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REVIEW ARTICLE OPEN

Network-based machine learning and graph theory algorithms
for precision oncology
Wei Zhang1, Jeremy Chien2, Jeongsik Yong3 and Rui Kuang1

Network-based analytics plays an increasingly important role in precision oncology. Growing evidence in recent studies suggests
that cancer can be better understood through mutated or dysregulated pathways or networks rather than individual mutations and
that the efficacy of repositioned drugs can be inferred from disease modules in molecular networks. This article reviews network-
based machine learning and graph theory algorithms for integrative analysis of personal genomic data and biomedical knowledge
bases to identify tumor-specific molecular mechanisms, candidate targets and repositioned drugs for personalized treatment. The
review focuses on the algorithmic design and mathematical formulation of these methods to facilitate applications and
implementations of network-based analysis in the practice of precision oncology. We review the methods applied in three scenarios
to integrate genomic data and network models in different analysis pipelines, and we examine three categories of network-based
approaches for repositioning drugs in drug–disease–gene networks. In addition, we perform a comprehensive subnetwork/
pathway analysis of mutations in 31 cancer genome projects in the Cancer Genome Atlas and present a detailed case study on
ovarian cancer. Finally, we discuss interesting observations, potential pitfalls and future directions in network-based precision
oncology.

npj Precision Oncology (2017)1:25 ; doi:10.1038/s41698-017-0029-7

INTRODUCTION
The revolutionary large-scale genomic and sequencing technolo-
gies developed in the past two decades have enabled an
understanding of cancer biology in individual tumors for
personalized treatment. Coordinated national and international
efforts for cancer genome projects have been launched to
characterize tens of thousands of individual tumors by somatic
mutation, gene expression, copy number variation, DNA methyla-
tion, and various other types of genomic and epigenomic
aberrations.1, 2 The large volume of accumulated cancer genomic
data has facilitated the identification of precise oncogenes and
tumor suppressors for the development of personalized ther-
apeutic strategies. One of the well-recognized new observations in
these studies is that cancer is better characterized by frequently
mutated or dysregulated pathways than driver mutations, which
are often distinct in the tumors of the same type.3 For example,
studies have reported that only a few altered genes occur in more
than 10% of the samples and that many other altered genes occur
in less than 5% of the samples in the same tumor type.4

Furthermore, certain cancer types, such as prostate cancer and
pediatric cancers, are not driven by a few somatic mutations or
copy number variations, and the mechanism might be better
understood in the context of systems biology.4 This important
observation has led to a great effort to develop a collection of
network-based computational methods to detect cancer path-
ways or subnetworks by integration of various genomic data, as
shown in Fig. 1a, and these methods can be classified into three
categories depending on the scenario of applying the analysis
pipeline.

Network-based analysis has also attracted considerable atten-
tion in drug repositioning to reduce the cost of new drug
development by using repositioned existing drugs on novel
targets in drug–target networks for precision oncology.5 Based on
the hypothesis that drugs tend to be more effective on target
genes within or in the vicinity of a disease module in a molecular
network,5, 6 several network-based approaches have been used to
explore networks of drugs, diseases and targets to reposition
drugs for new targets, as listed in Fig. 1b. In these methods, the
drug–target relations can be inferred by various measures in the
network, combining drug–drug, drug–target, drug–disease and
disease–gene relations as shown in the drug–disease–target
network in Fig. 1d, e. As summarized in Fig. 1b, these methods
can be classified into three categories based on the underlying
computational formulation: methods using graph connectivity
measures, link prediction methods and network-based classifica-
tion methods.
The focus of this review article is to provide a comprehensive

and unified survey of machine learning and graph theory
algorithms for network analysis in precision oncology. We
compare the methods by their distinctions in the methodology
and mathematical formulations such that the methods can be
better applied and improved appropriately for precision oncology.
An overview of this article is given in Fig. 1. We not only review the
resources of biomedical and molecular networks listed in Fig. 1g
and the network-based methods listed in Fig. 1a, b but also
present a comprehensive network-based pathway analysis of
mutations in 31 cancer genome projects in the Cancer Genome
Atlas (TCGA) list in Fig. 1h and a case study on ovarian cancer to
show the promise of applying network-based analysis.

Received: 2 February 2017 Revised: 28 June 2017 Accepted: 29 June 2017
Published online: 08 August 2017

1Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA; 2Department of Cancer Biology, University of Kansas Medical
Center, Kansas City, KS, USA and 3Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
Correspondence: Rui Kuang (kuang@cs.umn.edu)

www.nature.com/npjprecisiononcology

Published in partnership with The Hormel Institute, University of Minnesota

http://dx.doi.org/10.1038/s41698-017-0029-7
www.nature.com/npjprecisiononcology


BIOMEDICAL AND MOLECULAR NETWORKS
In the literature, various biological and biomedical network
databases have been compiled to support network analysis.
Typically, the databases have been curated by the integration of
high-throughput experimental screening results from studies in
the literature and possibly computational predictions supervised
by expert knowledge. The networks represent the collections of
molecules, phenotypes and drugs as nodes and their relations as
edges in graphs. In Table 1, we enumerate existing molecular
networks, phenotype similarity networks or ontologies, and
drug–target networks and the resources for obtaining these
networks. The properties of these networks, including their nodes,
edges and graph structures, are also shown in Table 1.

1. Molecular networks: Biological molecular networks describe
relations among molecules, such as protein–protein interac-
tions, gene co-expression, functional similarities, regulatory
relations or biochemical reactions. The new-generation high-
throughput technologies have provided extensive content to
construct such molecular networks. Protein–protein interaction

networks are available from several well-maintained data-
bases.7–12 Primarily, these networks include physical interac-
tions determined by experiments and computationally derived
interactions. Proteome-wide protein–protein interactions cap-
ture the interplay among proteins based on the functional
associates from co-membership of protein complexes and
pathways. A functional linkage network is a more comprehen-
sive compilation of functional relations, physical interactions
and co-expression in one network.13–15 A transcriptional
regulatory network models the molecular interactions between
transcript factors/microRNA and target genes to regulate
transcript expression.16, 17 A transcriptional regulatory network
is a directed graph in which the edges connect a regulator to
its targets. A cellular metabolic network can be constructed by
the co-membership of biochemical reactions among metabo-
lites and enzymes.18, 19 Several graph structures can be used to
represent metabolic pathways, e.g., labeled directed graphs,
unions of bipartite graphs (per reaction) and hypergraphs,
depending on the level of detail of metabolic reactions to be
modeled with the graph.20

Fig. 1 Overview of the methods for network-based precision oncology. a The methods for integration of patient genomic data and molecular
networks grouped under the three scenarios of data analysis pipelines. b The methods for integration of drug–drug similarities, drug–target
relations and target–target relations for drug repositioning, grouped under three algorithmic categories. c Patient genomic profiles describe
the genomic landscape of each patient sample. d The patient genomic profiles are integrated with a molecular network, the human
protein–protein interaction (PPI) network in the example. e Drug and disease phenotypes are modeled in a network with connections to the
target genes in the PPI network. f An example of cancer subnetworks associated with recurrent ovarian cancer.36 g Resources of biomedical
and molecular networks. h List of the TCGA cancer studies
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2. Phenotype similarity networks and ontologies: Phenotypes,
particularly disease phenotypes, are of special interest for
cancer studies. The analysis of diseases in the context of other
related diseases can offer insight into their genotypic drivers.
Online Mendelian Inheritance in Man (OMIM) is a compre-
hensive compendium of human genes, genetic phenotypes
and documentation of their phenotype–gene associations.21

Phenotype similarity networks can be constructed based on
the genetic resemblance22 or the synopsis of the diseases and
sometimes by mRNA expression.23 Human Phenotype Ontol-
ogy (HPO) is another more comprehensive organization of all
human disease phenotypes in an ontology.24 The ontology is
a directed acyclic graph that can be used as a network
structure for learning phenotype–gene associations.25

3. Drug–target and drug–drug networks: Drug–target associa-
tions can be modeled by a bipartite network with connections
between the drugs and their targets. The drug–target pairs
are typically derived from FDA-approved or experimental
drugs and their human protein targets available from various
drug databases.26–29 Several different types of drug–drug
similarity networks have been derived for drug repositioning.
Drug–drug relations can be inferred based on similarity of
molecular basis, chemical substructure, and phenotypes, such
as known drug-indication relations, co-membership in drug
combinations, and co-morbidity of diseases.30

NETWORK-BASED ANALYSIS OF PERSONAL GENOMIC
PROFILES
The goal of applying network-based analysis to personal genomic
profiles is to identify aberrant network modules that are both

informative of cancer mechanisms and predictive of cancer
phenotypes. These methods can be classified into three categories
based on the design of the analysis pipeline in different scenarios,
as shown in Fig. 2. In these scenarios, the detection of the network
modules facilitates two other goals: predicting cancer phenotypes
and detecting driver genes. Depending on how the network
information is processed in the pipeline, the inputs and the
outputs to the predictive models or network analysis methods can
differ. Below, we describe the three categories of the methods
listed in Fig. 1a and then discuss the advantages and limitations of
each of the categories.

Model-based integration of whole-genomic profiles and a network
Model-based integration formulates a single unified machine
learning framework to integrate genomic profiles with a network
as illustrated in Fig. 2a. The core technique is to introduce a
network-based regularization into machine learning models such
that the coefficients learned on the feature variables form dense
subnetworks. The most commonly used network-based regulariza-
tion is the graph Laplacian regularizer shown in Fig. 3a. The graph
Laplacian was first introduced for spectral graph analysis31 and then
used for semi-supervised learning in machine learning.32, 33 The
graph Laplacian regularization is a summation of smoothness
terms on the variables to encourage similar coefficients on the
genes or other genomic features that are connected in the
network. Below, we describe the graph Laplacian regularized
methods in different learning frameworks as shown in Fig. 3b–e.
To precisely describe the models, we also list all the necessary
notations in Table 2 and the exact mathematical formulations of
the methods in Supplementary Table S2.

Fig. 2 Three scenarios for the integration of genomic data with molecular networks. a Model-based integration formulates one unified
learning framework regularized by a graph Laplacian. The output of the model is network modules enriched by the selected genomic features
and a prediction of treatment outcome/cancer phenotype. b Preprocessing integration consists of the following two steps: The first step
detects subnetworks that differentiate the contrasted patient groups by the genomic features; in the second step, the subnetwork features are
then fed into a standard learning model to generate predictions. c Post-analysis integration of oncogenic alterations in the network also
consists of two steps. The oncogenic alterations are first detected across the patient profiles, and then the altered genes/loci are mapped to
the network as seed genes for the module analysis. For each scenario, the objectives of the approach, the inputs and outputs of the network-
based analysis models/methods, and the advantages/limitations of each approach are also provided

Role of network-based analytics in precision oncology
W Zhang et al.

4

npj Precision Oncology (2017) 25 Published in partnership with The Hormel Institute, University of Minnesota



In Fig. 3b, the widely used regression and survival models are
extended to include the graph Laplacian constraint for the
analysis of genomic data. The paper34 proposed a network-
constrained linear regression procedure that combines a graph
Laplacian constraint with the L1-norm sparse linear regression to
capture the relations among the regression coefficients.35 This
network-based linear regression is equivalent to a standard LASSO
optimization problem.34 The paper36 proposed a network-based
Cox proportional hazards model (Net-Cox) for survival analysis. In
Cox regression, the objective is to learn the regression coefficients
β and the baseline hazard function h0(t) such that the
instantaneous risk of an event at time t for a patient xi can be
estimated by h tjx ið Þ ¼ h0ðtÞexp xTi β

� �
. Similarly, the graph Lapla-

cian constraint is introduced on the regression coefficients β. By
alternating between maximization with respect to β and h0(t), a
local optimum can be found.
As shown in Fig. 3c, the graph Laplacian constraint can also be

introduced into linear classification models such as logistic
regression37 and support vector machines (SVMs).38 Given the
binary response vector y = (y1, ..., yn)

T with yi ∈ {1, 0}, a Bernoulli
likelihood function minus both the L1-norm and the graph
Laplacian constraints is maximized to learn the linear coefficients.

In the model, p x ið Þ ¼ exp β0þxTi βð Þ
1þexp β0þxTi βð Þ is the probability that the ith

sample is in class 1. The elastic-net procedure can be applied to
maximize the regularized cost function. The paper38 proposed a
network-based SVM. Given the +1/−1 binary response vector y,
the network-constrained SVM can be formulated as the addition

of the hinge loss
Pn

i¼1 1� yi β0 þ xTi β
� �� �

þ and the graph
Laplacian constraint, where the subscript “+” denotes the positive
part, i.e., z+ = max{z, 0}.
Semi-supervised learning methods can more conveniently

explore the structures among both the genomic features and
the patient samples by learning with the graph Laplacians,39–41 as
shown in Fig. 3d. In the bipartite graph formulation introduced in
the paper,40 gene expression data are represented as a bipartite
graph with weighted edges between patient samples and
genomic features. The bipartite graph captures the co-
expression among the genes and the samples as bi-clusters in
the graph such that both the sample clusters and feature modules
are explored. In the hypergraph formulation introduced in the
papers,39, 41 the gene expression data are represented as
weighted hyperedges on the patient nodes, and a graph Laplacian
on the hypergraph can be introduced for semi-supervised learning
on the patient samples. An additional graph Laplacian of a
protein–protein interaction (PPI) network is then introduced to
incorporate network information among the genomic features.
It is also possible to regularize non-negative matrix factorization

(NMF) models with a graph Laplacian,42, 43 as shown in Fig. 3e.
NMF aims to find two non-negative matrices Um × k and Hn × k

whose product can accurately approximate the data matrix X with
X ≈ UHT. Combining the geometrically-based constraint with the
original NMF leads to the graph-regularized NMF, where Tr(⋅)
denotes the trace of a matrix.

Fig. 3 Model-based integration of whole-genomic profiles and a molecular network. a The patient genomic profiles X along with the clinical
information: the survival time, two patient subgroups for classification and treatment response of each individual patient are shown. The
network S is typically integrated into the genomic profile analysis with a graph Laplacian regularization. The formulas of the graph Laplacian
and its regularization are shown below. The graph Laplacian regularization can be rewritten as summation of pairwise smoothness terms that
promote smoothness among the connected genomic features in the network. b The network-based linear regression and Cox regression
models are illustrated in the figure with the graph Laplacian regularization term added to the original cost functions. c Network-based
classification is illustrated by a network-based SVM to classify the samples. d Network-based semi-supervised learning models classify samples
and detect disease markers on a bipartite graph. The edges between samples and genomic features are weighted by the genomic profiles,
and semi-supervised learning is based on the bipartite graph Laplacian. e Network-based factorization models factorize the genomic profile X
into the product of two matrices, U and H, which cluster patient samples and learn the latent features in the genomic profiles
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Preprocessing integration to detect network-based features
The preprocessing integration methods comprise two steps, as
illustrated in Fig. 2b. First, the genomic profiles and the network
are processed together to generate network-based features;
second, standard learning models are applied with the network-
based features for predictions. In this scenario, the integration of
network and genomic data occurs before applying a learning
model. The paper44 first proposed a graph algorithm to detect
discriminative subnetworks for classification of patient samples.
Highly discriminative genes are used as seed genes in a greedy
search in a PPI network to find discriminative subnetworks, and
then gene expression in each subnetwork is normalized as one
feature value for classification with standard logistic regression. A
similar approach was later proposed for application with features
of discriminative pathways instead of subnetworks.45 In this
approach, the gene expression in a pathway is normalized as one
feature for the collection of pathways from a molecular signature
database.46 The paper47 used disease-specific subnetworks as
features, where a set of known disease genes are first mapped into
the PPI network and then the subnetworks of the disease genes
are identified as disease module features. The paper48 proposed
implementing label propagation on the mutation data of each
patient on a PPI network to generate network-smoothed features
for classification of the patients. The paper49 proposed to find a
small subnetwork to connect all differentially expressed genes in a
PPI network and then use the genes in the subnetwork as features
to classify patient samples. This setting is the Steiner tree problem
in graph theory, and a heuristic algorithm coupled with
randomization was designed to combine multiple suboptimal
Steiner trees to find an optimum solution with a higher
probability.
This category of algorithms is a very useful generalization of the

earlier gene-set-based methods50, 51 since the network structures
suggest dynamic modules among the genes rather than a fixed
set. These modules can be data-specific and disease-specific for
improved results. Thus, the data-driven subnetwork discovery
introduced by these methods is a key improvement over previous
studies.50, 51

Post-analysis of oncogenic alterations in networks
The post-analysis integration methods also consist of two steps, as
illustrated in Fig. 2c. First, the genomic profiles are analyzed to
generate a list of oncogenic alterations; second, the detected
alterations are analyzed in the network. In this post-analysis

integration, the network information is integrated in the analysis
after the oncogenic alterations are first detected by standard
statistical methods. The purpose of these methods is to assess
how cancer-driving alterations disrupt a normal cellular system by
examining the influences on network components.
The circuit flow algorithm52

first identifies differentially
expressed genes and then the genomic aberrations by mutations
and copy number variations (CNVs) associated with the differential
gene expression. Next, a current flow algorithm is applied to find
causal paths from the causal genes (altered genes) to the target
genes (differentially expressed genes) in a PPI network. Finally, the
causal genes are selected by a set-covering algorithm to explain
all the differentially expressed target genes.
HotNet53 first maps gene alterations in a gene network and

then employs a diffusion kernel54 to build an influence graph with
the edges weighted by the influence between each pair of genes.
Then, a combinatorial problem is formulated to find the subnet-
works of genes altered in a significant number of patients.
Similarly, TieDIE55 and HotNet2,56 an extension of HotNet, apply
network diffusion to analyze multiple types of genomic altera-
tions, and NetPathID57 applies network diffusion to analyze CNVs
in 16 types of cancers.
PARADIGM58 is a probabilistic graphical model framework used

to model the gene transcription, translation and post-translational
events. Each gene is modeled by a factor graph of DNA copy
numbers, gene expression, protein levels and protein activities.
The factor graphs of genes are connected based on their
regulatory relations in a pathway. The genomic and proteomic
data are analyzed in the graphical models for the inference of
pathway activities in each patient to derive integrated pathway
activity (IPA) scores. The significantly altered genes/pathways can
be identified using the IPA scores.
The mutual exclusivity module (MEMo) method59 is another

widely used method in the TCGA project. MEMo first builds a
matrix representation of genes that are significantly altered by
mutations or CNVs. Then, the altered genes are connected by their
proximal in the HPRD PPI network.7 Finally, the cliques (a
subgraph with all the gene pairs connected) are identified to
analyze the mutual exclusivity in the patient data.
Signaling pathway impact analysis (SPIA)60 and mixed integer

programming (MILP)61 are two examples of earlier pathway-based
methods for genomic data analysis. SPIA applies an iterative
algorithm similar to a random walk to measure the pathway
perturbations in the regulatory network such that the impact of
differentially expressed genes on a pathway can be evaluated.60

Table 2. Notations

Notation Definition

n, m # of samples and features (e.g., genes), respectively.

X ∈ Rm ´ n genomic profile matrix.

β ∈ Rm ´ 1 coefficients of features to be learned by the model.

y 2 Rn´ 1 responses for regression or labels for classification, y = (y1, …, yn)
T.

W 2 Rm ´m symmetric adjacency matrix of an undirected molecular network.

Dx diagonal matrix with vector x on the diagonal.

S 2 Rm ´m normalized symmetric adjacency matrix: S ¼ D
�1

2
w WD

�1
2

w , where w is the row sum of W.

L 2 Rm ´m normalized graph Laplacian: L = I − S.

βT Lβ graph Laplacian regularization: βT Lβ ¼ 1
2

P
i;j Si;j βi � βj

� �2
.

f 0ð Þ 2 Rn´ 1 initialization for semi-supervised learning: f 0ð Þ ¼ f 0ð Þ
1 ; ¼ ; f 0ð Þ

i ; ¼ ; f 0ð Þ
n

n oT
, where f 0ð Þ

i 2 �1; 0;þ1f g. 0 is assigned if there are additional
unlabeled data for semi-supervised learning.

f 2 Rn ´ 1 Predictions by semi-supervised learning: f ¼ f1; ¼ ; fnf gT.
λ, λ1, λ2 positive hyper-parameters to weight the cost terms.

Role of network-based analytics in precision oncology
W Zhang et al.

6

npj Precision Oncology (2017) 25 Published in partnership with The Hormel Institute, University of Minnesota



MILP is an optimization model to predict flux activity states of
genes based on gene expression and a metabolic network.61

Comparison of the methods
Network-based analysis of genomic data is based on the
assumptions that cancer-driven aberrations often target different
genes in the same pathway or subnetwork in the molecular
network and that such systematic behavior can be observed as a
coordinated change of genes’ functions in pathways or network
modules. Network-based analysis is an effective approach because
it has been observed that mutated genes in a cancer pathway can
either co-occur in the same patients or be mutually exclusive
among the patients, and the systematic behavior is a more
detectable and interpretable signal for the assessment of
functional impacts of the aberrations.59 It has also been shown
that feature selection smoothed by graph Laplacian regularization
based on the gene co-expression network is highly robust and
generates more reproducible feature selections across indepen-
dent datasets.62 Thus, the network-based approach is both well
motivated and validated.

The three categories of methods have different relative
advantages and disadvantages. Model-based integration methods
are a fully supervised approach for both outcome prediction and
subnetwork detection. The subnetworks are jointly discovered to
contrast the control/case groups in the study based on a global
optimization strategy, and thus these methods typically perform
better in outcome prediction. In addition, the models can be
tuned by a few clearly defined parameters, making it possible to
train the models with cross-validation in contrast to the two-step
methods in the other categories. The disadvantage is the need for
more sophisticated optimization techniques, which are often less
scalable. The preprocessing integration methods are more flexible
in detecting customizable subnetwork features such that the
detected features clearly reflect the hypothesized network-based
characteristics. For example, the size and density of discriminative
subnetworks can be precisely specified. However, it is not possible
to guarantee that the detected subnetwork features are optimal
features for prediction with the standard learning model in the
second step. The post-analysis integration methods focus on
associating mutations or other DNA aberrations with differential

Fig. 4 Methods for network-based drug repositioning. a Graph connectivity measures consider the local structures of the networks to predict
drug–target interactions. This example shows the shortest path from each target node to the query drug (red node) in the graph. b Link
prediction models predict the relations between drugs and targets based on the global structures of the known interactions in the networks
with matrix completion or random-walk approaches. The known and predicted drug–target interactions are green and red, respectively, in the
drug–target relation matrix. c Network-based classification methods first extract the network topological features for all the targets in the
networks. For each drug, a classifier can be trained with the known targets of the drug as positive samples and the others as negative samples.
The learned classifiers can then be used to predict the new targets in the test set for each drug. d The advantages and disadvantages of the
methods in each category are compared
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expression or certain other molecular phenotypes in the network
context. Thus, these methods are highly informative regarding
cancer mechanisms in the network.
In model-based integration, Graph LASSO is another choice of

graph-based regularization other than the graph Laplacian
regularizer.63 Graph LASSO imposes a LASSO loss on each pair
of connected variables in the network rather than a squared error
as with the graph Laplacian regularizer. The LASSO loss terms
force the coefficients of the connected pairs to be identical such
that the inconsistent pairs are “sparse.” In practice, the assumption
can be too strong in networks with overlapping clusters. In
addition, optimization of Graph LASSO-constrained models is
generally challenging, while the graph Laplacian regularizer is a
quadratic constraint that is relatively straightforward to optimize.
Thus, Graph LASSO is a less common choice for network-based
integration methods.

NETWORK-BASED METHODS FOR DRUG REPOSITIONING
Network-based algorithms have also been developed for drug
repurposing by exploring drug–drug similarities, drug–target
relations and gene-gene relations. These methods can be largely
classified into three categories, i.e., graph connectivity measures,
link prediction models and network-based classification methods,
as illustrated in Fig. 4. The methods reviewed under each category
are also listed in Fig. 1b. Below, we describe and compare the
methods in the three categories.

Graph connectivity measures
The methods in this category are based on measuring the
connectivity among the nodes in the graph, such as neighboring
relations, the number of shared neighbors and shortest paths, to
derive drug–drug, drug–target or drug–disease relations, as
illustrated in Fig. 4a. Several early studies64, 65 showed that drugs
sharing similar chemical structures, transcriptional responses
following treatment and text mining analysis often share the
same target, where the implication is that the drug–drug network
based on the similarities can be used to reposition a drug for the
targets of similar drugs. The paper64 derived drug–drug similarities
based on mining the side-effect description from medical
symptoms in the Unified Medical Language System ontology.
The paper65 developed a method to predict similarities in terms of
drug effect by comparing gene expression profiles following drug
treatment across multiple cell lines and dosages. Both studies
validated the correlation between drug–drug similarity and the
likelihood of two drugs sharing a common protein target. Based
on the observations, the paper66 proposed a recommendation
technique for predicting drug–target relations based on the
drug–drug similarity matrix W computed based on the structural
similarity of the drugs and sequence similarity of their targets and
the known drug–target matrix A. By a simple multiplication (R =
WA), the scores in matrix R can be used to derive a ranking of the
candidate targets against each drug.
The paper23 performed a large-scale analysis of ~7000 genomic

expression profiles in the Gene Expression Omnibus with human
disease and drug annotations to create a disease–drug network
consisting of drug–drug, drug–disease and disease–disease
relations. The study shows that the derived disease–disease
relations are highly consistent with the definition in the Medical
Subject Headings disease classification tree and that the
drug–disease relations can be used to generate hypothesized
drug repositioning and side effects. The paper6 further generalized
the inference to drug–disease proximity in the network by the
hypothesis that an effective drug for a disease must target
proteins within or in the immediate vicinity of the corresponding
disease module in the molecular interaction network. They
applied a shortest-path-based measure coupled with a

randomization normalization technique to derive the
drug–disease proximity scores for the inference.
A recent work in the paper67 performed a correlation analysis of

disease modules and drug targets in the functional linkage
network. The differentially expressed disease genes and the
drug–target genes are first overlapped in the functional linkage
network, and a mutual predictability score is then computed
based on the neighboring relations among the genes to evaluate
the repositioning of the drug for the disease.

Link prediction models
Link prediction models predict the relations between drugs and
targets based on the global structures of the known interactions in
the networks with matrix completion or random-walk approaches,
as illustrated in Fig. 4b. The paper68 predicted drug–target
relations for drug repositioning based on a network of three
types of relations: drug–drug structural similarity, target–target
sequence similarity and drug–target relations from DrugBank.26 It
was shown that exploring the network topology outperforms
simple inference rules by graph connectivity measures such as
similar drugs sharing the same target or similar targets sharing the
same drug. The paper69 applied an information-flow approach on
a heterogeneous network of drug–drug, disease–disease and
target–target similarities along with the known disease–drug and
drug–target relations. The algorithm iteratively updates the
disease–drug and drug–target relations and converges to
stationary scores for the prediction of their relations.
The paper70 introduced a bipartite graph-learning method

based on kernel regression to learn a co-mapping of drugs in
chemical space and targets (proteins) in genomic space into a
common pharmacological space. In the pharmacological space,
the correlation between compound-protein pairs can be con-
veniently calculated to predict their interactions for drug
repositioning.
The paper71 proposed a collaborative matrix factorization

method to factorize known drug–target relations to predict new
relations constrained by the drug–drug similarity network and the
target–target similarity network. The paper72 proposed a manifold
regularization semi-supervised learning method in which two
classifiers in drug space and target space are learned and then
combined to give a final score for drug–target interaction
prediction. The paper73 applied several random-walk methods
on a heterogeneous network of drug–drug similarities,
target–target similarities and drug–target relations such that the
global structure among all the networks can be used to improve
the prediction of new drug–target pairs.

Network-based classification methods
Network-based drug repositioning can also be reformulated as a
classification problem such that standard classification methods
can be applied to predict the new targets of each drug, as
illustrated in Fig. 4c. These methods first extract the network
topological features for all the targets in the networks. For each
drug, a classifier can be trained with the known targets of the drug
as positive samples and the others as negative samples. The
learned classifiers can then be used to predict the new targets in
the test set for each drug. The paper74 proposed mapping disease-
specific differentially expressed genes into a PPI network and
using network topological features to detect new drug targets
based on the known targets from the drug–target database by
logistic regression. The paper75 also applied a supervised bipartite
model to predict the probability of each drug–target interaction
based on the known drug targets as labels and the target–target
interactions as features, where the bipartite model was augmen-
ted with additional training samples from the neighboring
drug–target relations.
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The paper76 constructed a drug–drug kernel matrix based on
chemical structure similarities and a target–target kernel matrix
based on sequence similarities. For each drug, using the known
targets as the positive training samples, an SVM classifier is built
with the target–target kernel matrix to classify the candidate
genes for new targets. In addition, for each target and using the
known drugs as the positive training samples, an SVM classifier is
built with the drug–drug kernel matrix to classify the drugs for
new repositioned drugs. The paper77 adopted a similar approach
with two additional advanced kernel methods, applying diffusion-
types of kernels to integrate both the drug–drug kernel matrix and
the target–target kernel matrix to predict the new targets of a
drug or the new repositioned drugs for a target.

Comparison of the methods
The three categories of methods have different relative advan-
tages and disadvantages, as shown in Fig. 4d. Graph connectivity
measures are straightforward to implement based on standard
graph algorithms, and the prediction results are easy to interpret
with the edges and the paths in the graph. However, the
prediction performance is typically worse since only relatively local
information of the networks is considered by the graph
algorithms. Link prediction models retrieve the global structures
of the networks to predict drug–target interactions for better
prediction performance. The disadvantages are the lack of a
satisfactory interpretation of the predictions and that the
implementation of the models often relies on advanced

optimization algorithms. When sophisticated optimization is
required, the scalability can be poor. Network-based classification
methods are more accurate for repositioning drugs with many
known targets as the training samples but are not applicable to
drugs with few or no known targets. The prediction results can be
interpreted by the network topological features extracted from
the networks, depending on the feature extraction strategy.
Another important aspect of the comparison is whether a

method can generate de novo predictions for drugs with no
known targets or gene targets with no known drugs. Graph
connectivity measures are often more biased towards highly
connected nodes in the graph such that new drugs or less-studied
genes typically receive low rankings. Thus, de novo predictions are
rarely made by graph connectivity measures. With no positive
training pairs available, the network-based classification methods
simply abandon the de novo cases. Link prediction models are
often the most capable of making de novo predictions because
global topological structures are generally less biased after proper
normalization and control by randomization.

NETWORK-BASED ANALYSIS OF TCGA MUTATION DATA AND
A CASE STUDY ON OVARIAN CANCER
To better discuss the network-based methods, we performed a
network-based analysis of the mutated genes in the 31 cancer
genome projects in TCGA78–101 and summarized the enriched
KEGG pathways102 in Fig. 5. For the analysis, the mutation
frequencies among the patients in the 31 TCGA provisional studies

Fig. 5 Network-based analysis of highly mutated pathways of 31 cancer types in TCGA data. The highly mutated pathways detected by a
network-based analysis and b standard enrichment analysis. The pathways of interest in the discussion are highlighted in blue, and the
pathways only enriched by network-based analysis are highlighted in red
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were downloaded from cBioPortal for Cancer Genomics.103 In the
network-based analysis, label propagation (λ = 0.5)48, 62 as
described in Table S2 in the Supplementary Information was
applied to the HPRD PPI network7 in each cancer study to capture
the highly mutated subnetworks. The initialization was the gene

mutation frequency among the patients in each cancer study for
label propagation. The summation of the stationary scores of the
genes in a KEGG pathway is compared with the scores of 10,000
random gene sets of the same size to derive p-values. In the
analysis without the network, the highly mutated genes in each

Fig. 6 Network-based analysis of patient mutation data in TCGA ovarian cancer. The significantly mutated pathways in each patient detected
by a network analysis and b the analysis of the original mutation data without the network. c The survival plot of the three groups detected by
the network-based pathway analysis of the TCGA ovarian cancer patients. Derived by standard log-rank test, the p-values for comparing group
2 vs. group 3 and group 1 + group 2 vs. group 3 are both significant. d The survival plot of the groups detected by the analysis of the original
mutation data of the TCGA ovarian cancer patients
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cancer type are overlapped with KEGG pathways with enrichment
analysis to derive p-values by hypergeometric test. This network-
based analysis clearly detects more significantly mutated path-
ways than the analysis without using the network, as shown in
Fig. 5a, b, respectively.
Interestingly, the network-based analysis in Fig. 5a indicates

that the AMPK signaling pathway is affected in breast cancer
(BRCA) and uterine corpus endometrial cancer (UCEC). Prior
studies demonstrated that BRCA patients receiving metformin, a
pharmacological activator of AMPK, showed complete pathologic
response, implicating the role of AMPK in BRCA.104 Similarly, the
loss of the AMPK activator LKB1 promotes endometrial cancer
progression and metastasis,105, 106 implicating the AMPK pathway
in endometrial cancer, and metformin inhibits endometrial cancer
cell proliferation.107 The HIF-1 pathway has been predicted to be
affected in renal clear cell carcinoma (KIRC), BRCA, endometrial
cancer (UCEC), glioblastoma multiforme (GBM), cervical cancer
(CESC), and lung cancer (LUAD), and these results are consistent
with prior studies implicating the VHL/HIF-1 pathway in these
cancers.90, 108 The Hippo pathway has been predicted to be
affected in colorectal cancer, renal papillary carcinomas, stomach
cancer, and liver cancer, and these results are consistent with
recent cancer genomic studies.97, 109 Finally, the PI3K-Akt pathway
has been identified as one of the most frequently affected
pathways in several cancer types, and several components of this
pathway were reported to be mutated or amplified in various
cancer types.110 Collectively, these results suggest that network
analysis can identify clinically relevant pathways that are altered in
different cancer types.
In the case study on the ovarian cancer patients shown in Fig. 6,

the mutation data of the 316 TCGA ovarian cancer patients were
downloaded from the Xena Public Data Hubs.111 Similar to the
study in the paper,48 label propagation (λ = 0.1) was applied on
the same HPRD PPI network in each patient to detect the patient-
specific highly mutated subnetworks. The initialization was 1 for
the mutated genes and 0 for the other genes and then normalized
to sum to 1. Similarly, the summation of the stationary scores of
the genes in a KEGG pathway was compared with the scores of
10,000 random gene sets of the same size to derive the p-value. In
the analysis without the network, the mutated genes in each
patient are overlapped with KEGG pathways with enrichment
analysis to derive p-values by hypergeometric test. Hierarchical
clustering was applied to cluster the patients into three groups
using the –log10 (p-values) as features. The network-based analysis
informs a clustering of the patients by a significant relevance to
survival (Fig. 6c). Notably, three subgroups of tumor samples can
be identified from the network-based analysis shown in Fig. 6c,
compared to four subgroups in the mutation-based analysis
without the network in Fig. 6d. Although subgroups identified by
mutation-based analysis without the network show no significant
association with disease-free survival, two of the subgroups
detected by the network-based analysis (Subgroup 1 and
Subgroup 3) show significant association with disease-free survival
relative to Subgroup 2. Interestingly, Subgroup 1 has the highest
copy number alterations, whereas Subgroup 3 has the highest
number of pathway alterations. These results are analogous to the
spectrum of somatic alterations described by ref. 112. Although
those authors placed ovarian cancer in class C, defined by
extensive copy number alterations, the spectrum of somatic
alterations can be further described as subgroups with higher
copy number changes, mixed, and higher mutations within
ovarian cancer. This case study shows that via network analysis,
several subtypes of ovarian cancer can be grouped together for
further assessment of clinical values, such as occurrence, relapse
and treatment resistance. This information may also be valuable
for the design or assessment of treatment strategies. Collectively,
the network analysis unveils important cancer pathways and their

correlation to subtypes of cancers that would not be identifiable
by original mutation data analysis.

DISCUSSION
Precision oncology tailors cancer treatment and repositions drugs
based on personal genomic information. There are several
promising aspects of the application of network-based analysis in
precision oncology. With a network to capture the molecular
organization in the cellular system, genomic data analysis is both
more accurate and descriptive. The smoothness constraint
introduced into the model-based integration methods is helpful
in eliminating false positives and false negatives in high-
dimensional genomic data. The network analysis identifies
molecular targets in the context of pathways or interaction partners
in a subnetwork that are interpretable for molecular mechanisms.
For example, in the case study in Fig. 6a, the mutation information
of each individual patient is propagated on the PPI network to
detect the patient-specific subnetwork and improve the quality of
the patient clustering by a significant relevance to survival. As a
consequence, network-based analysis often reports consistent
marker genes across different studies of the same cancer40 or
more comparable results in pan-cancer analysis.56 Collectively, it is
evident that network-based methods employ molecular and
biomedical networks to extract useful personal genomic informa-
tion, and build better predictive models for target identification,
phenotype prediction and drug repositioning.
Conceptually, network-based analysis also adopts mutation

patterns that are mutually exclusive or co-occurring. Mutually
exclusively mutated genes are often located on the same
pathway, and network analysis propagates the mutually exclusive
signals to identify the pathway by a significant signal. Co-
occurring mutated genes in a pathway/dense network module
also mutually strengthen the mutation signals. The results in
Fig. 6 clearly support that the mutation patterns are accurately
captured in the case study on ovarian cancer by label
propagation.
In drug repositioning, both molecular networks and

drug–drug or phenotype similarity networks play important
roles. It has been repeatedly observed that genes associated
with the same (or similar) diseases tend to lie in a dense module
in the PPI network. This observation has motivated effective
network-based methods to predict new disease genes.43 The
analysis of gene modules in the PPI of similar diseases has also
suggested associations between diseases and gene functions or
pathways.43 When drug targets and disease genes are analyzed
together in the PPI network, their proximities are useful for drug
repositioning.6

The methods compared in Figs. 2 and 4 have different relative
advantages and disadvantages. The considerations involve a
variety of key properties, including the performance of the
methods, the interpretation of the results, the difficulty of
implementation, the scalability to genome-wide analysis, and
the characteristics of the training data. The appropriate choice of a
network-based method for a particular analysis can be customized
based on the information gained from these comparisons. For
example, drugs with more known targets can be repositioned by
the network-based classification models, while drugs with no
known targets in the candidates can be repositioned by the link
prediction methods. Depending on whether the analysis must be
highly scalable to a huge network, simple graph connectivity
measures or link prediction methods can be used.
In the application of network-based analysis, there are also

several practical issues and limitations.

1. Molecular networks often contain biased information. Well
studied genes tend to have more connections in the PPI
network, and they are also targets of more drugs and are
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associated with more disease phenotypes. Typically, it is
important to exercise normalizations and repeat the experi-
ments on randomized networks to assess the statistical
significance of the results. The biases also prevent the
prediction of de novo disease genes or target genes if the
gene has no association with known diseases or is not a target
of any drug.25

2. The empirical results of network-based methods rely on
tuning parameters. The parameters often balance how much
belief is imposed on the network topologies. When excessive
weights are assigned to the network topology, there will be
an “over-smoothing” effect such that nearly uniform scores
are expected among the genes in even large and sparse
neighborhoods. Thus, a proper procedure for determining the
appropriate (optimal) parameters is critical, for example, by
applying cross-validation and wet-lab validation.36

3. Commonly, a molecular network describes a general relation,
such as protein–protein physical interaction or functional
linkage. In some cases, the relations can be either positive or
negative, e.g., gene co-expression. A practical approach is to
apply a signed graph Laplacian.113 The models applied with a
signed graph Laplacian can be solved in a manner similar to
those with the normal graph Laplacian by the same
algorithms.

Finally, this article targets the scope of precision oncology,
including steps for understanding cancer mechanisms, finding
targets and repositioning drugs, while previous survey studies have
focused on detecting cancer-driven aberrations and understanding
of the aberrations in molecular networks/pathways.4, 114, 115 This
article also surveys several categories of algorithms, including
model-based integration and preprocessing integration with
machine learning methods, while previous reviews4, 114, 115

primarily surveyed the methods in one of the three categories,
namely, post-analysis integration of oncogenic alterations in
networks. Thus, this article offers a different scope and a more
comprehensive survey of computational methods.

FUTURE DIRECTIONS
Several challenges remain in the application of network-based
analysis in precision oncology. These challenges concern the data
quality, deployment for research or clinical use, and scalability of
network analysis.
To precisely model the molecular interactions and drug–target

relations, networks of better quality are required. It is known that
most molecular networks and drug–target databases are incom-
plete and biased towards well-studied proteins/genes. Thus,
continuing effort on the improvement of the networks with
additional experimental data is important. In addition, network
modeling with higher resolution is also crucial to model complex
molecular functions at higher precisions. For example, proteins are
present in the isoforms of genes, and thus isoform–isoform
interactions are the true interactions to model in a network116–118;
mutations or other structure variations of a protein can also
change the protein–protein binding or drug–protein docking in a
specific tumor. Furthermore, even within each tumor, hetero-
geneous cell populations exist, and the drug targets and
molecular interactions could be different for each cell population
if measured by single-cell RNA sequencing.119 To partially address
this issue, several computational methods for quality control of PPI
screening have been proposed to reduce the number of false-
positive and false-negative PPIs due to spurious errors and
systematic biases from the high-throughput techniques.120, 121

Currently, it is still impossible to construct these more accurate
networks at a large scale due to the limitation of the current high-
throughput experimental methods for measurement of molecular
interactions or drug screening.

While many network-based methods have been developed to
support precision oncology, the implementations of the methods
are independent, with non-standardized tools that are never easily
accessible as a useful collection to oncologists for research or
clinical use. Thus, there is a strong need to develop a software
platform that integrates standardized biomedical, biological
network data, and analytic software components to support
comprehensive network-based analysis of patient genomic data
and drug repositioning for precision oncology. This platform
should be based on a sophisticated system design to meet
oncologists’ requirements and support customization of the
analysis pipeline. The concept of part of such a platform was
proposed in the paper5 as an integrative network-based
infrastructure to identify new druggable targets and reposition-
able drugs through the targeting of significantly mutated genes
identified in human cancer genomes. In the future, the existing
tools can be reimplemented as apps on a platform such as
Cytoscape122 or another software environment similar to GALAXY
for NGS data analysis123 to facilitate the development and
deployment of the software system for precision oncology.
Finally, scalability is always an issue in network-based analysis

since it is common to model millions of genomic features,
hundreds of thousands of drugs and tens of thousands of
phenotypes in a very large network. For example, in an
isoform–isoform interaction network, hundreds of thousands of
nodes are contained in a single graph that cannot be loaded onto
a computer with less than 100 GB of memory. Such big-data
analysis will require more scalable algorithms and efficient
computing platforms. For example, the standard label propaga-
tion can be applied to low-rank approximations of big graphs,
enabling work with networks of millions of nodes.124, 125 Parallel
implementations of the network-analysis methods, especially the
optimization algorithms in those model-based approaches, are
also necessary.

ACKNOWLEDGEMENTS
The results are based upon data generated by The Cancer Genome Atlas established
by the NCI and NHGRI. Information about TCGA and the investigators and institutions
who constitute the TCGA research network can be found at http://cancergenome.nih.
gov. The dbGaP accession number to the specific version of the TCGA dataset is
phs000178.v9.p8. This research work is supported by a grant from the National
Science Foundations, USA (NSF III 1149697).

AUTHOR CONTRIBUTIONS
W.Z. and R.K. drafted the manuscript and designed the experiments. W.Z. performed
the experiments and analyzed the results. J.C. and J.Y. analyzed the results. W.Z., J.C.,
J.Y. and R.K. wrote the manuscript.

ADDITIONAL INFORMATION
Supplementary Information accompanies the paper on the npj Precision Oncology
website (doi:10.1038/s41698-017-0029-7).

Competing Interests: The authors declare that they have no competing financial
interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Weinstein, J. N. et al. The cancer genome atlas pan-cancer analysis project. Nat.

Genet. 45, 1113–1120 (2013).
2. Hudson, T. J. et al. International network of cancer genome projects. Nature 464,

993–998 (2010).
3. Krogan, N. J., Lippman, S., Agard, D. A., Ashworth, A. & Ideker, T. The cancer cell

map initiative: defining the hallmark networks of cancer. Mol. Cell 58, 690–698
(2015).

Role of network-based analytics in precision oncology
W Zhang et al.

12

npj Precision Oncology (2017) 25 Published in partnership with The Hormel Institute, University of Minnesota

http://cancergenome.nih.gov
http://cancergenome.nih.gov
http://dx.doi.org/10.1038/s41698-017-0029-7


4. Creixell, P. et al. Pathway and network analysis of cancer genomes. Nat. Methods
12, 615–621 (2015).

5. Cheng, F., Zhao, J., Fooksa, M. & Zhao, Z. A network-based drug repositioning
infrastructure for precision cancer medicine through targeting significantly
mutated genes in the human cancer genomes. J. Am. Med. Inform. Assoc 23,
681–691 (2016).

6. Guney, E., Menche, J., Vidal, M. & Barábasi, A.-L. Network-based in silico drug
efficacy screening. Nat. Commun. 7, 10331–10331 (2016).

7. Prasad, T. K. et al. Human protein reference database-2009 update. Nucleic Acids
Res. 37, D767–D772 (2009).

8. Stark, C. et al. BioGRID: A general repository for interaction datasets. Nucleic
Acids Res. 34, D535–D539 (2006).

9. Chatr-Aryamontri, A. et al. MINT: the molecular interaction database. Nucleic
Acids Res. 35, D572–D574 (2007).

10. Xenarios, I. et al. DIP, the database of interacting proteins: A research tool for
studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305
(2002).

11. Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated
over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

12. Hermjakob, H. et al. IntAct: an open source molecular interaction database.
Nucleic Acids Res. 32, D452–D455 (2004).

13. Zhang, B. & Horvath, S. et al. A general framework for weighted gene co-
expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 1–45 (2005).

14. Li, W. et al. Integrative analysis of many weighted co-expression networks using
tensor computation. PLoS Comput. Biol. 7, e1001106 (2011).

15. Huttenhower, C. et al. Exploring the human genome with functional maps.
Genome Res. 19, 1093–1106 (2009).

16. Han, H. et al. TRRUST: a reference database of human transcriptional regulatory
interactions. Sci. Rep. 5, 1432 (2015).

17. Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of
transcriptional and post-transcriptional regulatory networks in human and
mouse. Database 2015, bav095 (2015).

18. Wishart, D. S. et al. HMDB: the human metabolome database. Nucleic Acids Res.
35, D521–D526 (2007).

19. Caspi, R. et al. The MetaCyc Database of metabolic pathways and enzymes and
the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 36,
D623–D631 (2008).

20. Lacroix, V., Cottret, L., Thebault, P. & Sagot, M. F. An introduction to metabolic
networks and their structural analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 5,
594–617 (2008).

21. Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A. & McKusick, V. A. Online
Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and
genetic disorders. Nucleic Acids Res. 33, D514–D517 (2005).

22. Goh, K.-I. et al. The human disease network. Proc. Natl. Acad. Sci. 104, 8685–8690
(2007).

23. Hu, G. & Agarwal, P. Human disease-drug network based on genomic expression
profiles. PLoS One 4, e6536 (2009).

24. Köhler, S. et al. The human phenotype ontology project: linking molecular
biology and disease through phenotype data. Nucleic Acids Res. 42, D966–D974
(2014).

25. Petegrosso, R., Park, S., Hwang, T. H. & Kuang, R. Transfer learning across ontologies
for phenomegenome association prediction. Bioinformatics 33, 529–536 (2017).

26. Wishart, D. S. et al. DrugBank: a knowledgebase for drugs, drug actions and drug
targets. Nucleic Acids Res. 36, D901–D906 (2008).

27. Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery.
Nucleic Acids Res. 40, D1100–D1107 (2012).

28. Chen, X., Ji, Z. L. & Chen, Y. Z. TTD: therapeutic target database. Nucleic. Acids.
Res. 30, 412–415 (2002).

29. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG for
representation and analysis of molecular networks involving diseases and drugs.
Nucleic Acids Res. 38, D355–D360 (2010).

30. Wu, Z., Wang, Y. & Chen, L. Network-based drug repositioning. Mol. Biosyst. 9,
1268–1281 (2013).

31. Chung, F. R. Spectral graph theory, Vol. 92 (American Mathematical Society,
1997).

32. Zhou, D., Bousquet, O., Lal, T. N., Weston, J. & Schölkopf, B. Learning with local
and global consistency. In Advances in Neural Information Processing Systems
321–328 (MIT Press, 2004).

33. Zhu, X. & Ghahramani, Z. Learning from labeled and unlabeled data with label
propagation. Technical Report (CMU, 2002).

34. Li, C. & Li, H. Network-constrained regularization and variable selection for
analysis of genomic data. Bioinformatics 24, 1175–1182 (2008).

35. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Series B Stat. Methodol. 58, 267–288 (1996).

36. Zhang, W. et al. Network-based survival analysis reveals subnetwork signatures
for predicting outcomes of ovarian cancer treatment. PLoS Comput. Biol. 9,
e1002975 (2013).

37. Sun, H. & Wang, S. Penalized logistic regression for high-dimensional
DNA methylation data with case-control studies. Bioinformatics 28, 1368–1375
(2012).

38. Chen, L., Xuan, J., Riggins, R. B., Clarke, R. & Wang, Y. Identifying cancer bio-
markers by network-constrained support vector machines. BMC Syst. Biol. 5, 1
(2011).

39. Hwang, T., Tian, Z., Kuangy, R. & Kocher, J.-P. Learning on weighted hypergraphs
to integrate protein interactions and gene expressions for cancer outcome
prediction. In Proceedings of the 2008 Eighth IEEE International Conference on
Data Mining 293–302 (IEEE Computer Society, 2008).

40. Hwang, T. et al. Robust and efficient identification of biomarkers by classifying
features on graphs. Bioinformatics 24, 2023–2029 (2008).

41. Tian, Z., Hwang, T. & Kuang, R. A hypergraph-based learning algorithm for
classifying gene expression and arrayCGH data with prior knowledge. Bioinfor-
matics 25, 2831–2838 (2009).

42. Cai, D., He, X., Han, J. & Huang, T. S. Graph regularized nonnegative matrix
factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33,
1548–1560 (2011).

43. Hwang, T. et al. Co-clustering phenome-genome for phenotype classification
and disease gene discovery. Nucleic Acids Res. 40, e146–e146 (2012).

44. Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D. & Ideker, T. Network-based classification
of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007).

45. Lee, E., Chuang, H.-Y., Kim, J.-W., Ideker, T. & Lee, D. Inferring pathway
activity toward precise disease classification. PLoS Comput. Biol. 4, e1000217
(2008).

46. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27,
1739–1740 (2011).

47. He, D., Liu, Z.-P. & Chen, L. Identification of dysfunctional modules and disease
genes in congenital heart disease by a network-based approach. BMC Genomics
12, 592 (2011).

48. Hofree, M., Shen, J. P., Carter, H., Gross, A. & Ideker, T. Network-based stratifi-
cation of tumor mutations. Nat. Methods 10, 1108–1115 (2013).

49. Jahid, M. J. & Ruan, J. A. Steiner tree-based method for biomarker discovery and
classification in breast cancer metastasis. BMC Genomics 13, S8 (2012).

50. Guo, Z. et al. Towards precise classification of cancers based on robust gene
functional expression profiles. BMC Bioinformatics 6, 58 (2005).

51. Edelman, E. et al. Analysis of sample set enrichment scores: assaying the
enrichment of sets of genes for individual samples in genome-wide expression
profiles. Bioinformatics 22, e108–e116 (2006).

52. Kim, Y.-A., Wuchty, S. & Przytycka, T. M. Identifying causal genes and
dysregulated pathways in complex diseases. PLoS Comput. Biol. 7, e1001095
(2011).

53. Vandin, F., Upfal, E. & Raphael, B. J. Algorithms for detecting significantly
mutated pathways in cancer. J. Comput. Biol. 18, 507–522 (2011).

54. Kondor, R. I. & Lafferty, J. D. Diffusion kernels on graphs and other discrete input
spaces. In Proceedings of the Nineteenth International Conference on Machine
Learning, Vol. 2, 315–322 (Morgan Kaufmann Publishers Inc., 2002).

55. Paull, E. O. et al. Discovering causal pathways linking genomic events to tran-
scriptional states using Tied Diffusion Through Interacting Events (TieDIE).
Bioinformatics 29, 2757–2764 (2013).

56. Leiserson, M. D. et al. Pan-cancer network analysis identifies combinations of
rare somatic mutations across pathways and protein complexes. Nat. Genet. 47,
106–114 (2015).

57. Hwang, T. H. et al. Large-scale integrative network-based analysis identifies
common pathways disrupted by copy number alterations across cancers. BMC
Genomics 14, 440 (2013).

58. Vaske, C. J. et al. Inference of patient-specific pathway activities from multi-
dimensional cancer genomics data using PARADIGM. Bioinformatics 26,
i237–i245 (2010).

59. Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis iden-
tifies oncogenic network modules. Genome Res. 22, 398–406 (2012).

60. Tarca, A. L. et al. A novel signaling pathway impact analysis. Bioinformatics 25,
75–82 (2009).

61. Shlomi, T., Cabili, M. N., Herrgård, M. J., Palsson, B. Ø. & Ruppin, E. Network-based
prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003–1010
(2008).

62. Zhang, W., Hwang, B., Wu, B. & Kuang, R. Network propagation models for gene
selection. In IEEE International Workshop on Genomic Signal Processing and
Statistics (GENSIPS) 1–4 (IEEE, 2010).

63. Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics 9, 432–441 (2008).

Role of network-based analytics in precision oncology
W Zhang et al.

13

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2017) 25



64. Campillos, M., Kuhn, M., Gavin, A.-C., Jensen, L. J. & Bork, P. Drug target iden-
tification using side-effect similarity. Science 321, 263–266 (2008).

65. Iorio, F. et al. Discovery of drug mode of action and drug repositioning from
transcriptional responses. Proc. Natl. Acad. Sci. 107, 14621–14626 (2010).

66. Alaimo, S., Pulvirenti, A., Giugno, R. & Ferro, A. Drug-target interaction prediction
through domain-tuned network-based inference. Bioinformatics 29, 2004–2008
(2013).

67. Chen, H.-R., Sherr, D. H., Hu, Z. & DeLisi, C. A network based approach to drug
repositioning identifies plausible candidates for breast cancer and prostate
cancer. BMC Med. Genomics 9, 51 (2016).

68. Cheng, F. et al. Prediction of drug-target interactions and drug repositioning via
network-based inference. PLoS Comput. Biol. 8, e1002503 (2012).

69. Wang, W., Yang, S., Zhang, X. & Li, J. Drug repositioning by integrating target
information through a heterogeneous network model. Bioinformatics 30,
2923–2930 (2014).

70. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. & Kanehisa, M. Prediction of
drug-target interaction networks from the integration of chemical and genomic
spaces. Bioinformatics 24, i232–i240 (2008).

71. Zheng, X., Ding, H., Mamitsuka, H. & Zhu, S. Collaborative matrix factorization
with multiple similarities for predicting drug-target interactions. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining 1025–1033 (ACM, 2013).

72. Xia, Z., Wu, L.-Y., Zhou, X. & Wong, S. T. Semi-supervised drug-protein interaction
prediction from heterogeneous biological spaces. In BMC Systems Biology, Vol. 4,
S6 (BioMed Central Ltd, 2010).

73. Chen, X., Liu, M.-X. & Yan, G.-Y. Drug-target interaction prediction by random
walk on the heterogeneous network. Mol. Biosyst. 8, 1970–1978 (2012).

74. Emig, D. et al. Drug target prediction and repositioning using an integrated
network-based approach. PLoS One 8, e60618 (2013).

75. Mei, J.-P., Kwoh, C.-K., Yang, P., Li, X.-L. & Zheng, J. Drug-target interaction
prediction by learning from local information and neighbors. Bioinformatics 29,
238–245 (2013).

76. Bleakley, K. & Yamanishi, Y. Supervised prediction of drug-target interactions
using bipartite local models. Bioinformatics 25, 2397–2403 (2009).

77. van Laarhoven, T., Nabuurs, S. B. & Marchiori, E. Gaussian interaction profile
kernels for predicting drug-target interaction. Bioinformatics 27, 3036–3043
(2011).

78. Ley, T. J. et al. Genomic and epigenomic landscapes of adult de novo acute
myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

79. Zheng, S. et al. Comprehensive pan-genomic characterization of adrenocortical
carcinoma. Cancer Cell. 29, 723–736 (2016).

80. Cancer Genome Atlas Research Network. et al. Comprehensive molecular
characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

81. Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast
cancer. Cell 163, 506–519 (2015).

82. Cancer Genome Atlas Network. et al. Comprehensive molecular portraits of
human breast tumours. Nature 490, 61–70 (2012).

83. The Cancer Genome Atlas Research Network. Integrated genomic and mole-
cular characterization of cervical cancer. Nature 543, 378–384 (2017).

84. Davis, C. F. et al. The somatic genomic landscape of chromophobe renal cell
carcinoma. Cancer Cell 26, 319–330 (2014).

85. Cancer Genome Atlas Network. et al. Comprehensive molecular characterization
of human colon and rectal cancer. Nature 487, 330–337 (2012).

86. Cancer Genome Atlas Research Network. et al. Comprehensive, integrative
genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 2015,
2481–2498 (2015).

87. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155,
462–477 (2013).

88. McLendon, R. et al. Comprehensive genomic characterization defines human
glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

89. Cancer Genome Atlas Network. et al. Comprehensive genomic characterization
of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).

90. Cancer Genome Atlas Research Network. et al. Comprehensive molecular
characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

91. Cancer Genome Atlas Research Network. et al. Comprehensive molecular pro-
filing of lung adenocarcinoma. Nature 511, 543–550 (2014).

92. Cancer Genome Atlas Research Network. et al. Comprehensive genomic char-
acterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

93. Ceccarelli, M. et al. Molecular profiling reveals biologically discrete subsets and
pathways of progression in diffuse glioma. Cell 164, 550–563 (2016).

94. The Cancer Genome Atlas Research Network. Integrated genomic character-
ization of oesophageal carcinoma. Nature 541, 169–175 (2017).

95. Cancer Genome Atlas Research Network. et al. Integrated genomic analyses of
ovarian carcinoma. Nature 474, 609–615 (2011).

96. Campbell, J. D. et al. Distinct patterns of somatic genome alterations in lung
adenocarcinomas and squamous cell carcinomas. Nat. Genet. 48, 607–616
(2016).

97. Cancer Genome Atlas Research Network. et al. Comprehensive molecular
characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 2016, 135–145
(2016).

98. Cancer Genome Atlas Research Network. et al. Integrated genomic character-
ization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

99. Cancer Genome Atlas Research Network. et al. The molecular taxonomy of
primary prostate cancer. Cell 163, 1011–1025 (2015).

100. Cancer Genome Atlas Research Network. et al. Comprehensive molecular
characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

101. Cancer Genome Atlas Research Network. et al. Integrated genomic character-
ization of endometrial carcinoma. Nature 497, 67–73 (2013).

102. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 28, 27–30 (2000).

103. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical pro-
files using the cBioPortal. Sci. Signal. 6, pl1 (2013).

104. Jiralerspong, S. et al. Metformin and pathologic complete responses to
neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin.
Oncol. 27, 3297–3302 (2009).

105. Contreras, C. M. et al. Loss of LKB1 provokes highly invasive endometrial ade-
nocarcinomas. Cancer Res. 68, 759–766 (2008).

106. Peña, C. G. et al. LKB1 loss promotes endometrial cancer progression via
CCL2-dependent macrophage recruitment. J. Clin. Invest. 125, 4063–4076
(2015).

107. Cantrell, L. A. et al. Metformin is a potent inhibitor of endometrial cancer cell
proliferationimplications for a novel treatment strategy. Gynecol. Oncol. 116,
92–98 (2010).

108. Pansare, V. et al. Increased expression of hypoxia-inducible factor 1α in type i
and type ii endometrial carcinomas. Mod. Pathol. 20, 35–43 (2007).

109. Harvey, K. F., Zhang, X. & Thomas, D. M. The Hippo pathway and human cancer.
Nat. Rev. Cancer 13, 246–257 (2013).

110. Yuan, T. & Cantley, L. PI3K pathway alterations in cancer: variations on a theme.
Oncogene. 27, 5497–5510 (2008).

111. Goldman, M. et al. The UCSC cancer genomics browser: update 2015. Nucleic
Acids Res. 43, D812 (2015).

112. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human
cancers. Nat. Genet. 45, 1127–1133 (2013).

113. Zhang, W., Johnson, N., Wu, B. & Kuang, R. Signed network propagation for
detecting differential gene expressions and DNA copy number variations. In
Proceedings of the ACM Conference on Bioinformatics, Computational Biology and
Biomedicine 337–344 (ACM, 2012).

114. Kidd, B. A., Readhead, B. P., Eden, C., Parekh, S. & Dudley, J. T. Integrative
network modeling approaches to personalized cancer medicine. Personal. Med.
12, 245–257 (2015).

115. Dimitrakopoulos, C. M. & Beerenwinkel, N. Computational approaches for the
identification of cancer genes and pathways. Wiley Interdiscip. Rev. Syst. Biol.
Med. 9 (2017).

116. Zhang, W. et al. Network-based isoform quantification with rna-seq data for
cancer transcriptome analysis. PLoS Comput. Biol. 11, e1004465 (2015).

117. Tseng, Y.-T. et al. IIIDB: a database for isoform-isoform interactions and isoform
network modules. BMC Genomics 16, S10 (2015).

118. W, L. et al. Pushing the annotation of cellular activities to a higher resolution:
Predicting functions at the isoform level. Methods 93, 110–118 (2016).

119. Sultan, M. et al. A global view of gene activity and alternative splicing by deep
sequencing of the human transcriptome. Science 321, 956–960 (2008).

120. Vazquez, A., Rual, J.-F. & Venkatesan, K. Quality control methodology for high-
throughput protein-protein interaction screening. Netw. Biol. Methods Appl. 781,
279–294 (2011).

121. Hosur, R. et al. A computational framework for boosting confidence in
high-throughput protein-protein interaction datasets. Genome Biol. 13, R76
(2012).

122. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

123. Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis.
Genome Res. 15, 1451–1455 (2005).

124. Petegrosso, R., Zhang, W., Li, Z., Saad, Y. & Kuang, R. Low-rank label propagation
for semi-supervised learning with 100 millions samples. Preprint at https://arxiv.
org/abs/1702.08884 (2017).

Role of network-based analytics in precision oncology
W Zhang et al.

14

npj Precision Oncology (2017) 25 Published in partnership with The Hormel Institute, University of Minnesota



125. Tian, Z. & Kuang, R. Global linear neighborhoods for efficient label propagation.
In Proceedings of the 2012 SIAM International Conference on Data Mining
863–872 (SIAM, 2012).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2017

Role of network-based analytics in precision oncology
W Zhang et al.

15

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2017) 25

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Network-based machine learning and graph theory algorithms for precision oncology
	Introduction
	Biomedical and molecular networks
	Network-based analysis of personal genomic profiles
	Model-based integration of whole-genomic profiles and a network
	Preprocessing integration to detect network-based features
	Post-analysis of oncogenic alterations in networks
	Comparison of the methods

	Network-based methods for drug repositioning
	Graph connectivity measures
	Link prediction models
	Network-based classification methods
	Comparison of the methods

	Network-based analysis of TCGA mutation data and a case study on ovarian cancer
	Discussion
	Future directions
	Acknowledgements
	Author contributions
	Competing Interests
	ACKNOWLEDGMENTS




