
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Learning in Multiple-cue Judgment Tasks

Permalink
https://escholarship.org/uc/item/5gj9p7g8

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32)

ISSN
1069-7977

Authors
Von Helversen, Bettina
Rieskamp, Jorg

Publication Date
2010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5gj9p7g8
https://escholarship.org
http://www.cdlib.org/


Learning in Multiple-cue Judgment Tasks 
 

Bettina von Helversen (Bettina.vonhelversen@unibas.ch) 
University of Basel, Department of Psychology, Missionsstr, 62a 

4057, Basel, Switzerland 
 

Jörg Rieskamp (joerg.rieskamp@unibas.ch) 
University of Basel, Department of Psychology, Missionsstr, 62a 

4057, Basel, Switzerland 
 
 

Abstract 
In our daily lives we often make quantitative judgments based 
on multiple pieces of information such as evaluating a 
student’s paper based on form and content. Psychological 
research suggests that humans rely on several strategies to 
make multiple-cue judgments. The strategy that is used 
depends on the structure of the task. In contrast, recent 
research on learning in judgment tasks suggests that learning 
is relatively independent of task structure. In a simulation 
study we investigated how the performance of several 
learning models is influenced by the structure of the task and 
the amount of learning experience. We found that a linear 
additive neuronal network model performed well regardless 
of task structure and amount of learning. However, with little 
learning a heuristic model performed similarly well, and with 
extensive learning, associative learning models caught up 
with the linear additive model. 

Keywords: Learning; multiple-cue judgments; Compu-
tational modeling  

Multiple-cue Judgments 
When judging objects on a continuous criterion such as 

the quality of a research paper, people often rely on multiple 
sources of information. For example, the clarity of the 
writing, the novelty of the research and the methodological 
precision may be used as important aspects for evaluating a 
paper. Several models have been developed to describe how 
humans solve these judgment problems. Traditionally, linear 
additive models have been employed to capture how 
humans weigh and integrate information. Social Judgment 
Theory (SJT; see Doherty and Kurz, 1996; Cooksey, 1996) 
relied on multiple-linear regression models to capture 
decision policies and researchers have used this approach 
successfully to describe judgments in many areas (see 
Brehmer, 1988). Similarly, Anderson (1981) suggested that 
humans combine information in a linear additive fashion. 
However, recently it has been suggested that humans may 
have multiple cognitive strategies available to make 
multiple-cue judgments. Juslin, Karlsson, and Olsson (2008) 
suggested that depending on the structure of the tasks, 
humans may switch between a rule-based cue abstraction 
approach and a similarity–based exemplar approach. 
Similarly, von Helversen and Rieskamp (2008, 2009) 
suggested the mapping model, a heuristic model for 
multiple-cue judgments, and showed that the model that was 
best in describing participants’ behavior depended on the 
task structure. More specifically, they showed that the 

mapping model described participants’ responses well in 
tasks that could not be solved by a linear model and where 
participants had knowledge about the cues’ polarity; that is, 
the sign of the correlation between a cue and the criterion. 
The exemplar model performed well, in non-linear 
environments with no prior knowledge about cue polarity, 
and a linear additive model performed well if the task 
structure was linear.  

Learning in Multiple-cue Judgment Tasks 
Although many studies in multiple-cue judgment research 
rely on extensive learning phases, there have been relatively 
few attempts to understand and model the learning process. 
However, the learning process is crucial to understand how 
people come to make judgments and which cognitive 
processes they rely on. Particularly, if — as suggested — 
people rely in their judgment on multiple cognitive 
processes, this should also be reflected in the learning phase. 
Additionally, the learning phase itself could play an 
important role in determining how later judgments are 
made. Recently, Kelley and Busemeyer (2008) compared 
how well several models could describe the learning process 
in various multiple-cue judgment tasks. They compared a 
rule-based neuronal network model with a delta-learning 
rule (e.g. Gluck & Bower, 1988), which can be seen as a  
learning version of a linear additive model with an 
associative connectionist network model (ALM, Busemeyer, 
Byun, DeLosh, & McDaniel, 1997; Busemeyer, Myung, & 
McDaniel, 1993). They found that the rule-based neuronal 
network models described the learning process best in the 
majority of the tasks, suggesting that learning may be 
relatively independent of task structure.  

These results are somewhat contrary to the research by 
Juslin et al. (2008) and von Helversen and Rieskamp (2009) 
on multiple-cue judgments, suggesting that humans rely on 
a variety of strategies, depending on the structure of the task 
(e.g. Juslin, et al., 2008; Rieskamp & Otto, 2006). This 
raises the question of whether learning depends on the task 
structure and what may be the mechanisms that lead to a 
switch in cognitive processing during learning. In this paper 
we investigate two reasons that may cause a shift in 
cognitive processing during learning in a multiple-cue 
judgment task. One reason to rely on different learning 
strategies may be that their learning performance differs 
depending on the structure of the task. Thus, we will 
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investigate if task structure influences how well various 
learning procedures perform that are imbedded in different 
cognitive models of multiple-cue judgments (e.g. Juslin et 
al., 2008; Kelley & Busemeyer, 2008; von Helversen & 
Rieskamp, 2008). Second, the reliance on different learning 
procedures could also be due to differences in how fast the 
procedures adapt to different judgment structures. 
Therefore, we additionally examined if the models differ 
with respect to their learning speed.  

Learning Models  
We tested learning versions of cognitive models 

suggested in the literature for multiple-cue judgments. As a 
learning model for the linear additive model we relied on a 
rule-based neuronal network model as implemented by 
Kelley and Busemeyer (2008). As an exemplar model we 
extended the ALCOVE model (Kruschke, 1992) to 
continuous judgments. ALCOVE has been successfully 
used to model exemplar-based learning in categorization. 
We also tested a version of the mapping model (von 
Helversen & Rieskamp, 2008) to allow for learning. 
Additionally, we included the ALM model as implemented 
by Kelley and Busemeyer (2008). 

 
Linear Additive Model Much research has shown that 
linear additive models are good at describing human 
judgments (Brehmer, 1994). The linear additive model 
assumes that people weigh each piece of information 
according to its importance and then add the weighed 
evidence to reach a judgment. Traditionally, a multiple 
linear regression is used to capture how much weight people 
put on each piece of information (i.e. cue). Kelley and 
Busemeyer (2008) used a rule-based neuronal network with 
a linear additive structure: 

 

,  (1) 
 

where the model prediction g at time t is given by the sum 
of the cue values c for k cues weighted by their importance 
a at time t. This learning model updates the weight for each 
cue according to a delta rule (Gluck & Bower, 1988) with a 
learning parameter δ capturing the learning rate. An 
additional decay parameter ω controls the impact of new 
information.  

 

, (2) 
 

with Y indicating the feedback (i.e. the criterion value) and g 
the model prediction at time t-1.  
 
Mapping model We extended the mapping model (von 
Helversen & Rieskamp, 2008) to allow for learning. The 
mapping model follows a simple cognitive strategy that 
makes judgments by first categorizing an object and then 
retrieving a typical estimate for the category it was put in. 
According to the mapping model, an object is placed into a 

category based on the sum of (standardized) cue values, 
implying that all cues are weighted equally. The judgment is 
then determined by the median of the criterion values of all 
objects in the respective cue sum category. The learning 
procedure we suggest describes how and how many cue sum 
categories are formed during learning. In the beginning it is 
assumed that only a single category is used. In each learning 
trial, the decision is then made as to whether the new object 
is put into a new category or into an existing category. A 
new category is formed if the difference between the cue 
sum of a new object and the cue sum of each existing 
category is larger than a distance parameter d. The criterion 
value estimated for each category is the mean of the 
criterion values of the objects falling into this category and 
is updated whenever a new object falls within a category.  
 
ALM The ALM model is an associative connectionist 
network model. It assumes a layer of input nodes 
representing each combination of cue values (2^Number of 
cues, with binary cue data). The input nodes are connected 
to a layer of r output nodes reflecting the criterion values via 
a one-dimensional grid of equally spaced values. Input 
nodes are activated by a stimulus based on the similarity of 
the stimulis’ cue values C to the input node’s cue values I. 
 

,    (3) 
 
with the activation A of the input nodes at time t further 
depending on a scaling parameter γ that determines the 
slope of the activation gradient. The activation of the input 
nodes is spread to the output nodes via connection weights. 
The activation of an output node Or is given by the sum of 
activations of the input nodes weighted by the connection 
weights between the input nodes and the output node. The 
probability of choosing an output node is given by the ratio 
of the activation of the output node to the summed 
activation of all output nodes. The judgment is a weighted 
average of the output nodes, where each output node is 
weighted with the probability with which it is chosen. 
Connection weights are updated at each trial according to a 
delta-learning rule. For this it is assumed that the feedback 
criterion value produces a feedback activation of each 
output node Fr based on the similarity of the feedback value 
pt to the output node pr: 
 

.   (4) 
 

The connection weights α are updated based on the 
feedback activation F, the predicted activation O and the 
input activation A, with a learning parameter δ capturing the 
learning rate: 
 

.   (5) 
 
ALCOVE We extended ALCOVE (Kruschke, 1992) to 
continuous judgments. ALCOVE has a similar structure as 
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the ALM model; however, the input nodes of ALCOVE are 
restricted to the exemplars encountered during learning. As 
in ALM the activation of an input node is based on the 
similarity of the stimulus object to the input node. However 
in ALCOVE, similarity depends also on the attention given 
to each cue dimension k, which is controlled by a set of 
attention weights w.  
 

,   (6) 
 

with the activation A of an input node based on the squared 
distance of the stimulus value c on dimension k to the value 
of the input node i on cue dimension k, weighted by the 
attention w given to this cue dimension and a scaling 
parameter γ determining the slope of the activation gradient. 
In the original ALCOVE model, one output node is chosen 
as response. To allow for continuous judgments we 
extended ALCOVE with the ALM’s estimation mechanism 
described above.  

In ALCOVE, the connection weights are updated in the 
same way as in ALM, with learning parameter δ1 capturing 
the learning rate (see Equations 4 and 5). Additionally, the 
attention weights are also updated according to a delta 
learning rule. The learning rate is captured in an additional 
free parameter δ2. The attention weights w are updated 
according to the following rule:  
 

, (7)  
 
with r indexing the output nodes, n the input nodes and k the 
cue dimensions; F gives the respective feedback activation 
and O the predicted activation of an output node. A indicates 
the respective activation of an input node, α is the 
connection weights between the input and output node and 
ck and ik provide the stimulus value and the input node value 
on cue dimension k. 

Method 
To test how the performance of the learning models in 
solving judgment tasks depend on the task structure, we 
compared the models’ performance by computer 
simulations in two environments: a linear environment and a 
multiplicative environment. Furthermore, we varied the 
amount of learning to examine the relationship between the 
models’ performance and the size of the training set. 

 
Simulation Environments We created two different 
environments: a linear environment and a multiplicative 
environment similar to the environments used by von 
Helversen and Rieskamp (2008; Experiment 3), which 
revealed a strong effect of task structure on people’s 
judgment processes. Each environment consisted of 1000 
objects described by 5 binary cues, with randomly drawn 

values (0 or 1). The criterion in the linear environment YL 
was generated by a linear additive function:  
 
YL = 30 + 33c1 + 22c2 + 20c3 + 15 c4 + 5c5 + ε.  (8) 
 
The error term ε was drawn from a normal distribution with 
a mean of zero and a standard deviation of 10. The 
multiplicative criterion YM was generated by a multiplicative 
function:  
 

,    (9) 
 
resulting in criterion values with similar ranges (about 0 to 
140) in both environments.  

 
Simulation Procedure For the simulation we drew a 
random training sample of 250 objects 50 times and a hold-
out set of 100 from each of the environments. Then we 
fitted the free parameters of the four models to the training 
data minimizing the square deviation between the model 
prediction and the training data. For the linear additive 
model we assumed that in the beginning, equal weight 
would be given to all cues. For the associative models we 
assumed that the connections weights and attention weights 
had equal starting values. Based on the estimated parameter 
values we generated model predictions for the hold-out set 
after seeing 20, 50, 150 and 250 objects from the training 
set. As a measure of prediction accuracy we calculated the 
root mean square deviation (RMSD) between the model 
prediction and the criterion in the hold-out set after the four 
points of learning and averaged across the trials of the 
simulation at each point of learning. Since parameters are fit 
on a separate data set, the performance of the models in the 
hold-out set can be compared without needing to further 
adjust for the complexity of the models. 

Results 
The mean best fitting parameter values for the models are 
reported in Table 1, indicating similar learning in both 
environments. 

 
Table 1: Mean parameter values (SD) 
 

 Environment 
Parameters Linear Multiplicative 
Linear additive: δ .45 (.30) .30 (.17) 
Linear additive: ω .45(.14) .47 (.13) 
Mapping: d  0 (0) .02 (.14) 
ALCOVE: γ .30 (.36) .22 (.17) 
ALCOVE: δ1 .42 (.56) .46 (1.44) 
ALCOVE: δ2 145 (50) 173 (63) 
ALM: γ 2.72 (.31) 1.78 (.30) 
ALM: δ .14 (.07) .22 (.07) 

 
The models differed with regard to how well they learned 
the criterion values in the training set. In particular, the two 
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associative models performed less well than the mapping 
model and the linear additive model (see Table 2). 

 
Table 2: Mean model performance in RMSD (SE) in the 

training set 
 

 Environment 
Models Linear Multiplicative 

Linear additive 11.09 (.07) 9.78 (.21) 
Mapping  14.60 (.08) 9.87 (.16) 
ALCOVE 15.18 (.09) 10.32 (.18) 
ALM 15.05 (.12) 11.51 (.17) 

 
The results in the hold-out set suggest that the performance 
differences in the training set are partly due to a slow initial 
learning process of the associative models. Figures 1 (linear 
environment) and 2 (multiplicative environment) show that 
the linear additive model and the mapping model learn 
rather quickly even with as little as 20 learning trials. 
However, the two associative models that performed worse 
with less than 50 learning trials caught up with the other two 
models after extensive learning of 150 trials or more.  

The environment crucially influenced the performance of 
the models. Unsurprisingly, in the linear environment, the 
linear additive model performed best regardless of the 
amount of training. With fewer than 50 learning trials, the 
mapping model performed somewhat worse than the linear 
model, but better than the associative models. However, 
with more than 150 trials of learning the two associative 
models performed better than the mapping model and 
almost as good as the linear additive model.  

 
Figure 1: Model performance (RMSD) in the hold-out set 

in the linear environment after 20, 50, 150 and 250 trials of 
learning. Error bars denote one standard error of the mean. 

 
Figure 2: Model performance (RMSD) in the hold-out set 

in the multiplicative environment after 20, 50, 150 and 250 
trials of learning. Error bars denote one standard error of the 
mean. 

 
In the multiplicative environment, the advantage of the 

linear additive model was less pronounced. To begin with, it 
performed equally well as the mapping model, but gained a 
bit on the mapping model with more than 150 trials of 
learning. The two associative models again performed 
worse than the linear and the mapping models with little 
learning with fewer than 50 learning trials, but caught up 
after more than 150 trials of learning. 

In summary, the linear additive model performed well in 
both environments and at all stages of learning. 
Furthermore, we found evidence that the amount of training 
affected which models are well suited to making accurate 
judgments. More specifically, the associative models only 
made accurate judgments after extensive training. In 
contrast, the mapping model performed reasonably well 
with little training, but failed to improve to a similar degree 
as the other models with further training. 

 

Discussion 
We investigated how different learning models can solve a 
multiple-cue judgment task depending on the amount of 
learning and the structure of the task. We found that a linear 
additive neural network model performed well in both 
environments and regardless of the amount of training. 
However, we also found differences due to task structure. In 
the multiplicative environment, the mapping model was 
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equally as good as the linear additive model, in particular 
with little learning experience. With extensive learning 
experience the two associative models, ALCOVE and ALM, 
performed similarly well to the linear additive model and 
the mapping model. The results are in line with the finding 
of Kelley and Busemeyer (2008) that a neural network with 
a linear basis was well suited to describe participants’ 
judgments over a broad range of tasks. Our results also 
support research illustrating the robust performance of linear 
models for judgment tasks (Hogarth & Kareleia, 2007). 

However, our results seem to contradict results that 
suggest task-dependent changes in strategy use in multiple-
cue judgments (Juslin, et al., 2008; von Helversen & 
Rieskamp, 2008, 2009). These authors found in a task with 
a similar structure as in our simulation, that the model that 
was best in describing participants’ judgments changed 
depending on the task structure. However, the judgment 
process people rely on might not only depend on the 
judgment performance of the learning process (e.g. Ashby, 
Alfonso-Reese, Waldron & Turken, 1998). Instead, the 
learning speed and also other factors such as the cognitive 
effort of relying on a specific cognitive process could also 
influence which judgment and learning process people 
follow (see also Enkvist, Newell, Juslin, & Olsson, 2006). 
Particularly, in the multiplicative environment the mapping 
model may provide an equally good but arguably 
cognitively simpler alternative, which could explain why a 
majority of participants were best described by the mapping 
model in the multiplicative condition of Experiment 3 by 
von Helversen and Rieskamp (2008). On the other hand, 
associative processes seem to provide a valid alternative to a 
linear additive model after extensive training, in particular 
in a multiplicative environment. If following the assumption 
that associative similarity-based processes may be executed 
without conscious awareness and be thus cognitively less 
demanding (e.g. Ashby & Maddox, 1994), this could still 
make it attractive for participants to rely on such processes, 
particularly after extensive training. This could explain the 
reliance on exemplar-based processes (Juslin, et al., 2008) 
and also the considerable minority of participants that were 
best described by the ALM model (see Kelley & 
Busemeyer, 2008).  

Lastly, the available context information may also 
influence people’s strategy choices. Information about cue 
polarity seems to trigger rule-based processes (Newell, 
Weston, Tunney, & Shanks, 2009; von Helversen & 
Rieskamp, 2009). While in the study by Juslin et al., (2008) 
participants had no information about cue polarity, most 
studies analyzed by Kelley and Busemeyer (2008) provided 
context information that allows drawing conclusions about 
cue polarity and thus could have increased the reliance on 
rule-based processes. 

Conclusion 
In sum, our results suggest that linear additive learning 

models are generally robust. However, the performance 
advantage depends on the task structure and the amount of 

learning opportunity. On the basis of these results future 
research will test whether people’s judgments depend on 
task characteristics and learning opportunities.  
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