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Abstract

A Global Finite Element Reverse Approach for Identifying the Material Elasticity and Current
State of Stress

by

Mehrzad Tartibi

Doctor of Philosophy in Engineering – Mechanical Engineering
and the Designated Emphasis

in
Computational Science and Engineering

University of California, Berkeley

Professor Kyriakos Komvopoulos, Co-chair

Professor David J. Steigmann, Co-chair

The mechanical response of solids exhibiting complex material behavior has traditionally been
determined by fitting constitutive models of specified functional form to experimentally derived
force-displacement (stress-strain) data. However, characterizing the nonlinear mechanical behav-
ior of complex materials requires a method of quantifying material behavior that is not restricted by
a specific constitutive relation. To this end, a new method, termed the reverse updated Lagrangian
finite element method (RULFEM), which is based on the three-dimensional displacement field of
the deformed solid and finite element method, is developed for incrementally linear materials. In
RULEFM, the body is discretized by finite elements and its material properties are determined
element-wise, i.e., the properties are assumed to be uniform at the element level and may vary
from one element to another. The validity of RULFEM is demonstrated by three noise-free nu-
merical examples and three numerical examples with various input noise levels. Two methods to
assess the global and local errors of the results due to error in the measured input data (noisy data)
are also discussed.

The life expectancy of a solid is traditionally predicted by assessing its expected stress cycle
and comparing it to the experimentally determined stress state at failure. The accuracy of this
procedure is often compromised by unforeseen extremes in the loading cycle or progressive ma-
terial degradation. Often residually stressed part can either produce longer or shorter lifespans
than predicted. Thus determination of the current state of stress (i.e., the residual stress in the ab-
sence of external loading) and material properties is particularly important. Typically, the material
properties of a solid are determined by fitting the experimental data collected from the measured
response to deformations of a stress-free configuration. However, the characterization of the me-
chanical behavior of a residually stressed body requires, in principle, a method that is not restricted
to specific constitutive models. Complementing RULFEM [28], a new method, called estimating
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the current-state-of-stress (ECSS) is developed in this work. Similar to RULFEM, ECSS also uses
as input three-dimensional full-field displacement and force data of the body, which is perturbed
by small displacements. ECSS complements the first step of the incremental RULFEM method. It
generates the nodal current-state-of-stress (or residual stress in the absence of external tractions) as
well as the incremental elasticity tensor pertaining to each of the finite elements used to discretize
the body. The ECSS method is used to simulate two noise-free examples.

The linear dynamic response of a solid body has been used for material identification and even
defect detection in low-damping (negligible viscoelastic behavior) materials. RULFEM and ECSS
input full-field data, obtained from the statically perturbed body, are used to determine the initial
state of stress and the current material elasticity tensors. A new formulation of ECSS, called dy-
namically estimating residual stress (DERS) is developed in the fifth chapter of this dissertation.
This is based on three-dimensional full-field displacement and force data of the dynamically per-
turbed body. In addition to nodal residual stress tensors and element-wise incremental elasticity
tensor, DRES generates element-wise material density of the discretized body.
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Chapter 1

Introduction

1.1 Motivation
Under what external forces does a solid part fail? What is the consequence of this failure?

A vast amount of effort and resources are continuously spend to address these questions. Maxi-
mum principle stress and, von Mises criteria are among the most commonly used material failure
criteria, where material fracture and yielding are commonly assessed by components of local stress
tensors. Hence, stress field determination is essential. The linear momentum balance equation re-
lates the applied forces, such as body, inertia, and surface traction, with the divergence of the stress
tensor. A material constitutive model, relating stress and strain, allows solving for the displacement
field and, in turn, the stresses throughout the body. Such constitutive material models are typically
defined based on the experimental response of the material. Isotropic linear elastic, orthotropic,
and anisotropic, are common material models. A more recent class of constitutive models, known
as hyperelastic, relates stress with a material strain-energy function. To this end, defined constitu-
tive models are incapable of determining the current-state-of-stress (CSS) (in particular known as
residual stress in the absence of external loading) in a solid body. High demand for more durable,
sophisticated and reliable parts has motivated the use of more complex material design, geometry,
manufacturing processes and unknown loading cycle. Despite development of advanced numerical
methods, such as finite element analysis, finite difference, and boundary elements, estimating the
stress field in solid bodies is a challenging task. Extraction of accurate material models from stan-
dard experimental procedures does not guarantee accurate prediction of stress tensors in the actual
part, or estimation of the stresses experienced by the body during manufacturing. Critical machin-
ery solid components, such as plane and jet engine parts, are tested under the harshest loading
cycles. Though, such prototype testings validate the failure criteria and provide some durability
measures, they are incapable of measuring the induced stresses due to manufacturing processes
and justifying statistical variations. As a result, often unrealistic safety factors are introduced to
assure safe operation of the part. To minimize these safety factors and because of skyrocketing
prototype testing costs, mathematical models to extract both local material constitutive models and
stress tensor fields from prototype testing, or standard testing of complex composite materials must
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Figure 1.1: A uniaxial tensile experiment setup with specimen made of fresh Longissimus dorsi
skeletal muscle tissue harvested from three month old female pigs [27].

be developed.
Mechanical capabilities and, hence, mechanical properties of many types of soft tissue af-

fect their physiological functions. For instance the mechanical properties of healthy arteries, my-
ocardium, tendon, ligament, and skin tissues may differ from those of unhealthy tissues. Muscle
tissues are directional viscoelastic solids with nonlinear behavior in its fiber directions. Takaza et
al. [27] suggested an anisotropic material model for muscle tissues. The muscle specimens were
uniaxially stretched from their assumed stress-free configurations Fig. 1.1. The computed stress
assumed uniform fibrous distribution throughout the specimen cross section and specimens with
different fiber directions were tested. Though this study produced interesting and useful results,
heterogeneity in biological tissues and the assumptions involved in this study limit the use of the
applied methodology to other muscular tissues. Moreover, the stress-free condition is not fully
proven to be the case in many tissues in the body.
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Vaishnav and Vossoughi (1987) [30] were the first to study the existence of residual stresses
in soft tissues. Many advanced hyperelastic type material constitutive models do not take into
account residual stresses organs and tissues, such as myocardium and aorta [12], although residual
stresses have been considered in a few studies [32].

Holzaphel and Ogden (2009) [13] conducted a thorough hybrid study measuring residual stress
in the three layers of arteries (i.e., intima, media, and adventitia). The longitudinal and cylindrical
slices of the artery were measured before and after cutting. Each layer was treated as a uniform
material following an incompressible isotropic material constitutive model. From the measured
dimensions and based on assumptions, the residual stresses throughout each layer were computed.
This destructive residual stress measurement technique is known as the slicing technique, orig-
inally employed for metallic parts [24]. The heterogeneity, assumptions involved in this study,
in vitro specimen condition, and destructive nature of this method motivate the development of
nondestructive methods without any assumptions, which are purely based on measured data.

1.2 Material Identification Techniques
Accurate determination of material properties used in mathematical models is critical to

the calculation of the stress and strain fields in solids of various shapes subjected to loadings more
complex than those used in standardized mechanical tests. According to established standards and
testing protocols, material parameters are usually extracted from experimental measurements us-
ing closed-form solutions for simple tests, such as uniaxial tension and four-point bending. The
measured quantities are typically global forces and displacements, with local stress-strain fields
assumed to be uniform through the gauge section of the specimen. The underlying assumption
in this traditional approach is that the effect of the specimen geometry on the measured material
properties is insignificant; however, this ideal situation is not always representative of the true ma-
terial behavior. For example, the machining process required to produce a part with the desired
shape may significantly affect the material properties. Moreover, standardized tests accounting for
intrinsically heterogeneous or nonlinear behavior (e.g., biomaterials, nanocomposites, and rubbery
materials) and changes in the material properties due to extrinsic factors (e.g., fabrication, envi-
ronment, and aging) are lacking. Thus, it is necessary to introduce more sophisticated methods for
determining the material response under real loading and environmental conditions.

Progress in imaging technology has minimized the need for standardized tests. The increased
interest in localized material behavior has led to the development of several hybrid methods, which
are based either on full-field or boundary-displacement measurements and use various numerical
schemes to solve the continuum-based equations (i.e., balance of linear and angular momentum)
and then determine the unknown material parameters. Traditional numerical techniques, such as
the finite element method (FEM) and boundary element method, provide stress and strain fields
for a given body force and set of boundary conditions, using constitutive relations with set mate-
rial parameters. Hence, determination of material parameters requires the solution of an inverse
problem. Inverse formulations for quasi-static linear elasticity with small perturbations can be
grouped in five major categories [1]: (1) FEM updating method (FEMU), (2) constitutive equation
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gap method (CEGM), (3) virtual field method (VFM), (4) equilibrium gap method (EGM), and (5)
reciprocity gap method (RGM). The governing equations in these methods are derived from the
balance of linear momentum, the principle of virtual work, the Maxwell–Betti reciprocity princi-
ple, and the total potential energy principle, using standard numerical techniques, such as the FEM
and finite differences method.

FEMU compares either the measured applied force field (FEMU-F method) or the measured
displacement field (FEMU-U method) with the corresponding predicted fields calculated by FEM
for a set of updated material parameters. Both FEMU-F and FEMU-U formulations are based
on the minimization of a scalar cost function obtained by applying a positive definite symmetric
weighting matrix to the difference vector of measured and calculated quantities. FEMU-F requires
full-field measurements, whereas FEMU-U requires only partially measured fields. Application
of FEMU has been confined to cases where material behavior is known a priori. The unknown
material parameters are then found by minimization of cost functions using the Gauss-Newton or
Levenberg–Marquardt methods for small or moderate problems and global optimization methods
(e.g., evolutionary algorithms) for larger problems. FEMU-U has been used to determine the
material parameters of bodies consisting of linearly elastic, anisotropic, orthotropic, elastic- plastic,
viscoelastic, and hyperelastic materials [1, 21].

CEGM is similar to FEMU. This method uses optimization functions to either implicitly or
explicitly compare measured with calculated fields. This comparison (referred to as the gap) mea-
sures the distance between an assumed stress field through the body and a stress field obtained for a
given constitutive model and full-field displacement measurement. Two types of cost functions are
typically defined: one that minimizes the stress field gap through the entire body, which can yield
at most three local material parameters per mesh discretization, and another function that mini-
mizes a weighted norm of the difference of measured and calculated displacement fields, which is
based on a priori assumed constitutive models [1, 2, 10]. Ladevèze et al. (1994) [18] performed
vibrational experiments to measure the displacement field and minimized a cost function relating
stress to displacement.

VFM relies on full-field displacement measurements to provide the strain field of the deformed
body. Unlike FEMU and CEGM, this method does not depend on the solution of a minimization
function to determine the material parameters of a chosen constitutive model. Instead, a set of
linearly independent equations is constructed, which are equal to the unknown material parameters.
Each of these equations requires a virtual displacement field and can only be obtained if the fourth-
order elasticity tensor is a linear function of the material parameters in order for the latter to be
decoupled from the geometrical parameters. Several methods have been developed to generate
virtual displacement fields yielding linearly independent equations. VFM applications to parameter
identification of constitutive equations include linear isotropic and anisotropic elasticity, nonlinear
anisotropic elasticity, viscoelasticity, and elastic-plastic deformation [1, 10, 9].

EGM estimates the damage in a body in terms of one elastic material parameter, which is
a function of position and decoupled from the stiffness matrix. This method also relies on the
minimization of a cost function to find the local material parameter and is a special case of VFM
because it uses full-field displacement measurements as an input. Therefore, EGM exhibits the
same drawbacks as VFM [1, 10].
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RGM relies on measured displacements and boundary tractions. In this method, a reciprocity
gap function is defined from the principle of virtual work using the Maxwell–Betti reciprocity
theorem, which requires the comparison of the actual state of unknown material parameters (based
on a priori assumed constitutive model and measured boundary displacement and traction fields)
and adjoint state (obtained from fictitious material parameters and a known perturbation) that yields
the corresponding displacement and force fields. The constructed functional is then solved for the
unknown material parameters and the interior displacement field. RGM can be regarded as a
variation of VFM. However, because there is no method for extrapolating the displacement field
from known boundary values, the RGM method discussed here has not been applied to material
parameter identification [1, 16].

A central commonality among the aforementioned material identification methods is the a pri-
ori assumption of a constitutive model and the use of a numerical analysis of mechanical balance
laws. Although these methods provide useful material parameter identification approaches, mod-
eling assumptions imposed in the case of unknown or damaged materials entail a high degree of
subjectivity and may yield biased results. All of the above mentioned methods rely on assumptions
about the constitutive relation that may not be optimum for the material under given conditions.
Moreover, none of the existing methods provides a means of estimating the overall error. In fact,
a systematic methodology to assess the selection of the constitutive model and the error in the
predicted parameters due to measurement errors has yet to be developed.

One of the objectives of this dissertation is to introduce a method that provides a reasonably
general framework for material identification problems without a priori assumptions about the con-
stitutive equations, provided the response exhibits incremental linearity (Chapter 3). The present
method solves an inverse problem and is based on the updated Lagrangian form of FEM; therefore,
it is referred to as the reverse updated Lagrangian finite element method (RULFEM). Similar to
most existing methods, RULFEM relies on FEM and full-field displacement measurements. How-
ever, it does not require a priori constitutive assumptions. Instead, it directly yields the tangent
elasticity tensor of each finite element. Because RULFEM generates a coefficient matrix of a linear
system of equations, which may have a high condition number, a small random error in the nodal
displacement measurements and/or traction vectors may generate erroneous results. Small mea-
surement errors are inevitable even with high-resolution imaging; thus significant errors may occur
in the solution of the inverse problem. However, the solution error can be assessed and bounded by
errors in the input measured vector fields. The presentation of the RULFEM theory is accompanied
by an implementation section where RULFEM is used to determine elasticity tensors. Both noise-
free (theoretical) and noisy (actual) measured displacement and force fields are used in numerical
examples to validate RULFEM method. In addition, the capability of RULFEM is evaluated by
numerical tools for calculating upper-bound errors.

1.3 Residual Stress Measurement Techniques
An objective in material selection is to ensure that a part will withstand a known loading cycle.

This aim cannot always be achieved by using material properties deduced from established stan-
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dards and testing protocols. Thus, prototype testing is often conducted to account for the unknown
effects of material processing, material handling, manufacturing processes, assembly processes,
and, most importantly, unknown loading distributions, magnitudes, and cycles. Such uncontrol-
lable effects are normally taken into consideration at the design stage by using empirical safety
factors. Accurate life prediction of an existing or new design depends primarily on knowledge of
(1) thermo-mechanical properties, (2) actual loading cycles, (3) current state of stress within the
body, and (4) stress or strain history. It is often not possible to measure, compute, and/or predict
(2) and (4), or to measure (1) and (3) throughout the body by nondestructively means. Thus, it
is necessary to introduce more sophisticated methods to determine the material response and the
current state of stress under real loading and environmental conditions.

Finite element analysis (FEA) is the most popular numerical method for computing stress fields
in solids. The efficacy of FEA depends strongly on constitutive models, loading conditions, and
the presumed state of stress at the selected reference configuration. Regardless of the method used,
life predictions can be compromised if the considered part undergoes unknown loading cycles, if
erroneous constitutive models are used, or if the residual state of stress is unknown. For example,
typical manufacturing processes, in particular welding and cold working, can affect the constitutive
material behavior via a self-equilibrated state of residual stress. This can either ameliorate or exac-
erbate the overall stress condition; in the latter case, failure may occur earlier than predicted. More
complicated examples are biological tissues, such as arteries and heart tissue, in which constitutive
models are derived from in vitro experiments wherein the unstressed configurations, if any, are
unknown.

Withers et al. [34, 35] and more recently Rossini et al. [24] have grouped residual stress
measurement techniques into destructive and nondestructive (Fig. 1.2). Some techniques are ap-
plicable to actual parts and others only to experimental specimens, such as cutouts, mock-ups and
test pieces. Destructive techniques can provide the local strains responsible for local stresses by
the controlled removal of material from the surface of the part, or by slicing and cutting the part
into pieces. Nondestructive techniques typically furnish physical parameters that are related to the
residual stress. Moreover, residual stresses can be classified into macro- and microscopic stresses,
with both types possibly existing in a part [24]. Macroscopic residual stresses are operative on a
scale larger than the grain size of the material, whereas microscopic residual stresses are operative
on the scale of a material grain or within a grain and are attributable to the presence of dislocations
or crystalline defects (Fig. 1.3).

Destructive measurement techniques, also referred to as mechanical techniques, are further
categorized into semi-destructive and destructive methods [24]. The more common of these meth-
ods are: (1) hole drilling method (HDM), a semi destructive method, which provides the residual
stress distribution in a specimen by fast or gradual removal of material at the center of a strain-
gauge rosette (Fig. 1.3 ) ; (2) ring-core method (RCM), a semi destructive method. This is an
"inside-out" version of HDM, wherein the deformation of the central region of a ring is measured
while an annular slot in the perimeter is being made; (3) deep hole method (DHM), a semi de-
structive method, which is performed by first drilling through the thickness of the component and
then measuring the hole diameter accurately. The residual stresses in the core are relaxed when
the material is trepanned out, permitting the measurement of deep interior stresses; (4) sectioning
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Figure 1.2: Residual stresses measuring techniques [24].

technique (ST), a destructive method in which the part is sectioned to release the residual stresses
through the cutting line. The axial deformation and curvature of the cut strip reveal the mem-
brane and bending (through thickness) residual stresses (Fig. 1.5); and (5) contour method (CM), a
recently invented four-step destructive technique (specimen cut, contour measurement, data reduc-
tion, and stress analysis) that produces a 2D stress map on a cut plane (Fig. 1.6). These methods
have been mainly developed to estimate residual stresses in metallic components. However, ST
has been applied to biological tissues, in particular to arteries, heart tissue, etc. [17, 23, 32, 12, 31].

Some of the nondestructive techniques entail the measurement of the elastic strain of atomic
lattice planes. One of the oldest techniques, X-ray diffraction, yields data only up to 5 µm below the
surface of a specimen. For deeper measurement, neutron diffraction has traditionally been adopted
[14]. More advanced neutron diffraction techniques are capable of probing up to 50 mm of steel
specimen [7]. Some other techniques take advantage of the influence of stress on the magnetic
properties of the material [15, 5]. While others monitor the influence of stress on conductivity
(eddy current) [4], acoustic sound speed [8], etc. Despite their vast applications, nondestructive
techniques are limited for measuring stresses in thick parts. For example, neutron diffraction yields
data to a maximum depth of 10 cm [24] (Fig. 1.7).

Nondestructive techniques require a calibration step prior to use; consequently, their accuracy
is material dependent. Typically a material parameter is related to the virgin mechanical properties
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Figure 1.3: Residual stresses arise from misfits, either between different regions of a material or
between different phases within the material. Examples of different types of residual macro- and
micro-residual stress are illustrated schematically. In each case the process is indicated on the
left, the misfit in the center and the resulting stress pattern on the right [33].

Figure 1.4: Conventional relaxation methods measure residual stress through incremental mate-
rial removal [22].
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Figure 1.5: Steps of sectioning technique (ST) [29].
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Figure 1.6: Traditional methods (left) use discrete deformation data and the contour method uses
a continuous map [22].

at a stress-free state. Thus, stress is related indirectly to the base mechanical properties. Similarly,
the destructive techniques rely on mechanical properties and the theory of elasticity to relate de-
formation to stress. Therefore, regardless of the residual stress measurement technique, accurate
knowledge of the mechanical properties of the part in question at the current state of the material
is necessary. However, the process history leading to the current state is largely unknown; thus,
the primary assumption on which these techniques are based is open to question. Moreover, the
existing techniques typically focus on measuring local stresses, or the stresses in certain directions,
yielding only partial information rather than the complete state of stress. Consequently they do not
provide the complete stress field throughout the body.

Consequently, another objective of this dissertation is to introduce a nondestructive inverse
FEA method, termed estimating current state of stress (ECSS), that ccan predict the current state
of stress at nodal points of the discretized body together with the elemental incremental elasticity
tensors (Chapter 4). The input data are obtained from linear static perturbations of the body. Since
the number of unknowns (i.e., nodal stress tensors and incremental elasticity tensors) are larger
than the total DOF of the discretized body, more than one linear perturbations are required. Oth-
erwise, ECSS shares the same characteristics and challenges with RULFEM. The ECSS method is
developed for two perturbation types.

The study presented in Chapter 5 shares the same objective as that presented in Chapter 4 for
the most part. However, the technique presented in Chapter 5 is limited to materials with negligible
damping (negligible viscoelastic characteristics). Moreover, the required data are collected from
dynamic perturbations. Hence, the method is termed as dynamically estimating residual stresses
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Figure 1.7: Penetration and the spatial resolution of the various techniques. The destructive and
semi destructive methods are colored grey [24].

(DRES). Although, DRES is based on a priori assumption of negligible damping, it not only gen-
erates the same information as ECSS, but also estimates the elemental density. If the number of
unknowns (i.e., nodal stress tensors, incremental elasticity tensors, and elemental mass density)
are larger than the total DOF of the discretized body, more than one dynamic perturbations are
required. DRES and ECSS are similar in formulation, and hence they both share the same charac-
teristics and challenges. However, ECSS is not limited to materials with negligible damping and
it does not require dynamic linear perturbations. Most importantly, ECSS predicts CSS of parts
subjected to unknown loading, whereas, DRES can only predict the residual stresses in the body.

1.4 Developed Methods
RULFEM requires one set of measured full-field displacements and one corresponding set

of measured tractions due to a small linear perturbation to determine local (element-wise) fourth-
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order tangent elasticity tensors without any a priori assumptions about a particular constitutive
model [28]. Similar measurements and solutions from subsequent linear perturbations generate
a set of tangent elasticity tensors for each finite element that can be used to develop constitutive
material models or directly used in forward FEA analysis. ECSS, however, requires at least three
sets of measured full-field displacements and three corresponding sets of measured traction to
determine the six components of nodal Cauchy stresses and local (element-wise) fourth-order in-
cremental elasticity tensors without any a priori assumptions about a particular constitutive model.
RULFEM can then be used in subsequent linear perturbations. Similar to RULFEM, ECSS does
not require a cost function or a virtual displacement field. The main limitation of both methods is
that each finite element is assumed to consist of a single uniform material.

As in the development of RULFEM [28] the development of the ECSS theory requires a thor-
ough knowledge of the updated Lagrangian finite element method (ULFEM) formulation and the-
ory of linear elasticity with initial stress under static loading. Though, a thorough presentation of
the linear elasticity theory of elastic bodies under static loading has been developed by Man et al.
[19] and Hogger et al. [11], part of Chapter 2 is devoted to present a brief review of the essential
relationships involved in the development of RULFEM and ECSS. For completeness, a concise
part of ULFEM is also included in Chapter 2. Chapter 3 presents the development of RULFEM
and how to assess measurement errors. Chapter 4 provides the development of ECSS for general
application to any materials. Chapter 5 demonstrates the details of developing ECSS for parts
with negligible damping. Though the main difference of the two methods developed in Chapters 4
(ECSS) and 5 (DRES) seems to be in their perturbation and measurement techniques, DRES is a
limited version of ECSS, with the only added advantage being its capability to yield element-wise
densities.
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Chapter 2

Basic Mechanics Aspects

2.1 Introduction
RULFEM [28] and ECSS rely on inverse FEM and use the theory of linear elasticity and

updated Lagrangian finite element method (ULFEM). Thus, a brief overview of these topics and
notations is essential, and helpful in the development of RULFEM and ECSS in the following
chapters.

2.2 Linearizion of the First Piola-Kirchhoff Stress
Let E3 be a three-dimensional Euclidean space and consider a body Ω of mass density of

ρ0 at rest in configuration R0

(
R0 : Ω→ E3

)
subjected to surface traction

◦
t acting on Γq0, and a

body force field
◦

b. The balance of linear momentum in the current configuration of Cauchy stress
◦

T
(
=
◦

T
)T

is:

div
( ◦
T
)

+ ρ0
◦

b = 0; (2.1)

and the boundary traction is:
◦
t =

◦

Tn (2.2)

where n is the exterior unit normal on the boundary of Γq0, see Fig. 2.1. The Cauchy stress
◦

T is the
residual stress when

( ◦
b,
◦
t
)

= (0, 0).
The set of second-order tensors and second-order symmetric tensors are denoted by Lin and

S ym, respectively, in particular, the second Piola-Kirchhoff stress, S ∈ S ym, and Cauchy stress,
◦

T ∈ S ym.
Suppose the body Ω occupies configuration R1 when it is subjected to a small perturbing trac-

tion t1 applied at Γq1 and boundary condition Γu1. The Cartesian components of the second Piola-
Kirchhoff stress tensor is estimated by [11, 19]:
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Figure 2.1: The solid body Ω shown in two configurations - reference configuration R0 with an
outward normal vector N and displacement and traction boundary conditions prescribed on Γu0

and Γq0, respectively, and the deformed configuration R1 with an outward normal vector n and
displacement and traction boundary conditions prescribed on Γu and Γq , respectively [28].
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SAB =
◦

SAB + LABCD [ECD] + O(ε2) (2.3)

where
◦

S is the second Piola-Kirchhoff stress at configuration R0, and is equal to the Cauchy stress
referred to the latter (i.e.,

◦

T =
◦

S). L0 : Lin→ S ym, is the fourth order incremental elasticity tensor
at configuration R0, and E = (H + HT )/2 is the symmetric part of the deformation gradient tensor

H =
∂u
∂X

, and epsilon os the norm of the incremental strain. In invariant tensor form, eq. (2.3) is:

S =
◦

T + L0 [E] + o (‖H‖) as H→ 0 (2.4)

Consequently, the first Piola-Kirchhoff stress, P, is:

P = F
( ◦
T + L0 [E] + o (‖H‖)

)
as H→ 0 (2.5)

where F = I + H is the deformation gradient. Further simplification of Eq. (2.5) yields:

P =
◦

T + H
◦

T + L0 [E] + HL0 [E] + o
(
‖H2‖

)
as H→ 0 (2.6)

For sufficiently small perturbations, the order of the norm of the fourth term on the right-hand
side is bounded above by the norm of H; i.e.,

o (‖HL0 [E] ‖) ≤ o (‖H‖) (2.7)

Thus eq. (2.6) may be rewritten as:

P =
◦

T + H
◦

T + L0 [E] + o
(
‖H2‖

)
as H→ 0 (2.8)

Let F0
1 be the gradient of the deformation from configuration R0 to configuration R1. The

associiated first Piola-Kirchhoff stress is:

P0
1 = P̂

(
F0

1

)
= P̂

(
I + H0

1

)
(2.9)

where P̂ generally depends explicitly on the position vector x0
0 in configuration R0. Consequently,

the second Piola-Kirchhoff and Cauchy stress are related to the first Piola-Kirchhoff stress as:

S0
1 = Ŝ

(
F0

1

)
=

(
F0

1

)−1
P̂

(
F0

1

)
=

(
P̂

(
F0

1

))T (
F0

1

)−T
(2.10)

P0
1 = det

(
F0

1

)
T1

1

(
F0

1

)−T
= J0

1T1
1

(
F0

1

)−T
(2.11)

where J0
1 = det

(
F0

1

)
> 0. The elemental volume dV1 in R1 is related to the reference elemental

volume dV0 by dV1 = J0
1dV0.

At the reference configuration R0, the first Piola-Kirchhoff stress is symmetric and equal to the

Cauchy stress relative to that configuration; i.e.,
◦

T = T0
0

(
=

(
T0

0

)T
=
◦

T
T )

as H0
1 = 0. Thus,

P̂ (I) =
◦

T (2.12)
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The first Piola-Kirchhoff stress in the new configuration may be expressed as (using Eq. (2.8)):

P0
1 =

◦

T + H0
1
◦

T + L0

[
E0

1

]
= F0

1
◦

T + L0

[
E0

1

]
(2.13)

where L0 = ∂Ŝ (I) /∂E0
1, and E0

1 is the symmetric part of H0
1. An alternative from of Eq. (2.13) can

be expressed as

P0
1 =

◦

T + C0

[
H0

1

]
(2.14)

where C0 is the fourth-order elasticity tensor, defined as C0 = ∂P̂ (I) /∂F0
1.

Let W =
(
H −HT

)
/2 be the skew-symmetric part of H. From Eqs. (2.13) and (2.14), it follows

that
C0

[
H0

1

]
=

[
H0

1

] ◦
T + L0

[
E0

1

]
(2.15)

L0

[
W0

1

]
= 0 (2.16)

Because L0 satisfies Eq. (2.16) and L0

[
W0

1

]
∈ Ss, where Ss is a set of second-order symmetric

tensors, it may be inferred that L0 possesses minor symmetry when considered as a fourth-order
tensor; i.e., Li jkl = L jikl = Li jlk [19].

Similarly, suppose the body Ω occupies configurations R2, R3 as a result of subsequent small
perturbations. The first Piola-Kirchoff stresses at each of these configurations are:

P1
2 = F1

2T1
1 + L1

[
E1

2

]
(2.17)

P2
3 = F2

3T2
2 + L2

[
E2

3

]
(2.18)

and the current Cauchy stresses are related to the previous-step Piola-Kirchoff stresses in a manner
similar to Eq. (2.11):

T1
1 =

1
J0

1

P0
1

(
F0

1

)T
(2.19)

T2
2 =

1
J1

2

P1
2

(
F1

2

)T
(2.20)

Making use of Eqs. (2.8), (2.19), and the composition rule for consecutive deformation gradi-
ents ( i.e. Fn−2

n = Fn−1
n Fn−1

n−2 and J0
2 = J1

2 J0
1), Eq. (2.17) may be rewritten as a function of

◦

T, L0, and
L1 :

P1
2 =

1
J0

1

(
F0

2
◦

T + F1
2L0

[
E0

1

]) (
F0

1

)T
+ L1

[
E1

2

]
(2.21)

Similarly, the next-step Piola-Kirchoff stress,P2
3, can be rewritten:

P2
3 =

1
J0

2

(
F0

3
◦

T + F1
3L0

[
E0

1

]) (
F0

2

)T
+

1
J1

2

F2
3L1

[
E1

2

] (
F1

2

)T
+ L2

[
E2

3

]
(2.22)

and, continuing, the first Piola-Kirchoff after n + 1 step is seen to be:

Pn
n+1 =

1
J0

n

(
F0

n+1
◦

T + F1
n+1L0

[
E0

1

]) (
F0

n

)T
+

n∑
i=2

(
1

Ji−1
i

Fi
i+1Li−1

[
Ei−1

i

] (
Fi−1

i

)T
)

+ Ln
[
En

n+1
]

(2.23)
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2.3 A Brief Review of Updated Lagrangian Method, ULFEM
One of the common finite element techniques treating nonlinear solid mechanics problems

is the updated Lagrangian finite element method, ULFEM, where the final deformed configurations
are achieved incrementally with each increment treated as the reference configuration for the next
increment [3, 20]. A brief overview of ULFEM is presented here to establish the basic formulations
for the developed techniques presented in the main chapters.

Consider the solid body Ω in the coordinate system shown in Fig. 2.1.

Div (P) + ρ0b = ρ0a in R0 (2.24a)

PN = p̄ on Γq0 (2.24b)

u = ū on Γu0 (2.24c)

where P is the first Piola-Kirchhoff stress, ρ0 = ρ̂0 (X) is the density, b is the body force, a us the
acceleration, N is the unit normal vector, p̄, is the traction acting on boundary Γq0 , and ū is the
displacement specified over boundary Γu0 .

The position vector of any material point X in the new configuration R is defined as x = X +

u (X, t), where the displacement field u is defined in the following set Su:

Su =

{
u : R0 × R

3 7→ R3
∣∣∣∣ u = ū on Γu0 ,u (X, t0) = ū, J0 = det

(
I +

∂u
∂X

)
> 0,

du (X, t0)
dt

= 0 in R0

}
(2.25)

where I is the second-order identity tensor.
Consequently, the deformation gradient tensor F is expressed as ζ

F = I +
∂u
∂X

= I + H (2.26)

where H is the displacement gradient tensor.
To find the displacement function of the body u (X, t0) under the given boundary conditions

[Eqs. (2.24b) and (2.24c)], the weak-form of the problem is generated by applying a tangent vector
field ζ (also known as the test function), which is typically expressed as the product of a test
function of time θ (t) and a test function of space ξ (X), i.e.,

ζ = ζ̂ (X, t) = θ (t) ξ (X) (2.27)

for an admissible ξ = ξ (X), i.e.,

Sξ =

{
ξ : R0 × R

3 7→ R3
∣∣∣∣ ξ = 0 on Γu0

}
(2.28)

Fig. 2.2 shows a body Ω in the reference configuration R0 at time t0, which, after n infinitesimal
deformations in time increments ∆t, attains configuration Rn at time t + n∆t. A solution of the



18

Figure 2.2: Updated Lagrangian Method

incremental displacement field u|nn+1, using configuration Rn as a reference, can be obtained by
considering the general updated Lagrangian weak-form [3] expressed as

rn+1 =

∫
Rn

(
ξ|nn+1 ρn a|nn+1

)
dVn +

∫
Rn

(
P|nn+1

∂ξ|nn+1

∂xn

)
dVn −

∫
Rn

(
ξ|nn+1 ρn b|nn+1

)
dVn −

∫
Rn

(
ξ|nn+1 p̄|nn

)
dAn

(2.29)
where rn+1 is the residual of the weak-form at time t0 + (n + 1)∆t (i.e., body configuration Rn+1),

ξ|nn+1, a|nn+1=
d2x|nn+1

dt2 , b|nn, p̄|nn, and P|nn+1= P̂
(
H|nn+1, Ḣ|

n
n+1

)
are the tangent vector field, acceleration,

body force, Piola–Kirchhoff surface traction, and the first Piola–Kirchhoff stress, respectively, is
the material density of body at time t0 + nt, and dVn and dAn are the elemental volume and area,
respectively.

In addition to u|nn+1∈ Su [Eq. (2.25) ] and ξ|nn+1∈ Sξ [Eq. (2.28)] for the integrals in the updated
Lagrangian weak-form [Eq (2.29)] to be bounded, u|nn+1 and ξ|nn+1 must also belong to an appropriate
Hilbert space H1 (Rn). Thus, the corresponding sets of uh|

n
n+1 and ξh|

n
n+1 in the updated Lagrangian

weak-form, S w f
un and S w f

ξn
, respectively, are as defined as

S w f
un = Su ∩

{
uh|

n
n+1∈ H

1(Rn)
∣∣∣∣ uh|

n
n+1= ū|nn+1 on Γun

}
(2.30)
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S w f
ξn

= Sξ ∩
{
ξh|

n
n+1∈ H

1(Rn)
∣∣∣∣ ξh|

n
n+1= 0 on Γun

}
(2.31)

Assume that the domain represented by configuration Rn is discretized by Ne elements so that
Rn = ∪

Ne
1 Ωe, where Ωe represents the element domain, and that the corresponding total number

of nodes is Nn . Then, Eq. (2.29) can be solved for all nodal points of the finite element mesh.
The displacement field within each element is described by Np polynomials, known as the shape
functions φe

1, φe
2, . . ., and φe

Np
. Thus, the displacement field in each element can be expressed as

ue|nn+1 = xe
h|

n
n+1−xe

h|
n
n

=

Np∑
i=1

[
φe

i
(
xe

h|
n
n
)

ue
h,i|

n
n+1

]
=

[
φe] {ue

h
}n
n+1

(2.32)

where superscript e and subscript h denote elemental quantities defined at nodal points,
[
φe] is

the elemental shape function matrix, and
{
ue

h

}n

n+1
is the vector of finite element nodal displacements.

For a 3D space, the size of the elemental vectors
{
ue

h

}n

n+1
and

{
ξe

h
}n
n+1 is equal to (3Np × 1). Conse-

quently, the size of φ is (3 × 3Np). However, these vectors must belong to weak-form admissible
subsets S w f

un,h
and S w f

ξn,h
, such that S w f

un,h
∈ S w f

un and S w f
ξn,h
∈ S w f

ξn
[3, 20].

The other vector and tensor quantities of each element [Eq. (2.29)]in the domain of configura-
tion Rn can also be expressed in terms of elemental shape functions as shown below.

(i) The acceleration vector:

ae|nn+1 =
d2Xe|nn+1

dt2 =

Np∑
i=1

[
φe

i a
e
h,i|

n
n+1

]
=

[
φe] {ae

h
}n
n+1

(2.33)

where the size of ae|nn+1 and nodal acceleration vector
{
ae

h

}n

n+1
is equal to (3×1) and (3Np×1),

respectively.

(ii) The displacement gradient tensor:

He|nn+1
(
ue|nn+1

)
=
∂ue|nn+1

∂x|nn
=

Np∑
i=1

[
∂φe

i

∂x|nn
ue

h,i|
n
n+1

]
= [Be]

{
ue

h
}n
n+1

(2.34)

Although He|nn+1 is a second-order tensor and its components are typically represented by a
(3 × 3) matrix, in the present weak formulation it is represented by a (9 × 1) vector, i.e.,{
He

h

}n

n+1
; therefore, [Be] is formulated as a (9 × 3Np) matrix.
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(iii) The gradient of the tangent vector tensor:

ξe|nn+1 =

Np∑
i=1

[
φe

i ξ
e
h,i|

n
n+1

]
=

[
φe] {ξe

h
}n
n+1 (2.35)

Because ξh|
n
n+1 is a (3 × 1) vector, it’s gradient is defined by

He|nn+1
(
ξe|nn+1

)
=

Np∑
i=1

[
∂φe

i

∂xn
n
ξe

h|
n
n+1

]
= [Be]

{
ξe

h
}n
n+1 (2.36)

(iv) The body force vector field:

be|nn=

Np∑
i=1

[
φe

i b
e
h,i|

n
n

]
=

[
φe] {be

h
}n
n (2.37)

where the size of be|nn+1 and the nodal body force vector,
{
be

h

}n

n
are equal to (3 × 1) and

(3Np × 1), respectively.

(v) The Piola-Kirchhoff traction vector:

pe|nn=

Np∑
i=1

[
φe

i p
e
h,i|

n
n

]
=

[
φe] {pe

h
}n
n (2.38)

where the size of pe|nn and the nodal traction vector
{
pe

h

}n

n
are (3×1) and (3Np×1), respectively.

The numerical form of Eq. (2.29) is obtained by substituting Eqs. (2.33)-(2.38) into Eq. (2.29),
factoring out the nodal tangent vector

{
ξe

h
}n
n+1, and assembling over the entire domain of the body.

However, numerical approximation of Eq. (2.29) yields a nonzero residual rn+1 at each increment
step. Therefore, an assembly operatorANe

e=1 that combines all the common nodal DOF of the finite
elements is introduced in the re-formulated Eq. (2.29) as shown below:

rn+1 = A
Ne
e=1

{ξe
h
}n
n+1

T


[∫

Rn

([
φe]T ρe

n
[
φe]) dVe

n

] {
ae

h
}n
n+1 +

[∫
Rn

(
[Be]T P̂e

(
He|nn+1, Ḣ

e|nn+1

))
dVe

n

]
−

[∫
Rn

([
φe]T ρe

n
[
φe] {be

h
}n
n

)
dVe

n

]
−

∫
Γe

qn

([
φe]T [

φe] {p̄e
h
}n
n

)
dAe

n




(2.39)

A numerical solution of Eq. (2.39) that yields rn+1 = 0 is incrementally obtained at each
step. Since the tangent vector

{
ξe

h
}n
n+1 is an arbitrary vector that vanishes at the boundary h n+1

[Eq. (2.28)], the solution can be found by setting the terms inside the second bracket equal to zero,
i.e.,
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(2.40)
A

Ne
e =1


[∫

Rn

([
φe]T ρe

n
[
φe]) dVe

n

] {
ae

h
}n
n+1 +

[∫
Rn

(
[Be]T P̂e

(
He|nn+1, Ḣ

e|nn+1

))
dVe

n

]
−

[∫
Rn

([
φe]T ρe

n
[
φe] {be

h
}n
n

)
dVe

n

]
−

∫
Γe

qn

([
φe]T [

φe] {p̄e
h
}n
n

)
dAe

n

 = 0

Eq. (2.40) can be written in more concise form by introducing the mass matrix, the stiffness-
displacement vector, and the force vector, defined below.

(i) The mass matrix in configuration Rn :

[M]n
n = A

Ne
e=1

{∫
Rn

([
φe]T ρe

n
[
φe]) dVe

n

}
(2.41)

(ii) The stiffness-displacement vector with respect to configuration Rn and displacement vector,
mapping configuration Rn to configuration Rn+1:

{Π(u)}nn+1 = A
Ne
e=1

{∫
Rn

(
[Be]T P̂e

(
He|nn+1, Ḣ

e|nn+1

))
dVe

n

}
(2.42)

(iii) The force vector in configuration Rn:

{f}nn = A
Ne
e=1


[∫

Rn

([
φe]T ρe

n
[
φe]) dVe

n

] {
be

h
}n
n +

∫
Γe

qn

([
φe]T [

φe] {p̄e
h
}n
n

)
dAe

n

 (2.43)

Substitution of Eqs. (2.41)-(2.43) into Eq. (2.40) yields

[M]n
n {ah}

n
n+1 + {Π(u)}nn+1 = {f}nn (2.44)

Hence, the problem reduces to finding a discrete deformation vector {uh}
n
n+1 that satisfies Eqs. (2.40)

and (2.44). The integral terms can be computed by a common numerical integration method, such
as Gaussian quadrature [20].

A general incrementally linear constitutive framework appropriate for static conditions is pre-
sumed. Consider a steady state or quasi-static motion of a solid body Ω , shown in Fig. 2.1, from
configuration R0 to configuration R1 under an incremental body force of b and the second Piola-
Kirchhoff boundary traction force of s̄0 on Γq0 boundary with outward unit normal vector of N0

0
and boundary displacement of ū on non-overlapping boundary of Γu0 . Suppose the body is meshed
with Ne elements and Nn nodes. The first weak form formulation of updated Lagrangian Finite
Element Method becomes [28]
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(2.45)

A
Ne
e=1

{∫
R0

(
[Be]T P̂e

(
He|01

))
dVe

0

}
︸                                     ︷︷                                     ︸

{Π(u)}01

= A
Ne
e=1

{∫
R0

([
φe]T ρe

0
[
φe] {be

h
}0
1

)
dVe

0

}
︸                                         ︷︷                                         ︸

{fb
h}

0
1

+

A
Ne
e=1


∫

Γe
q0

([
φe]T

{
P̂e

(
He|01

)
N0

0

})
dAe

0

︸                                            ︷︷                                            ︸
{ft

h}
0
1

which can be written as:
{Π(u)}01︸  ︷︷  ︸

3Nn×1

= {fh}
0
1︸︷︷︸

3Nn×1

(2.46)

whereANe
e=1 is an assembly operator that combines all the common nodal degrees of freedom (DOF)

of the finite elements (with each element having Np nodes),
[
φe] is the elemental shape function,

matrix [Be] is a differential operator matrix, ρe
0 is the elemental density at R0 configuration,

{
be

h

}0

1
is the elemental body force vector, with all equations given in the Appendix, and dAe

0 is the area
measure of element e with respect to the reference configuration R0. The term

{
P̂e

(
He|01

)
N0

0

}
is the

first Piola-Kirchhoff traction p̄0 on Γq0 that is related to s̄0 (Eq. (2.10)), and its related force vector
is denoted as where {fh}

0
1 is sum of nodal body forces and nodal traction forces, that is:

{fh}
0
1 =

{
fb
h

}0

1
+

{
f t
h
}0
1 (2.47)

The (n+1)th step weak form formulation of ULFEM, in which body Ω is perturbed with respect
to configuration Rn, attaining configuration Rn+1 becomes:

(2.48)

A
Ne
e=1

{∫
Rn

(
[Be]T P̂e (He|nn+1

))
dVe

n

}
︸                                        ︷︷                                        ︸

{Π(u)}nn+1

= A
Ne
e=1

{∫
Rn

([
φe]T ρe

n
[
φe] {be

h
}n
n+1

)
dVe

n

}
︸                                            ︷︷                                            ︸

{fb
h}

n
n+1

+A
Ne
e=1


∫

Γe
qn

([
φe]T

{
P̂e (He|nn+1

)
Nn

n

})
dAe

n

︸                                               ︷︷                                               ︸
{ft

h}
n
n+1

which can be written as:
{Π(u)}nn+1︸     ︷︷     ︸

3Nn×1

= {fh}
n
n+1︸︷︷︸

3Nn×1

(2.49)

where {fh}
n
n+1 is sum of nodal body forces and nodal traction forces, that is:

{fh}
n
n+1 =

{
fb
h

}n

n+1
+

{
f t
h
}n
n+1 (2.50)



23

Chapter 3

RULFEM

3.1 Introduction
The objective of the present chapter is to introduce a method that provides a reasonably general

framework for material identification problems without a priori assumptions about the constitu-
tive equations, provided the response exhibits incremental linearity. The present method solves
an inverse problem and is based on the updated Lagrangian form of FEM; therefore, it is referred
to as the reverse updated Lagrangian finite element method (RULFEM). Similar to most existing
methods, RULFEM relies on FEM and full-field displacement measurements. However, it does
not require a priori constitutive assumptions. Instead, it directly yields the tangent elasticity tensor
of each finite element. Because RULFEM generates a coefficient matrix of a linear system of equa-
tions, which may have a high condition number, a small random error in the nodal displacement
measurements and/or traction vectors may generate erroneous results. Small measurement errors
are inevitable even with high-resolution imaging; thus significant errors may occur in the solution
of the inverse problem. However, the solution error can be assessed and bounded by errors in the
input measured vector fields. The presentation of the RULFEM theory is accompanied by two
implementation sections where RULFEM is used to determine elasticity tensors. Both noise-free
(theoretical) and noisy (actual) measured displacement and force fields are used in numerical ex-
amples to validate the present method. In addition, the capability of RULFEM is evaluated by
numerical tools for calculating upper-bound errors.

3.2 Reverse updated Lagrangian finite element method
(RULFEM)

The development of the RULFEM theory requires a thorough knowledge of the updated La-
grangian finite element method (ULFEM) formulation. For completeness, a concise derivation of
ULFEM is given in the Appendix. RULFEM uses a set of measured full-field displacements and
a corresponding set of measured tractions to determine local (element-wise) fourth-order tangent
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elasticity tensors without any a priori assumptions about a particular constitutive model. Moreover,
RULFEM does not require a cost function or a virtual dis- placement field. The main limitation of
the method is that each finite element is assumed to consist of a single uniform material.

A general incrementally linear constitutive framework appropriate for static conditions is
presumed. For a given infinitesimal displacement field {uh}

n
n+1, the body deforms from configura-

tion Rn to a further deformed configuration Rn+1., where the forward ULFEM solve Eq. (2.48) or
(2.49) for {uh}

n
n+1. The general form of the incremental first Piola–Kirchhoff stress (Eq. (2.14)) can

be introduced into Eq. (2.48), provided the incremental steps are sufficiently small for Eq. (2.48)
to furnish a meaningful approximation. The Cauchy stress Tn

n (Eq. (2.11)) in configuration Rn is
then related to the first Piola-Kirchhoff stress Pn

n+1 at step n by

Tn
n =

(
det

(
Fn−1

n

))−1
Pn−1

n

(
Fn−1

n

)T
=

1
Jn−1

n
Pn−1

n

(
Fn−1

n

)T
(3.1)

From Eq. (2.14), it follows that the first Piola-Kirchhoff stress in configuration Rn+1 can be
expressed as

Pn
n+1 = Tn

n + Cn
[
Hn

n+1
]

(3.2)

It is noted that the Cauchy stress
◦

T = T0
0 in the undeformed configuration R0 represents residual

stress. However, the state of stress in subsequent steps, e.g., the step corresponding to deformed
configuration R1, is referred to as the initial stress at step 1, which is the stress in the updated
reference configuration.

Using Eqs. (3.2) and (2.34), the stiffness and displacement (the left hand-side) terms in Eq. (2.48)
can be expressed as the product of a stiffness matrix [K]n, a displacement vector of the discretized
body {uh}

n
n+1 in configuration Rn, and an effective force vector {fT}

n
n obtained in the previous step,

i.e.,

{Π(u)}nn+1 = [K]n {uh}
n
n+1 + {fT}

n
n (3.3)

where

[K]n = A
Ne
e=1

[∫
Rn

(
[Be]T [Ce]n [Be]

)
dVe

n

]
(3.4)

and

{fT}
n
n = A

Ne
e=1

[∫
Rn

(
[Be]T [Te]n

)
dVe

n

]
(3.5)

In the absence of a residual stress in configuration R0, the force vector {fT}
0
0 , which is known

from the previous step, is assumed to be zero in the first step.
Substitution of Eq. (3.3) into Eq. (2.48) yields a linear force-stiffness equation containing a

(3Nn × 3Nn) stiffness matrix for the discretization of body Ω by Ne elements with Nn nodes, i.e.,
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[K]n {uh}
n
n+1 = {F}nn (3.6)

where {F}nn = {f}nn − {fT}
n
n.

In principle, the displacement vector {uh}
n
n+1 can be obtained by solving Eq. (3.6), provided the

force vector {F}nn and the elasticity tensor of each element [Ce]n are known, which is required for
constructing [K]n. However, the objective in the reversed problem is to find the components of
the elemental elasticity tensor [Ce]n, which are embedded in [K]n, for each measured infinitesimal
force perturbation {f}nn and resulting displacement response {uh}

n
n+1. Therefore, a decoupling step

is needed to extract the 81 components of [Ce]n, so that it can be represented as an (81 × 1) vector{
Ce

h

}
n

for each element e in Eq. (3.6). That is, [K]n {uh}
n
n+1 in Eq. (3.6) is rearranged so that the ma-

terial elasticity tensors [Ce]n are decoupled from the remaining geometrical differential operators
[Be] in Eq. (3.6). This is accomplished by introducing 81 matrices U(9×9) with i j components equal
to 1 and all other components equal to 0, and then define the corresponding column vectors 〈Ae〉i j

by

〈Ae〉i j
[
Ce

h
]n
i j =

[∫
Rn

(
[Be]T [U]i j [Be]

)
dVe

n

] {
ue

h
}n
n+1

[
Ce

h
]
i j , i, j ∈ {1, 2, . . . , 9} (3.7)

where
[
Ce

h

]
i j

is the unknown i j entry of Ce
h.Then, the column vectors 〈Ae〉i j arearranged to form

a matrix A.The number of columns in A is equal to the number of the unknown elements of
elasticity tensors. This procedure converts Eq. (3.6) to a system of decoupled equations having as
many unknowns as the number of columns of A, i.e.,[

〈Ae〉11〈Ae〉12 · · · 〈Ae〉i j . . .
]n

n+1
{Ch}n = {f}nn − {fT}

n
n (3.8)

or simply

[A]n
n+1 {Ch}n = {F}nn (3.9)

It is noted that the system given by Eq. (3.9) is either determined or over-determined. If the
condition number of A is relatively large (e.g., on the order of 103 or higher), very small errors
in the displacement and force measurements may result in erroneous estimates of the elements of
{Ch}n. This issue is discussed later. However, the maximum rank number of A is equal to the size
of the {Ch}n vector, i.e., the number of independent equations is equal to the number of unknown
components of vector {Ch}n.

After the elemental elasticity tensor
[
Ce

h

]
n

at step n has been obtained, the elemental incremental

elasticity tensor
[
Le

h

]
n
, if desired, can also be derived from Eqs. (2.15) and (2.16).

3.3 Validation criteria and error assessment
The input full-fields of RULFEM (i.e., displacement and traction fields) may contain noise

and measurement errors. As with other inverse methods, RULFEM relies on the solution of a
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system of equations containing a coefficient matrix A characterized by a relatively high condition
number. Hence, validation criteria and error assessment in the presence of noisy input data are
illustrated for examples involving error-free and noisy input data. In all the validation examples
presented below, the MatLab back-slash operator (version 2013b) was used to solve Eq. (3.9).
MatLab yields a least-squares solution for the rectangular matrix A and solves so-called “over-
determined systems” using QR factorization.

The solution to Eq. (3.9) yields as many fourth-order elasticity tensors as the number of ele-
ments used to discretize the deformed body. Each fourth-order elemental elasticity tensor is repre-
sented by a (9 × 9) matrix

[
Ce

h

]
n
. Since RULFEM predicts local (element-wise) properties from the

solution of a global equation system [Eq. (3.9)], two levels of assessment must be used to validate
the method.

The objective of local validation is to compare the predicted components of each
[
Ce

h

]
n

tensor
with actual components. Although a component-wise comparison of matrices might be feasible
when dealing with a few finite elements, the comparison is cumbersome when there are many
elements. Therefore, it is preferred to assess the accuracy of RULFEM using a single error number.
Here, the element error norm Ei (ei) |nn+1 is used, which is defined as

Ei (ei) |nn+1=

∥∥∥∥ [
Cei

RULFEM

]
n
−

[
Cei

actual

]
n

∥∥∥∥∥∥∥∥ [
Cei

actual

]
n

∥∥∥∥ (3.10)

where ei refers to the ith element,
[
Cei

RULFEM

]
n

representing the elasticity tensor [Cei] of element

ei predicted by RULFEM at step n + 1,
[
Cei

actual

]
n

corresponds to the actual actual n + 1 elasticity
tensor [Cei] of element ei at step n + 1, and ‖.‖ is the Euclidean norm of the enclosed matrix.

J
(
{uh}

n
n+1 , {Ch}n , {F}nn

)
=

∥∥∥∥ [A]n
n+1 {Ch}n − {F}nn

∥∥∥∥ (3.11)

Eq. (3.11) yields J
(
{uh}

n
n+1 , {Ch}n , {F}nn

)
= 0 if and only if equilibrium is satisfied. Thus,

EEq. (3.11) can be used to assess the accuracy of the predicted elasticity tensors for a given set
of displacement and force data. In practice, however, measurement errors may not lead to exactly
zero J values. Consequently, an acceptable J value threshold must be established. Also, a non-zero
J value does not necessarily correlate to error in the calculated {Ch}n. Therefore, a more effective
means is needed to determine the accuracy of the results obtained with RULFEM.

The error ∆A in [A]n
n+1 due to errors in full-field displacement and force measurements, defined

by ∆u and ∆F, respectively, yields an error ∆C in {Ch}n. In the presence of these errors, Eq. (3.9)
can be written as (

[A]n
n+1 + ∆A

)︸           ︷︷           ︸
A

{Ch}n︸︷︷︸
C

= {F}nn + ∆F︸     ︷︷     ︸
F

(3.12)

The possible high condition number of A and errors in Eq. (3.12) , i.e., ∆A and ∆A, yield an
error in the calculation of C = {Ch}n, denoted by ∆C. To quantify this error, a residual vector r is
defined by



27

r = A (C + ∆C) − F⇒ ∆C = A−1r (3.13)

Applying the Cauchy–Schwarz inequality to Eq. (3.13) and using the definition of the condition
number of a matrix, i.e., cond (A) = ‖A‖‖A−1‖, yields

‖∆C‖

‖C‖︸︷︷︸
Eac

≤ cond (A)
‖r‖
‖A‖‖C‖︸               ︷︷               ︸

Eub

(3.14)

where the left hand-side is the actual error Eac and the right hand-side is the upper-bound error Eac

and the right hand-side is the upper-bound error Eub.
From Eqs. (3.11)-(3.14), it follows that J

(
{uh}

n
n+1 + ∆u, {Ch}n ∆C, {F}nn + ∆F

)
= ‖r‖. Since the

right hand-side of Eq. (3.14), i.e., the upper-bound error Eub, can be readily obtained at each step,
it provides a useful way to bound the error in the calculated {Ch}n; moreover, it is a dimensionless
number that normalizes the residual (expressed in force units).

A typical approach in material testing is to perturb (deform) the specimen in one or two pre-
scribed directions and use the response to determine the associated bulk material properties. Al-
though Poisson effects are often observed, measurement of the specimen response in directions
other than the perturbation directions could be compromised by the sensitivity of the measuring
instrument and a small signal-to-noise ratio S NR. This produces different error levels in the com-
ponents of C, thus requiring additional assessments of the accuracy of the components of C.

Chandrasekaran and Ipsen [6] assessed the accuracy of each component of C by a component-
wise condition number βi, which pertains to the condition number of the ith column of A (of size
m × n and minimum rank n, where m ≥ n), defined as ‖C‖/|Ci|, where |Ci| is the absolute value of
the ith non-zero component of C, and defined βi as

βi
∼= ‖A‖.‖qi‖, 1 ≤ i ≤ n (3.15)

where qT
i is the ith row of matrix A† =

(
AT A

)−1
AT .

3.4 Validation of RULFEM for noise-free input data
The capability of the present method is demonstrated in this section by three examples in which

the input measurement (force and displacement) fields are not obtained from actual measurements;
instead they are generated from a forward FEM analysis of a body with known elasticity tensors
and prescribed displacement perturbations. These fields are regarded as effectively noise-free and
are used to validate the RULFEM formulation. The first two examples are designed to validate
the method for simple geometries with one ele- ment through the body thickness, whereas in the
third example, the body is discretized by three elements in each direction, i.e., a total of 27 finite
elements.

Example 1: A numerical experiment involving two simple materials and a simple specimen
geometry is presented first for illustrative purposes. In this example, a solid body of dimensions
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Figure 3.1: A specimen meshed with four 64-node hexagonal elements. Reference (undeformed)
configuration R0 and deformed configuration R1 due to uniform displacement of all nodes at z =

20mm by uz = −0.1mm are shown by black and red lines, respectively (magnification = ×10).
(Color figure online)

5 mm ×10 mm ×20 mm is meshed with four 64-node hexagonal elements having a total of 208
nodes (Fig. 3.1). The reference configuration R0 (black lines) is free of residual stress and all nodes
at z = 0 are fully constrained. Deformation due to uniform static displacement uz = −0.1 mm of
all specimen nodes at z = 20 mm produces a new body configuration R1 (red lines). The body
is assumed to consist of two materials. The lower half of the body (i.e., from z = 0 to 10 mm)
consists of an elastic material with Saint Venant–Kirchhoff constitutive model, i.e.,

S = λ tr (E) I + 2µE (3.16)

with Lamé constants λ = 3103 MPa and µ = 345 MPa, thus

L0

[
E|01

]
= λ tr

(
E|01

)
I + 2µE|01 (3.17)
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whereas the upper half of the body (from z = 10 to 20 mm) consists of an orthotropic material
with normal and shear moduli Exx = 1, 000 MPa, Eyy = 1, 250 MPa,Ezz = 1, 500 MPa, Gxy = 300
MPa, Gyz = 450 MPa, and Gzx = 550 MPa, and Poisson’s ratio νxy = 0.3, νyz = 0.4, and νxz = 0.45,
with all other Poisson’s ratios calculated from the relations νzy = νyzEzz/Eyy, νzx = νxzEzz/Exx, and
νyx = νxyEyy/Exx.

For the present example and zero residual stress (i.e.,
◦

T = 0), Eq. (3.9) reduces to

[A]0
1 {Ch}0 = {F}00 (3.18)

where the force vector {F}00 and the displacement vector {u}01, calculated from a forward FEM
analysis, play the role of the measured quantities in an actual experiment.

For
◦

T = T0
0 = 0, Eqs. (2.13) and (2.14) give

P0
1 = C0

[
H0

1

]
= L0

[
E0

1

]
(3.19)

The actual elemental elasticity tensors
[
Ce

actual

]
0

of the two materials, which are used as inputs
in the forward FEM analysis, are

[
Ce1,e2

actual

]
0

=



3793 0 0 0 3103 0 0 0 3103
0 345 0 345 0 0 0 0 0
0 0 345 0 0 0 345 0 0
0 345 0 345 0 0 0 0 0

3103 0 0 0 3793 0 0 0 3103
0 0 0 0 0 345 0 345 0
0 0 345 0 0 0 345 0 0
0 0 0 0 0 345 0 345 0

3103 0 0 0 3103 0 0 0 3793


MPa (3.20)

[
Ce3,e4

actual

]
0

=



3517 0 0 0 2807 0 0 0 3721
0 900 0 900 0 0 0 0 0
0 0 600 0 0 0 600 0 0
0 900 0 900 0 0 0 0 0

2807 0 0 0 3788 0 0 0 3713
0 0 0 0 0 1100 0 1100 0
0 0 600 0 0 0 600 0 0
0 0 0 0 0 1100 0 1100 0

3721 0 0 0 3713 0 0 0 5794


MPa (3.21)

where superscripts ei = 1 − 4 indicate the elements shown in Fig. 3.1.
The elasticity vector {Ch}0, obtained with RULFEM by solving the inverse problem [Eq. (3.18)],

is converted to the following matrix form
[
Ce

RULFEM

]
0

of the elasticity tensor for elements 1 – 4:
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[
Ce1,e2

RULFEM

]
0

=



3.793 0.000 0.000 −0.00 3.103 −0.00 −0.00 0.000 3.103
−0.00 0.345 −0.00 0.345 0.000 0.000 0.000 −0.00 0.000
0.000 0.000 0.345 0.000 0.000 0.000 0.345 0.000 −0.00
0.000 0.345 −0.00 0.345 0.000 0.000 0.000 −0.00 −0.00
3.103 0.000 0.000 0.000 3793 −0.00 −0.00 0.000 3.103
−0.00 −0.00 −0.00 −0.00 −0.00 0.345 0.000 0.345 0.000
0.000 −0.00 0.345 0.000 −0.00 0.000 0.345 −0.00 −0.00
0.000 0.000 0.000 0.000 −0.00 0.345 −0.00 0.345 −0.00
3.103 −0.00 −0.00 −0.00 3.103 −0.00 0.000 −0.00 3.793


× 103 MPa

(3.22)

[
Ce3,e4

RULFEM

]
0

=



3.517 0.000 0.000 0.000 2.807 0.000 0.000 0.000 3.721
−0.00 0.900 −0.00 0.900 −0.00 −0.00 −0.00 −0.00 −0.00
−0.00 0.000 0.600 −0.00 0.000 0.000 0.600 0.000 −0.00
−0.00 0.900 0.000 0.900 −0.00 −0.00 −0.00 −0.00 −0.00
2.807 0.000 −0.00 0.000 3.788 −0.00 −0.00 −0.00 3.713
0.000 −0.00 −0.00 0.000 0.000 1.100 −0.00 1.100 0.000
0.000 −0.00 0.600 −0.00 0.000 −0.00 0.600 −0.00 −0.00
0.000 0.000 0.000 0.000 −0.00 1.100 −0.00 1.100 −0.00
3.721 −0.00 0.000 0.000 3.713 −0.00 0.000 −0.00 5.794


× 103 MPa

(3.23)
A comparison of the components of the above matrices [Eqs. (3.20)– (3.23)) attests to the

accuracy of the RULEFM analysis. The accuracy of the predicted components of each elasticity
tensor can also be determined in terms of the element error norm Ei (ei) [Eq. (3.10). The error
norms of elements 1–4 shown in Fig. 3.1, obtained from Eq. (3.10), are E1 (e1) = 3.1 × 10−12,
E1 (e2) = 1.9× 10−12, E1 (e1) = 9.7× 10−12, and E1 (e1) = 5.6× 10−12. These extremely small error
values lend further support to RULFEM.

It is noted that Eq. (3.19) not only holds in the present numerical experiment but also represents
the first step of analysis in the general case of consecutive perturbations. After n increments, the
nodal Cauchy stresses are not zero, and Eq. (2.11) can be used to determine the Cauchy stress
tensor T. However, the elasticity tensor C remains constant in subsequent analysis steps of this
example because the constitutive model is assumed to be linear [Eq. (3.19)].

Example 2: The previous example illustrates the validity of RULFEM for a specimen with a
simple geometry consisting of two different materials subjected to one linear perturbation step.
The present example demonstrates the capability of RULFEM to accurately predict the elasticity
tensor of a tensile specimen (Fig. 3.2) with its gauge section undergoing elastic-plastic deforma-
tion in three linear steps. Because of symmetry in loading (uniform tension) and the specimen
geometry, only one-half of the specimen is analyzed. The mesh consists of five 64-node hexago-
nal elements having a total of 256 nodes. All base nodes (z = 0) are fully constrained. Uniform
tensile loading is modeled by incrementally displacing the nodes at z = 20 mm by a total dis-



31

placement uz = 0.028, 0.0739, 0.0948, and 0.1558 mm. The original stress-free configuration and
four consecutive deformed configurations of the specimen are denoted by R0, R1, R2, R3, and R4,
respectively. A piece-wise linear plastic response is modeled by changing the elastic modulus and
Poisson’s ratio when εz = 0.002, 0.0065, 0.009, and 0.02 (3.1). Stress-strain calculations (3.1) give
the engineering stress-strain response shown in Fig. 3.3. Forward FEM analysis yields four dis-
placement vectors and four associated reaction vectors used as input in RULFEM, in effect serving
as surrogates of experimentally measured vectors. Because of the piece-wise linear material prop-
erties, RUFEM results are independent of perturbation size (only in this example case). At each
step, RULFEM predicts five elasticity tensors (one per element), yielding a total of 20 elasticity
tensors. Instead of explicitly comparing 20 actual elasticity tensors with 20 predicted elasticity
tensors, the validity of RULFEM is assessed by the element error norm Ei (ei) [Eq. (3.10)]. The
maximum Ei (ei) is less than < 1.8×10−12 (Fig. 3.4 ), which confirms the accuracy of all elemental
elasticity tensors of the elastic-plastically deformed specimen determined by RULFEM.

Step Material properties Strain range Displacement (mm)
E (MPa) ν ∆ε ∆uz uz

1 70,000 0.330 0.0–0.002 0.0280 0.0280
2 34,240 0.499 0.002–0.0065 0.0459 0.0739
3 880 0.499 0.0065–0.0099 0.0209 0.0948
4 397 0.499 0.0099–0.020 0.0610 0.1558

Table 3.1: Dependence of material properties on strain range and corresponding displacement
increment and total displacement uniformly applied to all specimen nodes at z = 20 mm

Example 3: The previous two examples illustrate the accuracy of RULFEM for elastic and
plastic materials. However, the specimen geometries in the former examples are discretized with
only one element through the specimen thickness. Using only one element through the body
thickness implies that the elements share nodes at their common interface (e.g., see Figs. 3.1 and
3.2). Hence, each 64-node element has either 48 or 56 independent nodes, i.e., 144 or 168 DOF,
depending on whether it is a middle element or an end element. As discussed in Sect. 2.2, the
minimum number of independent DOF needed to determine all members of an elemental elasticity
tensor is 81. Although these additional DOF are redundant in the case of simple problems, such
as those of the previous two examples, these additional DOF may become necessary when dealing
with high mesh densities in three directions. In particular, the number of independent nodes or
DOF of an element that is completely surrounded by other elements (referred to as domain middle
elements) is 28 nodes or 84 DOF. These three additional DOF (or equations) can be used to improve
the condition number of A. To illustrate this case, a specimen geometry similar to that of example
2 (Fig. 3.2) was discretized by a total of 27 64-node elements, using 3 elements in each direction
(Fig. 3.5). This specimen consists of an elastic material with Lamé constants λ = 115, 380 MPa and
µ = 76, 923 MPa (i.e., E = 200, 000 MPa and ν = 0.3), which are typical of steel. RULFEM yields
27 elasticity tensors (one tensor per element), with all element error norms Ei (ei) [Eq. (3.10)] less
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̶ ̶̶ ̶ ̶ ̶   R0: Undeformed configuration 

̶ ̶̶ ̶ ̶ ̶   R1: Step 1,   =  0.0280 mm 

̶ ̶̶ ̶ ̶ ̶   R2: Step 2,  =  0.0739 mm 
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Figure 3.2: The specimen of example 2 is discretized by five 64-node hexagonal elements. All
nodes at z = 0 are fully constrained, whereas all nodes at z = 20 mm are uniformly displaced in
the z-direction in four displacement increments ∆uz = 0.0280, 0.0459, 0.0209, and 0.0610 mm,
resulting in a total displacement uz = 0.1558 mm. The reference (undeformed) configuration R0

is shown with black lines, whereas deformed configurations corresponding to each incremental
step R1, R2, R3, and R4 are shown with green, magenta, blue, and red lines, respectively. Config-
uration R1 represents linear elastic deformation, whereas R2, R3, and R4 configurations represent
sequential linear-plastic deformations following the material response shown in Fig. 3.3. Yielding
commences when all top nodes are displaced by uz = 0.0280 mm, i.e., εz = 0.002 (magnification
= 10×).
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Figure 3.3: Engineering stress-strain response of the elastic-plastic specimen of example 2

than 3.5 × 10−11 (Fig. 3.6). These very small values of Ei (ei) illustrate the accuracy of RULFEM
analysis of bodies meshed with several through-thickness elements.

3.5 Validation of RULFEM for noisy input data
The geometry and finite element discretization of example 2 (Fig. 3.2) are used in the following

three example cases to assess the performance of RULFEM for noisy input displacement and force
full-field vectors. In all these examples, the specimen nodes at z = 0 are fully constrained and
a uniform perturbation uz = 0.1 mm is applied to the nodes at z = 20 mm. The required input
data fields (i.e., displacement and force full-field vectors) were obtained by solving each example
using linear FEM analysis. Differences in elemental material properties (elasticity tensors) result
in different displacement and force field vectors for each example case, as discussed below.

A white Gaussian noise signal generator function, referred to as “add white Gaussian noise”
(AWGN; MatLab R2013b, MathWorks, Inc., Natick, MA) was used to introduce different levels of
noise to error-free displacement and force full-field vectors obtained from input noise-free forward
FEM analysis. AWGN generates noisy discrete vectors by using as input a noise-free vector and a
given S NR.
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Figure 3.4: Element error norm Ei of the elements used to discretize the specimen of example 2.
All Ei values are < 1.8 × 10−12, which confirms the accuracy of all elemental elasticity tensors of
the plastically deformed specimen obtained with RULFEM.

The first step of a RULFEM analysis involving noisy input vector fields is to calculate the
elemental elasticity tensors (i.e., C) by solving Eq. (3.12). In each of the following three examples,
the accuracy of RULFEM is examined for 152 = 225 combinations (pairs) of displacement and
force fields, specifically 15 different S NRu values for displacement fields and 15 different S NR f

values for force fields. AWGN produces overall controlled noise levels with random local errors
in displacement and force fields for given S NRu and S NR f . To ensure that the RULFEM results
depend on the overall noise level and not the noise location in the body, RULFEM analysis was
performed 15 times for each S NR pair.

Actual errors are determined by Ei [Eq. (3.10)] and Eac [Eq. (3.14)]. For each displacement-
force field pair, the first method produces one Ei value for each element used to discretize the body.
Because of the 15 repetitions for each input pair, error tracking for each element is cumbersome;
therefore, the maximum elemental error among all elements was selected for each RULFEM anal-
ysis or S NR pair. The average of the 15 repetitions and corresponding standard deviation (STD) for
each displacement-force pair are plotted for each example. However, because the second method
(based on Eac) produces a single overall error level, the average and STD data of the 15 repetitions
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̶ ̶̶ ̶ ̶ ̶   R0: Undeformed configuration 
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      N : Element number 

Figure 3.5: The specimen of example 3 is discretized by three 64-node elements in each direc-
tion, resulting in 27 hexagonal elements. All nodes at z = 0 are fully constrained, whereas all
nodes at z = 25 mm are uniformly displaced by uz = −0.1 mm. The reference configuration R0

(black lines) is the undeformed configuration, whereas the deformed configuration R1 (red lines)
represents linear elastic deformation. Red numbers indicate the number of through-thickness el-
ements. Element 14 has only 28 independent nodes (i.e., 84 independent DOF), while all other
elements have a higher number of independent DOF in the RULFEM analysis (magnification =

10×).
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Figure 3.6: Element error norm Ei versus element number N for the specimen of example 3. All
Eivalues are < 3.5 × 10−11, confirming the accuracy of all elemental elasticity tensors obtained
with RULFEM

are plotted for each example. These two error assessment methods can be applied only if the actual
elemental material elasticity tensors are known, as in the following three examples. The purpose of
calculating these actual error levels is to validate the proposed upper-bound error Eub [Eq. (3.14)].
βi [Eq. (3.15)] is also calculated for one particular S NR pair (i.e., S NRu = 135 and S NR f = 87S )
in example 6.

Example 4: All five elements (Fig. 3.2) consist of an isotropic material with E = 200, 000
MPa and ν = 0.3. Forward FEM analysis using the aforementioned boundary conditions yields the
error-free displacement and force full-field vectors. Figures 3.7, 3.8, and 3.9 show Ei , Eac, Eub,
and corresponding STD values calculated 15 times for each S NR f and S NRu pair.

Example 5: All five elements (Fig. 3.2) consist of an isotropic material, but elements 1–4
have E = 200, 000 MPa and ν = 0.3, whereas element 5 has E = 150, 000 MPa and ν = 0.4.
Figures 3.10, 3.11, and 3.12 show Ei , Eac, Eub, and corresponding STD values calculated 15 times
for each S NR f and S NRu pair.

Example 6: Element 1 consists of an isotropic material with E = 200, 000 MPa and ν = 0.3,
whereas elements 2–5 consist of different 3D orthotropic materials with elastic modulus given in
Table 3.2, shear modulus equal to one-half of their corresponding elastic modulus, and identical
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Figure 3.7: a Average and b standard deviation of maximum element error norm Ei of the ele-
ments used to discretize the specimen of example 4 versus signal-to-noise ratio S NRu and S NR f

for 15 repetitions of 225 displacement and force full-fields

Poisson’s ratios of νxy = 0.3, νyz = 0.225, and νxz = 0.15 (Fig. 3.2). Figures 3.13, 3.14, and 3.15
show Ei , Eac, Eub, and corresponding STD values calculated 15 times for each S NR f and S NRu

pair.

Elastic Modulus (MPa) Element
2 3 4 5

Exx 140,000 180,000 100,000 60,000
Eyy 105,000 135,000 75,000 45,000
Ezz 70,000 90,000 50,000 30,000

Table 3.2: Directional elastic modulus of finite elements 2–5 in example 6

Figures 3.7, 3.10, and 3.13 show that the actual error in the material elasticity tensors is very
large for those measured displacement and force fields with low S NRu and S NR f levels. However,
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Figure 3.8: a Average and b standard deviation of maximum element error norm Eac of the ele-
ments used to discretize the specimen of example 4 versus signal-to-noise ratio S NRu and S NR f

for 15 repetitions of 225 displacement and force full-fields

all three examples show reasonable levels of Ei for S NRu > 135 and S NR f > 85. Table 3.3 gives
the maximum Ei and corresponding Eub and Eac for each example case.

To assess the accuracy of the RULFEM predictions by the component-wise condition number
of the system [Eq. (3.15)], in example 6, βI is calculated for all 405 elements of C for one pair of
noisy inputs of S NR f = 85 and S NRu = 137. Figure 3.16 shows βi , normalized by the condition
number of A, i.e., cond(A) = 9.2 × 104, versus the i th component number of C. The local error
Ei

loc of the ith nonzero component of C, defined as

Ei
loc =

|Ci
RULFEM − C

i
actual|

|Ci
actual|

(3.24)

where Ci
actual is the ith nonzero component of Cactual and Ci

RULFEM is the ith component obtained
with RULFEM is shown in Fig. 3.17 together with the corresponding βi/cond(A) versus the ith
component number of C. Cactual has 405 components (5 elements and 81 components per elas-
ticity tensor) of which only 105 are nonzero. Only a few nonzero components with local errors
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Figure 3.9: a Average and b standard deviation of maximum element error norm Eub of the ele-
ments used to discretize the specimen of example 4 versus signal-to-noise ratio S NRu and S NR f

for 15 repetitions of 225 displacement and force full-fields

> 10% exist (Fig. 3.17). Although the calculated βi values can be used to identify the erroneous
components of βi, they do not correspond to actual local errors.

3.6 Discussion
Previous material identification methods (i.e., FEMU, CEGM, VFM, EGM, and RGM) and

the present method (RULFEM) all employ balance laws of mechanics, require as input measured
full-field or partial-field quantities (i.e., displacement and force fields), and rely on numerical tech-
niques, such as finite differences and FEM. However, the major difference between RULFEM and
previous methods is that RULFEM does not require any assumption about the constitutive response
of the material beyond incremental linearity. The implementation of FEM with RULFEM yields
the material elasticity tensor of each element used to define the body, whereas all of the afore-
mentioned methods (except VFM) solve for the material constants within the framework of an a



40

SNRf

SNRf

m
ax
(E

i)  
(%
)

ST
D(
m
ax
(E

i))
  (%

)

(a) 

(b) 

SNRu

50 100 150 200
0

100

200

300

400

500

 

 

50 100 150 200
0

50

100

150

200

250

300

 

 

51

54

58

63

70

78

87

97

108

121

135

149

165

182

200

Figure 3.10: a Average and b standard deviation of maximum element error norm Ei of the ele-
ments used to discretize the specimen of example 5 versus signal-to-noise ratio S NRu and S NR f

for 15 repetitions of 225 displacement and force full-fields

priori assumed constitutive model. However, VFM requires the determination of a particular (vir-
tual) displacement field, which must be optimized to obtain fairly accurate results. Although VFM
has been successfully applied to several types of materials, its application to finely discretized or
irregularly shaped bodies presents particular challenges [1].

In addition to a priori assumptions, most of the existing methods use nonlinear cost functions,
which are subjected to a set of constraint equations, and optimization techniques to obtain a solu-
tion. For a given set of constraint equations and in the presence of more than one local minimum,
an accurate solution is not feasible. Therefore, a priori constitutive models and solution of the con-
straint equations based on a specific boundary value problem do not necessarily yield the actual
constitutive model applicable to any other boundary- value problems.

RULFEM does not solve a nonlinear cost function but rather a linear system of equations
[Eq. (3.12)]. More importantly, in contrast to other material identification methods, RULFEM
does not require a priori assumptions about the constitutive material model. In fact, the elasticity
tensors cal- culated in each step provide a basis for determining material constitutive models.
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Figure 3.11: a Average and b standard deviation of maximum element error norm Eac of the ele-
ments used to discretize the specimen of example 5 versus signal-to-noise ratio S NRu and S NR f

for 15 repetitions of 225 displacement and force full-fields

Instabilities are not uncommon to the systems of equa- tions that characterize inverse prob-
lems. Material identifica- tion methods, including RULFEM, are not immune to this problem. In
particular, the assembled A matrix [Eq. (3.12)] may have a high condition number. Each column
of A pertains to a member of the elemental elasticity tensor [Ce]n, determined from the deriva-
tive of master elemental shape functions and the measured displacements [Eqs. (3.7) and (3.9)].
Thus, geometric symmetries in conjunction with the symmetry of the measured displacement field
may yield an A matrix with similar columns, leading to a high condition num- ber. This problem
is offset in the present analysis by using 64-node elements resulting in extra equations, i.e., the
number of equations exceeds the number of unknowns. Hence, there is no guarantee that matrix
A is invertible. In fact, it will not be invertible if the material exhibits some incipient instability
condition. Though such unstable cases are relevant, such conditions are not encountered in a wide
range of problems. Hence, if A is not invertible, it may be inferred that the body demonstrates an
instability or a bifurcation point.

Even the use of 64-node elements does not guarantee a well-behaved A matrix [Eq. (3.12)], be-
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Figure 3.12: a Average and b standard deviation of maximum element error norm Eub of the ele-
ments used to discretize the specimen of example 5 versus signal-to-noise ratio S NRu and S NR f

for 15 repetitions of 225 displacement and force full-fields

cause noise in the measured displacement field could potentially increase the condition number of
A. In addition, noise in the measured force field may yield erroneous results for the system of equa-
tions [Eq. (3.12)] when A is ill-conditioned. Therefore, it is important to examine the predicted
solutions of such system. The upper-bound error norm Eub [Eq. (3.14) provides a computation-
ally inexpensive means of evaluating the overall error level in the predicted components of the
elemental material elasticity tensors, and the applicability of Eub to the RULFEM is demonstrated
by three examples (Sect. Validation of RULFEM for noisy input data). In addition, Table 3.3 and
comparison of Figs. 3.9, 3.12, and 3.15 with Figs. 3.8, 3.11, and 3.14, respectively, confirm that
Eac < Eub for all data. This provides further validation of the error assessment criterion given by
Eq. (3.14). Hence, Eq. (3.14) not only predicts an upper-bound error, but also an acceptable pair
of S NRu and S NR f measurements.

The component-wise condition number βi [Eq. (3.15)] provides another useful error assessment
tool for RULFEM. Chandrasekaran and Ipsen [6] used βi to distinguish the columns of A that are
similar to each other, in a quantifiable manner similar to that of the condition number of cond(A).
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Figure 3.13: a Average and b standard deviation of maximum element error norm Ei of the ele-
ments used to discretize the specimen of example 6 versus signal-to-noise ratio S NRu and S NR f

for 15 repetitions of 225 displacement and force full-fields

The βi values of example 6 (previous section) are less than the overall condition number of A
(Figs. 3.16, 3.17), although they do not necessarily correspond to the actual local errors in the
elements of C. Thus, βi can be used in RULFEM to determine which components of C are less
accurate than other components. This is useful information because it facilitates the selection of
body perturbations above the noise level and, importantly, these perturbations can be measured in
a particular direction at the node that most strongly influences the erroneous component of C.

Many engineering problems can be modeled using 1D or 2D FEM models. RULFEM can also
be used to solve such problems. However, the significant reduction in the number of DOF with 1D
and 2D elements requires certain modifications in the RULFEM formulation. This is because the
present method requires at least 81 independent DOF for solution.
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Figure 3.14: a Average and b standard deviation of maximum element error norm Eac of the ele-
ments used to discretize the specimen of example 6 versus signal-to-noise ratio S NRu and S NR f

for 15 repetitions of 225 displacement and force full-fields

3.7 Conclusion
A reverse updated Lagrangian finite element method (RULFEM) that provides nonlinear element-

wise mechanical properties of 3D solid bodies (with deformed configurations tracked by incremen-
tal linear steps) was developed in this study. The RULFEM formulation relies on the solution of a
linear system of equations and yields element- wise, fourth-order elasticity tensors for small dis-
placement (or force) perturbations. The novelty of RULFEM is that an a priori assumed material
constitutive law is not required; only incremental linearity of the deforming material and mate-
rial uniformity within each element used to discretize the body are presumed. The validity of the
method was demonstrated by numerical examples with both noise-free and noisy inputs.

The accuracy and efficiency of RULFEM depend not only on its numerical implementation but
also on the accuracy and precision of the input displacement and force measurements. Because
the mesh of the deformable body is distorted in each displacement perturbation (increment), re-
meshing may be necessary after a small number of displacement (or load) increments. Further, the
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Figure 3.15: a Average and b standard deviation of maximum element error norm Eub of the ele-
ments used to discretize the specimen of example 6 versus signal-to-noise ratio S NRu and S NR f

for 15 repetitions of 225 displacement and force full-fields

accuracy of RULFEM strongly depends on the efficacy of the measuring system to closely track
the nodal displacements while the body is incrementally deformed. The sensitivity of RULFEM
is rooted in the high condition number of the coefficient matrix A. Thus, an upper bound error of
the error arising from noisy measurements and, perhaps, the perturbation step size, both related
to the condition number of A, was introduced and its utility was demonstrated by numerical ex-
amples. It was also shown that a component-wise condition number, which is comparable to the
condition number of A, can be used to identify the components of the calculated C matrix that
have a relatively high error and to facilitate the selection of body perturbations above the noise
level, especially for a particular direction at the node that is most strongly affecting the erroneous
component of C.
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Example S NR f S NRu maxEi (%) Eac (%) Eub (%)
4 78 121 29 17 124
4 78 135 11 4 48
4 97 121 35 15 115
4 97 135 7 3 23
5 78 121 18 7 24
5 78 135 4 1 8
5 97 121 14 6 21
5 97 135 3 1 5
6 78 121 37 14 110
6 78 135 11 4 31
6 97 121 37 14 105
6 97 135 8 3 21

Table 3.3: Comparison of maxEi and corresponding Eac and Eub for two S NR f and S NRu values
of examples 4-6 with noisy input vectors
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Chapter 4

Estimating Current State of Stress, ECSS

4.1 Introduction
The objective of the present chapter is to introduce a nondestructive inverse FEA method,

termed Estimating Current State of Stress (ECSS), that is capable of predicting the current state
of stress at nodal positions of the discretized body together with elemental incremental elasticity
tensors. As in most exiting material identification techniques and destructive stress measurement
techniques, ECSS requires three or more sets of full-field displacement and force data of the body
resulting from three or more small displacement of the body relative to the current configuration.
However, ECSS does not require any a priori constitutive assumptions beyond incremental linear-
ity in the stress-deformation relation. Instead, it directly furnishes incremental elasticity tensors
and stress fields at the finite-element level. Like the companion technique RULFEM (developed
in Chapter 3) [28] on which it is based, ECSS generates a coefficient matrix defining a typically
overdetermined least-square set of equations without nonlinear constraints. This coefficient ma-
trix may have a high condition number or be rank deficient. Thus a small random error in the
nodal displacement or nodal force vectors may yield erroneous results. Displacement measure-
ments are acquired with imagining techniques, and so small measurement errors are inevitable.
Global and local error assessments for these data have been introduced and validated in the course
of the development of RULFEM (developed in Chapter 3) [28]; thus this issue is not discussed in
this chapter. The ECSS method is developed for two types of perturbation in the following theory
section. Using forward FEA, a straight steel beam is deformed in to the plastic range to generate
residual stress under two different loading conditions, thus generating two different residual stress
fields. The ECSS method is then validated by using surrogate full-field displacement and force
measurements obtained from an FEA analysis of the residually stressed beam
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4.2 Theory of Estimating Current State of Stress Method,
ECSS
As in RULFEM [28] (see Chapter 3), ECSS is based on the updated Lagrangian finite

element method (ULFEM), presented in Chapter 2.3. The goal of ULFEM is to compute finite
element nodal displacements, {uh}

0
1, and nodal forces, {fh}

0
1 of the body Ω at configuration R1

with respect to reference configuration R0 (discretized by Nn nodes and Ne elements) when it is
undergone a known perturbations at its boundaries, namely a known displacement at Γu1 and a
known traction at Γq1, Fig. 2.1; while the material incremental tensors, Le

0, for element e and
initial nodal state of stress tensors,

◦

Tn, are known throughout the body. Hence, solving Eq. (2.45)
implicitly is possible, if and only if the displacement vector {uh}

0
1 can be decoupled and a set of

linear equation is obtained with proper rank and condition number of the coefficient matrix, which
is known as the stiffness matrix. The decoupling process is possible when the linear first Piola-
Kirchhoff stress and displacement gradient relationship is applicable, i.e. Eq. (2.8) with either
◦

T = 0 or known
◦

T at each node defining the finite element mesh. The number of equations or
size of the decoupled stiffness matrix becomes equal to number of unknowns, i.e. total number of
degrees of freedom, 3Nn, excluding the boundary nodes where displacements are known.

The goal of the inverse problem, however, is to find the components of the initial state of stress,
i.e. the nodal Cauchy stress tensors,

◦

Tn, and the incremental elasticity tensors, Le
0 of each element

e, where the nodal displacement field {uh}
0
1 and nodal forces {fh}

0
1 are known through measurements

at configuration R0 of the body. Because the unknown nodal Cauchy stress is a symmetric matrix,
there are six unknowns per each nodal stress tensors,

◦

Tn. The size of the vector form of all the
nodal Cauchy stress tensors

{ ◦
T
}

is (6Nn × 1). The other unknown is the elemental incremental
elasticity tensor, Le

0, which exhibits minor symmetries [19]; and, therefore, has a total of 36 un-
knowns per element. The size of the vector form of all the elemental incremental elasticity tensors
{L0} is (36Ne × 1). The total number of unknowns in the inverse problems becomes (6Nn + 36Ne),
which is more than two times larger than the total number of equations provided by the weak form
of the momentum balance Eq. (2.45). Thus, the minimum number of independent perturbations
are required to obtain minimum number of independent equations is three; provided the body Ω

at configuration R0 is discretized with 64-node hexagonal elements. Each known perturbation pro-
vides a pair of displacement {uh}

n
n+1 and force {fh}

n
n+1 full field data. Ultimately, the total unknown

vectors are
{ ◦
T,L0

}T
.

The general form of the first incremental first Piola–Kirchhoff stress [Eq. (2.13)] can be intro-
duced into Eq. (2.45), provided the incremental steps are sufficiently small for Eq. (2.45) to furnish
a meaningful approximation. The elemental shape function,

[
φe], and differential operator, [Be] can

be used to relate the Cauchy stress tensor,
◦

T and the deformation gradient, H0
1, at any point within

an element e with the nodal Cauchy stresses
{
◦

T
e

n

}
and the deformation gradient H0

1 = [Be]
{
ue

h

}0

1
,

respectively. Hence, the left-hand side of Eq. (2.45) becomes
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(4.1)

{Π(u)}01 = A
Ne
e=1

{∫
R0

(
[Be]T

(
I + [Be]

{
ue

h
}0
1

) [
φe]) dVe

0

}
︸                                                    ︷︷                                                    ︸

Z
(
{ue

h}
0
1

)
=Z0

1

{ ◦
T
}

+

A
Ne
e=1

{∫
R0

([
Be

sym

]T [
Le

0
] [

Be
sym

])
dVe

0

}
︸                                           ︷︷                                           ︸

K0

{uh}
0
1

where
{ ◦
T
}

is the vector formed from all nodal Cauchy stress components with size (6Nn × 1), and

{uh}
0
1 is the vector of the nodal displacement components with size of (3Nn) × 1.

[
Be

sym

]
is the

symmetric format of the differential operator [Be], with size of 6 (×3Nn), used directly to compute[
E0

1

]
instead of computing H0

1 and its transpose.
[
Le

0

]
is a 6×6 representing the incremental elasticity

tensor of element e e. The unknowns of the present inverse problem (ECSS), i.e., the nodal Cauchy
stress elements,

{ ◦
T
}

and the elemental incremental elasticity tensor,
[
Le

0

]
, can be coupled (utilizing

the authors’ earlier work [28] (Chapter 3 equations (3.9)), as K0

{
ue

h

}0

1
= A0

1

({
ue

h

}0

1

)
{L0}) and moved

outside the second assembly integral in Eq. (4.1), as a vector of {L0}. Hence, Eq. (4.1) assumes the
following short form:

{Π(u)}01 = Z0
1

{ ◦
T
}

+ A0
1 {L0} (4.2)

Similar to the left-hand side of (2.45), application of the general form of the first incremental
first Piola–Kirchhoff stress [Eq. (2.13)] to the second term of the right-hand side of (2.45) and
uncoupling the Cauchy stress as a vector of

{ ◦
T
}

yields:

(4.3)

A
Ne
e =1


∫

Γe
q0

([
φe]T

{
P̂e

(
He|01

)
N0

0

})
dAe

0

 =

A
Ne
e=1


∫

Γe
q0

([
φe]T

(
I + [Be]

{
ue

h
}0
1

)
Ψ0

(
N0

0

))
dAe

0

︸                                                          ︷︷                                                          ︸
Y
(
{ue

h}
0
1,N

0
0

)
=Y0

1

{ ◦
T
}

+A
Ne
e=1


∫

Γe
q0

([
φe]T s̄

)
dAe

0

︸                           ︷︷                           ︸
{fext

h }
0
1

where Ψ0

(
N0

0

)
is a function that reorders

[
φe

T
] { ◦

Te
}

N0
0, such that Ψ0

(
N0

0

) { ◦
Te

}
=

[
φe]

T

{ ◦
Te

}
N0

0, and

s̄ is a second Piola-Kirchhoff traction born from L0

[
E0

1

]
. As a result, Eq. (2.46) can be rewritten

based on Eqs. (4.2) and (4.3) as

(4.4)
[
Z0

1 − Y0
1

] { ◦
T
}

+ A0
1 {L0} =

{
fext
h

}0
1 +

{
fb
h

}0

1

or in matrix form
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[
Z0

1 − Y0
1 A0

1

]︸            ︷︷            ︸
3Nn×(6Nn+36Ne)

{ ◦
T
L0

}
︸︷︷︸

(6Nn+36Ne)×1

=
{
fext
h

}0
1 +

{
fb
h

}0

1︸          ︷︷          ︸
3Nn×1

(4.5)

Depending on the number of elements, Ne, three or four sets of perturbations are necessary to
generate a set of equations equal to or greater than the number of unknowns. The required sets
of displacement and force full-field data can be obtained by the consecutive perturbation method
(CPM) and the reference configuration perturbation method (RCPM). The CPM defines each small
perturbation with respect to the current configuration, i.e., it entails a perturbation of the body
Ω first from configuration R0 to R1, then from configuration R1 to configuration R2, and so on,
(see Fig. 4.1) . The RCPM perturbs the body Ω with respect to the original configuration R0 as
many times as required to configurations R1, R2, etc., while every perturbation step is independent
of the the others and enough time is given to the body to obtain original configuration R0 after
each perturbations (see Fig. 4.2). Each method has its advantage and disadvantageous. In the
CPM, full field displacement and force data require one time instrumentation setup (to measure
the full field data); whereas in the RCPM different instrumentation setups may be needed for each
perturbation step. Although the instrumentation setup may be less involved in the CPM compared
to the RCPM, the associated measured field data are probably less reliable. Since the perturbation
direction is biased on the CPM, the response should be on the order of measurement noise level.
Consequently, each method requires slightly different numerical treatment, as explained in the
following two subsections.

4.3 The ECSS Method Based on the Consecutive Perturbation
Method, ECSS-CPI
The first linear perturbation yields the first set of equations Eqs. (4.4) and (4.5). The second

set of equations are then produced by perturbing Ω from configuration R1 to configuration R2 with
measured full field displacement and force fields {uh}

1
2 and

{
fext
h

}1

2
, respectively. Similar to the

derivation of the first set of equations (Eqs. (4.4) or (4.5)), the second step is obtained by making
use of Eq. (2.21) in Eq. (2.48).

Substituting the first Piola-Kirchhoff stress on the left-hand side of Eq. (2.48) with Eq. (2.21)
and dVn+1 = Jn

n+1dVn gives
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Figure 4.1: Consecutive Perturbation Inputs, ECSS-CPI, concept

(4.6)

{Π(u)}12 = A
Ne
e=1

{∫
R0

(
[Be]T

(
I + [Be]

{
ue

h
}0
2

) ([
φe] { ◦Te}) (
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{
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h
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1

))
dVe
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}
︸                                                                                   ︷︷                                                                                   ︸
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0
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}0
1

) (
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{
ue

h
}0
1

)T
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dVe
0

}
︸                                                                                                ︷︷                                                                                                ︸

K2

+

A
Ne
e=1

{∫
R1

(
[Be]T

([
Le

1
] [

Be
sym

]T {
ue

h
}1
2

))
dVe

1

}
︸                                                    ︷︷                                                    ︸

K3

where [Be] is the differential operator of the element shape function with respect to Ri configura-

tion, and the terms including the incremental elasticity tensors, such as
([
Le

0

] [
Be

sym

]T {
ue

h

}0

1

)
, have

technically 6 rows and as many as 3 times number of nodes per element. However, the full version
with 9 rows is required to match the size of terms to the surrounding terms. The conversion of the
6-element symmetric tensor to a general 9-element tensor is not discussed here for brevity.
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Figure 4.2: Reference Configuration Perturbations, ECSS-RCP, Concept.

In the inverse problem, the unknowns are the initial state of stress tensors for all element e

nodes,
[
φe] { ◦Te}

, the incremental elasticity tensors of all elements in the first perturbation,
[
Le

0

]
,

and the incremental elasticity tensors of all elements at the second perturbation,
[
Le

1

]
, where they

are referred to in vector format, for the entire mesh with,
{ ◦
T
}
, {L0} and {L1}, respectively. To

decouple these three unknown vectors in (4.6) the terms of K1, K2, and K3, the following treatment
is used:

6Nn∑
i=1

∂K1

∂
{
◦

T
e}

i

=
[
Z1

2

] { ◦
T
}

(4.7)

where i is the i-th term of the initial stress tensor of element e in the form of vector
{
◦

T
e}

; each

differential
∂K1

∂
{
◦

T
e}

i

creates a column of matrix
[
Z1

2

]
. Similarly, the second and third terms are

defined as
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36Ne∑
i=1

∂K2

∂
[
Le

0

]
i

=
[
A0

2

]
{L0} (4.8)

where i is the i-th term of element e in form of
[
Le

0

]
, and each differential

∂K2

∂
[
Le

0

]
i

creates a column

of matrix
[
A0

2

]
.

36Ne∑
i=1

∂K3

∂
[
Le

1

]
i

=
[
A1

2

]
{L1} (4.9)

where i is the i-th term of element e in form of
[
Le

1

]
, and each differential

∂K3

∂
[
Le

1

]
i

yields a column

of matrix
[
A1

2

]
.

Eq. (4.6) can be rewritten based on the defined decoupled matrices and vectors of unknowns as
defined in Eqs. (4.7), (4.8), and (4.9). Thus,

{Π(u)}12 =
[
Z1

2

] { ◦
T
}

+
[
A0

2

]
{L0} +

[
A1

2

]
{L1} (4.10)

where {L1} is a vector of the components of all the elements incremental elasticity tensors, which
becomes another unknown vector to be computed.

Using Nanson’s formula, the successive area elements and unit normal vectors in the La-
grangian formulations are related as

1
Jn

n+1

(
Fn

n+1
)T Nn+1

n+1dAn+1 = Nn
ndAn (4.11)

In the second perturbation with respect to the first configuration R1, the second term of the
right-hand side of Eq. (2.48) after incorporating Eq. (4.11) and the variable defined for Eq. (4.3)
becomes:

(4.12)
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Thus, the concise matrix form of the second step Lagrangian formulation based on Eqs. (4.10)
and (4.12) yields

[
Z1

2 − Y0
2 A0

2 A1
2

]︸                   ︷︷                   ︸
3Nn×(6Nn+72Ne)
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(4.13)

In the third step, the weak-form uses the first Piola-Kirchhoff stress, defined in Eq. (2.22), and
the left-hand side of Eq. (2.48) becomes

(4.14)
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Exploiting the decoupling technique applied to Eqs. (4.7) through (4.9), the four derived terms
of K4 to K7 shown on the right-hand side of Eq. (4.14) combine as
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where the left-hand side of Eq. (2.48) for the third step is expanded as following:
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Thus, as in the previous step, the concise matrix form of the third step Lagrangian formulation
based on Eqs. (4.15) and (4.16) becomes:

[
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3
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(4.17)

A full set of equations can be obtained from Eq. (4.5), Eq. (4.13), and Eq. (4.17) . This form
furnishes a least-squares problem, which can be solved for the nodal Cauchy stress and three steps
of incremental elasticity tensors of all finite elements defining the body, i.e.,
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(4.18)
or in short form:

G1X1 = B1 (4.19)

4.4 The ECSS Method Based on the Reference Configuration
Perturbation Method, ECSS-RCP
In this approach, the body Ω at configuration R0 is perturbed in an elastic fashion at least

three times, and the required measurements are obtained after each perturbation. The perturbation
is then removed and the body resumes its reference configuration R0. For instance, the first con-
figuration R1 is obtained by applying a small perturbation to the body at configuration R0. The
associated full-field displacement vector {uh}

0
1 and full-field force vector {fh}

0
1 are then measured,

and the second configuration R2 is similarly obtained with applying another small perturbation to
configuration R0. Subsequently the associated full-field displacement vector {uh}

0
2 and full-field

force vector {fh}
0
2 are measured. In the same way, the third perturbation deforms the body from

the reference configuration R0 to configuration R3, and the full-field pair of displacement and force
vectors {uh}

0
3 and {fh}

0
3,respectively, are measured.

Since the reference configuration for each perturbation is configuration R0, the unknowns are
only the nodal components of Cauchy stress and the elements of incremental elasticity tensors

in vector form
{ ◦
T ,L0

}T
. Accordingly, each perturbation step yields a set of equations, such as

Eq. (4.5) that are combined to yield the following least-squares problem, which is similar to
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Eq.(4.20), similar to Eq. (4.18), and can be solved to obtain the nodal Cauchy stresses and three-
step incremental elasticity tensors of all finite elements comprising the body, i.e.,
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(4.20)

or in short form:
G2X2 = B2 (4.21)

4.5 Validation of the ECSS method
The input to ECSS method is the full-field data (i.e., displacement and traction fields) may

contain noise and measurement errors. As with other inverse methods, ECSS relies on the solu-
tion of a system of equations containing a coefficient matrix G1 or G2 characterized by moderate
to relatively high condition number and respective forcing vectors B1 or B2. Consequently, vali-
dation criteria and error assessment in the presence of noisy input data are necessary. Numerical
techniques and criteria for this purpose were presented and validated in our previous work [28].
These techniques are capable not only to compute overall upper-bound error, but can also be used
to estimate the local error of each component of the unknown vector, X1. Therefore no examples
are presented for noisy input data in this paper.

ECSS-RCP method is validated with examples presented in the present section. The numerical
tool used to solve Eq. (4.20) is the MatLab back-slash operator (version 2013b). MatLab yields a
least-squares solution for the rectangular matrixG2 and solves so-called "over-determined systems"
using QR factorization.

The solution to Eq. (4.20) yields (1) as many symmetric second-order Cauchy stress tensors,
with 6 components, as the number of nodes used to discretize the body, and (2) as many fourth-
order incremental elasticity tensors, with 36 components, as the number of (64-node) elements
used to discretize the deformed body. Mechanical property of each element e is defined by its
fourth-order incremental elasticity tensor, which is represented by a (6 × 6) matrix [Le]i, where i ∈
{0, 1, 2, 3}. The mechanical properties of an element e are defined by its fourth-order incremental
elasticity tensor, which is represented by a (6 × 6) matrix [Le]i, where i ∈ {0, 1, 2, 3}. Since ECSS
predicts local (element-wise and node-wise) properties from the solution of the global equation
system [Eq. (4.20)], two levels of assessment must be used to validate the method.

The objective of local validation is to compare the predicted components of [Le]i and
◦

Tn with
actual components. Although a component-wise comparison of matrices might be feasible when
dealing with a few finite elements, the comparison is cumbersome when there are many elements.
Therefore, it is preferred to assess the accuracy of ECSS using a single error number. Here, the
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element error norm ELi(e) at reference configuration i of incremental elasticity tensor Li is used,
which is defined as

ELi (e) =

∥∥∥∥ [
Le

ECS S

]
i
−

[
Le

FEA

]
i

∥∥∥∥∥∥∥∥ [
Le

FEA

]
i

∥∥∥∥ (4.22)

where
[
Le

ECS S

]
i

and
[
Le

FEA

]
i

are the incremental elasticity tensor of element e at reference con-
figuration i predicted by ECSS and that of the actual, respectively, and ‖•‖ is the matrix norm.
However, there may be nodes with vanishing stress components, and so a similar definition is not
appropriate for stress error predictions. The norm of the differences of the actual and predicted
stresses can be compared against the norm of the actual stress.

E◦
T

(n) =
∥∥∥∥ [ ◦

TECS S

]
n
−

[ ◦
TFEA

]
n

∥∥∥∥ versus
∥∥∥∥ [ ◦

TFEA

]
n

∥∥∥∥ (4.23)

where
[ ◦
TECS S

]
n

and
[ ◦
TFEA

]
n
, are the Cauchy stresses tensors of node n at configuration R0 predicted

by ECSS and that of the actual.
The main goal of this presentation is to develop and demonstrate ECSS for noise-free and error-

free input data pairs (full field displacement and force). Accordingly, global error assessments are
ignored for the presented examples. The machinery for accessing the global error of the system of
equations [Eq. (4.18) or Eq. (4.20)] has been developed and demonstrated in earlier work of the
authors [28]. The very same machinery are applicable to the system of equations developed here.

The capability of the present method is demonstrated in this section by two examples in
which the input measurement (force and displacement) field data are not obtained from actual
measurements; instead they are generated from a forward static finite element analysis of a body
with known incremental elasticity tensors and prescribed traction and displacement perturbations.
These fields are regarded as effectively noise-free and are used to validate the ECSS-RCP formu-

lation. The computed unknown vector
{ ◦
T,L0

}T
is then compared to the actual quantities utilizing

the error equations Eq. (4.22) and Eq. (4.23). Further, some stress contour plots and figure plots of
Cauchy stress components are presented.

Inspired by standardized material testing protocols, the following two examples model four-
point and three-point bending experiments of a beam with a trapezoidal cross-section (see Fig. 4.3).
The beams are made of a hypothetical elasto-perfectly plastic steel with Young elastic modulus of
200 GPa, Poisson ration of 0.3, yield strength of 250 MPa. Residual stress fields in the beams
were produced in two steps. In Step-1 the beams were first loaded such that the beam mid-sections
were plasticized, and in Step-2 the beams were unloaded completely. The stressed beams under no
loading, e.g

( ◦
b,
◦
t
)

= (0, 0), but with non-zero residual stress field,
◦

T 6= 0, reach the configuration
R0 in the ECSS-RCP formulation. To numerically produce configuration R0, the two steps were
modeled using the nonlinear capabilities of the commercial finite element software code ABAQUS
6.9EF (Dassault Systèmes 10 rue Marcel Dassault, 78140 Vélizy-Villacoublay – France, telephone:
+33 1 61 62 61 62 – VAT: FR 52 322 306 440) . The beams were meshed using 3454 eight-node
hexagonal elements (namely C3D8 in ABAQUS) and a total of 4900 nodes.
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Figure 4.3: Beam example geometry and finite element mesh

For the given number of nodes and number of elements, the total number of unknowns become
3454 × 36 + 4900 × 6 = 153, 744; hence, at least eleven different perturbations are required to
compute as many unknowns. To reduce the number of perturbations to a minimum and manage-
able figure, the number of elements must be reduced. However, the number of nodes must remain
the same. Higher order Lagrangian elements for these examples utilizes all the nodes defined in
the original mesh, but the number of elements reduces. For examples, 7, 4, and 3 perturbations
are necessary for 16-node, 32-node and 64-node hexagonal iso-parametric elements, respectively.
For the discussed beam examples, each 27 adjacent eight-node hexagonal elements form a 64 node
element. Thus, total number of 64-node elements used in ECSS computation became Ne = 128
with the same total node of 8-node hexagonal mesh of Ne = 4900.

Example 1: The residual stress field produced by a four-point bending experiment is shown in
Fig. 4.4 fThis the two step analysis explained above with ABAQUS/Standard Solver to construct
the configuration R0 of the beam with residual stress fields shown in Fig. 4.5. The beam were
then perturbed, in the absence of body forces, four times from reference configuration R0. The
boundary condition of each perturbations that yielded configurations R1, R2, R3, and R4 are shown
in Fig. 4.6, Fig. 4.7, Fig. 4.8, and Fig. 4.9, respectively. Four full field displacements and trac-
tion forces were then extracted from linear static finite element analysis of the four perturbations,
namely:

(
{uh}

0
1 , {fh}

0
1

)
from configuration R1,

(
{uh}

0
2 , {fh}

0
2

)
from configuration R2,

(
{uh}

0
3 , {fh}

0
3

)
from configuration R3, and

(
{uh}

0
4 , {fh}

0
4

)
from configuration R4. The total number of nodes defin-

ing the finite element mesh of the beam yielded the total number of degrees-of-freedom (DOF)
to be DOF = 3Nn = 14700. The total number of unknowns is 6Nn + 36Ne = 34008. Thus, the
required ECSS-RCP system of equations, defined for three perturbations by Eq. (4.20), yields a
coefficient matrix G2 of size 44100 × 34008 and a forcing vector of B2 of size 44100 × 1. Thus,
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Figure 4.4: Example-1, Four-point bending boundary conditions and loading produces residual
stress upon unloading, where F = 67, 200 N

Figure 4.5: Example-1, Contour plots of the six components of the actual residual stress T̊FEA
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Figure 4.6: The first perturbation boundary conditions

O 

z 

x 

y 

y=0 

y=0 

z=0 

z=0 

x=0 

u z=0.2 mm 

Figure 4.7: The second perturbation boundary conditions
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Figure 4.8: The third perturbation boundary conditions
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Figure 4.9: The forth perturbation boundary conditions
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Figure 4.10: Example-1, element error norm ELi (e) versus element number e for example 1. All
ELi (e) values are < 4.0 × 10−6, confirming the accuracy of all elemental incremental elasticity
tensors obtained with ECSS-RCP method.

the resulting least-squares system of equations G2X2 = B2 can be solved for X2. However, the
mesh geometry and the response of the beam to each perturbation do not guarantee 34008 inde-
pendent equations. Indeed, the MatLab back-slash operator (version 2013b), used to solve this
least-squares problem, reported the rank of the coefficient matrix G2 as 34006. Hence, a new per-
turbation was required to guarantee a sufficient number of independent equations for this example.
Consequently, Eq. (4.20) for this example, with four perturbations, yields:
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B2

(4.24)

Solution of this least-square problem [Eq. (4.24)] is then compared using the two error norm
equations defined by Eqs. (4.22) and (4.23); and are shown in Fig. 4.10 and 4.11. Thus the errors
in predicting the incremental elasticity tensors for all 128 elements are less than 4 × 10−8. The
error in computing nodal Cauchy stresses are very small for larger values

∥∥∥∥ [ ◦
TFEA

]
n

∥∥∥∥, and in the

contrary, it is larger for smaller values of
∥∥∥∥ [ ◦

TFEA

]
n

∥∥∥∥. Nonetheless, the maximum defined error,
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Figure 4.11: Example-1, E◦
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(e) versus
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]
n

∥∥∥∥. E◦
T

(e) values are small for larger values of∥∥∥∥ [ ◦
TFEA

]
n

∥∥∥∥, and only in couple of nodes that
∥∥∥∥ [ ◦

TFEA

]
n

∥∥∥∥ is almost zero, E◦
T

(e) is as large as 1.

E◦
T

(n), is less than 1.2.
Moreover, the actual contour plots of the six component of nodal Cauchy stress tensors, shown

as a reference in Fig. 4.5, can be compared with the predicted nodal Cauchy stress components
depicted in Fig. 4.12. Comparison of these two figures also furnishes a visual confirmation of the
ECSS method for this example. However, visualization of a contour plot is limited to the outer
surface of the beam. Consequently, another measure is to plot stresses on a path passing through
the beam, as shown in Fig. 4.13. Both actual and predicted (ECSS) Cauchy stress components are
shown in six subplots in Fig. 4.14. The predicted stress components are seen to be almost identical
to the actual stress components.

Example 2: The residual stress field produced by a three-point bending experiment as shown in
Fig. 4.15 from the two step analysis explained above with ABAQUS/Standard Solver to construct
the configuration R0 of the beam with residual stress fields shown in Fig. 4.16. The beam were then
perturbed, in the absence of body forces, four times from reference configuration R0. The boundary
condition of each perturbations that yielded configurations R1, R2, and R3 are shown in Fig. 4.6,
Fig. 4.7, and Fig. 4.8, respectively. Three full-field displacements and traction forces were then
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Figure 4.12: Example-1, Contour plots of the six components of the predicted residual stress
T̊ECS S

extracted from linear static finite element analysis of the three perturbations, namely:
(
{uh}

0
1 , {fh}

0
1

)
from configuration R1,

(
{uh}

0
2 , {fh}

0
2

)
from configuration R2, and

(
{uh}

0
3 , {fh}

0
3

)
from configuration

R3. The total number of nodes defining the finite element mesh of the beam determined the total
number of degrees-of-freedom (DOF) to be DOF = 3Nn = 14700. The total number of unknowns
are 6Nn + 36Ne = 34008. Thus, the required ECSS-RCP system of equations, defined for three
perturbations by Eq. (4.20), yields a coefficient matrix G2 of size 44100 × 34008 and a forcing
vector of B2 of size 44100× 1. Hence, the formed least-squares system of equations of G2X2 = B2

can be solved for X2. However, contrary to the previous example, three perturbation produced
sufficient independent equations; hence, the entire number of unknowns, 34008, were computed
using MatLab. Similar to previous example, the solution is then compared using the two error
norm equations defined by Eqs. (4.22) and (4.23); and are shown in Fig. 4.17 and 4.18. Hence, the
errors in predicting the incremental elasticity tensors for all 128 elements are less than 3.5 × 10−9.
The error in computing nodal Cauchy stresses are very small for larger values

∥∥∥∥ [ ◦
TFEA

]
n

∥∥∥∥, and in

the contrary, it is larger for smaller values of
∥∥∥∥ [ ◦

TFEA

]
n

∥∥∥∥. Nonetheless, the maximum defined error,
E◦

T
(n), is less than 3.0 × 10−3.
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Figure 4.13: Example-1, A beam mid-section path on xx-component of the T̊FEA contour plot
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Figure 4.14: Example-1, T̊ components of nodes on the path shown in Fig. 4.13
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Figure 4.15: Example-2, three-point bending boundary conditions and loading produces residual
stress upon unloading, where F = 58, 500 N.

Figure 4.16: Example-2, Contour plots of the six components of the FEA residual stress T̊FEA
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Figure 4.17: Example-2, element error norm ELi (e) versus element number e for example 2. All
ELi (e) values are < 3.5 × 10−9, confirming the accuracy of all elemental incremental elasticity
tensors obtained with ECSS-RCP method.
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Figure 4.19: Example-2, Contour plots of the six components of the predicted residual stress
T̊ECS S
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Figure 4.20: Example-2, A beam mid-section path on xx-component of the T̊FEA contour plot
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Figure 4.21: Example-2, T̊ components of nodes on the path shown in Fig. 4.20

As in the previous example, the actual nodal Cauchy stress components (Fig. 4.16) can be
compared with that of predicted ones, as shown in Fig. 4.19. Once again a comparison of these two
figures provides a visual validation of the ECSS method. Moreover, the plot of stress components
plot along a path passing through the mid-section of the beam - see Fig. 4.20. is shown in Fig. 4.21.
The predicted stress components are almost identical to the actual stress components.

4.6 Discussion
The ECSS method addresses two problems of material identification. It not only furnishes

the material incremental tensor for each element, but also supplies the current state-of-stress ten-
sor at each node. Displacement and force full-field measurements are required for three or more
linear perturbations as inputs to RULFEM and ECSS. As in other methods (e.g., FEMU, CEGM,
VFM, EGM, and RGM), where balance laws of mechanics are solved using a numerical technique
such as finite differences, boundary elements or FEM, to determine material property parameters,
the RULFEM and ECSS methods deliver equilibrium states states by utilizing FEA . Except for
VFM, RULFEM and ECSS, the other methods convert numerical forms of the balance laws into
optimization problems with different cost functions. Unlike previous methods, however (including
VFM), ECSS and RULFEM directly solves a least-squares set of equations and do not require any
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assumptions whatsoever regarding constitutive response beyond incremental linearity. Both yield
the material incremental elasticity tensor (Le) and elasticity tensor (Ce), respectively, for each el-
ement of the mesh comprising the discretization of the domain. In marked contrast, all of other
methods generate the material constants of an a priori assumed constitutive model. Further while
VFM does not solve an optimization problem to determine the material constants, it does require
an optimized particular (virtual) displacement field to achieve acceptable results.

ECSS yields the elemental incremental elasticity tensor, Le, which is a fourth-order tensor
with minor symmetry that can be represented as a (6 × 6) matrix, whereas the basic RULFEM
yields elemental Ce, which is a fourth-order tensor having no symmetry; i.e., it cannot generally
be represented as a symmetric (9 × 9) matrix. Hence, application of RULFEM to bodies with
unknown stresses at the initial configuration generates erroneous elements of Ce, since C0 [H] =

H
◦

T + L0 [E] [19, 28].
The ECSS CSS capability can be contrasted with existing residual stress measurement tech-

niques. ECSS does not require - and in fact is incompatible with - any a priori assumptions
about the constitutive model of any element; whereas, both destructive (HDM, RCM, DHM, ST,
CM, etc.) and nondestructive (X-ray, neutron diffraction, eddy current, ultrasound) measurement
techniques are based on a priori material constitutive models, and they do not allow for different
material properties in different finite elements.

The ECSS method is a nondestructive method of determining the CSS (residual stress in the
absence of the external forces), and also effective at generating both the stress tensor field and the
material tensor field throughout the entire body. The destructive techniques, however, provide ei-
ther local stress tensor fields, or bending and axial stress components only, whereas nondestructive
techniques are limited in in terms of depth beyond 10 cm [24]. The only disadvantage of the ECSS
method is that it requires full-field displacement and force measurements throughout the entire
mesh defining the body.

Like inverse methods, RULFEM and ECSS have some limitations, which are (1) each finite
element is made of a uniform material, (2) the measurement of the required force fields imposes
a practical limitation, and (3) the coefficient matrix might become rank deficient or have a high
condition number. However, the first limitation can be resolved by changing the mesh size and
density if doing so yields no clear distinction. An easy solution to the third limitation is to measure
additional perturbations, as shown in Example-1 of the validation section, and/or to use numerical
preconditioning techniques to reduce the condition number of the coefficient matrix. The second
and third limitations can also be addressed in a more detailed fashion, to be addressed in our future
work.

Another major benefit of ECSS and RULFEM lies in rapid solution of the attendant linear
algebraic problem. With advances in numerical computation, such as iterative methods, precondi-
tioning and parallelization, solving a least-squares problem with severely sparse coefficient matrix
is rapidly becoming feasible and practical.

Further, ECSS addresses one of the main limitations of RUFEM; namely, that RULFEM initi-
ates by perturbing the body from a stress-free state, while ECSS does not suffer from this limitation.
Moreover, ECSS enjoys the freedom of FEA in meshing virtually any geometry; ECSS can there-
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fore be applied to actual parts without any assumptions except linearity within the perturbation step
and uniformity of the material within each finite element. The former assumption can be tested
inequality Eq. (2.7), and the latter can be tested by re-meshing or mesh refinement. However,
once measured full-field displacement and force fields become available, solution of the derived
least-squares system of equations is straightforward and efficient.

4.7 Conclusion
A reverse updated Lagrangian finite element method (ECSS) that provides nonlinear element-

wise mechanical properties of 3D solid bodies (with deformed configurations tracked by incre-
mental linear steps) and the CSS at each nodes was developed in this study. ECSS is also capable
of finding nodal residual stress tensors, a special case of self-equilibrated body under no external
loads. Similar to RULFEM method [28], ECSS formulation relies on the solution of a linear least-
squares system of equations and yields element-wise, fourth-order incremental elasticity tensors
and nodal stress tensors for small displacement (or force) perturbations. The novelty of ECSS
is that it neither requires an a priori assumed material constitutive law, nor requires assuming
stress-free configuration of the body. ECSS only assumes incremental linearity of the deforming
material and material uniformity within each element used to discretized the body. The validity of
the method was demonstrated by numerical noise-free input examples. Since ECSS and RULFEM
[28] are based on ULFEA, the local and global error prediction tools developed in [28] are directly
applicable to ECSS.

Similar to RULFEM [28], the accuracy and efficiency of ECSS depend on the accuracy and
precision of the input displacement and force measurements. Mesh distortion after several per-
turbations might necessitate re-meshing. Further, the accuracy of ECSS strongly depends on the
perturbation and efficacy of the measuring system to closely track the nodal displacements while
the body is incrementally deformed. The sensitivity of ECSS is rooted in the high condition num-
ber of the coefficient matrix G1 or G2. The linearity of the perturbation can be tested directly by
verifying the Eq. (2.7) inequality. Measurement related noise and errors can also cause sever er-
ror with high condition numbers of the coefficient matrix (G1 or G2) and the force vectors (B1 or
B2). However, the local and global error prediction tools as well as upper-bound error prediction
developed in [28] are directly applicable to ECSS.
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Chapter 5

Dynamically Estimating Residual Stress,
DERS

5.1 Introduction
The objective of this presentation is to introduce a nondestructive inverse FEA method,

named Dynamically Estimating Residual Stress (DERS), capable of predicting (1) residual stress
at nodal positions of the discretized body, (2) elemental incremental elasticity tensors, and (3)
elemental mass density. Except for elemental mass density, the objective of the present chapter
is similar to that of the previous chapter. The input data to the ECSS method are extracted from
linear static perturbations; however, the input data to the DRES method are extracted from linear
vibratory perturbations, such as modal testing or shaker-table forced vibration testing. Similar
to ECSS and most exiting material identification techniques and destructive stress measurement
techniques, DERS requires full-field displacement and force of the body after each small (linear)
perturbation of the body with respect to its current configuration. Similar DERS does not require
a priori constitutive assumptions; however, the only assumption is made in development of DERS
that the solid bodies are made of materials with negligible damping (viscoelastic) properties. This
assumption still covers a large group of metals and composites. In addition to stress tensor field
throughout the entire solid body, DERS directly yields the elemental incremental elasticity tensors
and elemental mass density. Similar to RULFEM (chapter 3, [28]),

DERS generates an overdetermined linear least-squares type of system of equations without
any nonlinear constraints. The coefficient matrix may have a high condition number or become
rank insufficient. Hence, a small random error in the nodal displacement measurement and/or
nodal force vectors may generate erroneous results. Displacement measurements are acquired
with imagining techniques; thus, small measurement errors are inevitable. Global and local error
assessment for such system is developed and validated in development of Chapter 3 RULFEM
[28]; hence, they are no longer discussed in this exposition. DERS method is developed for dy-
namics perturbations; hence, several near multiple resonance perturbations are required. The ECSS
method is validated in previous chapter. Since ECSS and DERS methods are similar, there is no
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need for a validation section in this chapter.

5.2 Theory
As in RULFEM [28] (see Chapter 3) and ECSS (see Chapter 4) the development of the

DERS theory follows updated Lagrangian finite element method (ULFEM) formulation (see Chap-
ter 2), theory of linear elasticity with initial stress under dead loading. Because, ECSS and DECSS
share very similar objectives, and they are developed from ULFEM, DERS can be considered a
special case of ECSS, which is applicable to solids with negligible damping ratio (negligible vis-
coelastic response). Hence, similar to ECSS, at least three sets of measured full-field displacements
and three corresponding sets of measured tractions are required to determine the six components
of nodal Cauchy stresses, local (element-wise) fourth-order incremental elasticity tensors (with-
out any a priori assumptions about a particular constitutive model) and elemental mass density.
Neither ECSS nor DERS require cost functions or a virtual displacement field. There are, how-
ever, two limitations to the method, (1) the first limitation is shared with ECSS and RULFEM,
i.e., each finite element is assumed to consist of a single uniform material, (2) the solid body has
negligible damping (viscoelasticity) properties. While the former limitation arises from finite ele-
ment formulation, the latter limitation roots from the perturbing technique. DERS input field data
(i.e., displacement and traction force fields) are collected from dynamic (vibratory) experiments
with harmonic excitation, such as: modal testing, shaker table testing, actual part responses under
different known vibratory harmonic sources, etc.

The goal of the DERS as an inverse problem, is to find the components of the body residual
stresses, i.e. the nodal Cauchy stress tensors,

◦

Tn, the incremental elasticity tensors, Le
0, and the

elemental density, ρe
0 for each element e. The unknown nodal state of Cauchy stress is a symmetric

matrix; hence, each nodal stress tensor
◦

Tn or node n has six unknowns. Where the vector form of
all the nodal Cauchy stress tensors becomes

{ ◦
T
}

and its size is (6Nn) × 1. The other unknown is
the elemental incremental elasticity tensor, Le

0, that posses minor symmetry [19]; hence, it has total
of 36 unknowns per elements. Where the vector form of all the elemental incremental elasticity
tensors becomes {L0} and its size is (36Ne) × 1. Lastly, there are Ne number of unknown elemental
densities, ρe

0. Total number of unknowns in the inverse problems becomes 6Nn + 37Ne, which is
more than twice as much as total number of equations provided by the weak form of the momen-
tum balance (including the inertia term), Eq. (2.40). Thus, the minimum number of independent
perturbations are required to obtain minimum number of independent equations is three; provided
the body Ω at configuration R0 is discretized with 64-node hexagonal elements. Where each known
perturbation provides a pair of displacement, {uh}

n
n+1 and force {fh}

n
n+1 full field data. Ultimately,

the total unknown vectors become
{
ρ0,

◦

T,L0

}T
.

The DERS formulation starts from the weak form integration equation Eq. (2.40), where in
short it shown in matrix form presented in Eq. (2.44). The linearized first Piola–Kirchhoff stress
[Eq. (2.13)] in the stiffness term, {Π(u)}01, and force vector term, {f}00, are developed in Chapters 2,
3, and 5.
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However, for residually stressed solid body as discussed in Chapter 2, in the absence of body

forces and tractions, i.e.,
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T is the residual stress. Thus Eq.(2.1) and its weak form
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hence the two equal terms shown in Eq. (5.3) are canceled out from the two sides of Eq. (5.1) and
it yields:

(5.4)

A
Ne
e=1

{∫
R0

([
φe]T ρe

n
[
φe]) dVe

n

} {
ae

h
}0
1︸                                         ︷︷                                         ︸

[M]0
0{a

e
h}

0
1

+A
Ne
e=1

{∫
R0

(
[Be]T

(
[Be]

{
ue

h
}0
1

) [
φe]) dVe

0

}
︸                                               ︷︷                                               ︸

Z
(
{ue

h}
0
1

)
=Z0

1

{ ◦
T
}

+

A
Ne
e=1

{∫
R0

([
Be

sym

]T [
Le

0
] [

Be
sym

])
dVe

0

}
︸                                           ︷︷                                           ︸

K0

{uh}
0
1

= A
Ne
e=1


∫

Γe
q0

([
φe]T

(
[Be]

{
ue

h
}0
1

)
Ψ0

(
N0

0

))
dAe

0

︸                                                    ︷︷                                                    ︸
Y
(
{ue

h}
0
1,N

0
0

)
=Y0

1

{ ◦
T
}

+A
Ne
e=1


∫

Γe
q0

([
φe]T s̄

)
dAe

0

︸                           ︷︷                           ︸
{fext

h }
0
1

The elemental incremental elasticity tensors are decoupled in the third term of the left hand-
side of Eq. (5.4) as shown in chapter 4 and shown in development of Eq. (3.9). Harmonic excitation
of the body allows ignoring the body force term; hence, the concise form of Eq. (5.4) become

[M]0
0 {ah}

0
1 +

[
Z0

1 − Y0
1

] { ◦
T
}

+ A0
1 {L0} =

{
fext
h

}0
1 (5.5)

Harmonic excitation force can be written as
{
fext
h

}0

1
= F0

1 exp(iω1t), where i =
√
−1, F0

1 and ω1

are the excitation force amplitude and angular frequency, respectively. Therefore, the displacement
response vector is harmonic [25] i.e.
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{uh}
0
1 = {Uh}

0
1 exp (iω1t + θ) (5.6)

where {Uh}
0
1 is the displacement response amplitude and θ ≈ 0, because the body’s damping is

negligible. The harmonic displacement response yields the harmonic acceleration of

{ah}
0
1 = −ω2 {Uh}

0
1 exp(iω1t + θ) = −ω2 {uh}

0
1 (5.7)

Making use of Eq. (5.4), (5.7) and (5.6) in Eq. (5.5) or Eq. (5.4) yields the following time
independent equation:
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where Z̄0
1, Ȳ0

1, and Ā0
1 are defined matrices in Eq. (5.4) and are functions of the harmonic displace-

ment amplitude. This presentation of Eq. (5.8) indicates that the exponent term can be canceled
from both side of the equation yielding a time independent relationship of
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The elemental density is in the first term of Eq. (5.9), i.e. mass matrix ([M]0
0), which can be

decoupled by the technique presented in Section 4.3 as

Ne∑
e=1

∂ [M]0
0

∂ρe {ah}
0
1 = [G]0

1
{
ρ0

}
(5.10)

where [G]0
0 is a matrix of size (3Nn) × Ne, and

{
ρ0

}
is the unknown elemental density vector or

size Ne × 1. Hence, the matrix form of Eq. (5.9) with the inverse unknown vector of
{
ρ0,

◦

T,L0

}T

becomes
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1 (5.11)

Since the number of unknowns (6Nn) + (37Ne) is larger than the number of equations (3Nn),
i.e., number of DOF, more equations are necessary. At least total of three independent set of
equations are required that can be generated by three independent perturbations. Since the body
eigenvectors are orthogonal, the most suitable three perturbations can be obtained by exciting the
solid body at vicinity of the first three eigenvalues (natural frequencies). Theoretically, any three
or more independent natural natural frequencies provides sufficient independent sets of equations;
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however, larger excitation energy is required to excite the modes with higher natural frequencies.
Thus, the response amplitudes are expected to suffer at higher natural modes (higher frequencies).
For sake of demonstration, suppose body Ω shown in Fig. 4.2 at its configuration R0 is excited at
its first three non-rigid body natural frequencies of ω1, ω2, and ω3 attaining configurations R1, R2,
and R3, respectively, at their maximum response amplitudes. The three harmonic excitations yield
three harmonic sets of displacement and force measurement vectors with harmonics amplitudes of(
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)
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)
corresponding to the three excitation frequen-

cies of ω1, ω2, and ω3. The three measurement sets can form three sets of equations as formulated
in Eq. (5.11) and they are combined as one system of equations of
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or in short:

GdXd = Bd (5.13)

Eq. (5.13) is a least-squares problems that might have insufficient rank. Depending on the
number of elements, Ne, three or four sets of perturbations are necessary to generate equal or
larger number of equations as number of unknowns. Additional excitation at the vicinity of the
forth natural frequency provides another set of equations.

5.3 Discussion
DERS, the developed method in this chapter, utilizes finite element capabilities to compute

the residual stress tensors at each node, the local material density and local incremental elasticity
tensors at each element. Displacement and force full-field measurements are required for three or
more linear harmonic perturbations as inputs to DERS. Similar to the other methods (i.e., FEMU,
CEGM, VFM, EGM, and RGM), where balance laws of mechanics are solved using a numerical
technique, such as finite differences, boundary element and FEM, to determine material property
parameters, RULFEM, ECSS and DERS methods forms a least-squares set of equation based on
the finite element equilibrium formulation state solving the unknown vector. Except for VFM,
RULFEM and ECSS, the other methods turns numerical form of the balance laws into an opti-
mization problem with different cost functions. Contrary to previous methods (including VFM)
DRES, ECSS and RULFEM directly forms and solves a least-squares set of equations without any
a priori assumption on constitutive response of the material beyond harmonically linear response
or incremental linearity. RULFEM computes the 9 × 9 elemental elasticity tensor (Ce). ECSS
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computes the current nodal stress tensors (CSS) and the 6×6 material incremental elasticity tensor
(Le). Whereas, DRES computes the nodal residual stress tensors (RS), the 6×6 material incremen-
tal elasticity tensor (Le) and material density at each element. DRES, however, is only applicable
to solid materials with low damping coefficient (elastically dominant solids). All of other meth-
ods, however, solve for the material constants of an a priori assumed constitutive model. Though,
VFM does not solves an optimization problems to determine the material constants, it requires an
optimized particular (virtual) displacement field to achieve acceptable accurate results.

DRES and ECSS yields the elemental incremental elasticity tensor, Le, which is a fourth order
tensor with minor symmetry that can be represented with a 6×6 matrix. Whereas, RULFEM yields
elemental Ce, which is a fourth order tensor with no symmetry that can be represented with a 9× 9
matrix. Hence, application of RULFEM to bodies with unknown stresses within the body at initial
configuration results in erroneous elements of Ce, since C0 [H] = H

◦

T + L0 [E] [19, 28].
ECSS can compute the nodal Cauchy stress tensors of a body under any unknown internal or

external loading. Residual stresses , which is the Cauchy stress tensors in the absence of the exter-
nal forces, is a special case in which both ECSS and DRES can determine. The existing destructive
(HDM, RCM, DHM, ST, CM, etc.) and nondestructive (X-ray, neutron diffraction, eddy current,
ultrasound) stress or residual stress measurement techniques assume a priori knowledge of the
material constitutive model of the body. Whereas, ECSS and DRES do not require any a priori
knowledge or assumption of the material constitutive model of the body.

Similar ot ECSS, DRES method is not only a nondestructive method of determining the resid-
ual stress tensor field, but also an effective method to find the full material tensor distribution fields
throughout the entire body. The destructive techniques, however, provide either local stress ten-
sor fields, or bending and axial stress components only. While the nondestructive techniques are
limited in depth and cannot measure stresses beyond 10 cm depth [24]. The only disadvantage
of ECSS and DRES method is that they require full-field displacement and force measurement
throughout the entire mesh defining the body.

Similar to any inverse methods, RULFEM, ECSS and DRES have some limitations, which
are (1) each finite element is made of a uniform material, (2) the force field measurements pose
some practical challenges, and (3) the coefficient matrix might become rank deficient or have high
condition number. The first limitation can be resolved by changing the mesh size and density
if no clear distinction is found between materials. An easy solution to the third limitation is to
measure additional perturbations, as discussed in previous section and shown in Example-1 in
validation section of chapter 4, and/or use numerical preconditioning techniques to reduce the
condition number of the coefficient matrix. Nonetheless, the second and third limitations can also
be addressed in more detailed fashion as they are more involved, and hence, to be addressed further
in our future work.

Another major benefit of DRES, ECSS and RULFEM is their speed in solving the linear al-
gebraic problem yielding the desirable results. With current numerical and computation advance-
ments, such as iterative methods, preconditioning and parallelization, solving a least-squares prob-
lem with severely sparse coefficient matrix is becoming cheaper and faster everyday.

Similar to ECSS, DRES address one of the main limitations of RUFEM, that is RULFEM
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initiates perturbing the body from its presumably stress-free state, while ECSS and DRES have
address this limitations. Moreover, DRES enjoys the freedom of FEA in meshing any geometry;
hence, it can be applied to actual parts without any assumptions except each finite element is made
of a uniform material with negligible damping properties.

5.4 Conclusion
A reverse updated Lagrangian finite element method, DRES, is developed capable of deter-

mining element-wise material density, mechanical properties of 3D solid bodies and the residual
stress tensors at each nodes by dynamic perturbation of the body. Similar to RULFEM method [28]
and ECSS (chapter 4), DRES formulation relies on the solution of a linear least-squares system of
equations and yields element-wise, material density, the fourth-order incremental elasticity tensors
and nodal stress tensors for linear harmonic displacement (or force) perturbations. The novelty
of DRES is that it neither requires an a priori assumed material constitutive law, nor requires as-
suming stress-free configuration of the body in the absence of the external loading. DRES only
assumes harmonic linearity of the deforming material and material uniformity within each element
used to discretized the body. Due to similarity of ECSS and DRES, the validity of the method is
not demonstrated. Since ECSS and RULFEM [28] are based on ULFEA, the local and global error
prediction tools developed in [28] and chapter 3 are directly applicable to DRES.

Similar to RULFEM [28], the accuracy and efficiency of DRES depend on the accuracy and
precision of the input displacement and force measurements. The accuracy of DRES strongly
depends on the perturbation and efficacy of the measuring system to closely track the nodal dis-
placements while the body is harmonically excited. The sensitivity of DRES is rooted in the high
condition number of the coefficient matrix Gd. The linearity of the perturbation can be tested di-
rectly by verifying the Eq. (2.7) inequality. If the body is harmonic excited in the vicinity of its
natural frequencies, the orthogonality of the displacement eigenvectors (mode-shapes) minimizes
the least-squares equations dependncy. Hence, DRES method is anticipated to be less sensitive
to measurement errors and noise. However, the local and global error prediction tools as well as
upper-bound error prediction developed in chapter 3 [28] are directly applicable to DRES.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion
Part failure analysis under working conditions requires a detailed stress analysis, which re-

quires accurate material constitutive laws and knowledge of the initial stress state. Standardized
experiments are commonly used to determine the parameters of a material constitutive law, and a
material constitutive model is selected by fitting the extracted data. Despite significant efforts of
prestigious societies (e.g., ASME and ISO) to develop standardized testing protocols, unpredicted
manufacturing and working conditions often give rise to additional stresses (residual stresses) in
the absence of any external loading, which may lead to premature failure, even at part locations
where stresses (strains) are not maximum.

Innovative methods have been developed to predict the true material properties of parts and
residual stresses. Such methods have particularly been applied to biological tissues. Material
structure complexity necessitates cumbersome mathematical treatments and measurement tech-
niques. Avril et al. (2008) ?? developed a complete list of material identification methods, includ-
ing (1) FEM updating method (FEMU), (2) constitutive equation gap method (CEGM), (3) virtual
field method (VFM), (4) equilibrium gap method (EGM), and (5) reciprocity gap method (RGM).
The governing equations in these methods are derived from the balance of linear momentum, the
principle of virtual work, the Maxwell–Betti reciprocity principle, and the total potential energy
principle, using standard numerical techniques, such as the FEM and finite differences method.
A central commonality among these material identification methods is the a priori assumption of
a constitutive model and the use of a numerical analysis of mechanical balance laws. Although
these methods provide useful material parameter identification approaches, modeling assumptions
imposed in the case of unknown or damaged materials entail a high degree of subjectivity and may
yield biased results. All of the above mentioned methods rely on assumptions about the constitu-
tive law that may not be optimal for the material under given conditions. Moreover, none of the
existing methods provides a means of estimating the overall error. In fact, a systematic method-
ology to assess the selection of the constitutive model and the error in the predicted parameters
due to measurement errors has yet to be developed. Except VFM, all the other methods use cost
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functions, which may require extensive computational power to achieve the optimized solution.
None of the existing methods, however, takes into account the state of stress field throughout the
specimen body.

The RULFEM method developed in Chapter 3 3 ?? eliminates the need for an a priori pre-
sumed material constitutive model and furnishes material elasticity tensors for each finite element;
however, RULFEM does not take into account the residual stresses of the body. The ECSS method
developed in Chapter 4 is an improved version of the RULFEM, which yields the residual stresses
at all nodes of the finite element mesh. Both RULFEM and ECSS require full-field displacement
and force data obtained from (pseudo)static perturbations, assuming incrementally linear material
behavior and uniform material elements with elasticity characteristics independent of neighboring
finite elements.

A large number of engineering materials exhibit predominantly elastic responses under work-
ing conditions, that is, their viscoelastic or damping response is negligible. Dynamic testing, such
as modal analysis, shaker table testing, etc., are used to measure material parameters. The DRES
method introduced in Chapter 5 is an extension of the ECSS method and assumes linear harmonic
response of the body. This method determines the material density and incremental elasticity tensor
of each finite element used to discretize the body and nodal residual stress tensors.

The two general stress measurement techniques are categorized as constructive and noncon-
structive. Figures 1.2 and 1.7 provide a summary of all existing techniques and their capabilities.
To this end, there are no destructive or nondestructive methods that can yield the residual stress
tensors throughout the entire body. However, the ECSS and DRES methods introduce two nonde-
structive methods for determining the stress tensors throughout the entire solid body regardless of
material and geometrical shape complexities or the stress history. A summary of the capabilities
of the material identification models and residual stresses techniques is given in Table 6.1.

The methods developed in this thesis (i.e., RULFEM, ECSS, and DRES) construct a linear
least-squares set of equations. However, the finite element mesh, the geometry, and, most im-
portantly, the similarity of the perturbations may cause the coefficient matrix of the least-squares
equation to become ill-conditioned (i.e., high condition numbers). Therefore, local and global up-
per bound errors were introduced to assess the accuracy of each method. These assessment tools
provide directions to design additional perturbations, furnishing a set of equations that improve the
condition number of the coefficient matrix. Hence, more accurate results can be achieved without
the need to improve the measurement accuracy.

Full-field 3D displacement and traction force measurements may pose practical challenges;
hence, full-field measurements might be considered a common limitation of RULFEM, ECSS,
and DRES. Consequently, a general framework for inverse finite element problems was developed
and validated, which can be extended to thin bodies acting as 2D solids where the full-field data
become attainable on the solid surfaces.
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6.2 Future Directions
The RULFEM method may produce coefficient matrices with higher condition numbers com-

pared to the ECSS and DERS methods. Despite the error assessment tools adapted, explained, and
employed in Chapter 3 3, application of other beneficial numerical tools and techniques are yet to
be explored for solving least-squares set of equations with poor condition number. For instance,
the condition number can be improved, often significantly, by generating proper preconditioning
matrices [26].

The size of the linear least-squares systems in RULFEM is equal to the total DOFs of the
system. This can become very large for bodies with large mesh densities. The size of the system
of equations becomes three or four times the total system DOFs in the ECSS and DERS methods.
Sequential direct methods are not proper solution techniques for large systems of equations. Hence,
the multigrid iterative method shall be studied, tested, and selected for these finite element-based
systems of equations.

Moreover, proper experiments must be designed to validate the developed methods experimen-
tally and compare them with existing leading methods. Biological tissues can exhibit nonlinear
responses and 3D imaging is possible by means of magnetic resonance imaging (MRI) techniques.
Thus, the current ECSS and RULFEM methods can be validated using other experimental tech-
niques and tissue slitting.

Full-field displacement measurement in thick materials, depending on the material, can be
acquired using X-ray or special MRI (Magnetic Resonance Imaging) techniques) sequence, known
as DENSE MR, for non-metallic components.
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