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Computational Engine for a Virtual Tissue
Simulator

Carole Hayakawa1,2, Jerome Spanier2, and Vasan Venugopalan1,2,3

1 Dept. of Chemical Engineering and Materials Science,
University of California, Irvine, CA
hayakawa@uci.edu

2 Laser Microbeam and Medical Program, Beckman Laser Institute and Medical
Clinic, University of California, Irvine, CA

3 Dept. of Biomedical Engineering, University of California, Irvine, CA

We have developed a computational platform that simulates light transport in
tissue in support of biomedical optics research. Although in its initial stage
of development, this platform is being used to answer important questions
regarding the detection of tissue changes, and the optimal design and posi-
tioning of optical probes to ‘interrogate’ the tissue best. We provide answers
to such questions by applying perturbation and midway surface Monte Carlo
techniques. Derivation of these methods makes rigorous use of the radiative
transport equation which is essential if the methods are to provide accurate
solutions for highly complex media such as biological tissue.

1 Introduction

Computational tools for modeling radiative transport in biological tissues have
played a vital role in the development of optical techniques for the diagnosis
and therapeutic treatment of tissues. These tools aid in the design of optical
probes to detect noninvasively tissue transformations attributed to cancer
and other abnormalities. To date, models of tissue have been confined to
very simple geometries such as homogeneous and layered media. Recently,
however, there is evidence that optical signals provided by multiply scat-
tered light are sensitive to changes in tissue structure and composition on the
mesoscopic (0.1–1mm) spatial scales [FOV+03, KWR+03, MYLK05]. This
realization has driven the need to (a) model tissue with greater spatial re-
finement, (b) understand the detectability of specific tissue changes, and (c)
determine the tissue regions from which the detected light is remitted; i.e.,
the spatial and angular distribution of the light propagating from source to
detector.
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We are addressing these needs by developing a virtual tissue simula-
tor (VTS). This computational platform allows the user to specify a probe
configuration and define a voxelized tissue representation. A variety of probe
configurations will eventually be incorporated. Here, we focus on one consisting
of a fiber-optic source and detector at a fixed separation. The voxelized tissue
representation can be provided from images provided by histology, CT or MRI.
For a specified probe configuration and tissue definition, the user can run a
conventional Monte Carlo simulation to model light transport through this
system. The VTS also provides perturbation Monte Carlo capabilities that can
be used to determine the change in the detected signal due to small changes
in tissue structure and/or composition. Finally the VTS incorporates midway-
surface Monte Carlo methods that couple forward and adjoint simulations
at an intermediate surface to provide a spatial map of photon propagation
from source to detector. Both perturbation and midway-surface Monte Carlo
methods provide gains in efficiency and accuracy over conventional Monte
Carlo methods.

The long-range goals for the VTS include the ability to solve inverse
problems of two types. First, if a particular change in the detected optical
signal is detected by a specific probe, we would like to determine the changes
in the optical properties of the tissue that produced the optical signal change.
We have already demonstrated the use of perturbation and differential Monte
Carlo methods [Hay02, HS04, SYHV07] to solve this type of inverse problem
and plan to extend this method to systems in which the tissue region is
voxelized. Second, if we wish to target a specific tissue region, we would like
to determine the probe design characteristics and probe placement that would
optimally interrogate the targeted tissue region. Probe parameters such as the
radius, numerical aperture or orientation of the source and detector fibers,
source-detector (s-d) separation, and relationship of probe to target region
can be varied to enhance detection of target tissue changes. Robust forward
problem simulations are an essential part of accurate inverse problem solutions.
With these ultimate goals in mind, we concentrate in this paper on the forward
models for each of these inverse problems.

2 Monte Carlo Methods for Radiative Transport

The development of a Monte Carlo simulation of light transport in tissue
follows from a probability model derived directly from the analytic radiative
transport equation. This equation describes the physics of the problem and the
probability model defines the probability space needed to solve the problem
using Monte Carlo simulations. In the next sections, we present the linkages
between the analytic and probabilistic formulations needed to establish the
equivalence of these two formulations. The theoretical foundations presented in
§2.1 support the Monte Carlo simulations that form the computational engine
of the VTS.
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2.1 Conventional Monte Carlo

The analytic model describing light transport through tissue is the radiative
transport equation (RTE). In a closed, bounded subset D of R3, the integro-
differential form of the RTE is

∇ · ΩΦ(r,Ω) + µt(r)Φ(r,Ω) = µs(r)
∫

4π

p(Ω′ → Ω)Φ(r,Ω′) dΩ′ + Q(r,Ω)

(1)
where Φ(r,Ω) is the photon radiance, with r and Ω representing position and
unit direction vectors, respectively. µt(r) = µs(r)+µa(r) is the total attenuation
coefficient, µs(r) is the scattering coefficient, µa(r) is the absorption coefficient,
p(Ω′ → Ω) is the scattering phase function, and Q(r,Ω) is the internal source
function. A unique solution Φ(r,Ω) is assured for all r ∈ D,Ω ∈ S2 by
specifying appropriate conditions on the boundary ∂D.

Detectors are often placed within the tissue system to measure a system
response. For example, this system response could consist of reflected and/or
transmitted light using of one or more detectors. The quantity describing the
system response I in the context of the analytical model is

I =
∫

Γ

h(r,Ω)Φ(r,Ω)drdΩ (2)

where h is a known ‘detector’ function, Φ is the solution to Eq. (1) and Γ is
the phase space. Suppose, for example, that the amount of energy absorbed
within a detector occupying a subregion V of phase space is of interest. In this
case, the detector function is defined by h(r,Ω) = µa(r)

µt(r)
χV (r,Ω) where

χV (r,Ω) =
{

1 for (r,Ω) ∈ V
0 for (r,Ω) /∈ V (3)

and the integral in Eq. (2) measures the amount of photon absorption in the
volume V . With this definition of h, I can be estimated as the ratio of the
total number of photons absorbed in V and the total launched from the source.
To represent a detector on the surface of the tissue measuring reflectance/
transmittance, the same formalism contained in Eqs. (2) and (3) can be used.
In this case, the volume V is treated as an infinite absorber outside of the
tissue whose intersection with Γ is the surface of the detector.

The Monte Carlo solution of Eq. (1) is captured by a random variable ξ
defined on the sample space of all random walks Ω whose expectation is

E[ξ] =
∫

Ω

ξ dµ = I (4)

where µ is the analog measure that captures the physical model faithfully
and I is given by Eq. (2). Details regarding such constructions may be found
in [SG69].



434 C. Hayakawa et al.

2.2 Perturbation Monte Carlo

Once a tissue system of interest is defined within VTS and a Monte Carlo
simulation is executed to estimate a desired system response I, the impact
on I of changes in the tissue structure and/or composition can quickly be
determined using perturbation Monte Carlo (pMC). We briefly review the
pMC method next; details can be found in [Hay02, HS04, SYHV07, HSB+01].

Perturbation Monte Carlo provides radiative transport solutions for mul-
tiple systems that can be expressed as a perturbation of a baseline system
using a single set of random walks. A set of photon biographies is generated
within a baseline tissue system of specified tissue properties. Using pMC, the
change to the system response Î = I +∆I due to perturbations in the optical
properties of the baseline system can be determined. This is done by appro-
priately modifying the random variable used to estimate the reflected light in
the baseline Monte Carlo simulation. The pMC method provides estimates
of the responses in a ‘perturbed’ system with a computational cost that is
orders of magnitude smaller than that required to run independent Monte
Carlo simulations. In addition, the positive correlation between the baseline
and perturbed system responses enables pMC to capture small changes ∆I in
the system response with a much higher precision than would be obtained with
independent simulations. The use of pMC can enable VTS users to determine
rapidly the degree to which a diagnostic or therapeutic measurement will be
sensitive to changes in tissue properties.

The pMC method can be described within a probability model in terms
of the pair of random variables ξ, ξ̂ where ξ is the system response of the
baseline tissue system and ξ̂ is the response in the perturbed tissue system.
The derivations necessary to make this formulation correct are based on the
identity ∫

P

ξ̂ dµ =
∫

P

ξ dµ̂ (5)

where
ξ̂ = ξ

dµ̂

dµ
(6)

and µ is the analog probability measure based on the baseline optical properties.
The measure µ̂ incorporates the analog measure except in the perturbed region,
where it uses the optical properties assumed for that region. The Radon-
Nikodym derivative (dµ̂/dµ) expresses how the analog random variable ξ must
be modified to produce an unbiased estimator ξ̂ of the optical response in
the perturbed system. Explicit formulas derived from Eq. (6) may be found
in [Hay02, HSB+01].

We apply the pMC method to study dysplasia within epithelial tissue. In the
initial stages of epithelial tissue dysplasia, cells within the epithelium adjacent
to the basal lamina exhibit a larger nucleus to cytoplasm ratio (see Fig. 1)
in which the scattering of light is increased by a factor of three [CAM+03,
CFMRK05]. Our interest is in determining how the placement of the probe on
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the tissue surface relative to these dysplastic regions effects our ability to detect
these changes. The baseline tissue is modelled as an epithelial region atop a
stromal region with an undulating basal lamina interface. The entire tissue is
divided into uniform voxels measuring 100µm × 100µm in the x-z plane. The
voxelized approximation of the undulating interface is shown with white line
segments. The optical properties of the two tissue regions are typical of normal
epithelial/stromal tissue [CAD+04]: for the epithelial region, µa = 0.12/mm,
µs = 2.8/mm with g, the average cosine of the scattering phase function, set
to 0.97 and n, the refractive index equal to 1.4. The stromal region optical
properties are: µa = 0.09/mm, µs = 17.5/mm, g = 0.8 and n = 1.4. The probe
configuration consists of a source and detector each with 200µm radius and
0.37 numerical aperture positioned 1 mm apart on the tissue surface. To model
the initial stages of dysplastic transformation, one voxel within the epithelial
region and positioned atop the two-region interface at x = 0.45 mm (outlined
in black) is considered to be ‘dysplastic’ and assigned a scattering coefficient
that exceeds that of the baseline tissue by a factor of 3. The probe is positioned
so that the voxel with respect to the x-axis is approximately midway between
source and detector: the source is centered at x = 0mm and the detector at
x = 1mm. This placement is chosen because conventional wisdom suggests
that the probe source and detector should straddle the target region.

Fig. 2 displays the detected reflected signal as a function of time, R(t), for
both the baseline tissue system and for this system with the dysplastic voxel
at x = 0.45mm atop the two region interface (as shown in Fig. 1). The two
plots are visually indistinguishable. This leads us to the conclusion that this
particular placement of the probe relative to the voxel exhibiting dysplasia is
insensitive to this pre-cancerous tissue transformation.

0.5

1.0

0

1.5 0−0.5 0.5 1.0 1.5
x (mm)

detector

z 
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m
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epithelium

basil lamina

stroma

Fig. 1. Schematic of the tissue definition with upper epithelial and lower stromal
regions separated by an undulating basal lamina interface. The white superimposed
grid identifies the 100 µm×100 µm voxelization. The solid black box atop the interface
designates a dysplastic voxel in which the scattering is increased three-fold.
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Fig. 2. Time-resolved reflectance for the baseline tissue system and for the perturbed
system with a dysplastic voxel at lateral position x = 0.45mm atop the two region
interface with the probe source and detector centered at x = 0mm and x = 1mm,
respectively.

The absence of a significant change in the detected optical signal due to
the appearance of the dysplastic voxel can be better understood if one has
knowledge of how the light propagates from the source, through the tissue,
to the detector. To date, available techniques to provide such information
have been based mainly on the diffusion approximation to the radiative trans-
port equation [BOCY97, FZC95, PAEWO95, SHL93]. However, the validity
of diffusion-based models is compromised when: (a) s-d separations are small
or (b) the tissue absorption is comparable to or greater than scattering. In ad-
dition, these models cannot, of course, provide transport-theoretic quantitative
information.

We have recently developed a novel Monte Carlo method that couples
forward and adjoint simulations to generate the spatial distribution of the
migration of light from source to detector [HSVed]. This map provides valuable
information regarding the relationship between a specific probe configuration
and placement and the resulting tissue region that can be interrogated. These
interrogation density maps are faithful to the radiative transport equation and
therefore provide quantitative measures of the contribution of different tissue
regions to the optical signal.

2.3 Midway Surface Monte Carlo

The magnitude and spatial extent to which an optical probe interrogates
the tissue system under examination is of great interest when designing a
diagnostic technique. For example, in the case of epithelial dysplasia considered
above, we would like to determine the probe position on the tissue surface that
would best interrogate the dysplastic voxel. A map that depicts the migration
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of the light from the source to the detector would aid in the probe placement.1

To generate such a map, each voxel within the tissue representation is treated
as a ‘target’ subvolume. Conventional Monte Carlo methods could be used
to select those photon trajectories that have migrated from source to target
region to detector either in a forward or adjoint simulation. However, when the
source and detector are each small relative to the target subvolume, forward
or adjoint simulations used alone engender low statistical signal-to-noise ratios.
Such a situation is exceedingly common in biomedical optics.

Our approach to bypass this dilemma, is to break this problem into two
components each of which can be determined rapidly through a Monte Carlo
simulation. First we determine (a) the probability of photon visitation from
the photon source to the target subvolume, P (V ) (‘target visitation’), and
then (b) the probability of photon detection conditioned by target visitation,
P (D|V ), (‘detection given target visitation’). These two probabilities can be
combined using Bayes’ Theorem to provide the joint transport probability of
‘target visitation and detection’:

P (V ∩D) = P (V ) · P (D|V ). (7)

We use a conventional Monte Carlo simulation to determine P (V ) for every
voxel in the VTS representation of the tissue. This not only provides an
estimate of the P (V ) term in Eq. (7), but also a spatially-resolved map of the
absorbed or scattered light distribution within the tissue. To determine the
second factor P (D|V ), we utilize an adjoint simulation to increase efficiency.
This is done by modifying a generalized reciprocity principle that converts
P (D|V ) to a coupled forward-adjoint computation at the ‘midway’ surface of
the target subvolume.

‘Midway’ forward-adjoint coupling methods [Cra96, SJH98, UHK01, Wil91]
have been successfully applied to increase efficiency in estimating detector
responses. In essence, a midway surface between the source and detector is
defined such that all detected radiation must pass through this surface. The
coupling of a forward and adjoint simulation at this intermediate surface
determines the detected response more efficiently, particularly in problems that
involve deep penetration. The midway method is made rigorous by utilizing
generalized reciprocity theory for transport equations.

We first present the analytical model describing generalized reciprocity and
then show how it is modified to allow evaluation of a conditional probability
to provide the desired interrogation maps. The intermediate derivations are
presented to clarify the final application.

Generalized Reciprocity

Generalized reciprocity establishes the equivalence between the execution of
a ‘forward’ Monte Carlo simulation from a source to detector and an adjoint
1 Note that a solution of the radiative transport equation alone does not provide

such a map because it omits any description of a detector.
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simulation for ‘backward-propagating’ photons from the detector (adjoint
source) to the source (adjoint detector). This result can be appreciated by first
considering the equation adjoint to Eq. (1):

− ∇ · ΩΦ∗(r,Ω) + µt(r)Φ∗(r,Ω)

= µs(r)
∫

4π

p(Ω → Ω′)Φ∗(r,Ω′) dΩ′ +Q∗(r,Ω) (8)

where Φ∗ is the adjoint photon radiance and Q∗ is any adjoint source function.
Let VM be an arbitrary closed, bounded subset of D and ∂VM its surface. If
we multiply the radiative transport equation [Eq. (1)] by Φ∗, Eq. (8) by Φ,
subtract the latter product from the former and integrate the difference over
all locations and directions within VM , we get∫

VM×S2
∇ · ΩΦΦ∗ =

∫
VM×S2

[QΦ∗ −Q∗Φ] (9)

where the variables of integration are suppressed but are understood to be
(r,Ω) with the spatial vector r ranging over the volume VM . Using Green’s
theorem to replace the volume integral on the left side of Eq. (9) by a surface
integral leads to:∫

∂VM×S2
nM · ΩΦΦ∗ =

∫
VM×S2

[QΦ∗ −Q∗Φ] (10)

where nM is the outward-pointing unit vector normal to ∂VM . Eq. (10) is often
referred to as the global reciprocity theorem [WE77]. Note that if VM = D and
the boundary conditions at the air-tissue interface cause the integral on the left
hand side to vanish, we then arrive at the ‘classical’ statement of reciprocity:∫

VM×S2
[QΦ∗ −Q∗Φ] = 0. (11)

Eq. (11) states that one can obtain the same transport estimates by performing
either a forward simulation from the source Q to detector Q∗ or by performing
an adjoint simulation from adjoint source Q∗ to adjoint detector Q.

While Eq. (10) is valid generally, it becomes particularly useful when VM

encloses either the source or the detector region. The surface of VM , ∂VM , can
then be identified as a ‘midway’ surface between source and detector: every
photon that is detected from the source must intersect the midway surface.
The function ΦΦ∗ that occurs in Eq. (10) has been called a ‘contributon’
response function [Cra96, SJH98, UHK01, Wil91, WE77, SJH99, UH01] and
can be used to define a function that characterizes transport from source
to detector. If VM encloses the source region, and Q∗ = 0 in VM , the left
hand side of Eq. (10) is positive, and equals

∫
VM×S2 QΦ

∗, which is the adjoint
representation of the detector response. If VM encloses the detector region,
and Q = 0 in VM , the left hand side of Eq. (10) is negative and equals
− ∫

VM×S2 Q
∗Φ, which is the forward representation of the detector response.
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P (V ∩ D) Maps

We extend this generalized reciprocity theory to determine the conditional
probability P (D|V ) for an arbitrary target subvolume V enclosing neither the
source nor the detector. Since we are interested not in the interrogation of
surfaces but rather of subvolumes within a tissue domain, we slightly modify
the midway method to facilitate the estimation of the conditional probability
P (D|V ). We launch photons at a physical source Q that propagate until they
exit the phase-space. Only photon trajectories that have intersected the target
subvolume V contribute to the estimate of P (V ). These ‘visiting’ photons
generate an induced source internal to V that produces a surface source Q∂V

on ∂V. This surface source is then paired with the adjoint radiance on ∂V in a
bilinear integration that produces an estimate of P (D|V ). The product of the
two probabilities P (V ) and P (D|V ) defines the probability that subvolumes
within the phase-space are both visited and detected. We use this product
to provide the key quantitative information used to assess and compare the
characteristics of potential probe designs.

Let QV denote the source induced in V by photons launched according to
the original optical source function Q(r,Ω). This induced source internal to V,
QV, generates a source on ∂V. If we merely replace the source function Q by
the source function QV(r,Ω) and repeat the derivation that led to Eq. (10),
we obtain ∫

∂V×S2
nV · ΩΦ̃Φ∗ =

∫
V×S2

[
QVΦ

∗ −Q∗Φ̃
]
, (12)

where the radiance Φ̃ is the solution of the RTE [Eq. (1)] with the indu-
ced source function QV. Recall, Q∗(r,Ω) is a detector function; as such
Q∗(r,Ω) = 0 unless r is on the boundary of the tissue and Ω points outward .
Replacing Q∗(r,Ω) by Q∗(r,−Ω), therefore, defines an adjoint source pointing
into the tissue. This in turn generates an adjoint radiance, Φ∗(r,−Ω) inside
the tissue. This reverses the direction in the arguments of Q∗ and Φ̃∗ in
Eq. (12), which then reads∫

∂V×S2
nV · ΩΦ̃(r,Ω)Φ∗(r,−Ω) =

∫
V×S2 [QV(r,Ω)Φ∗(r,−Ω)−

Q∗(r,−Ω)Φ̃(r,Ω)
]

=
∫

V×S2 QV(r,Ω)Φ∗(r,−Ω) (13)

since Q∗ = 0 inside V. The estimation of the right hand side of Eq. (13) is
performed using an adjoint simulation and provides the detected response due
to the induced source QV, or P (D|V ).

The forward simulation of photons exiting an arbitrary target subvolume V
is used to determine P (V ) and is matched at ∂V with the adjoint simulation
estimate of P (D|V ). The joint probability of visitation and detection P (V ∩D)
[Eq. (7)] is formed by the product of these two factors.
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Fig. 3. Interrogation density P (V ∩ D) map of the baseline tissue system with a
log-scale gray scale bar. The interface between the epithelial and stromal layers is
shown using white line segments. A dysplastic voxel atop the interface at x = 0.45 mm
with scattering increased threefold is shown in solid black.

Fig. 3 displays the resulting P (V ∩ D) map using our baseline epitheli-
um/stroma tissue definition. Each voxel (shown by the superimposed grid in
Fig 1) is treated as a target subvolume and the joint probability P (V ∩D) is
determined. Notice that the detected light field does not experience significant
lateral dispersion within the epithelial region during its propagation from
source to detector. This is due presumably to the high scattering asymmetry
coefficient g and low scattering coefficient µs in that region whose combined
effect is to produce minimal lateral dispersion. This behavior below the source
and detector within the epithelial region suggests that perturbations within
this region, in particular the voxels around positions x = 0 and x = 1, would
have the greatest effect on the detected signal. On the other hand, the voxels
midway between source and detector above the interface are fairly dark indica-
tive of positions of small perturbative effect. This explains why the dysplastic
voxel positioned at x = 0.45 mm did not noticably perturb the detected optical
signal.

Based on this analysis, we reposition the probe to place the detector directly
above the dysplastic voxel: the source is now centered at x = −0.5mm and
the detector at x = 0.5mm, while the dysplastic voxel remains atop the two
region interface at x = 0.45mm. Fig. 4 displays R(t) for the baseline tissue
system with and without the dysplastic voxel. With the new probe position, the
change in the detected signal due to the increased scattering in the dysplastic
voxel can now be seen. Notice also the strong correlation between the baseline
and perturbed plots. The small variations of the perturbed plot from the
baseline capture the effect of the change with much more accuracy than if
independent Monte Carlo simulations were used for the baseline and perturbed
systems.
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Fig. 4. Time-resolved reflectance for the baseline tissue system and for the perturbed
system with a dysplastic voxel at lateral position x = 0.45mm atop the two region
interface with the probe source and detector centered at x = −0.5mm and x =
0.5mm, respectively.

3 Summary

We have completed the initial development of the computational engine of a
virtual tissue simulator that incorporates efficient forward and adjoint Monte
Carlo simulations in a voxelized representation of tissue. This new platform
provides the biomedical optics researcher with a means to analyze better the
size and location of detectable tissue anomalies and to design and position
optical probes to capture these changes effectively. The engine is currently
comprised of conventional, perturbation, and midway surface Monte Carlo
techniques. In contrast to many other available methods, ours are radiative
transport equation rigorous and therefore provide more accurate models that
are essential for representing complex media such as biological tissue.

A robust forward model representation is a vital component of an inverse
problem-solving capability. By adding differential Monte Carlo to the VTS, we
plan next to extend the VTS platform to solve inverse problems. The first step
in this direction will enable quantitative determination of optical properties in
target regions based on measurements from a given probe design. For example,
given baseline and perturbed measurements as shown in Fig. 4, we would like
to determine what change in the absorption or scattering properties of the
dysplastic voxel caused the perturbed measurement. Second, probe design
parameters will be determined that best interrogate specific target regions
within the tissue. Generating the change to the P (V ∩D) maps as a function
of probe design parameters will enable inverse solutions that identify the best
probe configurations to target selected regions within the tissue.
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