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Summary

This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for
nonlinear regression models. The setup here extends the formulation of the optimal designs problem
as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are
used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As
an illustrative example, we demonstrate the approach using the power-logistic model and compare
results in the literature. Additionally, we investigate how the optimal design is impacted by different
discretising schemes for the design space, different amounts of uncertainty in the parameter values,
different choices of GQF and different prior distributions for the vector of model parameters,
including normal priors with and without correlated components. Further applications to find
Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised
linear model with a gamma distributed response are discussed, and some limitations of our
approach are noted.

Key words: Approximate designs; semidefinite programming; Gaussian quadrature formulas; nonlinear
models.

1 Introduction

The field of optimal experimental designs dates back as early as the formal work of Smith
(1918) and probably beyond. Early researchers worked sporadically in this area from the the-
oretical approach. Kiefer (1959) recognised that the general design problem for a regression
model was very difficult to solve even for relatively simple models. As an example, the design
problem for optimally estimating the three parameters in a homoscedastic quadratic polynomial
model was only solved in Gaffke & Kraft (1982). In a voluminous series of papers collected
in Kiefer (1985), Kiefer proposed using approximate designs to solve general design problems
for regression models. Approximate designs are essentially probability measures on the design
space and are characterised by its design points and the weights at these points. The approach
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240 B. P. M. DUARTE & W. K. WONG

assumes the objective function is a convex function of the design to take advantage of the results
from convex analysis. In particular, there are algorithms for finding different types of designs,
and equivalence theorems can be employed to verify optimality of a design using the directional
derivative of the design criterion. Equivalence theorems are discussed in design monographs,
and we provide some details near the end of the paper.

A key result in the field is from Kiefer & Wolfowitz (1960), where they established two very
different design criteria always lead to the same optimal design when the model is homoscedas-
tic. Specifically, the D-optimal design for estimating all model parameters and the G-optimal
design for minimising the maximal variance of the fitted response surface across the design
space are the same. Nowadays, optimal experimental designs are increasingly applied in dif-
ferent disciplines to find efficient approximate designs in the biological sciences, engineering,
food science, pharmaceutical studies and education arena. A sample of applications of optimal
design ideas to solve various real problems is given in Berger & Wong (2009).

Nonlinear models seem to be the norm in the biological sciences with typical applica-
tions ranging from modelling kinetic reaction velocity when the enzyme concentration varies
(Dette et al., 2005) to the prediction of morbidity after lung resection (López-Fidalgo &
Garcet-Rodriguez, 2004). Following convention, the worth of a design is measured by the Fisher
information matrix (FIM) defined in the next section. One useful property of the FIM is that it is
inversely proportional to the covariance matrix of the estimated model parameters. For nonlin-
ear models, the FIM depends on the parameters, and so all design criteria formulated in terms
of the FIM also depend on the unknown parameters that we want to estimate. This seems to
be a roundabout problem, prompting Cochran (1973) to remark ‘You tell me the values of the
parameters and I promise to find the best experiment to estimate the values of the parameters’.
In practice, there are a few different ways to handle this problem.

The first approach is the simplest and follows from the aforementioned idea. Nominal values
of the model parameters are required from previous studies or experiments, and they are then
treated as known so that the FIM does not contain unknown parameters in the design criterion.
As such, the resulting optimal design is termed locally optimal (Chernoff, 1953). For example,
if interest is in estimating model parameters and nominal values are given, the generalised vari-
ance is minimised by careful choice of the design points and weights. Data from the designed
experiment are then used to re-estimate the parameters, and they are then used as new nominal
values to construct another locally optimal design. Usually, a few iterations result in conver-
gence of the values of the estimated parameters, and the resulting design is termed a locally
optimal design. Further discussion of this procedure is available in Sitter & Wu (1999).

Another way to overcome the dependence of the FIM on the parameters in the model is to
adopt a minimax or maximin approach. Minimax optimal designs minimise the worst possible
performance of the design over all possible designs defined on the given design space (Wong,
1992). For example, if we wish to design a study to predict the response over a certain region
and we are not sure exactly where the precise location in the region is, we may want to first
consider the variance of a point in the region and then design to minimise the largest variance
among the predicted responses in the region of interest. This method, however, is notoriously
difficult, and an analytical solution for a nonlinear model is rarely possible except for very
simple problems. The two major reasons are that the minimax criterion is non-differentiable,
and there is no algorithm that we know of that will converge to a minimax optimal design for a
general regression model (with heteroscedastic errors).

The third method is Bayesian, and this approach seems like an intermediate one between
the locally and minimax paradigms in terms of information required before the design can be
constructed. The conceptual framework behind the Bayesian optimal design is the assumption
that the prior information of the parameters of interest and their uncertainty can be adequately
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captured in the prior distribution. This prior density averages out the parameter values, and the
criterion is no longer dependent on the parameters. The Bayesian optimal design is then found
by optimising the expectation of the design criterion. A review of work in Bayesian optimal
designs is given in Chaloner & Verdinelli (1995).

The theory for the construction of Bayesian optimal design depends uniquely on the model
and the criterion, and the mathematics required to solve the optimisation problem can be chal-
lenging even for linear models (Dette & Wong, 1996; 1998). In practice, Bayesian optimal
designs are determined numerically using various types of algorithms such as those discussed
in Fedorov (1972), Wynn (1972), Chaloner & Larntz (1989), Molchanov & Zuyev (2002) and
Chang & Lin (2007). For instance, Chaloner & Larntz (1989) used the Nelder–Mead method,
which is a simplex-based approach to find Bayesian D-optimal designs for the logistic model,
and Molchanov & Zuyev (2002) used a steepest-ascent algorithm that guarantees convergence
to the optimum but can become slow in its vicinity. Nonlinear programming (NLP) stochastic
approaches such as genetic algorithms (GA) were also employed to find optimal designs (Here-
dia-Langner et al., 2004). Zhang (2006) used a hybrid approach by combining GA and a local
NLP solver that relies on general reduced gradient or square quadratic programming (SQP)
algorithms to increase the convergence rate to the global optimum. Another way to increase the
convergence rate is to include a procedure that removes design points that cannot support a D-
optimal design measure (Harman & Pronzato, 2007). A review of such algorithms for finding
optimal designs is Pronzato (2008).

Many algorithms require that the design space be discretised before the optimisation process
begins. After the initial grid on the design space is selected, many problems for finding an
optimal design can be treated as a problem of minimising a convex function. This suggests that
any convex optimisation algorithm such as SQP and recent interior point (IP) based algorithms
are suitable candidates (Ye, 1997).

In this paper, we focus on use of semidefinite programming SDP to find Bayesian optimal
designs for nonlinear models. This method as an optimisation tool is often used in engineer-
ing and other applied fields but seems greatly under-utilised in statistical research. The SDP
approach first requires that the design space be discretised into a finite set of points. The FIM
at each candidate point is computed, and assuming observations are independent, we then sum
these information matrices to obtain the total FIM. The design criterion is formulated as a
function of the total FIM before application of SDP to find the optimal design. For exam-
ple, Vandenberghe & Boyd (1996) developed an SDP formulation to find optimal designs for
estimating parameters in linear models using D-, A- and E-optimality criteria discussed in
Pukelsheim (1980). Further applications of the SDP based framework for linear models include
(i) finding optimal designs for multi-response linear models (Boyd & Vandenberghe, 2004);
(ii) finding maximin efficient designs (Filová et al., 2011); (iii) use of a generalisation of the
Elfving theorem to transform the c-, A- and D-optimality SDP formulations into more effi-
cient second-order cone programming (SOCP) formulations (Sagnol, 2011); (iv) finding sparse
c-optimal designs for single-response trigonometric regression models (Qi, 2011); and (v) find-
ing support points of optimal design for model with a mean response given by a rational
regression function (Papp, 2012). Collectively, these papers emphasise the simplicity and effi-
ciency of using the SDP-based approach to find a solution to the optimisation problem even
though the optimal design may depend on the discretisation scheme on the design space.

The goal of this paper is to extend the SDP formulation for linear models to find
Bayesian optimal designs for nonlinear models. A unique feature of our SDP approach is
that it will lead to a conic programming problem, which is solved via a semidefinite pro-
gramming solver to produce the globally Bayesian optimal design. The method allows for
arbitrary prior distributions, and the integration is handled using multi-dimensional Gaussian
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quadrature formulas (GQF). Section 2 provides background and discusses different types of
Bayesian optimal designs. Section 3 formulates our design problem as a semidefinite pro-
gram to determine Bayesian optimal designs for nonlinear models. Section 4 applies SDP
to an illustrative case when we wish to generate a variety of Bayesian optimal designs
for the logistic model and compares our results to those available in the literature. In
Section 5, we determine various optimal designs for the more complicated power-logistic
model and models with two regressors where we note that in one case, SDP can encounter
some numerical problems in the search of an optimal design. We end with a discussion
in Section 6.

2 Background

We focus on approximate designs that are probability measures defined on the given compact
design space X . Given X , a statistical model and a given design criterion, the goal is to find an
optimal approximate design. The setup assumes that the total sample size, n, is fixed and the
criterion is convex as a function of the FIM. If an approximate design � has k support points at
xi with weight wi , i D 1; : : : ; k, the implemented design takes roughly n � wi observations at
the design point xi , subject to n�w1C: : :Cn�wk D n. Consequently, the implemented designs
may not be unique. The main advantages of working with approximate designs are that they are
easier to find and understand. In addition, if the criterion is differentiable, there are algorithms
that will iterate from a non-singular starting design and converge to the optimal design.

To fix ideas, let us consider the power-logistic model proposed by Prentice (1976) for
modelling binary responses in a dose response study:

p.x; �/ D
1

¹1C exp Œ�ˇ .x � �/�ºs
; x 2 X; �T D Œ�; ˇ; s� 2 ‚: (1)

Here, ‚ � R3 is a known compact region containing all possible values for the 3 � 1 vector
of parameters �T D Œ�; ˇ; s�. The set ‚ is sometimes referred to as the plausible set of values
for � . Typically, the dose x is confined in a compact interval X representing the range of doses
of interest in the study, and the binary outcome is coded as 1 for response and 0 otherwise. The
probability of a response at dose x is p.x; �/. When s D 1, we have the logistic model and
�T D Œ�; ˇ� 2 ‚ �

�
�L; �U

�
�
�
ˇL; ˇU

�
2 R2 with � representing the cartesian product.

Here, �L is the lower bound of � and �U is its upper bound. Similarly, ˇL is the lower bound
of ˇ and ˇU is its upper bound. More generally, if m is the number of parameters to estimate,
we have ‚ � �miD1

�
�Li ; �

U
i

�
2 Rm, with �Ui representing its upper bound and �Li its lower

bound for the i -th parameter �i . Similarly, if X is multi-dimensional, we assume it also has a
cartesian product structure.

Suppose our design �n takes n independent observations from x1; x2; : : : ; xk and there are
ri responses from the ni subjects randomly assigned to dose xi ; i D 1; : : : ; k. Subject to
n1 C � � � C nk D n, the log-likelihood function is

L .�n; �/ D
kX
iD1

log

�
ni Š

.ni � ri /Š ri Š

�
C ri log Œp.xi ; �/�C .ni � ri / log Œ1 � p .xi ; �/� :

Let M.�; �/ denote the FIM of design �n. The elements of M.�; �/ are the expectation
of the negative of the second derivatives of the log likelihood with respect to the parameters.
Specifically, the FIM is proportional to
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M.�; �/ D �E

²
@

@�

�
@L.�; �/
@�T

�³
:

Approximate designs require that we work with the weights wi ’s that may not be ratios of
two positive integers as in the case for exact designs like �n where wi D ni=n; i D 1; : : : ; k.
Accordingly, when responses are independent, the FIM of an approximate design � with weight
wi at xi , i D 1; : : : ; k is proportional to

M.�; �/ D

Z
X

M.x; �/ d�.x/ D
kX
iD1

wi M .xi ; �/ ;

where M .xi ; �/ D h .xi ; �/ h .xi ; �/
T and h .xi ; �/ is the mean response. If we have a binary

response model with mean response p.x; �/ and � is m-dimensional, the FIM of the design at
the point xi is M .xi ; �/ D h .xi ; �/ h .xi ; �/

T, where

h .xi ; �/ D
1p

p .xi ; �/ .1 � p .xi ; �//

�
@p .xi ; �/

@�

�
;

@p .xi ; �/

@�
D

0
BB@
@p.xi ;�/
@�1
:::

@p.xi ;�/
@�m

1
CCA :

Common design criteria are formulated in terms of the FIM and include D- and A-optimality
for estimating model parameters. They can be formulated asˆ.M.�; �//, whereˆ is a function
that maximises the information from an experiment in a certain way. For example, when errors
are independent and normally distributed, the D-optimality criterion minimises the generalised
variance so that the volume of the confidence ellipsoid of the model parameters is minimised.
For A-optimality, we minimise the (squared) diagonal of the bounding box of the confidence
ellipsoid. For E-optimality, we minimise the squared in-ball radius geometrically by maximising
the minimum eigenvalue of the FIM (Dette & Studden, 1993). More specifically, let „ be the
set of all feasible designs on X . Then for D-optimality, we seek a design �D that satisfies

�D D arg min
�2„
¹� log .detŒM.�; �/�/º :

For A-optimality, we seek a design �A that satisf ies

�A D arg min
�2„

®
tr
�
M.�; �/�1

�¯
;

and for E-optimality, we seek a design �E that satisf ies

�E D arg max
�2„
¹�minŒM.�; �/�º ;

where �minŒM.�; �/� is the smallest eigenvalue of the matrix M.�; �/. The Bayesian paradigm
assumes a prior density �.�/ is available for � and the Bayesian D-optimal design �BayesD is
defined by

�BayesD D arg min
�2„

Z
‚

¹� log .detŒM.�; �/�/º �.�/ d�:
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Similar representations apply to Bayesian versions for A- and E-optimality criteria. When ‚ is
approximated by a finite discrete set T � 2 R��m containing � parameter combinations in the
space ‚, the discrete version of the Bayesian D-optimal design becomes

�BayesD � arg min
�2„

X
�2T �
¹� log .det ŒM.�; �/�/º �.�/ 	.�/;

where 	.�/ is the weight of � in the integral approximation.
The SDP-based strategy treats the design problem as a general conic program where the vari-

ables are the weights of the points generated from the discretised set X q and associated with
the degenerate information matrices M.xi ; �/. SDP minimises a linear function of a matrix in
the positive semidefinite matrix cone subject to affine constraints. Depending on the objective
function, this results in a polyhedral or non-polyhedral feasibility region, but in either case,
we have a convex optimisation problem (Ye, 1997) that allows us to generalise that any locally
optimal design found is a globally optimal one (Boyd & Vandenberghe, 2004). The optimi-
sation problems so formulated are solved using accurate efficient solvers, such as SeDuMi
(Sturm, 1999).

2.1 Semidefinite Programming

Semidefinite programming is an extension of linear programming where some vector vari-
ables are replaced by matrices, and some of the non-negativity elementwise constraints
are replaced by positive semidefiniteness constraints (Wolkowicz et al., 2000). Further-
more, SDP is a class of convex optimisation involving linear objective functions subject to
constraints requiring that an affine combination of symmetric matrices is positive definite
(Boyd & Vandenberghe, 2004). The primal formulation of a general SDP problem, proposed
by Nesterov & Nemirovskiı̆ (1994), is as follows:

min
Z2Sn

hC;Zi

s.t Z � 02
4 hA1; Zi
� � �

hAm; Zi

3
5 D b;

where h	; 	i represents the inner (Frobenius) product, C; A1; : : : ; Am 2 Sn are constant
matrices, Sn is the space of n � n symmetric matrices, Z 2 Sn is the matrix of deci-
sion variables, b 2 Rm is also a vector of constants, Z � 0 indicates that Z belongs to
the cone of positive semidefinite matrices and hC;Zi D tr

�
C T Z

	
. A dual formulation,

frequently employed in numerical algorithms, can be found in Ye (1997). A book length
volume on SDP is Boyd & Vandenberghe (2004). General SDP formulations for local D-,
A- and E-optimal designs of experiments can be found in Vandenberghe et al. (1998) and
Vandenberghe & Boyd (1999).

2.2 Gaussian Quadrature Formulas

Gaussian quadrature formulas are a class of methods that use appropriate weights and nodes
to numerically integrate a complex function f .x/ to a high degree of accuracy. For a one-
dimensional integral over an arbitrary compact interval Œa; b�, the formula isZ b

a

w.x/ f .x/dx
:
D

nX
jD1

wj;n f
�
xj;n

	
;
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where w.x/ is a weighting function, and n is the number of points, also designated as nodes,
used in the integration. The accuracy of the approximation of the integral as a sum depends on
the selected weight wj;n at the nodes xj;n. A major advantage of GQF is that with judicious
choices of the nodes and weights, it needs only n points to exactly integrate polynomials of
degree 2 n � 1 or less. This means that only n evaluations of the function f .x/ are required
(Gerald & Wheatley, 1994). For w.x/ D 1, a D �1 and b D 1, the nodes correspond to the
zeros of the n-th order Legendre polynomials; see, for example, (Atkinson, 1989). For w.x/ D
1 and an arbitrary compact interval on the real line, the weights and nodes are determined
from recursive algorithms such as those presented in Davis & Rabinowitz (1984). Multiple
dimension regular domain-based integrals may be determined by employing one GQF in each
dimension or Gaussian cubature formulas (Bernardo et al., 1999). For example, if we follow
the former strategy to integrate f .x/ with x 2 Rp , the weight at each node is the product of
the weights for the one-dimensional integration, and the nodes correspond to the intersection
of one-dimensional nodes in Rp space.

3 SDP-Based Formulation for Bayesian Optimal Designs

Let X q be a set of points x1; : : : ; xq selected from the given uni-dimensional compact design
space X 2 R to discretise the set X . A common scheme is to have x1 D min.X/ and the other
points determined recursively using the rule xj D xj�1 C
x; j D 2; : : : ; q, and 
x is user
specified. WhenX is a compact d -dimensional Euclidean subspace discretised into x1; : : : ; xq ,
each point xj ; j 2 ¹1; : : : ; qº has d components, and collectively, they form a rectangular
mesh.

We use GQF to approximate the expectation of the optimality criterion by first discretising
the ‘box-shaped’ parameter space‚ � Rm. For simplicity, suppose every Legendre polynomial
used to approximate the integral over ‚ from each dimension has degree � � 1 so that the
set T � �

®
�p W p D 1; : : : ; �

¯
containing the discretisation points has i D km (i and k in

greek letter form as shown near this term) �m elements, and they are obtained from combining
roots of the .� � 1/-th order Legendre polynomial from each dimension of the space ‚. Each
discretisation point �p 2 Rm; p D ¹1; : : : ; �º in T � is the cartesian product of the set containing
GQF points from each dimension of ‚. Specifically, if the i -th component of � has lower and
upper bounds given by �Li and �Ui , respectively, and �T D .�1; : : : ; �m/ 2 R� is the vector of
roots of the .� � 1/-th order Legendre’s polynomial on the interval Œ�1; 1�, we have

T � D �miD1

´
�Ui � �

L
i

2
�k C

�Ui C �
L
i

2
; k D 1; : : : ; �

μ
:

If p 
 � is the index corresponding to the tuple .k1; : : : ; km/ 2 ¹1; : : : ; �ºm, the weight at
the p-th point is 	p given by

	p D

mY
iD1

!ki
�Ui � �

L
i

2
;

where
�
!k1 ; : : : ; !km

	
2 R� is the vector of weights of the Legendre polynomials on

the interval Œ�1; 1� given in Abramowitz & Stegun (1972). We choose GQF because the
method tends to provide more accurate approximations than Monte Carlo or Hammers-
ley sequence sampling schemes for an equal number of points (Bernardo et al., 1999;
Reber, 2004).
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We now extend the SDP formulation proposed by Vandenberghe & Boyd (1999) to con-
struct Bayesian D-, E- and A-optimal designs. To this end, define the FIM for a single point �p
by M

�

; �p

	
D
Pq
jD1M

�
xj ; �p

	

j and note that (i) the formulations of Vandenberghe &

Boyd (1999) are for linear models and can be used to find locally optimal designs for nonlin-
ear models; (ii) a Bayesian design can be interpreted as a convex linear combination of local
designs with � varying in the domain of ‚ (Fedorov & Hackl, 1997); and (iii) the use of GQF
to numerically represent the expectation of a Bayesian criterion over a pre-defined parameter
domain guarantees that the design criterion is convex and the weight of each locally optimal
design can be represented in a normalised domain with positive values that sum to 1. It fol-
lows that if one applies SDP to a linear model, one obtains a global solution; and if the model
is nonlinear but the parameters are fixed, one obtains a locally optimal design. Further, if one
seeks a Bayesian optimal design for a nonlinear model by using GQF to compute the expecta-
tion, one first obtains several locally optimal designs before they have to be averaged via the
weights of GQF to obtain the Bayesian optimal design. The weights can be scaled to the interval
domain [0,1].

For D-optimality, the formulation is

max
�

�X
pD1

log
®
det

�
M
�

; �p

	�¯
�
�
�p
	
	p

s.t. 
j � 0; j D 1; : : : ; q
qX
jD1


j D 1

�p 2 T �; xj 2 X q;

(2)

where the matrix M.
; �p/ is the information matrix of the design 
 evaluated at �p . The
formulation in (2) is pseudo-SDP because of the log term in the objective function. The cvx
solver used to solve all SDP problems supports the log.det/ function, which is concave and
non-monotonic, but uses a sequence of SDP problems to successively approximate the original
problem.

To improve numerical efficiency, it is helpful to reformulate the optimisation problem (2)
to produce a SDP-representable problem that can be tackled with an SDP solver. To this end,
we reformulated our problem using the theoretical results from Ben-Tal & Nemirovskiı̆ (2001),
who proved that �Œdet.B/�1=m is semidefinite representable for a matrix B 2 Rm�m if B �
0. Accordingly, we first used a linear matrix inequality (LMI) to represent the hypograph of
Œdet.B/�1=m; this is the set of points lying on or below the function Œdet.B/�1=m. This implies
that if & is a point in the hypograph, we have

& 
 Œdet.B/�1=m ; (3)

and the problem in (2) can now be rewritten as m
P�
pD1 log.&p/ �.�p/	p, where &p is in

the hypograph of the geometric mean for each point �p . Exponentiating, we can equivalently
maximise the left-hand side of

�Y
pD1

&
m�.�p/�p
p '

�Y
pD1

&
˛p=2`

p : (4)
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where the right-hand side is its approximation, having had m�
�
�p
	
	p replaced by a rational

number via dyadic fractions (Reznik, 2008). Having the power now as a ratio of two integers
provides a pure SDP representation of the Bayesian D-optimal design. This approximation is
always possible because we can find integer ˛p for all p and an integer ` 2 N such that

�X
pD1

˛p

2`

 1; ˛p D

h
m�

�
�p
	
	p 2`

i
;

and Œ�� rounds what is inside the square bracket to the nearest integer. The right-hand side of (4)
is a concave monomial, and recalling that � is the number of points in the GQF, we may choose

` D mC � C 1 (5)

to ensure
P�
pD1

˛p

2`

 1 holds and so an LMI can be used to find the hypograph (Ben-Tal and

Nemirovskiı̆, 2001, Ch. 2):

 


�Y
pD1

&
˛p=2`

p : (6)

If ˛p=2` is already a rational fraction for each p, no approximation is required. The mono-
mial in (6) reduces to a weighted geometric mean, which can also be represented by an LMI
and consequently has an exact SDP representation (Boyd & Vandenberghe, 2004). The upshot
is that the SDP reformulation of the problem (2) is

max
�;	p ;&; 

 

s.t.

�
M
�

; �p

	

p


T
p diag

�

p
	� � 0; p 2 ¹1; : : : ; �º

&p 


 
mY
iD1

ıi;p

!1=m

; p 2 ¹1; : : : ; �º

 


�Y
pD1

&
˛p=2`

p


j � 0; j D 1; : : : ; q
qX
jD1


j D 1

�p 2 T �; xj 2 X q; ˛p D
h
m�

�
�p
	
	p 2`

i
;

(7)

where 
p are lower-triangular m �m matrices and ıi;p are the diagonal elements of each one.
The inequalities involving monomial terms are geometric constraints that can be expressed as
LMI to produce an exact SDP formulation for Bayesian D-optimal design. For finding -optimal
designs, the formulation yields
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min
�;a

�X
pD1

qX
jD1

ai;p �.�p/ 	p

s.t.

�
M
�

; �p

	
ui

uT
i ai;p

�
� 0; i D 1; : : : ; m; p D 1; : : : ; �


j � 0; j D 1; : : : ; q
qX
jD1


j D 1

�p 2 T �; xj 2 X q;

(8)

where ui 2 Rm is a unit vector and a 2 Rm�� is the matrix of decision variables ai;p with each
representing an eigenvalue of a singular FIM from a point of T �. For E-optimal designs, the
formulation is

min
�;e
�

�X
pD1

ep �.�p/ 	p

s.t. M
�

; �p

	
� ep I � 0; p D 1; : : : ; �


j � 0; j D 1; : : : ; q
qX
jD1


j D 1

�p 2 T �; xj 2 X q;

(9)

where I is the q � q identity matrix and eT D Œe1; e2; : : : ; e�� 2 R� is the vector of decision
variables with each ep representing the minimum eigenvalue of all FIM evaluated at the p-th.
point of T �. In practice, problems (2), (7), (8) and (9) were first codified using cvx, a Matlab-
compatible environment that supports a particular approach to convex optimisation (Grant et
al., 2012) before employing SeDuMi, an SDP solver. This solver in turn uses the IP method
with a primal-dual predictor–corrector scheme and a self-dual embedding (Sturm, 1999). The
tolerance used in all problems is a user-selected constant tol D 10�8.

After SDP solves the design problem, a pruning procedure is usually required to select points
from the discretised design space as support points for the optimal design. A common rule
is to include them if their weights are not very small. This means that support points of the
SDP-generated optimal design are selected from the set C D

®
xj 2 X q W 
j � �

¯
, where � is

a user-selected small positive constant and to discard points with weights smaller than �. The
number of support points of the design is k D card.C /, and the optimal design � found by SDP
is formed from the points in the set C along with the i -th support point having weight wi equal
to 
i .

4 Bayesian Optimal Designs for the Logistic Model

In this section, we apply the SDP formulation in (7) to solve all design problems in this
section. As a start, we consider some Bayesian design problems in Chaloner & Larntz (1989)
and compare our optimal designs with their results. We then generate and compare Bayesian
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optimal designs using different sizes of the region ‚, different discretisation schemes and dif-
ferent integration schemes. In addition, we construct new Bayesian D-optimal designs using
bivariate normal prior densities with varying degrees of correlation, and A- and E-optimal
designs not discussed in Chaloner & Larntz (1989).

The model is the simple logistic model with s D 1 in Equation (1) commonly used to study
binary outcomes. For example, in dose response study, we wish to model whether the sub-
ject responds or not to different doses of a drug. Typically, the doses are appropriately scaled
to the interval X 2 Œ�1; 1�. The two parameters � D Œ�; ˇ�T have meaningful interpreta-
tion, and we assume they have nominal values in a user-selected plausible region, say with
� 2 ‚ D Œ�0:1; 0:1� � Œ6:9; 7:1�. The FIM for this model is given in various bibliographic
references, such as King & Wong (2000). Following Chaloner & Larntz (1989), we used inde-
pendent uniform prior densities for � and ˇ for comparison purposes but also use bivariate
normal prior densities with varying correlation coefficients to show the flexibility of the SDP
method. Unless otherwise stated, GQF were all based on six points for each parameter space,
resulting in a total of 36 points needed to compute the bivariate integral. The grid employed for
discretising X is equally spaced with 
x D 0:01, and in all examples, we consider � D 10�5.

Table 1. Bayesian D-optimal designs with independent uniform prior densities for the
simple logistic model using different regions‚ whenX 2 Œ�1; 1
 and	x D 0:01.

�

ˇ Œ�0:1; 0:1
 Œ�0:3; 0:3
 Œ�1:0; 1:0


Œ6:9; 7:1
 .�0:2300; 0:1385/ .�0:3100; 0:2520/ .�0:9500; 0:1023/
.�0:2200; 0:3615/ .�0:3000; 0:1183/ .�0:8200; 0:0136/
.0:2200; 0:3615/ .0:0000; 0:2593/ .�0:8100; 0:0309/
.0:2300; 0:1385/ .0:3000; 0:1183/ .�0:4400; 0:2294/

.0:3100; 0:2520/ .0:0000; 0:2479/
.0:4400; 0:2294/
.0:8100; 0:0309/
.0:8200; 0:0136/
.0:9500; 0:1023/

CPU (s) 8.0965 7.4568 6.9264
Œ6:0; 8:0
 .�0:2300; 0:1193/ .�0:3100; 0:3666/ .�0:9600; 0:0940/

.�0:2200; 0:3807/ .0:0000; 0:2668/ .�0:8100; 0:0552/
.0:2200; 0:3807/ .0:3100; 0:3666/ .�0:4400; 0:2264/
.�0:2300; 0:1193/ .0:0000; 0:2487/

.0:4400; 0:2264/

.0:8100; 0:0552/

.0:9600; 0:0940/

CPU (s) 7.3476 6.8484 6.3024
Œ4:0; 10:0
 .�0:2200; 0:5000/ .�0:3200; 0:3562/ .�1:0000; 0:0749/

.0:2200; 0:5000/ .0:0000; 0:2876/ .�0:7800; 0:0938/
.0:3200; 0:3562/ .�0:4300; 0:0584/

.�0:4200; 0:1519/
.0:0000; 0:2421/
.0:4200; 0:1519/
.0:4300; 0:0584/
.0:7800; 0:0938/
.1:0000; 0:0749/

CPU (s) 7.8313 7.0044 4.8048

(x.xxxx, w.wwww) = (design point, weight).
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Table 2. Bayesian D-optimal designs with independent uniform prior densities
for the simple logistic model using different discretisation schemes on the design
intervalX whenX 2 Œ�1; 1
 and‚ D Œ�0:3; 0:3
� Œ6:0; 8:0
.

	x D 0:02 	x D 0:01 	x D 0:005

.�0:3200; 0:1225/ .�0:3100; 0:3666/ .�0:3100; 0:2696/

.�0:3000; 0:2479/ .0:0000; 0:2668/ .�0:3050; 0:0984/
.0:0000; 0:2594/ .0:3100; 0:3666/ .0:0000; 0:2641/
.0:3000; 0:2479/ .0:3050; 0:0984/
.0:3200; 0:1225/ .0:3100; 0:2696/

CPU (s) 5.7252 6.8484 6.0996

(x.xxxx, w.wwww) = (design point, weight).

The Bayesian D-optimal designs in Table 1 show good agreement with those reported in
Chaloner & Larntz (1989). We note that when ‚ D Œ�0:1; 0:1�� Œ6:9; 7:1�, Chaloner & Larntz
(1989) reported the Bayesian D-optimal design has only two support points, one between�0.23
and �0.22, and the other between 0.22 and 0.23. Our designs have four points with the weights
shared at two adjacent points. This is due to the discrete grid we employed to search over the
design space, implying that the discretisation scheme can have an effect on the optimal design.
The optimal design found for the case when ‚ D Œ�0:3; 0:3� � Œ6:0; 8:0� has the same three
support points reported in Chaloner & Larntz (1989).

In general, one observes that our Bayesian optimal designs require more support points when
the plausible region ‚ is wider, a phenomenon already observed by several other authors. The
designs obtained are symmetric even if no symmetry constraints are included in the optimisa-
tion problem. The CPU time in seconds required to solve each problem is shown in Table 1 and
other tables. Our computer has an Intel Core i7 machine (Intel Corporation, Santa Clara, CA)
running 64 bits Windows 7 operating system with 2.80 GHz. In all cases, our reported CPU
times are relatively short compared with our earlier experience with other algorithms.

Table 2 compares D-optimal designs when ‚ D Œ�0:3; 0:3� � Œ6:0; 8:0� and various dis-
cretisation schemes were applied to the design space X . For this particular setup, a grid mesh
with 
x D 0:02 or 
x D 0:005 results in the SDP-generated design with five points, but the
one with an intermediate size 
x D 0:01 produces a design with three support points. There
appears to be no clear trend between the number of points in the SDP-generated design or the
CPU times required and the fineness of the grid mesh. This suggests that some care should be
given on choosing how fine the grid mesh should be in the search for the design. However, in
practical terms, all the generated designs are very similar and so are their relative efficiencies.

Table 3 presents Bayesian D-optimal designs when ‚ D Œ�0:3; 0:3� � Œ6:0; 8:0� and GQF
of seventh, ninth and 11th orders in each dimension were used, resulting in a total of 16, 25
and 36 integration points, respectively. The optimal designs are similar, suggesting that differ-
ent polynomial orders may not matter much and that integration errors using GQF based on the
fourth-order, fifth-order and sixth-order polynomials are quite comparable for practical appli-
cations. The CPU times required to produce the optimal designs always increases when higher
order polynomials are used.

Table 4 presents Bayesian D-optimal designs using three different prior distributions when
‚ D Œ�0:3; 0:3� � Œ6:0; 8:0� and six points were employed in the GQF. The first set of priors is
independent uniform priors on ‚ with U Œ�L; �U �, and the other two sets of priors are bivariate
normal distributions given by NŒ.�L C �U /=2; †j �; j 2 ¹1; 2º, with

†1 D

�
0:3 0:0
0:0 0:1

�
; †2 D

�
0:3 0:075

0:075 0:1

�
:
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Table 3. Bayesian D-optimal designs with independent uniform prior densities for the simple
logistic model using different integration schemes on the parameter region ‚ when X 2
Œ�1; 1
 and‚ D Œ�0:3; 0:3
� Œ6:0; 8:0
.

GQF based on 4 points GQF based on 5 points GQF based on 6 points

.�0:3100; 0:3662/ .�0:3100; 0:3665/ .�0:3100; 0:3666/
.0:0000; 0:2676/ .0:0000; 0:2670/ .0:0000; 0:2668/
.0:3100; 0:3662/ .0:3100; 0:3665/ .0:3100; 0:3666/

CPU (s) 3.4320 3.9936 6.8484

(x.xxxx, w.wwww) = (design point, weight).

Table 4. Bayesian D-optimal designs with uniform and normal prior densities for the simple
logistic model whenX 2 Œ�1; 1
 and‚ D Œ�0:3; 0:3
� Œ6:0; 8:0
 .

U
�
�L; �U

�
N
� �
�L C �U

	ı
2;†1

�
N
� �
�L C �U

	ı
2;†2

�
.�0:3100; 0:3666/ .�0:3000; 0:1150/ .�0:2900; 0:3548/
.0:0000; 0:2668/ .�0:2900; 0:2727/ .�0:2800; 0:0353/
.0:3100; 0:3666/ .0:0000; 0:2247/ .0:0000; 0:2148/

.0:2900; 0:2727/ .0:2900; 0:3951/

.0:3000; 0:1150/
CPU (s) 6.8484 6.8640 7.2540

(x.xxxx, w.wwww) = (design point, weight).

Table 5. Bayesian D-optimal designs for the simple logistic model with X 2
Œ�1; 1
, ‚ D Œ�0:3; 0:3
 � Œ6:0; 8:0
 and bivariate normal prior densities with
different covariances ��;ˇ .

��;ˇ D 0:05 ��;ˇ D 0:1 ��;ˇ D 0:15

.�0:2900; 0:3904/ .�0:2900; 0:3645/ .�0:2900; 0:2613/
.0:0000; 0:2161/ .�0:2800; 0:0244/ .�0:2800; 0:1276/
.0:2900; 0:3935/ .0:0000; 0:2154/ .0:0000; 0:1718/

.0:2900; 0:3956/ .0:0100; 0:0407/
.0:2900; 0:3725/
.0:3000; 0:0260/

CPU (s) 6.8172 6.4740 6.5676

(x.xxxx, w.wwww) = (design point, weight).

Table 4 shows that the computing time required to generate the optimal designs is about the
same for the different priors, and the optimal designs obtained under different priors are not
too different after rounding. Table 5 extends Table 4 and displays Bayesian D-optimal designs
under the same bivariate normal prior distribution but with different values of the covariance,
��;ˇ , between the two components.

Table 6 shows the D-, A- and E-optimal designs when ‚ D Œ�0:3; 0:3� � Œ6:0; 8:0�. All
designs are symmetric. We observe that A-optimal designs have support points further apart
than D- and E-optimal designs, and E-optimal designs have larger weights at the non-zero
support points compared with the A- and D-optimal designs.

Table 7 compares Bayesian D-optimal designs obtained using different SDP formulations in
Section 3. The first uses a pseudo-SDP formulation (2), the second uses an SDP formulation
with ˛p rational (7) and the third uses an SDP formulation with ˛p allowed to be irrational.
The first requires successive approximation algorithms; the third approach treats the pow-
ers of the monomial terms as a sequence of LMIs, which may extend the dimension of the
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Table 6. Bayesian D-, A- and E-optimal designs with independent uniform prior
densities for the simple logistic model whenX 2 Œ�1; 1
 and‚ D Œ�0:3; 0:3
�
Œ6:0; 8:0
.

D-optimal design A-optimal design E-optimal design

.�0:3100; 0:3666/ .�0:4300; 0:3865/ .�0:4100; 0:4174/
.0:0000; 0:2668/ .0:0000; 0:2271/ .0:0000; 0:1651/
.0:3100; 0:3666/ .0:4300; 0:3865/ .0:4100; 0:4174/

CPU (s) 6.8484 4.0404 2.7612

(x.xxxx, w.wwww) = (design point, weight).

Table 7. Bayesian D-optimal designs with different SDP formulations for the
simple logistic model whenX 2 Œ�1; 1
; ‚ D Œ�0:3; 0:3
� Œ6:0; 8:0
.

p-SDP r˛-SDP ir˛-SDP

.�0:3100; 0:3666/ .�0:3100; 0:3666/ .�0:3100; 0:3666/
.0:0000; 0:2668/ .0:0000; 0:2668/ .0:0000; 0:2668/
.0:3100; 0:3666/ .0:3100; 0:3666/ .0:3100; 0:3666/

CPU (s) 19.6093 6.8484 15.7093

(x.xxxx, w.wwww) = (design point, weight).

Table 8. Bayesian D-optimal designs with r˛-SDP formulation for the simple
logistic model whenX 2 Œ�1; 1
,‚ D Œ�0:3; 0:3
� Œ6:0; 8:0
.

` D 8 ` D 9 ` D 10

.�0:3100; 0:3666/ .�0:3100; 0:3666/ .�0:3100; 0:3665/
.0:0000; 0:2668/ .0:0000; 0:2668/ .0:0000; 0:2670/
.0:3100; 0:3666/ .0:3100; 0:3666/ .0:3100; 0:3665/

CPU (s) 7.3788 6.8484 6.7080

(x.xxxx, w.wwww) = (design point, weight).

problem considerably; and the second requires an approximation of ˛p using a quotient of inte-
ger numbers. The third formulation does not use successive approximation algorithms but uses
the algorithm proposed in Alizadeh & Goldfarb (2003) that requires the solution of a number
of 2 � 2 LMIs proportional to ` (Grant et al., 2012). Table 8 displays the generated Bayesian
D-optimal designs from all three formulations and shows that all are similar, with the second
formulation designated as r˛-SDP in the second column outperforming the other two methods
in terms of CPU time.

The parameter ` used to find all D-optimal designs in this paper via the r˛-SDP formulation,
was set employing the heuristic rule (5). For the simple logistic model, this parameter is 9.
Table 8 presents results obtained using r˛-SDP formulation with different values of `. We
observe that for this setup, all the designs obtained are similar and have approximately equal
efficiencies. The CPU times required for the various formulations are also very similar, showing
that the heuristic rule used to set the quotient of the dyadic fractions is robust; and for the range
of values tested, the designs found are only marginally affected by values of `.

5 Extensions to More Complicated Models

We now apply SDP to find various Bayesian optimal designs for the more complicated power-
logistic model where we now permit the power s to additionally vary over a known interval.
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Table 9. Bayesian D-optimal designs with independent uniform prior densities
for the simple logistic model .S � ¹1º/ and the power-logistic model whenX 2
Œ�1; 1
 and‚ D Œ�0:3; 0:3
� Œ6:0; 8:0
� S .

S � ¹1º S � Œ0:5; 1
 S � Œ0:2; 1


.�0:3100; 0:3666/ .�0:7000; 0:2638/ .�0:8200; 0:2451/
.0:0000; 0:2668/ .�0:2400; 0:2474/ .�0:8100; 0:0238/
.0:3100; 0:3666/ .0:0900; 0:0118/ .�0:2800; 0:0095/

.0:1000; 0:2412/ .�0:2700; 0:2378/

.0:4600; 0:2357/ .0:0800; 0:2478/
.0:4400; 0:1841/
.0:4500; 0:0520/

CPU (s) 6.8484 46.5195 52.9467

(x.xxxx, w.wwww) = (design point, weight).

We also find Bayesian D-optimal designs for the exponential growth model with homoscedastic
error with a single regressor. Additionally, we find Bayesian D-optimal designs for two models,
each with two regressors. The first is a logistic model with two regressors and two known
parameters in the mean function, and the second is a generalised linear model with a Gamma
distributed response and a reciprocal link function.

5.1 Power-Logistic Model

The power-logistic model has an additional power parameter s that enables it to fit skewed
binary data. Different values of s signify varying degrees of skewness in the data. As before,
let �T D Œ�; ˇ; s� and assume that each parameter has a known range of possible values with
s 2 S �

�
sL; sU

�
; ˇ 2

�
ˇL; ˇU

�
; � 2

�
�L; �U

�
and � 2 ‚ with ‚ being a cartesian

product of the three ranges of nominal values for �; ˇ and s. This setup is more complicated
than the one considered in King & Wong (2000) where they allowed s to be a singleton set only.

For this model, a direct calculation shows that the mean vector function h.x; �/ for an
observation at xi is given by

h .xi ; �/ D

0
BBB@

�ˇ s exp.�ˇ.xi��//

.1Cexp.�ˇ.xi��///
p
.1Cexp.�ˇ.xi��///

s�1
s .xi��/ exp.�ˇ.xi��//

.1Cexp.�ˇ.xi��///
p
.1Cexp.�ˇ.xi��///

s�1
� log.1Cexp.�ˇ.xi��///p
.1Cexp.�ˇ.xi��///

s�1

1
CCCA :

We use the same setup employed in Section 4 and suppose that s 2 Œ0:5; 1:0� and the priors
for all three parameters are independent uniform densities over their range. The design interval
is discretised using 
x D 0:01; and the integration scheme has a five-point GQF for each
parameter space, thus rendering a total of � D 125 points to evaluate the expectation. Selected
Bayesian D-optimal designs for the power-logistic model are shown in Table 9.

The results show that the Bayesian optimal designs for the power-logistic model have more
support points than the corresponding number of support points required when the model is
logistic. The additional points are needed to estimate an additional parameter. Generally, it is
very difficult to determine the exact relationship between the number of support points in the
optimal design and the size of S and‚. We also note that (i) D-optimal Bayesian designs for the
power-logistic model are generally non-symmetric unless s D 1 and (ii) the notable increase in
the CPU time required to find the optimal design for the power-logistic model versus the logistic
model when s D 1. This is also due to the larger number of discretised points required for the
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Table 10. Bayesian D-, A- and E-optimal designs with independent uniform prior
densities for the power-logistic model when X 2 Œ�1; 1
; ‚ D Œ�0:3; 0:3
 �
Œ6:0; 8:0
� Œ0:5; 1:0
.

D-optimal design A-optimal design E-optimal design

.�0:7000; 0:2638/ .�0:8400; 0:1369/ .�0:8500; 0:0363/

.�0:2400; 0:2474/ .�0:2700; 0:1418/ .�0:8400; 0:0965/
.0:0900; 0:0118/ .�0:0200; 0:0287/ .�0:2600; 0:0871/
.0:1000; 0:2412/ .�0:0100; 0:0083/ .�0:2500; 0:0505/
.0:4600; 0:2357/ .0:1500; 0:1721/ .0:1200; 0:2035/

.0:1600; 0:0198/ .0:5900; 0:5262/

.0:5700; 0:3474/

.0:5800; 0:1450/
CPU (s) 46.5195 34.7882 7.0668

(x.xxxx, w.wwww) = (design point, weight).

additional parameter in the power-logistic model to evaluate the expectation, which now also
produces a larger number of constraints in the SDP problem than when the model is logistic.

We note that when there is greater uncertainty on the power parameter s, as signified by a
larger domain of S (e.g. S � Œ0:2; 1:0�), we observe that the optimal design requires additional
support points, and the smallest two of them are located at smaller dose values to capture the
increasingly skewed trend. Table 10 compares the D-, A- and E-optimal designs found by SDP
when ‚ D Œ�0:3; 0:3� � Œ6:0; 8:0� � Œ0:5; 1:0�.

5.2 Exponential Growth Model

We now apply SDP to find Bayesian D-optimal designs for the exponential growth model
with normally distributed homoscedastic errors (Braess & Dette, 2007). The model has two
parameters, ˇ1 and ˇ2, and a single regressor:

y.x; �/ D ˇ0 C exp .�ˇ1 x/ ; x 2 X; �T D Œˇ0; ˇ1� 2 ‚: (10)

To fix ideas m D 2; X 2 Œ0; 1�, and ‚ �
�
ˇL0 ; ˇ

U
0

�
�
�
0; ˇU1

�
. The FIM for any design for

this model is given in Braess & Dette (2007), where they showed this matrix does not depend
on ˇ0, and consequently, the optimal design depends only on the prior density for ˇ1 and its
domain. We assumed the prior density for ˇ1 is uniform over

�
0; ˇU1

�
. To implement SDP, we

discretised the design interval using 
x D 0:01 and an integration scheme based on seven-
point GQF over

�
0; ˇU1

�
. This results in a total of � D 7 points to evaluate the expectation with

selected Bayesian D-optimal designs for different values of ˇU1 shown in Table 11. The optimal
designs were able to capture a phenomenon commonly observed in Braess & Dette (2007) and
several others that more uncertainty in prior information for the model parameter as reflected
by a larger domain in this case requires more support points in the optimal design. We note that
in Table 11, the extreme ends of the design interval are always support points of the optimal
design and the weight of the optimal design at x D 0:0000 decreases when ˇU1 increases, as
will be the case when prior information on ˇ1 becomes increasingly vague.

5.3 Simple Logistic Model with Two Regressors

In this section, we consider a logistic model with m D 3 parameters, ˇi ; i 2 ¹0; 1; 2º, and
two regressors discussed in Haines et al. (2007):

p.x; �/ D
1

1C exp .ˇ0 C ˇ1 x1 C ˇ2 x2/
; x1 2 X1; x2 2 X2;

�T D Œˇ0; ˇ1; ˇ2� 2 ‚:

(11)
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Table 11. Bayesian D-optimal designs for the exponential growth model with one regressor
whenX 2 Œ0; 1
 and ˇ1 has a uniform prior on Œ0; ˇU1 
.

ˇU1 D 1:0 ˇU1 D 5:0 ˇU1 D 20:0 ˇU1 D 50:0

.0:0000; 0:5000/ .0:0000; 0:4435/ .0:0000; 0:3152/ .0:0000; 0:0792/

.1:0000; 0:5000/ .0:3300; 0:3965/ .0:0900; 0:4442/ .0:0400; 0:4544/
.1:0000; 0:1600/ .0:5300; 0:1215/ .0:1800; 0:1128/

.1:0000; 0:1191/ .1:0000; 0:3536/
CPU (s) 4.3836 5.7408 5.3196 5.2572

(x.xxxx, w.wwww) = (design point, weight).

Table 12. Bayesian D-optimal designs for the logistic model with two regressors whenX 2 Œ0; 6
�
Œ0; 6
 and uniform prior distributions over different‚ regions.

‚ D ¹�4:0º ‚ 2 Œ�4:0;�1:0
 ‚ 2 Œ�4:0; 2:0


.0:0000; 2:7000; 0:1896/ .0:0000; 1:0800; 0:1184/ .0:0000; 0:0000; 0:2887/

.0:0000; 5:3400; 0:3104/ .0:0000; 1:1400; 0:0588/ .0:0000; 2:4600; 0:1663/

.2:7000; 0:0000; 0:1896/ .0:0000; 4:0200; 0:0263/ .0:0000; 3:7200; 0:0495/

.5:3400; 0:0000; 0:3104/ .0:0000; 4:0800; 0:2965/ .0:0000; 3:7800; 0:1399/
.1:0800; 0:0000; 0:1184/ .2:4600; 0:0000; 0:1663/
.1:1400; 0:0000; 0:0588/ .3:7200; 0:0000; 0:0495/
.4:0200; 0:0000; 0:0263/ .3:7800; 0:0000; 0:1399/
.4:0800; 0:0000; 0:2965/

CPU (s) 69.0616 69.4048 75.1769

(x1.xxxx, x2.xxxx, w.wwww) = (design point, weight).

Following Haines et al. (2007), we assumed ˇ1 and ˇ2 are known (set equal to 1) and ˇ0 is the
unknown intercept parameter with plausible values between two known limits ˇL0 and ˇU0 . The
design problem is to find a Bayesian design to estimate ˇ0 assuming‚ D

�
ˇL0 ; ˇ

U
0

�
�¹1º�¹1º

using various uniform prior densities for ˇ0 on
�
ˇL0 ; ˇ

U
0

�
. The FIM for any design for this

model can be directly worked out and is given in Haines et al. (2007).
To fix ideas, we set X1 � X2 � Œ0; 6� and discretise each of the design spaces using a step

size of 0.06. The integration in the design criterion was evaluated using a 6-point GQF. Table 12
presents Bayesian D-optimal designs when the prior density is (i) degenerate at ˇ0 D �4:0;
(ii) uniform on Œ�4:0;�1:0�; and (iii) uniform on Œ�4:0; 2:0�. The results for (i) agree closely
with those presented by Haines et al. (2007), noting that the differences arise mainly from
the discretisation scheme employed by SDP. We note that as the uncertainty of the value of
�0 increases, the plausible region ‚ grows in size, and the CPU time required to compute the
Bayesian optimal design increases. This is a common trend observed here and in other examples
reported in the literature (Chaloner & Larntz, 1989). One also observes that the computing time
to find A-optimal designs is similar to that for D-optimal designs.

Table 13 further compares Bayesian D-, A- and E-optimal designs when ˇ0 is uniformly
distributed on the interval Œ�4:0; 2:0� and X � Œ0; 6� � Œ0; 6� for the logistic model with
two regressors. One observes that the E-optimal designs has the largest weight at the point
.x1; x2/ D .0:0000; 0:0000/, followed by A- and D-optimal designs, respectively. The A-
optimal design has nine support points, the E-optimal design has five points and the D-optimal
design has seven points.

5.4 Two-Dimensional Model with a Gamma Distributed Response

Here, we consider a model with six parameters with two predictors to further test the ability
of SDP to find the optimal design. The generalised linear model is defined on the design space
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Table 13. Bayesian D-, A- and E-optimal designs when ˇ0 � UŒ�4:0; 2:0
 for the logistic model
with two regressors andX 2 Œ0; 6
� Œ0; 6
.

D-optimal design A-optimal design E-optimal design

.0:0000; 0:0000; 0:2887/ .0:0000; 0:0000; 0:3944/ .0:0000; 0:0000; 0:6244/

.0:0000; 2:4600; 0:1663/ .0:0000; 2:0400; 0:1782/ .0:0000; 3:1200; 0:1481/

.0:0000; 3:7200; 0:0495/ .0:0000; 2:1000; 0:0391/ .0:0000; 3:1800; 0:0397/

.0:0000; 3:7800; 0:1399/ .0:0000; 4:5600; 0:0385/ .3:1200; 0:0000; 0:1481/

.2:4600; 0:0000; 0:1663/ .0:0000; 4:6200; 0:0470/ .3:1800; 0:0000; 0:0397/

.3:7200; 0:0000; 0:0495/ .2:0400; 0:0000; 0:1782/

.3:7800; 0:0000; 0:1399/ .2:1000; 0:0000; 0:0391/
.4:5600; 0:0000; 0:0385/
.4:6200; 0:0000; 0:0470/

CPU (s) 75.1769 67.4860 68.5936

(x1.xxxx, x2.xxxx, w.wwww) = (design point, weight).

X 2 Œ0; 1��Œ0; 1� and has a Gamma distributed response with a two-dimensional mean function
given by

g.E.yjx// D ˇ0 C ˇ1 x1 C ˇ2 x2 C ˇ3 x
2
1 C ˇ4 x

2
2 C ˇ5 x1 x2; (12)

where g.�/ D 1=� is the link function and the region for the parameter values is ‚ ��
ˇL0 ; ˇ

U
0

�
�
�
ˇL1 ; ˇ

U
1

�
�
�
ˇL2 ; ˇ

U
2

�
�
�
ˇL3 ; ˇ

U
3

�
�
�
ˇL4 ; ˇ

U
4

�
�
�
ˇL5 ; ˇ

U
5

�
. The FIM for this model

is given in Dette et al. (2013). To implement SDP, we discretised the design space using
x1 D

x2 D 0:1 and used an integration scheme based on a three-point GQF for each of the six com-
ponents of‚. This requires evaluation of the expectation using � D 36 D 729 points. Following
Dette et al. (2013), we employed independent uniform prior for each parameter with ˇL0 D 0:5,
ˇU1 D 2:0, ˇL1 D ˇL2 D ˇL3 D ˇL4 D ˇL5 D 0:0 and ˇU1 D ˇU2 D ˇU3 D ˇU4 D ˇU5 D 1:0.
The SDP-generated Bayesian optimal designs for different criteria are shown in Table 14.

In this example, the SDP solver took a considerable amount of CPU time to converge because
of the large number of constraints and variables to optimise. A main reason is that the inte-
gration schemes employed to compute the expectation require a large number of points � to
minimise the numerical error that in turn requires SDP representations to have a large number
of LMIs and equality constraints. Consequently, this presents a more and more challenging task
for the IP solvers. Table 14 reports our SDP-generated designs, and the last two lines in the
table show the large number of variables and the large number of equality constraints involved
in the optimisation problem. For this problem, the high dimensionality of the problem will only
increase exponentially if higher order GQF are used. To avoid this problem, we may reduce the
number of discretisation points in the space of regressors; however, this strategy might lead to
designs with low efficiency because the small number of candidate points initially considered
may not adequately capture the features of the problem. One way to overcome this limitation
might be to use of grid adaptive algorithms combined with SDP or use a Monte Carlo sampling
scheme to perform the integration. We do not discuss these latter two possibilities here.

Our SDP formulations in this paper are flexible in that they are able to cope with different
problems and setups. They generally perform well in terms of CPU time required to solve the
design problem. An alternative approach is to formulate the optimisation problem using SOCP
representations, but this is outside the scope of this paper. These alternative SOCP formulations
find Bayesian optimal designs for nonlinear models using the frameworks proposed by Sagnol
(2011) and Sagnol and Harman (2013), and they can compute more efficiently by taking advan-
tage of solvers such as MOSEK, which is optimised to handle a certain class of optimisation
problems. We do not discuss this approach further because it is outside the scope of the paper.
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Table 14. Bayesian optimal designs for the quadratic mean model with two
regressors and a Gamma distributed response when X 2 Œ0; 1
 � Œ0; 1
 and
independent uniform prior density for each of the six parameters (ˇL0 D 0:5,
ˇU0 D 2:0, ˇL1 D ˇ

L
2 D ˇ

L
3 D ˇ

L
4 D ˇ

L
5 D 0, and ˇU1 D ˇ

U
2 D ˇ

U
3 D

ˇU4 D ˇ
U
5 D 1).

D-optimal design A-optimal design E-optimal design

.0:0; 0:0; 0:1532/ .0:0; 0:0; 0:1393/ .0:0; 0:0; 0:1238/

.0:0; 0:4; 0:1333/ .0:0; 0:4; 0:1668/ .0:0; 0:4; 0:1659/

.0:0; 1:0; 0:1651/ .0:0; 1:0; 0:0942/ .0:0; 1:0; 0:0581/

.0:4; 0:0; 0:1333/ .0:4; 0:0; 0:1668/ .0:4; 0:0; 0:1659/

.0:4; 0:4; 0:0880/ .0:4; 0:4; 0:1593/ .0:4; 0:4; 0:1985/

.1:0; 0:0; 0:1651/ .0:4; 1:0; 0:0386/ .0:4; 1:0; 0:0099/

.1:0; 1:0; 0:1619/ .1:0; 0:0; 0:0942/ .1:0; 0:0; 0:0581/
.1:0; 0:4; 0:0386/ .1:0; 0:3; 0:0646/
.1:0; 1:0; 0:1022/ .1:0; 0:4; 0:0099/

.1:0; 1:0; 0:0807/
CPU (s) 260.1629 134.8941 61.4176
# vars 73 049 56 984 15 431
# eqls 21 271 15 430 850

(x.x, x.x, w.wwww) = (design point, weight).
# vars, number of variables involved in the SDP problem; # eqls, number of
equality constraints involved in the SDP problem.

6 Discussion

Our work here illustrates how to formulate an optimal design problem into an SDP problem
and find optimal designs for nonlinear models. We focus on Bayesian optimal designs and show
that SDP was able to verify published results in the literature. We produced new Bayesian A-,
E- and D-optimal designs for the logistic model using bivariate prior normal distributions and
explored how the correlation coefficient affects the optimal design, along with the choice of
the discretised design space and the number of points used in the GQF approximation to the
integration problem. We also applied SDP to find Bayesian D-optimal designs for the more
complicated power-logistic model, a logistic model with two variables and a Gamma distributed
response model with two variables.

SDP provides a general framework for determining locally optimal designs for linear and
nonlinear models with several regressors and parameters. We showed here that extensions of
SDP to find Bayesian optimal designs for nonlinear models can be systematically carried out.
The problem formulation relies on robust and accurate solvers that guarantee a global optimal
solution that depends on the grid set. For SDP-generated optimal design to be globally optimal,
the discretisation scheme should be sufficiently fine to capture all the true design points. The
global optimality of the SDP-generated design can be verified using an equivalence theorem
available for each convex design criterion. For instance, if we let ıx be the point mass design at
x, the equivalence theorems for D- and A-optimality are as follows:
�D is globally D-optimal if and only if

tr
°
ŒM .�D; �/�

�1 M.ıx; �/
±
�m 
 0; 8x 2 X;

and �A is globally A-optimal if and only if

tr
°
ŒM .�A; �/�

�2 M .ıx; �/
±
� tr

°
ŒM .�A; �/�

�1
±

 0; 8x 2 X:
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E-optimal designs do not have a differentiable criterion, and the equivalence theorem is more
complicated. We do not report it here, but its details, along with derivation of the other equiv-
alence theorems, are available in design monographs, such as Fedorov (1972) and Pukelsheim
(1993). The equivalence theorems can be extended to their Bayesian versions directly. For
instance, for D-optimality, �BayesD is Bayesian D-optimal with respect to the prior density �.�/
among all designs on X if and only ifZ

‚

tr
°
ŒM.�; �/��1 M .ıx; �/

±
�.�/ d� �m 
 0; 8x 2 X:

Corresponding equivalence conditions can be stated similarly for Bayesian A- and E-
optimality. We note that in all the aforementioned equivalence theorems, equality holds at the
support points of the optimal design. In practice, one may verify the optimality of the SDP-
generated design by checking whether the aforementioned inequality is satisfied with equality
at the support points. For other convex Bayesian design criteria, one can similarly calculate
the directional derivative of the criterion at the SDP-generated design to obtain an equivalence
theorem and perform the integration using GQF. For a high level of precision in the integra-
tion, one may have to use higher degree Legendre polynomials and refine the discretised design
space to verify optimality.
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Figure 1. Directional derivative for the Bayesian criterion of the SDP-generated design on X D Œ�1; 1
 with independent
uniform priors on ‚ D Œ�0:3; 0:3
 � Œ6:0; 8:0
 for the logistic model: (a) D-optimality, (b) A-optimality, (c) E-optimality;
and (d) is D-optimality with independent uniform priors on‚ D Œ�0:3; 0:3
 � Œ6:0; 8:0
 � Œ0:5; 1:0
 for the power-logistic
model.
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Figure 2. Directional derivatives for the Bayesian D-optimal criterion of the SDP-generated designs for the simple logistic
model when ‚ D Œ�0:3; 0:3
 � Œ6:0; 8:0
; X D Œ�1; 1
 and bivariate normal prior densities in Table 5 with different
covariances: (a) ��;ˇ D 0:05; (b) ��;ˇ D 0:075; (c) ��;ˇ D 0:10; (d) ��;ˇ D 0:15.

Figure 3. Directional derivative of the Bayesian D-optimal criterion at the SDP-generated design for the simple logistic
model with two regressors on X D Œ0; 6
 � Œ0; 6
 when ˇ1 D ˇ2 D 1 and a uniform prior on Œ�4:0; 2:0
 is used for the
intercept ˇ0.
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Figure 1(a) displays the directional derivative of the Bayesian D-optimality criterion for the
SDP-generated design when‚ D Œ�0:3; 0:3�� Œ6:0; 8:0�. The plot satisfies the conditions in the
equivalence theorem and confirms that the three-point design is optimal. Figure 1(b, c) shows
the directional derivatives of the A- and E-optimality criteria at the SDP-generated designs,
and the plots also confirm their optimality. The corresponding plot for the Bayesian D-optimal
design for the power-logistic model with the additional parameter s 2 Œ0:5; 1:0� is shown in
Figure 1(d).

Figure 2 displays the directional derivative plots of the Bayesian D-optimality criterion
for SDP-generated designs using bivariate normal priors with varying degrees of correlation
between the two components. Likewise, Figure 3 displays the directional derivative of the
Bayesian D-optimality criterion for the SDP-generated design for the logistic model with two
regressors having two known coefficients equal to one and an unknown intercept ˇ0. The prior
distribution for ˇ0 is uniform on Œ�4:0; 2:0�, and the design space is X D Œ0; 6� � Œ0; 6�.
Both figures suggest the SDP-generated designs are Bayesian D-optimal because they appear
to satisfy the conditions in the equivalence theorem.

In summary, our examples demonstrate that if one is willing to discretise the design space
to find locally or Bayesian optimal designs, SDP is generally an effective tool. Our positive
experience with SDP is not limited to these examples and includes finding optimal designs for
other nonlinear models and in mixture experiments. The last example with two regressors and
a Gamma distributed response shows that sometimes problems can occur with our proposed
approach; however, the problem does not lie with SDP but with the user-selected solver, cvx,
which was unable to handle the huge number of constraints and the number of variables it has
to optimise. In this case, using cvx along with a large-scale optimisation software such as
MOSEK can be helpful. Despite the general effectiveness of SDP, it is a curiosity that SDP is
not used more often in mainstream statistical applications. We hope that this paper encourages
more statisticians to consider using SDP in their future work.
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