Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
GPFS HPSS Integration: Implementation Experience

Permalink
https://escholarship.org/uc/item/5gh651jw

Author
Hazen, Damian

Publication Date
2008-09-24

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5gh651jw
https://escholarship.org
http://www.cdlib.org/

GPFS HPSS Integration: Implementation Experiences

Damian Hazen and Jason Hick
National Energy Research Scientific Computing Center at Lawrence Berkeley National
Laboratory

Abstract

In 2005 NERSC and IBM Global Services Federal began work to geaelontegrated
HSM solution using the GPFS file system and the HPSS biecat storage system. It
was foreseen that this solution would play a key role in data maeaget NERSC, and
fill a market niche for IBM. As with many large and complextwafe projects, there
were a number of unforeseen difficulties encountered during implatrmnt As the
effort progressed, it became apparent that DMAPI alone could nosdxk to tie two
distributed, high performance systems together without serious tirapgeerformance.
This document discusses the evolution of the development effort, fromwbich
attempted to synchronize the GPFS and HPSS name spaces selglygon GPFS’s
implementation of the DMAPI specification, to one with a more ti@ul HSM
functionality that had no synchronized namespace in HPSS, ang fioah effort, still
underway, which will provide traditional HSM functionality, but requifeatures from
the GPFS Information Lifecycle Management (ILM) to fullshgeve this goal in a way
which is scalable and meets the needs of sites with aggressfeemance requirements.
The last approach makes concessions to portability by using $lensyfeatures such as
ILM and snapshotting in order to achieve a scalable design.

1 Introduction

The National Energy Research Scientific Computing (NERSCecenttthe Lawrence
Berkeley National Laboratory (LBNL) provides supercomputing regsuta a large and
diverse scientific community to aid in scientific discovery fbe Office of Science
within the Department of Energy (DOE). Often new computatiorsteays at NERSC
present new operating and storage system management chall&igiés.this provides
for new computational capability, it also presents a challemgderms of data
management in that users are required to maintain differenescabi their data on
computational systems that do not interoperate. As datasetswiffotihe computational
capabilities of compute clusters, maintaining multiple copies ofa da¢comes
increasingly costly both in terms of storage resources and irarhfiort required to
effectively manage the data. In recent years, NERSC and bitjerperformance
computing centers have positioned themselves to take advantageaoicements in
cluster file system technologies, and to deploy file systdmat can be used across
multiple compute platforms in the center [i,iil. Goals of thgproach include the
“debalkanization” of storage resources, allowing for common procurgrdeployment
and use of what have traditionally been storage islands in datrce Center wide file
systems offer the potential of both scale and persistence Bt fleaesurpass file systems
tied to particular compute engines. Users see benefits imtarceide name space

mounted across major compute platforms, and in deduplication of theirHiateever
long-term filesystem management including backup, recovery and emfent of fair
sharing of resources offers new challenges. For this reasoRSGIEbelieves it is
desirable to research and develop systems that integrate didfjarahd storage systems
to provide a common globally available logical view of a centes&r data, but also to
leverage storage technologies predicated on long term stewardstigtaof One such
effort at NERSC is the File and Archive System Integration project.

NERSC's effort to integrate a clustered parallel filstem with an archival storage
system originated around 1996 with joint interest from a snuaitimgent of the High
Performance Storage System (HPSS) collaboration. Participanlsded IBM,
Lawrence Livermore and Lawrence Berkeley Laboratories.thisttime, there were a
series of meetings to discuss ideas for a design that wouldthtbeefisers at each site.
This remained an informal and loosely organized research projede vdaeh site
explored multiple different approaches from 1996 to 2005. With the deptayohe¢he
global file system at NERSC, and the successful production us®®&Ht the center,
IBM and NERSC formalized the project by officially allocating depehent resources to
work on the integration software. IBM’s Global Parallel File t8ys (GPFS) would be
used as the file system front end, while HPSS would serve as the long-term.archive

The goals of the project can be stated simply:

e Provide a means to transparently migrate data between the i Etem and the
HPSS storage system.

e After data migration, file system blocks allocated for thgrated file may be freed
for reuse, allowing the file system to scale with the HPSS backing store.

e Upon access of migrated data, the data would be staged backentitetsystem,
prior to returning control to the user’s process.

e Provide for file system recovery using the data residing in HPSS.

2 Storage Technologies Used

Both GPFS and HPSS have customers in high performance computuigjngesome of
the largest super computing centers in the world, and a number ofsceste both
offerings. This section provides a brief overview of the two systems.

2.1 HPSS Overview

HPSS is a data storage system that has been in production @s&%8cat a number of
Department of Energy National Laboratories and other large corgguostallations. Its
architecture is based on the IEEE Mass Storage SystemeRafeModel [iii,iv,v], and
implements a hierarchical storage management system, prowdinfggurable, tiered
data storage. The system manages file movement through theest@egchy of disk

and tape devices. Data hierarchies are constructed and migratiopurge policies

defined to reduce data storage cost, satisfy /0O intensive stogggeements, and to

provide fault tolerance through redundancy. HPSS provides a hiesroamespace

giving users the ability to organize files in directories, syigabolic or hard links. It uses
UNIX style permission settings to control access to objedisemamespace and allows
for finer grained access control via access control lists (ACLS).

HPSS is used in many instances as a long-term archive andichs rmetadata
consistency, backup and recovery are paramount. Having centralizadataetvith a
reasonably small footprint, and a metadata engine, which provides thyg @biake
transactionally consistent backups of a live system, allowstsitefeguard their archive
while maintaining system availability. HPSS uses the DB&ticglal database for these
features. HPSS consists of centralized services for matadpace allocation and
volume management and distributed data movers that can be sscatadisfy I/O
requirements in HPC environments. The system supports interfide intrafile
parallelism, handling many simultaneous I/O requests and stiti@rfgr individual files
across devices. As file sizes and device capabilities ingrdéhse system can be
configured to stripe data across additional network, compute, disk paddsources,
allowing it to scale with the hardware infrastructure. HRB8orts data transfers over
TCP/IP networks as well as®®arty data movement in a SAN environment where the
sources and sinks have direct access to the disk devices. The system suppdres @ihum
disk and tape technologies. Systems with 10’s of petabytes of ddtaearly 100
million files are currently in production [vi].

2.2 GPFES Overview

GPFS is a clustered parallel filesystem, which is usedomatesof the same large
computational facilities as HPSS [vii]. Save for a few minxeceptions, it presents an
image of a traditional POSIX compliant file system running omaadsalone machine.
A shared disk abstraction layer is used for shipping I/O reqteethe disk servers. Data
is striped across devices for high-speed access, and the clientsexiread ahead/write
behind techniques with a local cache for improving I/O rates.adé¢d operations are
journaled to the filesystem allowing journal recovery, in the ewéniode failure, to
occur on another node in the cluster. Byte range locking is assedpport intrafile
parallel I/O operations. A token server is used to grantditess, space allocation and
metadata rights allowing for distributed and parallel operation. nunber of
optimizations have been implemented reducing the number of token reqeesisd
while still preserving POSIX semantics and file system consistedaditionally, GPFS
provides extended features that are key to the integration effbiese include an
implementation of the XDSM DMAPI standard, file system snapshotting anariafiam
Lifecycle Management (ILM) capabilities. These featumesrmt universally provided
by filesystems so each is described briefly below.

2.2.1 Data Management API (DMAPI)

The XDSM DMAPI specification gives file system implemeatand writers of Data
Management applications a set of file system extensionsnidmatoe used to implement
an HSM system |[viii]. Important features of the specification are:

e DMAPI events. Events provide notification of name space and I/O file system
activities to the Data Management program.

o Extended attributes. Extended attributes are characteristics that can be assbcia
with each file system object and contain information used by #ta Blanagement
Application. Common uses of extended attributes are for storingpbiket identifier
for a file system object in secondary storage.

e Managed regions. Managed regions allow file data regions to be tagged such that
access through standard POSIX 1/O calls trigger event radidit to the Data
Management program.

Most XDSM implementations including the GPFS implementation corgdistwo
components: a kernel extension through which filesystem activisgepaand a library
that exposes the XDSM DMAPI to user space DM applications. DM applicagoese
notification of file system events via message queues, réféor@as sessions, that are
maintained by the XDSM kernel extension. Events can be eitmahisgnous, which
requires the application response or asynchronous. Synchronous eventthélditk
system execution thread that generated the event until handlég)M application.
Delivery of asynchronous events is not guaranteed.

In order to better support DM applications in a parallel filstay environment, GPFS
has some extensions and semantic modifications to the XDSM DBf#Rlfication [ix].
Of particular interest are:

o Clustered file system session support. The XDSM specification makes an implicit
assumption that the machine generating the event is the sachnethat holds the
session. With the GPFS DMAPI implementation, a sessiorsigresl to a certain
node in the cluster, and events generated throughout the clusteevadélivered to
that session node. Events of differing types may be sent to indepesedsions or
session nodes.

e Mount event handling. GPFS delivers mount event notification for each mount and
unmount operation on each node, and extends the mount event structure to iindicate
the event is for the node running the DMAPI session, or for anothee m the
cluster. This allows the DM application to assert that #ssien node is the first to
mount the file system and the last to unmount.

e Failurerecovery. GPFS extends DMAPI session recovery to include session node
failure. If a session node fails, the session can be recreatadotimer node and
messages that were queued to the session can be recovered.

e Paralle 1/0. The DMAPI I/O routinedm_read_invis()dm_write_invis() can run
on any node in the cluster and can be used for parallel data moweitinemta file on
file system block boundaries.

2.2.2 Information Lifecycle Management

Recent versions of GPFS incorporated ILM into the product. With litdage devices
can be partitioned into pools with certain traits. For example, arpayplbe constructed
out of devices that have particular reliability or performanbkaracteristics [x]. To
direct file placement and migration policy, GPFS uses an SkgLdolicy language.
Policy can apply to initial file placement, indicating which pool fite exists in when
first created, file migration, which allows data to be moved batwmols en masse and
file deletion. Placement policies are maintained in memorgsacall nodes in the
cluster. Migration and deletion polices are described in a potiofiguration file and
are applied as a scheduled activity. To generate a list of céeslifta file migration,
GPFS ILM scans the file system building a result set efditributes and pathnames that
matches the search criteria specified. Traditionally, scankarge file systems is
expensive. GPFS adapted file system metadata structuretteo dupport high speed
scanning. The scan, resulting sort, and merge workload is partitimgedistributed
across all nodes in the cluster resulting in a fast, scatalalening engine that makes
scanning feasible in HPC environments. To illustrate, a reatarhal IBM benchmark
was able to scan one billion files in under 3 hours [xi].

2.2.3 Filesystem snapshots

Like some other file systems [xii,xiii], GPFS provides a copy on wrigesfiistem

snapshot feature. Taking a snapshot causes a static copy of the filesybteimad df

the snapshot to be maintained until it is administratively removed. Any changes to f

or structures do not affect the snapshot. The snapshot can be scanned and ILM policies
can be applied to it.

3 Previous experience with XDSM

The Distributed File System (DFS) backed by HPSS has sismressfully deployed at
several HPSS production sites including a large installationndiaria University.
Although the DFS product has been discontinued as an offering from IBM, i
instructive to review the system’s architecture as an exaofpée successful DMAPI
based solution. The software uses DMAPI implemented in DFS, bat swine
significant extensions [xiv]. The integrated system provided rtwoes of operation:
one that consisted of traditional HSM functionality where datmgrated from the file
system into HPSS. To access the data, the file would haver&athdack onto the file
system. The implementation also operated in a mode where then@®& space was
replicated in HPSS. In addition to allowing access to the bgatore through the DFS
file system, users could access migrated data through the ElRS8SAPI. Accessing
data directly through the HSM is not addressed in the XDSM smmin and,
guaranteeing archive and file system consistency for du@lerdsdata introduced
additional complexity.

To guarantee namespace synchronization, the DFS/HPSS implearents¢d a two-
phase commit for namespace transactions. DMAPI namespace events provigaiesent
for notifying a DM application of file system name spacevégti An initial pre-event is
delivered to the DM application indicating the intended operation, andcadeost-
event notification including status of the executed operation is seattbacaction has
been completed in the file system. DFS/HPSS operated lingtartransaction when
the pre-event notification was received, and then either commadatimglling back the
transaction depending on the status delivered in the second eweherFDFS extended
the DMAPI specification to provide event pairs for all event tyjpetuding attribute
events, adding an additional field in the pre and post event for gpanirposes, as well
as providing guarantees of event delivery for the pre and post exesfs éor the case
of file system failure. In general, these features allothedtwo namespaces to remain
synchronized.

While this approach provides an effective means of synchronibmdile system and
HPSS namespaces, it does introduce additional overhead associhtestemt delivery
and transaction management. Additionally, because the DMAPI eyemé¢sated by the
file system are synchronous and block until responded to by the DMcAfph, file
system object create rates proceed at roughly the combinedfrateates in the file
system and creates in the archive. This is generally natsae when creating large
files, as the time it takes to perform I/O will dominate, howeteés problematic for
small files.

4 GPFS HPSS integration - DMAPI driven approach

Efforts to integrate GPFS and HPSS initially proceeded iragp similar to what was
done for DFS. The project began by exploring designs using sdielyDMAPI
component in GPFS to implement the data migration and backup functioAalityith
DFS, two approaches were developed: one which replicated the file systerspzaaén
HPSS, and another which pursued a more traditional HSM design, Wweenarhespace
would not be replicated. Instead, file system objects would referdPSS objects by a
special handle stored in a DMAPI extended attribute. In both casesss to migrated
files would only be via the file system. For the first appho#lte name space replication
would be used in providing a backup of the file system, as well asbpogroviding
read-only access through HPSS at some future date. Foadligotral HSM design, a
backup tool, which could interpret the application specific DMAPImattes similar to
what DMF, XFS and DFS provided would be developed. The tool would be aWvare
data that had been migrated to HPSS via HSM, so that backups coakkhenithout
triggering a stage back to the filesystem.

A significant hurdle to overcome with either approach is the réiffee in hamespace
operation rates between GPFS and HPSS. HPSS is an archizasydéém, with
emphasis placed on centrally managed metadata, long-term gtabditrecoverability.
GPFS leverages the combined compute power of the clusters it ruralaming
namespace operations to proceed without contacting a central semviaay cases. This
architectural difference results in a significant mismatthnamespace rates. Two

options were explored to attempt to address these differencest, viFer examined if
buffering events to a log, so that they could be worked off over would be effective.
Rather than performing the HPSS namespace operation in line @gettts occurred in
the filesystem, the software would coalesce and journal the éseldter processing.
Second, we examined minimizing the number and kind of namespace eeewsuld
set disposition and register for, so that only a small number aft dypes were
generated. Exploration included registering only for the asynchroposts namespace
events, coalescing events of like types, and combining event agigistivith limited
scanning techniques used to reconcile the two systems.

Eventually, we found these techniques to be insufficient for use in @nerdfAironment.
While journaling could smooth over namespace bursts, it provides Htfe for file
systems with high sustained namespace activity. Coalescipgdiel some instances but
introduced complexity. Registering for only asynchronous events imeddiming and
event delivery failure problems. For these types of evem#\} makes a best effort to
deliver them to the DM application’s session, but makes no guarant@dslitionally,
since most events originate off the session node and may be caysaa@lBt processes
running across many nodes, events that are delivered out of ordendacconcern. In
load testing, events would not always arrive on the DM applicats@ssion in the order
they occurred, and the specification does not provide any non-opaquetémp or
sequence data that could be used to reconstruct the event sequence.

Overriding complexity concerns were concerns about the DMARItaoture on GPFS.
Recall that for a file system in a GPFS cluster, all evefita particular type must be
delivered to the same session. A DMAPI session residesingl@ sode and provides a
gueue maintained in kernel memory for holding file system events theil can be
consumed by the DM application. A single queue on one node in the diasting
events from many generators presents a fan-in problem. Duringtdetidg, as the
number of events generated by the cluster exceeded the sessimaimlity’ to process
them, kernel memory was consumed until the file system wasd@own on the session
node.

The tight coupling that DMAPI imposes between the file systaoh tartiary storage,
particularly with namespace events, results in significant aamwation between session
and client nodes. GPFS use of a single session node per féensfgst an event type
presents load concerns on the session node, as well as an evend loackhe client
nodes delivering the messages to the session if the eventotatendled quickly.
Without special provision, DMAPI requires that the system magaigiriiary storage be
available in order for the filesystem to continue to operathis imposes operational
difficulties on a data center. In the end, we concluded that white thiere certain
application domains where DMAPI provides a useful set of primitieesonstructing
HSM functionality, there were serious limitations both in tewhdhe tight coupling
between file system and archive that the event model introducedsdadki of support
for high performance clustered file systems. These alonly @ther problems in the
specification discussed in [xiv] and [xv] make writing well fpeming, low overhead
DM applications difficult. It was time to examine another approach.

5 Hybrid Approach — DMAPI and ILM

In 2006 the project abandoned attempts to build a standards based solimgpthes
XDSM specification. Instead, in collaboration with IBM’s Almaden Rede&enter we
began development of an approach that minimizes DMAPI use, and relies instead on ILM
and snapshotting for some key functional components. While this chepgsents a
capitulation in terms of portability, it addresses much of the coade performance and
scalability that an HPC workload requires.

Recall that the GPFS ILM allows administrators to configure padl storage with

certain characteristics, and to migrate files betweengsqguaols. Initially, storage pools
were solely managed by GPFS, however, the idea of an external pmuhged by

archival software such as HPSS is a key piece in the ILMedrdesign. In this case,
HPSS takes on the role of manager for an external storage @aoididate lists for
migration are delivered to HPSS, which uses its high performd@cedpabilities to

move data into tertiary storage. This differs from the figtraach, where DMAPI

events were used to drive the system, and were required for miigtai migration

candidate list. With the ILM driven approach, the ILM policy engmgether with file

system snapshotting is used to discover candidates for migramoying the need to
track file system namespace operations. DMAPI is only usedrdpping user I/O

requests that require access to HPSS.

In the initial approach, backup was a relatively minor component, andstazhprimarily
of capturing the file system namespace, and relying on theafdpg data that resided in
tertiary storage. It was missing key features needed inbast backup solution,
including file versioning and point in time backup consistency. In the triMen
approach, backup is expanded to include these features, relying omt_bshapshotting
to build a richer featured backup solution. The next two sections loetsbe HSM and
backup operations of the ILM driven approach.

5.1 HSM

HSM uses GPFS ILM to generate a migration candidate lstproduce the list, the
policy manager runs periodically with a set of rules that desdhbeattributes of
candidates to be migrated from GPFS managed storage pools inttemraleldSM pool
managed by HPSS. To pick migration candidates, most of the dreditifields
maintained in a file’s inode, as well as file pathnames wittepamatching filters can be
used as predicates to the selection clause. From these rulesliciienanager generates
a list of files that are candidates for migration into the Sif@&anaged pool, and passes
the list to a set of HPSS client programs that are used torpethe data movement.
Data can be pre-migrated with copies existing in both HPSS #@&te5Gor migrated
where the file’s inode, extended attributes and a small amouatafsilleft in GPFS, but
all other file system blocks are freed for reuse. The dilstem name space is not
replicated in HPSS as part of HSM. DMAPI is used in a édhitashion, primarily to
deliver synchronous notification to the system when user activitthenfile system

requires access to data stored in HPSS so that data can be Ibagkedhto the file
system, and for tracking file system mount and unmount events.

While GPFS ILM provides a high performing approach for gemegaticandidate list for
migration that does not have the scaling or fan-in problems preg&nDMAPI, there
still exists the disparity in metadata rates between H&E®8ISGPFS. To deal with this,
the ILM driven approach introduced aggregation in HPSS where Si@slhre combined
into larger storage units in HPSS. For aggregation, the projece ¢thasse HTAR — a
standard based HPSS client application that is currently in @sawhber of HPSS sites
[xvi]. HTAR, groups files into configurable sized aggregategtamiin USTAR format.
The tool uses HPSS parallel I/O for fast data movement. HpARides a separate
aggregate index that can be used for efficient lookup and accestivdual aggregate
members. The combined system, using GPFS ILM for generat®id Hhigration
candidates and HTAR for aggregation was demonstrated at the Sopeputing
Conference in Reno, Nevada in November 2007. The demonstration showed tha
billion O byte files in GPFS could be migrated to HPSS in fkeas 24 hours using the
GPFS ILM to generate the candidate list, and the aggregation feature tiRatpgidvides
[xvii].

5.2 Backup

Since HSM does not save the file system namespace or attribugeparate backup
feature is provided to allow for recovery in the event of filstay failure. Backup
consists of everything needed to restore the file system frerground up - file system
namespace, extended attributes as well as GPFS cluster taetadeaptured. For
discovering backup candidates and migrating into HPSS, the sgg@muses the ILM
policy engine and the logical construct of an external storagenpawhged by HPSS. A
separate set of policy rules is used to generate backup candiliategiarantee a
consistent backup image, backups are taken from a GPFS read e@slysfém snapshot.
The snapshot can be used to determine the list of files that hamgedhaince the
previous backup run. Backup and HSM use the same file data in HP&&Jex normal
operation, most of the I/O required to take a full backup of thesjisgem will have
already been completed by HSM. For a backup, all data blocks y0BBRS candidate
file that does not have a current copy in HPSS is flushed tariegiorage. The inode
content, ACLs and other extended attributes for all objects irffillhesystem (files,
directories, symbolic links, etc.), and file system configuratidasfer, disk, etc.) is
stored. Since data is read from a static snapshot, the backuporpesratempotent and
can be repeated until an internally consistent point in time irohgjee file system has
been captured.

Since backup and HSM use the same HPSS data objects, this insrttioeed to store
file versions. For example, if a file is HSM'd into HPSS amdlso part of a backup
image, and that file is modified in the file system, a new version of theifilaeed to be

created in HPSS to preserve the validity of the backup. To adtres&PFS provides a
version identifier - called an epoch number - as part of their inogkadata. It is a
monotonically increasing value that is associated with a snapsfftet. afsnapshot of the
file system is taken, any creation or modification of a filstesm object will result in the

epoch number for that object being assigned a value of the presnapshot number
plus one. The combination of inode, inode generation number and epoch detarmines
unique file version.

6 Additional Concerns

While ILM provides a means for managing migration and backup candisitethere
are still several challenges that need to be met. Tloisosebriefly describes areas
requiring additional work.

6.1 File System Deletions

An HPSS object cannot be deleted while there are still refeseto it. This includes

both file system references and references from backup smageaddress this, cleaning
up unreferenced HPSS objects is designed to be a sepaiaity asing a garbage

collection scheme. Files in HPSS will only be deleted byage collection when no
backup or file system references exist. Since a deldeedhfiy be referred to by any
number of backup images, depending on backup retention policy, an efficiens wie

determining the set of backup images a file is a membes oéquired. Aggregates
complicate the issue as well, since an aggregate cannot éteddehtil no references
exist to any of its members. During design, we exploradmaber of metadata layouts
that aimed to track references in backups to objects in testiargge, keeping in mind
the need for both time and space efficiencies.

6.2 Metadata Residence

For any approach, metadata that provides mapping from file system entries to
counterparts in tertiary storage is required. A common method of doing so, and one that
the DMAPI specification supports is to store a handle to the object as a&kteisded
attribute. But, since a file system reference is only one of possibly rearences that
can exist to an object in HPSS, the reference may need to be maintained &feer the
system object has been deleted. One approach to address this is to maintaupithg ma
in the file’'s extended attribute, and when the file is deleted, to log the deleté¢ sao tha
background process can search for references to the object in backup imagesfas part
garbage collection. A downside to this approach is that the DM Application requires
deletion event notification. Alternatively, we considered storing all nmgpmietadata in
an HPSS allocation table. With this approach, results from subsequent file sgatesm
would be compared to determine potential deletion candidates. Before actoadlying
the object in HPSS, the backup records would also need to be consulted.

6.3 File System Restoration

As discussed, the design uses the same backing store for HSM as for backup. If a fi
system needs to be restored, first the GPFS cluster metadata is recashsanatithen the
namespace is recovered. While all data will be accessible at this pointitireai!s

10

for tracking whether the restored file was resident on the file systehif so then it is
copied back to GPFS as part of the restore process. Performing a bulk repopulation
during restore rather than relying solely on user access to populate gystim will let
the system order requests so that tape accesses are handled mand\effidie further
improve efficiency, the design calls for being able to repack tapes in ordevitoize

the number of tapes a full file system restore requires.

6.4 Partial File Migration

For extremely large files, there are efficiencies that the projdctatiexamine in detail,

but have the potential for significantly improving performance of the systeme way

of doing this is using multiple managed regions per file. A GPFS file can have up to 32
DMAPI managed regions where each managed region corresponds to a comaggeus

of bytes within a file which can be set to generate synchronous read, writeracate
events whenever one of those operations are performed within the managed region.
Using multiple managed regions can be beneficial for large files it fletg the system
stage only part of a file back to the file system when accessed, ané gihethod for
resuming migration of a large file to HPSS without having to re-migrate the &let if

the migration failed before completion.

Conclusion

The DMAPI specification provides a set of primitives that caruged to construct an
HSM system. There have been a number of HSM implementations dadeMAPI
[xviii,xix,xx] including software that used DMAPI to link DFS artPSS. While DFS is
a distributed file system, it is not a clustered file sysi@na a file’s metadata belong to a
single server. GPFS is a clustered file system thiaestto allow distributed, parallel
operations for both metadata and 1/0. The GPFS DMAPI implememtatiovides
extensions to address some of the needs of clustered file systeimsas multiple
sessions, parallel invisible reads and writes, and cluster mount suppeever it makes
concessions to the DMAPI specification and to existing DM appiicsit For example,
rather than having events delivered and handled on the node that getiezateent,
requiring a distributed DM application, it defines a singlesieesfor handling events of
like type. This architecture presents scaling issue for HPC workloads.

We found that GPFS ILM provides an elegant solution to the eventgagaloblem.
Rather than rely on namespace events to maintain a migrahdidate list, the system
uses ILM to deliver candidates to the DM application. The careidecovery is
performed in parallel across all nodes in the GPFS systemede a few large lists of
migration candidates. This eliminates DMAPI event trafficéfeerything but 1/0O where
access to tertiary storage is needed. Aside from I/O eveM#PD constructs such as
managed regions, extended attributes and exclusive/shared aghtsane still useful in
the system.

As an archival storage system, HPSS metadata rategaitcantly slower than GPFS.

The design calls for using the HTAR aggregation tool to perfdR8S side aggregation
to reduce the number of HPSS objects that must be created. WIS the HPSS

11

system to keep pace with the file system’s create ratess@ll perform striped data
transfers to the archive.

Large, platform independent clustered file systems areuelatnew introductions to the
HPC center. As of yet, the file systems do not have inegjiaaickup solutions that
scale. Additionally, backup solutions that are used in traditional ABM

implementations such as DFS/HPSS, DMF and CXFS generallyderavitool that is

aware of the DM Application specific attributes that indicatideahas been moved to
tertiary storage, and capture the namespace for restorindetsgdtem in case of failure.
As the number of devices and concerns of undetected data corruptioas&)cvee

believe that there’s value in providing a robust backup solution. Thewsolses the

GPFS file system snapshot for guaranteeing point in time consistendtipl&icopies of

a file can exist in the HSM, depending on a site’s retention policy.

Acknowledgment
This work was produced by the University of California, Lawrence &@eykNational
Laboratory (LBNL) under Contract No. DE-AC02-05CH11231 with DOE.

[i] W. T. C. Kramer, A. Shoshani, D. A. Agarwal, B. R. Draney, G. Jin, G. F. Butler, J.
A. Hules.Deep scientific computing requires deep d#éBM Journal of Research and
Development 48(2):209- 232, March 2004.

[ii] Greg Butler, Rei Lee, Mike Welcom&UPFS: The Global Unified Parallel File
System Project at NERSEroceedings of the 21st IEEE/12th NASA Goddard
Conference on Mass Storage Systems and Technologies, April 2004, pages 361-371.

[iii] IEEE Mass Storage System Reference Model V5 (MSSRM).
http://www.ssswq.org/public_documents.html

[iv] Richard W. Watson.High Performance Storage System Scalability: Architecture,
Implementation and Experieac Proceedings of the 22nd IEEE / 13th NASA Goddard
Conference on Mass Storage Systems and Technologies, April 11-14, 2005, pages 145-
159.

[v] Danny Teaff, Dick Watson, Bob Coynd&he Architecture of the High Performance
Storage System (HPSSRroceedings of the Goddard Conference on Mass Storage
Systems and Technologies, March 28-30, 1995, pages 45-74.

[vi] HPSS Petabyte Clubttp://www.hpss-
collaboration.org/hpss/about/PBdecimal20080317.pdf

[vii] Frank Schmuck, Roger HaskirGPFS: A Shared-Disk File System for Large
Computing Clusters Proceedings of the Conference on File and Storage Technologies,
January 28-30, 2002, Monterey, CA, pages 231-244.

12

[8] Systems Management: Data Storage Management (XDSM)T&Bhnical Standard.
Open Group CAE Specification, Open Group, February 1997.

[ix] GPFS V3.1 Data Management API Guigest Edition (April 2006), IBM, 2455
South Road, Poughkeepsie, NY 12601.

[X] GPFS V3.1 Advanced Administration GuiBest Edition (April 2006), IBM, 2455
South Road, Poughkeepsie, NY 12601.

[xi] IBM Supercharges Management of Massive Amounts of Data -- A Billion Files at
Lightning SpeediBM Press Release, Armonk N.Y., October 02, 20@p.//www-
03.ibm.com/press/us/en/pressrelease/22405.wss

[xii] Dave Hitz, James Lau, Michael Malcoifile System Design for an NFS File Server
Appliance. Proceedings of the USENIX Technical Conference. 2004, San Francisco,
CA, pages 235-246.

[xiii] Solaris ZFS Administration GuideR?art Number 817-2271, Sun Microsystems,
Inc., 4150 Network Circle, Santa Clara, CA 95054, June 2008.

[xiv] Rajesh Agarwalla, Madhu Chetuparambil, Craig Everhart, T.N. NiranjanaR
Haynes, Hilary Jones, Donna Mecozzi, Bart Parliman, Jean E. Pehkonen, Richard Reuf,
Benny Wilbanks, Vicky White HPSS/DFS: Integration of a Distributed File System

with a Mass Storage SystenRroceedings of the Sixth Goddard Conference on Mass
Storage Systems and Technologies, March 1998, pages 57-70.

[xv] Miroshnichenko, Alex (1996)Data Management API: the standard and
implementation experienceS8UUG 96 & Asia Pacific World Wide Web

2nd Joint Conference Proceedings, Sep. 18-20, 1996.
http://www.csu.edu.au/special/auugwww96/proceedings/alex/alex.html

[xvi] HTAR. http://www.mgleicher.us/index.html/htar/

[xvii] HPSS for GPFS at SCOfttp://www4.clearlake.ibm.com/hpss/about/SCO7.jsp

[xviiil DMF Release and Installation Guid&ilicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043.

[xix] VERITAS NetBackup Storage Migrator for UNIX vA\Bitepaper, 2002.
VERITAS Software Corporation, Corporate Headquarters 350 Ellis Street, Miount
View, CA 94043.

[xx] IBM Tivoli Storage Manager for Space Management for Unix User’s Guide, Version
5 Release 21BM Corporation, 11400 Burnet Road, Austin, TX 78758.

13

	GPFS HPSS Integration: Implementation Experiences
	Abstract
	Introduction
	Storage Technologies Used
	HPSS Overview
	GPFS Overview
	Data Management API (DMAPI)
	Information Lifecycle Management
	Filesystem snapshots

	Previous experience with XDSM
	GPFS HPSS integration - DMAPI driven approach
	Hybrid Approach Œ DMAPI and ILM
	HSM
	Backup

	Additional Concerns
	File System Deletions
	Metadata Residence
	File System Restoration
	Partial File Migration

	Conclusion

