower panel, a sample dihedral
angle trajectory for dihedral i is shown in black with dynamical events highlighted in blue. The
upper panel gives the corresponding value of the transition indicator function κi(t), defined in Eqn.
5.2. ai gives the minimum displacement for a dynamical event, and ∆t = 10 ps is the timescale
over which we look for a transition. A protein backbone and side-chain, with a curved arrow to
illustrate a rotating χ1 dihedral angle (denoted φi), are shown in the inset of the lower panel.

The time window ∆t is chosen to be 10 ps, which proves long enough to capture transitions
between basins, while still allowing for the accurate determination of transition times. The
most important factor in choosing ∆t is its relationship to the coarse-graining time. In
raw trajectories, transitions between basins occur on timescales of the order of 0.1 ps (the
resolution of the trajectories) or faster; after coarse-graining, transitions occur on timescales
similar to the coarse-graining time. It is therefore important that ∆t be larger than the
coarse-graining time. For a coarse-graining time of δt = 1 ps, the value of ∆t was varied
between 2 and 50 ps without significantly altering our results.

The value of the transition threshold ai is specific to each dihedral and is the separation
between distinct angular basins. ai is computed for dihedral angle i as follows: for a given
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Figure 5.4: Illustration of using angular basins to determine threshold displacement ai of dihedral i.
Distributions for three different IL-2 dihedral angles are shown. The minimum separation between
well-separated basins is labeled for each dihedral.

dihedral, the distribution of angles sampled during all trajectories is calculated and the
minimum distance between the peaks of any resulting well-separated angular basins is defined
as ai. Two basins are said to be well-separated if the angular probability in between the
basins is at most two thirds the probability of the less probable basin being considered.
Only dihedral angles sampling more than one angular basin are considered when checking
for dynamical transitions; due to the definition of κi (Eqn. 5.2), we do not consider as
dynamical events fluctuations within these basins. Fig. 5.4 shows representative angular
distributions for three dihedrals with the corresponding values of ai. Typical values are
between 0.5 and 3.0 radians.

With the above criteria in place, approximately 5% of IL-2 dihedrals, 23% of β-lactamase
dihedrals, and 21% of RNase H dihedrals do not undergo transitions in any of their respec-
tive trajectories. These dihedrals are excluded from our analysis except for in Fig. 5.10a,
where immobile dihedrals are visualized as dark blue spheres. We expect that most of these
immobile dihedrals would undergo transitions if many more trajectories were analyzed. The
collection of transition times for each dihedral angle as identified by Eqn. 5.2 is the founda-
tion of subsequent analyses.
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5.3 Correlated Intermittent Dynamics

To the extent that the protein dynamics exhibits no significant correlations in time, the time
series for κi(t) in Eqn. 5.2 would be that of a Poisson process. However, examining the
pattern of dynamical events—as is shown in Fig. 5.1—reveals that events tend to cluster
together in a manner consistent with the time-correlated intermittent behavior seen in glassy
systems. Specifically, periods of high mobility consisting of many transitions are generally
followed and preceded by relatively long periods of immobility. We refer to the presence
of these intermittent bursts of dynamics as “correlated intermittency.” Furthermore, we
observe that the degree to which dynamical events are clustered can vary widely between
different dihedrals, even within the same protein.

In this section, we quantitatively analyze the degree to which dynamical events are clus-
tered in time. To do so, we employ statistical metrics from the glassy physics literature,
namely persistence and exchange times. We begin by providing mathematical definitions for
persistence and exchange times, and then we compute these quantities in both native state
and unfolded proteins.

5.3.1 Persistence and Exchange Times

To quantify the observed clustering of dynamical events in dihedral angle trajectories, we
utilize persistence and exchange times [14, 12]. A persistence time tp is the waiting time until
the next dynamical event within the same side-chain dihedral trajectory, and an exchange
time tx is the time between two consecutive events. Persistence and exchange functions can
be expressed in terms of the transition function defined in Eqn. 5.2, where

Pi(t
′, t) = κi(t

′ + t)
t′+t−δt∏

t′′=t′+δt

[1− κi(t′′)] (5.4)

indicates a persistence time tp = t given a time origin t′, and

Xi(t
′, t) = κi(t

′)κi(t
′ + t)

t′+t−δt∏

t′′=t′+δt

[1− κi(t′′)] (5.5)

gives an exchange time tx = t for a time origin t′. The main difference between these
expressions is that the persistence function considers all possible time origins, whereas the
exchange function only considers starting times coinciding with dynamical events. Examples
are labeled in the trajectories in Fig. 5.5.

The typical persistence time will be larger than the typical exchange time for a given
dihedral if its dynamical events tend to cluster together to yield periods of high and low
mobility. The distribution of exchange times for such a dihedral will therefore be distinct,
or “decoupled,” from its distribution of persistence times. However, in the absence of time
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Figure 5.5: Examples of persistence and exchange times in a protein trajectory. Portions of two IL-2
dihedral angle trajectories with an example of an exchange time (top panel) and a persistence time
(bottom panel) labeled. There are many more examples of tx and tp not shown. The distribution
of persistence times is obtained by averaging over all time origins in the trajectory, while the
distribution of exchange times is obtained by averaging over all times at which dynamical events
occur.
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correlations, the distributions will be very similar to one another and will appear to be drawn
from a Poisson process.

To look further at the variety of dynamical behavior within the same protein and to
compare dynamics among different proteins, we consider the ratio of average persistence
time τ

(i)
p = 〈tp〉i to average exchange time τ

(i)
x = 〈tx〉i for dihedral i, where the angled brack-

ets denote an average over time origins in all trajectory data for that dihedral. This ratio
τ

(i)
p /τ

(i)
x is indicative of the degree to which the intermittent dynamical events of dihedral i

are correlated in time, as the average persistence time will be much longer than the aver-
age exchange time if the distributions are decoupled. A larger ratio thus indicates greater
correlated intermittency, while τ

(i)
p /τ

(i)
x = 1 indicates Poissonian dynamics.

5.3.2 Native State Proteins

We compute distributions of persistence and exchange times for each dihedral angle in each
of the three folded proteins and find that many dihedrals undergo intermittent bursts of
dynamics over their trajectories. Fig. 5.6 shows sets of persistence and exchange distributions
for four dihedrals in IL-2, illustrating the variety of dynamical features observed within a
single protein. The distributions shown in maroon (χ1 dihedral of PRO60), green (χ3 dihedral
of MET34), and blue (χ1 dihedral of LEU113) all show varying degrees of decoupling; each of
these dihedrals thus undergoes temporally correlated dynamical events. The persistence and
exchange distributions in black (χ3 dihedral of GLU101), however, almost completely overlap,
indicating that the dynamical events of this specific dihedral are uncorrelated in time. While
most distributions have a single peak, we do find dihedrals with bimodal distributions.

We calculate the quantity τ
(i)
p /τ

(i)
x for each dihedral i and plot the distributions of ratios

found in IL-2 (“Nat. IL-2”), β-lactamase, and RNase H; these are shown in Fig. 5.7.
A significant range in ratios is evident for each protein, with the long time tails of the
distributions spanning orders of magnitude (note the logarithmic ratio scale).

Persistence and exchange time calculations for each protein utilized all available trajec-
tory data (1.2 µs total data for native IL-2, 200 ns for extended IL-2, 1 µs for both RNase

H and β-lactamase). To check the convergence of the ratio τ
(i)
p /τ

(i)
x for each dihedral, we

calculate cumulative averages of τ
(i)
p (T )/τ

(i)
x (T ) as a function of T , the nanoseconds of tra-

jectory data included in the average. Fig. 5.8 shows cumulative averages for three dihedrals
in IL-2. The majority of dihedrals for all three proteins have cumulative averages resembling
those of PHE119 χ2 and LYS49 χ3, indicating that our results are reasonably converged.
However, some dihedrals—such as SER70 χ1 in Fig. 5.8—have ratios that are still trending
upwards, even after over a microsecond of trajectory data. This behavior is expected for
dihedrals exhibiting very few dynamical events with a high degree of correlated intermit-
tency; longer trajectories will continue to add longer persistence times, increasing the value
of τ

(i)
p (T )/τ

(i)
x (T ).
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Figure 5.6: Decoupled persistence and exchange time distributions indicate correlated intermit-
tency. Persistence and exchange time distributions (solid and dashed lines, respectively) for four
side-chain dihedrals in IL-2, illustrating the variety of side-chain behaviors present in a single pro-
tein. The dihedrals shown are GLU101 χ3 (black), PRO60 χ1 (maroon), MET34 χ3 (green), and
LEU113 χ1 (blue). The approximate ratios of mean persistence time to mean exchange time for
the GLU101, PRO60, MET34, and LEU113 dihedrals are 1, 3, 6, and 50, respectively, as given
in the figure. A greater ratio indicates greater decoupling and thus a higher degree of correlated
intermittency.
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Figure 5.8: Cumulative averages for computing ratios of persistence and exchange times. Sample
cumulative averages are shown for three dihedrals (as labeled) in IL-2.

Core Dihedrals

In order to ensure that the correlated intermittent dynamics observed in IL-2, β-lactamase,
and RNase H is not only due to particularly mobile side-chains on the exterior of the proteins,
we divide protein side-chains into two groups. We analyze dihedrals located in the protein
core separately from dihedrals located near the exterior, based on a solvent accessible surface
area criterion. Dihedrals of residues with a solvent accessible surface area that exceeds 0.1
nm2 are said to be exterior dihedrals; all other dihedrals are considered to be within the
protein core. Distributions of τp/τx for IL-2, β-lactamase, and RNase H are shown in Fig. 5.9.
We notice that dihedrals can exhibit intermittency regardless of location within the protein.
With the exception of IL-2, there are only slight differences in distributions between core and
exterior dihedrals. While it is true that surface dihedrals are on average more mobile than
interior dihedrals, the presence of correlated intermittency throughout the protein supports
previous findings that there can be important dynamics in the dense protein core.

5.3.3 Unfolded Proteins

To determine whether the time-correlated intermittent dynamics described above is a result
of the interactions that occur within a folded protein or an inherent property of amino
acid polymers, we also simulate and analyze random coils with the same sequence as IL-2.
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Figure 5.9: Separate analysis of core and exterior dihedrals. Distributions of τp/τx for core (solid)
and exterior (dashed) dihedrals in β-lactamase (black), RNase H (blue), and IL-2 (maroon). Note
that because there are a finite number of dihedrals in each protein—a small fraction of which
are core dihedrals—a single dihedral may constitute a relatively high fraction of the core dihedral
population.
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We choose IL-2 to address this question because it has the largest proportion of dihedrals
exhibiting correlated intermittency of the three proteins we studied.

We simulate IL-2 in an extended conformation with its backbone atoms fixed by harmonic
restraints to prevent portions of the protein from refolding. Although long or bulky side-
chains may still interact with their neighbors, this protocol removes many of the interactions
that side-chains would experience within a protein core, including interactions with other
side-chains and backbone atoms. We analyze the dihedral angle trajectories as outlined
in the previous section, and we calculate average persistence and exchange times for each
side-chain dihedral. The distribution of ratios τp/τx for IL-2 in an extended conformation
(“Ext. IL-2”) is compared to that of the folded protein (“Nat. IL-2”) in Fig. 5.7. We still
observe dihedrals with correlated intermittency, but the extended IL-2 distribution lacks the
large ratio tail found in that of native IL-2, and the majority of dihedrals have a ratio of
approximately 1. This demonstrates that the dihedral dynamics in extended IL-2 exhibit
little temporal correlations overall. Any existing intermittent bursts of dynamics are likely
due to interactions between neighboring long or bulky side-chains.

To add support to our conclusion that interactions between long or bulky side-chains can
give rise to correlated intermittency, we also simulate the dynamics of a much simpler system,
a valine tripeptide in explicit water where all atoms are free to move. While the side-chains
of the tripeptide are not prohibited from interacting with each other or with the backbone in
our simulation, their local environment is exceedingly less constrained than that of dihedrals
in a protein core. Persistence and exchange times for the three side-chain dihedrals over
a 2 µs trajectory show little evidence of time-correlated intermittent dynamics, with mean
persistence to mean exchange time ratios of 1.1, 1.1, and 1.9. Therefore, we conclude that
time-correlated dynamics is a result of the substantial excluded volume constraints within
a folded protein. Variation in correlated intermittency between the native state proteins as
shown in Fig. 5.7 reflect differences between protein folds.

5.4 Facilitated Dynamics in Protein Side-chains

In general, decoupling of persistence and exchange distributions is a characteristic of systems
with heterogeneous dynamics, where regions of high mobility exist among regions of low
mobility. Spatial correlations within such systems allow for mobile regions to facilitate
the mobility of neighboring regions, such that dynamics can eventually extend across the
entire system. If such correlations were present in proteins, they could provide a means
of transmitting information over long distances (i.e. allosteric communication) [113, 111,
112, 114, 115]. In this section, we apply qualitative and quantitative methods to resolve
facilitated, heterogeneous dynamics in protein side-chains.
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5.4.1 Visualization of side-chain mobility

Visualization of side-chain mobility in IL-2, β-lactamase, and RNase H suggests the exis-
tence of spatial correlations. To resolve correlations, we use dynamical transition times to
determine the mobilities of side-chain dihedral angles over portions of trajectories relative
to their average mobilities, where much longer trajectories are considered. For a given time
t, each dihedral i has a relative mobility value

Ci(t) =
1

τ〈κi〉
t∑

t′=0

κi(t
′), (5.6)

where 〈κi〉 gives the average transition rate for dihedral i and is defined as the time average
of the transition function (Eqn. 5.2)

〈κi〉 =
1

tobs

tobs∑

t′=0

κi(t
′). (5.7)

If 〈κi〉 = 0 (dihedral i is immobile over our data), we set Ci(t) = 0 for all t. All simulation
data is considered when calculating 〈κi〉 for each dihedral in each protein. The quantity
τ〈κi〉 gives the expected number of dynamical events over a trajectory of length τ ; setting τ
thus allows us to look at relative mobilities over trajectories of varying lengths. (If correlated
intermittency was absent in the protein of interest, each dihedral would have Ci(t) = 1 at
time τ .) We normalize by τ〈κi〉 to resolve mobility that is significant for each dihedral, thus
accounting for the structural heterogeneity inherent to proteins.

Dihedrals that are more mobile over the trajectory portion of interest than they are on
average have large values of Ci(t). Fig. 5.10 shows frames from 10 ns trajectories of IL-2 and
RNase H, where each dihedral i at time t is represented by a sphere and is colored from blue
to red while increasing in size, according to its value of Ci(t). Red spheres indicate dihedrals
that are more mobile in this portion of the trajectory than they are on average, while the
darkest blue spheres represent dihedrals that have not yet moved.

Over the course of the IL-2 trajectory shown in Fig. 5.10, clusters of particularly mobile
dihedrals develop across the protein, while other large regions remain essentially immobile.
We see correlated regions of mobility and immobility, indicating heterogeneous dynamics.
A similar phenomenon occurs in the RNase H trajectory, where mobility starts in the lower
right portion of the protein and eventually spreads to the upper half. We do not imply that
these regions are consistently mobile; rather, we are simply resolving regions that happen to
be mobile over this relatively short portion of a longer trajectory.

5.4.2 Isoconfigurational Averaging

In order to gain insight into how emerging mobile regions facilitate new dynamics across a
protein, we invoke the technique of isoconfigurational averaging (ICA) [116] as carried out by
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Figure 5.10: Side-chains are dynamically correlated with each other. Snapshots of IL-2 (top three
frames) and RNase H (bottom three frames) to highlight the development and spreading of mobile
regions over time. Side-chain dihedral angles are depicted by spheres, and the backbone is shown in
the background in ribbon representation. A sphere is colored from dark blue to red, while increasing
in size, as that specific dihedral becomes more mobile. The color key is shown to the right. We
use τ = 10 ns for IL-2, and τ = 50 ns for RNase H. For clarity, all visual representations use fixed
atom positions; each sphere is placed at the initial coordinates of a carbon atom determining the
axis of rotation for its respective dihedral angle.
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Figure 5.11: Localized regions of IL-2 are mobile due to underlying structural features. We show
three snapshots of interleukin-2 along an isoconfigurationally averaged trajectory, where τ = 100
ps. We include data from M = 1000 10 ps trajectories.

Ref. [76]. Many 10 ps simulations are started from the same initial IL-2 configuration with
randomized velocities drawn from a 300 K Maxwell-Boltzman distribution, and the mobility
Ci(t) of each dihedral i at time t is then averaged over all trajectories. These trajectories
are first coarse-grained over time (Eqn. 5.1) to resolve significant dynamical events.1

The relative mobility Ci(t) of dihedral i at time t is dependent on its initial position xo

and momenta po, so we write
Ci(t) ≡ Ci(t;xo, po). (5.8)

The quantity

[Ci(t;xo)]iso =

∫
dpoΦ(po)Ci(t;xo, po)

≈ 1

M

M∑

j=1

Ci(t;xo, pj),
(5.9)

where pj is randomly drawn from a 300 K Maxwell-Boltzman distribution Φ(po), is the
isoconfigurational average of the mobility for dihedral i at time t, where M = 1000 is the
number of short trajectories. The initial positions xo are the same for each trajectory j
by definition of ICA. A dihedral that has been very mobile until time t over the majority
of these short trajectories will have a large value of [Ci(t;xo)]iso, while a dihedral that has
been immobile over all collected trajectories has [Ci(t;xo)]iso = 0. This technique reveals
regions in a specific protein conformation that consistently become mobile due to underlying
structural features. ICA averages out contributions from momentum, so any remaining
mobility is strictly configurational in origin.

Fig. 5.11 shows a series of pictures of IL-2 resulting from this ICA analysis, utilizing
a similar color scheme to what was used in Fig. 5.10, with the exception that immobile

1In contrast, Ref. [116] uses ICA analysis on short raw trajectories, obscuring any information on mean-
ingful dynamical events.
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dihedrals are not represented. We choose a value of τ = 100 ps such that red dihedrals are
approximately ten times more mobile than they are on average; this is appropriate for such
short trajectories in which it may be rare for a dihedral to move at all. Due to the short
length of these ICA trajectories, we use ∆t = 2 ps (Eqn. 5.2) when determining transition
times for each dihedral.

The resulting pictures reveal highly localized regions of mobility with dynamical clusters
of a few dihedrals. It is significant that mobile dihedrals do not appear at random; new
mobile dihedrals are always near previously mobile regions in these snapshots. This is highly
suggestive of facilitated dynamics. Certain regions of IL-2 are structurally organized such
that side-chain mobility is likely, and dynamics proceeds from these “soft spots” within the
dense protein environment.

5.4.3 Mobility Susceptibility

To provide quantitative support for the visualized correlations between dihedrals in the same
protein, we utilize a quantity reminiscent of the four-point correlation functions found in the
glass literature [73]. We first measure the binary immobility number for dihedral angle i,

qi(t) =
t∏

t′=0

[1− κi(t′)], (5.10)

which is 0 if the dihedral has undergone at least one dynamical event before time t and is 1
otherwise. Fig. 5.12a shows qi(t) for an example dihedral trajectory. The time average of
qi(t),

〈qi(t)〉 =
1

tobs

tobs∑

t′=0

qi(t
′), (5.11)

has a unique decay time for each dihedral i, commensurate with its mean persistence time
τ

(i)
p . This is illustrated in Fig. 5.12b. When qi(t) is summed over all N dihedrals in the

protein (excluding dihedrals that are immobile over the entire course of the trajectory) we
obtain a function

Q(t) =
N∑

i=1

qi(t) (5.12)

that decays to zero over time as more dihedrals undergo dynamical events. The decay of the
time average of Q(t)

〈Q(t)〉 =
1

tobs

tobs∑

t′=0

Q(t′) (5.13)

is shown in the inset of Fig. 5.12c for IL-2, β-lactamase, and RNase H.
The variance in Q(t) resolves spatial correlations among the dihedrals and peaks at the

time of maximum dynamical heterogeneity. There is a contribution to the variance even in
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the absence of correlations

U(t) =
N∑

i=1

〈qi(t)〉[1− 〈qi(t)〉], (5.14)

so we consider
V (t) = 〈(δQ(t))2〉 − U(t), (5.15)

which gives the excess variance due to correlations. Fig. 5.12c shows V (t)/N for IL-2, β-
lactamase, and RNase H. The larger the peak in V (t), the greater the correlations between
different dihedrals in that protein over time t. Fig. 5.12c shows that correlations among
dihedrals exist in each protein with unique times of maximum dynamical heterogeneity. We
observe two peaks in V (t) for β-lactamase, indicating that dihedrals can be correlated over
different timescales even within the same protein.

Our visual and quantitative analysis of spatially resolved side-chain mobility in IL-2,
β-lactamase, and RNase H shows that dynamical events of different side-chain dihedrals
are correlated and suggests that events at one side-chain facilitate new dynamical events at
neighboring side-chains. Such correlations are likely to arise from interactions between side-
chains and backbone motion and could enable long-range communication across proteins.

5.5 Conclusions

In summary, our analysis of protein side-chain dynamics in IL-2, β-lactamase, and RNase
H reveals that the dynamics of an individual side-chain dihedral can exhibit long time cor-
relations when that dihedral is in a dense environment with other protein residues. Such
temporal correlations can be indicative of spatial correlations, and we indeed find localized
regions of mobile dihedrals within the protein system. These regions of mobility arise from
local structural features of the system, as suggested by isoconfigurational averaging results.
These dynamical features are characteristic of glass-forming liquids, but to our knowledge,
they have not previously been identified in proteins.

Although dihedrals in all three native state proteins studied here exhibit correlated in-
termittency and spatial correlations, each protein’s dynamical features are unique. This
likely reflects inherent differences in tertiary structures and may be related to each protein’s
specific function.
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Figure 5.12: Side-chains are dynamically correlated with each other. (a) Illustration of the quantity
qi(t) (Eqn. 5.10). qi(t) goes to zero when dihedral i undergoes a dynamical event; this is an example
of a persistence time tp for that dihedral. (b) The time average of qi(t) for a single dihedral i (Eqn.
5.11). The decay of 〈qi(t)〉 indicates the average persistence time for dihedral i as shown. (c)
Variance in Q(t) due to correlations for IL-2 (maroon), β-lactamase (blact), and RNase H (blue).
The decaying 〈Q(t)〉 function is shown in the inset. Both quantities are normalized by N , the
number of dihedrals in each system that have at least one dynamical event over the course of the
trajectory.
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Appendix A

Software and Simulation Details

In this appendix, we provide details of the software and simulation methods employed to
produce the results in the preceding chapters.

A.1 Basic Simulation Methodology

While simulation methods are not the focus of this dissertation, the majority of the results
presented were obtained using either Monte Carlo (MC) or molecular dynamics (MD) sim-
ulations. Simulation methods are valuable tools in chemistry because they allow for the
exploration of time and length scales not accessible in experiments, as well as a convenient
means to test theories. Below, we give brief descriptions of MC and MD simulation tech-
niques as they relate to the research in this dissertation. Both of these techniques have a
variety of complex implementations, but we cover only the basic principles here. Ref. [117]
provides a more complete and accessible treatment of many MC and MD methods.

A.1.1 Monte Carlo Simulation

The Monte Carlo (MC) method is an approach for computing quantities in systems with
many degrees of freedom, where analytical calculations are intractable. The MC method
samples configuration space according to the Boltzmann factor exp[−βU(rN)], where β =
1/kBT is the inverse temperature and U(rN) is the energy of the configuration of N particles.
In a MC simulation, new configurations are generated at random and are then accepted or
rejected with a probability proportional to the appropriate statistical distribution for the
system.

A common way of ensuring that the Monte Carlo simulation samples the correct equi-
librium distribution is to impose a balance condition on the probabilities of transitioning
between states. According to the Metropolis criterion [118], a trial move from state i to
state j should be accepted with a probability

acc(i→ j) = min
(
1, e−β[U(j)−U(i)]

)
(A.1)
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such that states are visited according to the relative probabilities between them. The basic
Metropolis algorithm in the context of a lattice model simulation is as follows:

1. Randomly select a lattice site and compute its energy U(i), including any energetic
contributions from interactions with neighboring sites

2. Propose a move to a new state and calculate the new energy U(j)

3. Accept the proposed move with the probability in Eqn. A.1

In MC simulations, time is typically measured in units of “Monte Carlo sweeps.” In a single
sweep, moves are proposed at M randomly chosen sites from the lattice, where M is the
total number of sites in the system.

In Chapters 3 and 4 of this dissertation, we employ MC to simulate lattice models.
MC can also be used to simulate particle systems, where Step 2 of the procedure above is
modified to propose a random displacement instead of a new discrete state. However, MC is
not typically used to study system dynamics, as the method generates random configurations
that are not sequential in time. When information on particle dynamics is required, molecular
dynamics is often the better choice.

A.1.2 Molecular Dynamics Simulation

Molecular dynamics (MD) methods allow for the computation of equilibrium properties of a
classical system with many atoms or molecules. Each constituent particle has an associated
position and momentum, and there may be a variety of forces acting upon it through inter-
actions with other particles in the system. The positions and momenta of all particles in the
system obey classical dynamics and thus evolve according to Newton’s laws of motion. A
rudimentary procedure [117] is as follows:

1. Set parameters that specify the initial state and conditions of the system

2. Evaluate the forces acting on each particle in the system

3. Integrate Newton’s equations of motion and evolve positions and momenta of particles
appropriately

4. Once equilibrated, compute measured quantities

In practice, Newton’s equations of motion are integrated numerically by choosing a discrete
time step. The Verlet algorithm [119] is one such MD integration scheme, where the positions
of particles at the next time step t + ∆t are dependent on their positions at times t and
t−∆t, as well as the acceleration f(t)/m at time t

r(t+ ∆t) ≈ 2r(t)− r(t−∆t) +
f(t)

m
∆t2 (A.2)
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Care must be taken to ensure that the time step is large enough to make efficient progress,
while small enough to avoid large increases in energy that destabilize the simulation.

The atoms and molecules in a MD simulation interact according to specified force fields.
These forces may be as simple as a hard sphere potential, where the potential energy asso-
ciated with two particles jumps from 0 to infinity once a threshold distance between them
(typically corresponding to a particle diameter) is crossed. However, force fields may become
significantly more complex, as is the case with biomolecular simulations. Bond angles, van
der Waals forces, and electrostatic interactions between atoms must all be accounted for. A
variety of biomolecular force fields exist and must be chosen carefully for each specific appli-
cation. See Section A.2 for details on the MD simulations carried out for protein molecules
in Chapter 5, as well as the specific force field used.

A.2 Protein Simulations

The results of Chapter 5 were obtained using molecular dynamics simulations of protein
molecules. Initial structures used for simulations were drawn with PyMOL 1.5 [130]. All
protein visualizations were made using VMD 1.9 [133, 134]. Molecular dynamics simulations
were run using GROMACS 4.5 [128, 129]. All simulations were performed as described
in Ref. [124], with the exception that here, conformations were stored every 100 fs. Brief
overviews of all simulations are given below.

Native State IL-2

Two separate NVT simulations (200 ns and 1 µs in length) were started from PDB ID 1M47.
Each simulation was run at 300 K with the AMBER03 force field [126] and TIP3P explicit
solvent. V-sites were utilized with a 5 fs timestep [131].

For the isoconfigurationally averaged trajectories, a 100 ns simulation was initialized from
the same IL-2 structure as above and the state of the system at 25 ns, 50 ns, 75 ns, and 100
ns taken as initial conditions. From these initial conditions, one thousand 50 ps trajectories
were started with randomized velocities drawn from a 300 K Maxwell-Boltzman distribution.
5.10b shows ICA results for the 75 ns initial condition only; the other initial conditions show
similar features.

Unfolded IL-2

Two separate 100 ns NVT simulations utilizing the AMBER03 force field [126] and TIP3P
explicit solvent were started from an extended structure made in PyMOL [130] with the IL-2
sequence. After energy minimization, the backbone atoms were fixed while the side-chain
atoms remained unconstrained for the simulation.



A.3. DATA VISUALIZATION 122

β-lactamase

Two separate NVT simulations (600 ns and 400 ns in length) were started from PDB ID
1JWP [125]. Each simulation was run at 300 K with the AMBER03 force field [126] and
TIP3P explicit solvent, where 7 sodium ions were added to achieve charge neutrality. V-sites
were utilized with a 5 fs timestep [131].

RNase H

Two separate NVT simulations (600 ns and 400 ns in length) were started from PDB ID 1F21
[127]. Each simulation was run at 300 K with the AMBER03 force field [126] and TIP3P
explicit solvent, where 9 chlorine atoms were added to achieve charge neutrality. V-sites
were utilized with a 5 fs timestep [131].

Valine Tripeptide

One 2 µs NVT simulation was started from a structure of three valine residues made in
PyMOL [130]. The simulation was run at 300 K with the AMBER03 force field [126] and
TIP3P explicit solvent.

A.3 Data Visualization

Many of the simulation data visualizations included in this dissertation (e.g., Figs. 3.6,
4.12, and 5.11) were created using the VMDstream library created by Aaron Keys. This
library allows for the creation of custom movies and images by interacting with the Visual-
izing Molecular Dynamics (VMD) [133, 134] software through C++ code. Source code and
examples can be found on Aaron’s GitHub profile (github.com/askeys/vmdstream).

https://github.com/askeys/vmdstream
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