
UC San Diego
Technical Reports

Title
Experience in Building a Comparative Performance Analysis Engine for a Commercial
System

Permalink
https://escholarship.org/uc/item/5gh377sq

Authors
Huang, Peng
Schechter, Craig
Chen, Vincent
et al.

Publication Date
2015-09-28

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5gh377sq
https://escholarship.org/uc/item/5gh377sq#author
https://escholarship.org
http://www.cdlib.org/

Experience in Building a Comparative Performance Analysis Engine

for a Commercial System

Peng Huang, Craig Schechter†, Vincent Chen, Steven Hill,

Dongcai Shen, Yuanyuan Zhou, and Lawrence Saul

University of California, San Diego, † Teradata Corporation

Abstract

Performance testing is a standard practice for evolving

systems to detect performance issues proactively. It sam-

ples various performance metrics that will be compared

with a stable baseline to judge whether the measurement

data is abnormal. This type of comparative analysis re-

quires domain expertise, which can take experienced per-

formance analysts days to conduct.

In an effort to build an automatic solution for a lead-

ing data warehousing company to improve the compar-

ative performance analysis efficiency, we implemented

machine learning approaches proposed by existing re-

search. But the initial result has a 86% false negative rate

on average, which means the majority of performance

defects would be missed.

To investigate causes for this unsatisfying result, we

take a step back to revisit the performance data itself and

find several important data related issues that are over-

looked by existing work. In this paper, we discuss in

detail these issues and share our hindsights to address

them. With the new learning scheme we devise, we are

able to reduce the false negative rate to as low as 16%

and achieve a balanced accuracy of 0.91, which enables

the analysis engine to be practically adopted.

1 Introduction

1.1 Motivation

Performance is a crucial quality aspect for computer sys-

tem especially server software. On the other hand, as

system evolves, code changes may significantly degrade

performance. For example, the Btrfs file system in Linux

kernel 2.6.35 introduced a 10 times performance regres-

sion that affected a large number of users [1]. To detect

performance regression proactively, it is a standard prac-

tice to adopt continuous performance testing [2, 3, 10].

Performance testing samples various metrics such as

elapsed time and CPU utilization. Practitioners then an-

System/Benchmark # of performance metrics

Teradata Data Warehouse 200

Phoronix Test Suite 165

Chromium 251

Mozilla 278

Table 1: Number of performance metrics sampled in

popular benchmark or performance testing for evolving

systems.

alyze the produced performance data for a target system

by comparing it with a baseline measurement of a sta-

ble system. We call this form of analysis comparative

performance analysis. This analysis task is seemingly

easy. For example, if a performance metric deviates from

the baseline more than a predefined threshold, e.g., 5%,

the performance data is considered to be abnormal, i.e.,

containing performance regression.

However, three challenges complicate the task. First,

deviation threshold should be chosen carefully. A restric-

tive threshold can raise false alerts while a relaxed thresh-

old may miss major performance defects. Also, a sin-

gle threshold is not enough for all metrics because some

performance metrics such as network I/O tend to fluctu-

ate more than others like CPU time. Second, compara-

tive analysis needs to factor in variations in performance

measurement due to external factors such as caching ef-

fect and UNIX environment size [21, 25]. Testing a sub-

ject with even the same setting can produce different re-

sults. Third, it is often the case that some performance

metrics show improvement while others show degrada-

tion. A comprehensive performance testing could sample

hundreds of metrics as shown in Table 1. Judging which

metric is more important and whether the conflicting de-

viation is an intentional trade-off or serious issue requires

expertise and domain knowledge.

As a result, comparative performance analysis is “an

art” [16, 17] that is usually conducted by experienced

human analysts. This is exactly the practice adopted in

1

Classifier False Negative (Rate)

Decision tree 577 (78.0%)

Logistic regression 739 (99.9%)

TAN∗ 605 (81.8%)

SVM 737 (99.6%)

Random forest 517 (69.9%)

Table 2: Initial false negatives of common classifiers on

more than two years’ performance data from a commer-

cial system. *: stands for tree-augmented Bayesian net-

work.

a U.S.-based leading data warehousing company, Tera-

data. Manual analysis leverages domain knowledge and

experience. But it is also time consuming and sometimes

ad hoc. For example, in Teradata, it can take experienced

analysts days to a week to analyze the performance result

of complex workloads, which may affect timely perfor-

mance testing and product release. Foo et al. also report

similar inefficiency in another enterprise system [14].

To stream the analysis process, recent work proposes

classification [11], association rule [14], and statistical

techniques [23]. The classification solution implements

a classifier that learns from past analysis decisions to

identify which class (i.e., {normal, abnormal}) a given

data instance belongs to. Cohen et al. [11] use the TAN

classifier (Tree-Augmented Bayesian Network). The as-

sociation rule solution mines from labeled data to learn

rules about the relationships among performance met-

rics. If a given data instance violates the rule, it is consid-

ered abnormal. The statistical techniques assume certain

data distributions and apply statistical tests such as the 3

sigma deviation region to detect anomaly.

While these solutions show great potential, when we

apply them to more than two years’ performance data

from a commercial warehouse test system in Teradata,

the initial result is discouraging. Table 2 shows the state-

of-the-art classifiers have especially high false negative

rate (78–99%). This is problematic because it means, if

the automatic solution were used, the majority of per-

formance regression defects would be missed. To inves-

tigate causes for the unsatisfying result, we take a step

back to revisit the performance data itself. In doing so,

we found five important data related issues or properties

that were overlooked by us and existing solutions:

• Invalid data: Resource contention, hardware mal-

functioning or measurement bug can cause perfor-

mance data to be completely invalid, e.g., negative

CPU utilization. Invalid data presents misleading

information that harms classification accuracy. In

our dataset, including the 9% invalid data in training

pollutes the training and, compared with Table 2, in-

curs 5% additional false negative for classifying the

valid data . This requires not only cleaning invalid

data from the training set, but also adding validation

steps before analyzing new performance data.

• Summary metrics vs. raw metrics: Perfor-

mance data contains high level summary metrics

like elapsed time and low level metrics such as ker-

nel path time. Performance analysts tend to fo-

cus on summary metrics and dive into raw metrics

mainly for supporting evidence. Thus it is natural to

learn from summary metrics. But our data indicates

learning from raw performance metrics can reduce

false negative rate to as low as 37%.

• Collected vs. partitioned data: In hindsight, we

also observe that performance data produced from

different test cases in general varies dramatically

in characteristics while performance data from test

cases of the same workload type tend to share sim-

ilar properties. Therefore, learning only one classi-

fier from the entire performance data can neutralize

the model. With domain knowledge, we partition

the data into different groups based on workload

types and train a classifier for each group. This sim-

ple grouping technique proves to be effective that

further reduces the false negative rate to 30%.

• Imbalanced data: For evolving systems, perfor-

mance defects are infrequent. Thus, the majority

of the performance data is normal. This highly im-

balanced distribution causes common classifiers to

favor normal data and perform poorly on abnormal

data, resulting in low false positive rate but very

high false negative rate.

• Ignorance of baseline: Comparative performance

analysis refers to a prior testing result as base-

line. Having a baseline provides an objective perfor-

mance expectation. However, to simplify the learn-

ing task, the baseline data is usually ignored by cur-

rent solutions. Including the baseline in the model

has potential to make analysis more accurate.

§4 details these data issues, hindsights, how they affect

the analysis accuracy and efficiency, and how we address

them. Due to space limitation, in the following sections

we focus on the classification method and representative

classifiers (decision tree, logistic regression and TAN).

Other classifiers in general comply with the discussion.

With the data issues resolved, evaluation shows our

final analysis engine can reduce false negative rate from

86% on average down to as low as 16% and achieve a

maximum 0.91 balanced accuracy, a 0.3 improvement.

The training time is as low as 3 minutes.

1.2 Threats to Validity

Even though we evaluate our discussion and solution

on a commercial warehouse test system that is repre-

sentative of complex database and storage systems, we

2

Workload Ver.
Elapsed Txn CPU Kernel Path

. . .
Network # Disk

Time(sec) Count Util.(%) CPU(ms) Msg/Sec IO/Txn

W1 3.0.0 1230 3000 90.8 12944.54 . . . 41.35 41689.12






















A

W1 3.0.0 1255 3000 91.6 10899.13 . . . 45.36 41048.55

W1 3.0.0 1253 2800 89.7 10266.95 . . . 44.40 41987.93

W1 3.0.0 1261 3000 93.5 10964.34 . . . 38.24 42100.05

W1 3.0.0 1247 3000 92.6 10865.91 . . . 46.00 42075.47

W1 3.0.1 1142 3000 93.7 13700.00 . . . 48.62 40180.98






BW1 3.0.1 1138 3000 91.8 11361.73 . . . 46.78 39388.56

W1 3.0.1 1132 3000 92.4 10697.64 . . . 49.63 39436.92

W2 3.0.0 520 400 95.6 40.80 . . . 163.68 912.76






CW2 3.0.0 515 400 95.8 40.59 . . . 161.50 961.65

W2 3.0.0 513 400 93.5 40.24 . . . 166.12 945.10

W2 3.0.1 607 400 92.7 53.24 . . . 183.03 915.53






DW2 3.0.1 609 400 92.4 61.19 . . . 171.45 927.76

W2 3.0.1 607 400 92.5 61.19 . . . 181.57 931.89

Table 3: A contrived example based on real data from Teradata of comparative performance analysis for target version

3.0.1 and baseline version 3.0.0. Data in each group is of the same measurement configuration. The strikeout row is

marked as invalid due to its inconsistent transaction count (2800), which is a domain specific rule.

are also aware that theses data issues and hindsights are

gained from this specific subject.

We would like to validate them on performance data

from other systems. But we are limited by the unavail-

ability of public comprehensive performance data. For

example, we attempted to obtain the performance data of

Chromium and use its issue tracking system to approxi-

mate the ground truth, but we found a lot of performance

issue reports refer to internal performance test data that

is unavailable to public.

Therefore, we do not claim our discussion applies uni-

formly to other performance data. However, we believe

these issues are important factors to consider when de-

signing similar analysis engines, and sharing our expe-

riences provides a pragmatic exploration of the design

spaces.

2 Problem Statement and Goals

In this section, we explain and formulate comparative

performance analysis problem in detail.

2.1 Input

A performance measurement of a target system samples

an n-dimension performance vector ~m ∈ ℜ
n, with each

dimension representing a performance metric such as

elapsed time and CPU utilization. Attached with ~m is a

metadata section i of k fields, which records the settings

about the measurement such as system version, workload

type and hardware. In Table 3, the first two columns in

each row belong to the metadata section, while the re-

maining columns form the performance vector ~m.

m′′
1

. . . m′′
5

. . . m′′
14 m′′

15 m′′
16

N: single performance number

m′
1 m′

2
. . . m′

26
. . . m′

52
. . . m′

77 m′
78

. . . m′
104

m1 m2 m3 m4 m5 . . . m223 m224 m225 m226 m227

Disk I/O CPU. . .

Disk I/O Memory CPU. . .

~m

f1(~m)

~m′

f2(~m′)

~m′′

f3(~m′′)

N

Figure 1: Performance metrics roll-up process: fold de-

tailed performance metrics (in the lower level, ~m) into

summary metrics (in the higher level, ~m′, ~m′′) and all the

way to a single performance number

For high-dimensional performance vector ~m (e.g., n ≥
200), to make manual analysis manageable, ~m may be

rolled up by some function f (~m) into a shorter vector ~m′

or even a single performance number N [27]. For ex-

ample, a MB per second high-level I/O metric is sum-

marized from several I/O break-downs and the total I/O

time metrics. We refer to ~m as the raw vector and ~m′ as

the summary vector. Figure 1 shows the roll-up process

for the Teradata test system. In this way, performance an-

alysts can interact with summary vectors most of the time

while diving into raw vectors for supporting evidence.

Since a single measurement run could suffer from

noises, the measurement is often repeated multiple times

to minimize experimental errors. This means the mea-

surement produces a matrix of performance data.

Comparative performance analysis takes as input a

pair of performance matrices, < M,N >, where M is the

target and N is the baseline. The row count of a perfor-

3

mance matrix is the number of measurement runs. Each

row in the performance matrix comprises of performance

vector ~m, raw or summary, and metadata section i. i’s

within the each matrix are the same, while i’s between

baseline and target matrices have all but one field differ-

ent, referred as comparison field.

A typical comparison field is software version. In this

case, the comparative analysis is performance regression

analysis. For example, in Table 3, using performance

matrix A as baseline and B as target, the analysis com-

pares the performance of version 3.0.1 for workload W1

with that of version 3.0.0. If, instead, C is used as target,

the comparison field is the workload, i.e., comparison

between workload W1 and W2 for version 3.0.0.

2.2 Output

The output of comparative performance analysis is a

boolean value indicating whether target performance ma-

trix M is abnormal or not. If the value is true, it indicates

M significantly differs from baseline matrix N.

2.3 Analysis

Comparative performance analysis acts as the “black

box” that takes two performance matrices as input and

outputs a boolean flag. In this sense, the analysis is a

two-class classification task. Formally, the task is a map-

ping function F : (〈M,N〉) 7→ B, where M is the target

performance matrix, N is the baseline performance ma-

trix, and B is the binary class variable whose value be-

longs to {0,1} or {normal,abnormal}.

For systems adopting continuous performance test-

ing, analysts already labeled past performance data.

In other words, the task becomes a supervised

learning problem [7]. Given T labeled exam-

ples {(〈m1,n1〉,b1),(〈m2,n2〉,b2), . . . ,(〈mT,nT〉,bT)},

the task is to learn the mapping function F .

2.4 Goal

Our primary goal is to design an automated compara-

tive performance analysis engine to conduct the analysis

accurately and efficiently. We set the following design

targets for the analysis engine in decreasing priorities:

1. Accurate: Achieve accuracy competitive with ex-

perienced analysts. Otherwise, performance defects

would be missed.

2. Efficient: Run efficiently within testing cycles.

Otherwise, manual analysis would be preferred.

3. Evolving: Adapt as system under measurement

changes. Otherwise, the solution would not be

adopted in continuous performance testing.

4. Objective: Minimize human intervention and arbi-

trary settings. Otherwise, it would be ad-hoc.

3 Dataset and Baseline Result

The dataset we use is from recent two years’ perfor-

mance testing data of a commercial system in a leading

data warehousing company, Teradata. The performance

testing in Teradata uses hundreds of test cases represent-

ing various workloads and is conducted regularly. Each

test samples a comprehensive set of performance met-

rics. Testing data will be manually analyzed by perfor-

mance analysts who judge whether the data is of passing

quality by comparing it with the baseline data.

More specifically, the dataset contains 22,964 perfor-

mance vectors, of which 20,920 are valid (flagged by

performance analysts). Each valid performance vector

is labeled with either normal or abnormal. Among the

valid vectors, there are 20,180 (96.5%) normal instances

and 740 (3.5%) abnormal instances, a 28:1 ratio.

Each performance vector has two forms: the raw data

samples 200 low-level performance metrics and the sum-

mary data contains 16 high-level performance metrics.

Performance analysts mainly look at the summary data

and referring to raw data for more evidence.

3.1 Classifiers

With labels available, the core part of a comparative per-

formance analysis engine is a supervised two-class clas-

sification task. In our application domain, the features

are the performance metrics and the output classes are bi-

nary {0,1} (or {normal,abnormal}) with positive class

denoting significant difference from baseline.

As supervised learning is a well explored area, we im-

plement classifiers used in state-of-the-art solution [11,

14] as well as other common classifiers such as decision

tree and logistic regression. We omit the descriptions for

these classifiers and refer readers to [7, 29] for detailed

background.

3.2 Measures

Various measures can be used to evaluate a classifier.

True positives (TP) are the positive instances classified as

positive; True negatives (TN) are the negative instances

classified as negative; False positives (FP) are the nega-

tive instances classified as positive; False negatives (FN)

are positive instances classified as negative.

We are mainly concerned with the accuracy measure

of a classifier, which is the fraction of instances that are

correctly classified, defined as

T P+TN

TP+FN +TN +FP
(1)

4

However, this overall accuracy measure can be mis-

leading when the data is imbalanced. For example, when

there are 99 negative instances and 1 positive instance,

a trivial classifier could simply mark every instance as

negative and achieve 0.99 overall accuracy. But if iden-

tifying the positive instance is important, the 0.99 over-

all accuracy hides the fact that positive class has 0 ac-

curacy. For evolving systems, performance defects are

infrequent. Therefore the majority of data belongs to the

negative class. And a false negative has high penalty be-

cause it means a performance defect would be unspotted

even if testing already reveals it.

To accommodate this issue, the main measure we

adopt is balanced accuracy [8, 11] that averages the ac-

curacy of both classes. It is formally defined as

1

2
· (

T P

TP+FN
+

T N

T N +FP
) (2)

The previous example has a balanced accuracy of 1
2
·

(0
0+1

+ 99
99+0

) = 0.5.

4 Data Issues and Hindsights

The core part of an automated comparative performance

analysis with learning abilities lies in the classifiers used.

Adopting state-of-the-art classifiers is merely an engi-

neering effort. However, the initial result as shown in

Table 2 is unsatisfying.

Since the classifiers are mature, we devote our atten-

tion to the data. As a result, we identify five important is-

sues or properties that are overlooked by us and existing

solutions. If not addressed, these issues can significantly

impair the analysis accuracy. In this section, we discuss

these issues, our hindsights and resolutions. §6 quantifies

the accuracy gains for addressing these issues.

4.1 Data Validity

Like any other measurement, performance measurement

inevitably contains errors, systematic or random. When

there is a serious measurement error, e.g., due to bugs in

sampling code or interference from other processes, the

data collected can be completely invalid. Examples of

invalid performance data include negative elapsed time

and inconsistent transaction count (domain specific).

These invalid data instances differ greatly with valid

ones. Including them in the training set undermines

the classification power. In our dataset, there are 2,044

(9%) invalid performance vectors. Originally, the nor-

mal/abnormal labels are only assigned to the metadata,

e.g., version A with workload B. In expanding the la-

bels to performance vectors matching the metadata, we

did not filter the 9% invalid performance vectors. Conse-

quently, the invalid data pollutes the training process and,

compared with Table 2, incurs as high as 5% additional

false negative rate for classifying the valid data.

This mistake is due to our carelessness and can be

simply fixed. However, it triggers us to also add an

explicit validation component in our analysis engine to

avoid wasting analysis time on invalid data and polluting

new learning process. When a new performance vector

is fed into the analysis engine, it will first be validated. If

it is invalid, further analysis will be skipped.

The validation component can be implemented with

some predefined rules. In our case, since performance

analysts in the past labeled performance data with valid/

invalid flag, we leverage the labels and implement the

validation component with a decision tree classifier.

4.2 Summary Metrics vs. Raw Metrics

At the beginning of developing the analysis engine, we

decided to focus on the 16-dimension summary data be-

cause human analysts mainly deal with summary data

while only drilling down to 200-dimension raw data for

more evidences. Since our automatic engine learns from

analysts’ labeling, it is natural to build models from sum-

mary data. The low dimensionality of summary data also

makes it easier to manually validate intermediate output

from classifiers such as a learned decision tree.

Due to the unsatisfying initial accuracy, we have to re-

visit this choice of using summary data. Retrying with

raw data gives significant accuracy gains (Table 6). We

speculate that this is because the summary data is highly

condensed from the 200-dimension raw data. Some use-

ful information might be lost during the roll-up process.

For example, an I/O metric in the summary data is af-

fected by more than 20 low-level metrics in the raw

data. Without these supporting metrics, the classification

model using the single I/O metric is likely incomplete.

However, using raw data decreases interpretability and

efficiency. For example, the produced decision tree

might be hard for analysts to interpret and validate.

Given accuracy is our priority (§2.4), we sacrifice inter-

pretability.

But the inefficiency incurred by the high-dimensional

raw data must be mitigated because making compara-

tive performance analysis efficient is our original moti-

vation of developing an automatic solution. With the 16-

dimension summary data, a decision tree model needs

about 8 seconds to be built, whereas the time increases

to more than 30 minutes on the 200-dimension raw data.

Therefore, we consider reducing dimensionality of

raw data to make training faster by using a common

method, Principal Component Analysis (PCA) [17]. To

this end, choosing the dimensionality faces trade-off be-

tween accuracy and efficiency. Low dimensionality has

low training time but may jeopardize accuracy. Higher

5

dimensionality might improve accuracy but has effi-

ciency penalty. We let practitioners specify constraints

such as dimensionality within 100 and the engine auto-

matically searches for the dimensionality that gives best

accuracy based on existing data.

4.3 Collected vs. Partitioned Data

Even with raw data, the accuracy still falls short of our

expectations. In hindsight, we observe that our dataset,

which is collected from more than 300 test cases cover-

ing a variety of workloads, has very diverse patterns. But

performance data from similar workloads (e.g., write-

intensive) often shares similar characteristics.

This leads us to conjecture that part of the low accu-

racy comes from learning only one model from the entire

data that the learned patterns are neutralized. Instead, it

might be better to partition the data into groups and learn

a per-group classifier. A new performance vector will be

predicted with the classifier specific for the group that the

vector belongs to. Ideally, each group should correspond

to a test case. But this partitioning worsens class imbal-

ance problem (§4.4): more than half of the test cases in

our data have fewer than three minority instances.

Instead, we use workload type such as OLTP (On-

line Transaction Processing) and DSS (Decision Support

System) to group the data. This information is embedded

in the test case name and documented internally. In this

way, the data is partitioned into 20 groups.

While this grouping by workload type strategy is sim-

ple and domain specific (requiring knowledge of work-

load type), to our surprise, it achieves considerable accu-

racy improvement for all classifiers. Another appealing

property of grouping strategy is that it is compatible with

other data processing techniques. For example, evalu-

ation shows grouping also improves the accuracy result

when combined with undersampling.

The disadvantage of partitioning data into groups and

learning separately is that it may weaken common pat-

terns among groups. For example, 100% CPU utilization

is problematic for most workloads. To cope with this

factor, a transformation matrix from the collected data

is constructed first to capture global pattern. Then each

group data is transformed using this matrix. The trans-

formed group data will be used to train a group specific

classifier. Since the PCA for dimensionality reduction

purpose produces projection matrix, we apply it on the

collected data to obtain the global transformation matrix.

4.4 Class Imbalance Issue

Our initial classification result shows low false positive

rates but very high false negative rates. This corresponds

to the skewed class distribution in data, known as class

imbalance issue [24]. Imbalanced class distribution im-

pairs standard classifiers because many classifiers are

premised on maximizing the overall accuracy and that

the classes are of equal importance [24], which causes

them to favor the majority instances.

Favoring majority is problematic when detecting the

minority is crucial. In performance analysis domain, ab-

normal performance data is the minority. And missing

the anomaly has high penalty: performance defects will

remain unnoticed. In our dataset, 96.5% of the data in-

stances are normal. This leads common classifiers to in-

cur high false negative rates.

In general, two approaches are proposed to address the

class imbalance issue: the algorithmic approach mod-

ifies learning algorithms to be sensitive to the differ-

ent misclassification costs for different classes [13, 20];

the resampling approach creates artificial minority in-

stances (oversampling) or removes instances of the ma-

jority class (undersampling) to balance the distribution.

We experimented with these two approaches and find

they can achieve sizeable accuracy improvement, pro-

vided the parameters such as cost ratio are set appro-

priately. This tuning effort is non-trivial. An improper

parameter can decrease accuracy significantly as evalua-

tion shows. We allow automatic tuning by further parti-

tioning the training set into two subsets (with 2:1 ratio) :

one subset is used to train the model and another is used

to try different parameters and calculate accuracies. The

optimal parameter will be chosen for using on new data.

4.5 Ignorance of Baseline

Comparative performance analysis uses results from

similar measurements as baseline. Having a baseline

provides a performance expectation for performance an-

alysts to judge a given result. Formally, the comparative

performance analysis task is to learn a mapping function

F from training data {(〈m1,n1〉,b1), . . . ,(〈mT,nT〉,bT)}
to outputs {ŷ1, . . . , ŷT}.

In our early development, similar to state-of-the-art

solutions [8, 11, 12, 14], we simplify the data in-

put to be single performance vector instead of vector

pairs. It makes adopting most classifiers easier be-

cause pair-wise input is uncommon to a normal classi-

fier. To be specific, the training data is flattened to be

{(m1,b1),(n1,normal), . . . ,(mT,bT),(nT,normal)}.

We review this simplification to see whether pairing

baseline with target can improve analysis accuracy. A

straightforward way to is to concatenate the baseline

and target data as one vector. Another way is to cal-

culate the deviation percentage of target from baseline

as a new vector. The concatenation approach preserves

the baseline data but doubles the data dimensionality,

which significantly increases training time. The subtrac-

6

Validation

classifier

Learn

Partition

Principal

Component Analysis

Projection

matrix

Classifier 1

Classifier k

Learn Learn

New performance vector pairs

Invalid

Valid

Discard

1
0

Valid/

Invalid
Normal/

Abnormal

0
0

0
0

0
0

0
0

0

1

1

0

Performance vector pairs

0

1

0

1

Group 1

Group k

Belonging

group
Label

Classify

Resample,

adjust cost

Resample,

adjust cost

Construct

Figure 3: Training and prediction workflow of the analysis engine.

B

Y ′

Nd· · ·N2N1

Y

Md· · ·M2M1

P(y = 1|~m) = σ(~ω ·~m) P(y′ = 1|~n) = σ(~ω ·~n)

P(b = 1|~m,~n) =

{

1 if y 6= y′

0 if y = y′

Figure 2: Similarity logistic classifier. Shaded nodes de-

note observed random variables. Edges denote condi-

tional dependence. B is the class variable with 1 denoting

baseline and target vectors are dissimilar.

tion method keeps dimensionality but only looks at de-

viation percentage , and as evaluation shows, has lower

accuracy. This efficiency-accuracy trade-off motivates us

to develop a different scheme for handling the baseline.

In particular, we develop a simple similarity classifier

to learn from examples a mapping function that deter-

mines whether a given pair of data is similar or not. Fig-

ure 2 shows the model for similarity learning with lo-

gistic regression. In a normal logistic regression classi-

fier, P(y = 1|~m) = σ(~ω ·~m) is used to model the condi-

tional probability of y belongs to class 1 given vector ~m.

Given examples of y and ~m, the learning process finds

the weight parameters ~ω that maximizes the likelihood

of training examples.

In a similarity classifier, there are two logistic regres-

sion sub-models, one for baseline and one for target,

which share the same weight parameters ~ω . The Y and

Y ′ are hidden variables whose values are not given. The

normal/abnormal labels in the examples are modeled us-

ing an additional random variable B that is conditional

dependent on Y and Y ′. In the simple model, B is 0 (i.e.,

normal) when Y and Y ′ have the same values (i.e., sim-

ilar). Since there are hidden variables Y and Y ′, we use

Expectation Maximization (EM) algorithm [7] to find the

best weight parameters ~ω .

5 Comparative Performance Analysis En-

gine

Having revisited the data issues, we briefly explain the

resulting workflow of our comparative performance anal-

ysis engine, which is depicted in Figure 3. It incorporates

our hindsights and the new learning scheme we devise.

In high level, like other machine learning solutions, the

engine has a training phase with labeled data and pro-

duces classifiers for prediction.

7

5.1 Training

Our early mistake shows invalid data hurts classification

accuracy for even valid data, so it should be excluded

from training set. It is also necessary to have a compo-

nent to validate new performance data, since analyzing

invalid performance data wastes practitioners’ time and

pollutes new training process. We implement this com-

ponent with a decision tree classifier that leverages the

validity labels from performance analysts. After the val-

idation classifier is built, the invalid data will be pruned

from further training tasks.

Instead of directly applying learning algorithms on

valid data, the data is first partitioned into different

groups as hindsight suggests the collected data might

neutralize anomaly patterns. Our criteria for grouping is

the workload type of the test case (embedded in its name)

that produces a performance vector. Automatic group-

ing without domain knowledge is left as future work.

To cope with potential loss of common patterns across

groups due to partitioning, we construct a single pro-

jection matrix using PCA on the collected data and then

project the data in each group. Afterwards, the projected

per-group data will go through resampling and/or cost

adjustment for addressing the class imbalance issue. Fi-

nally, we learn a specific classifier for each group.

5.2 Prediction

When a new pair of baseline and target performance

vector is collected, the validation classifier will predict

whether the new target data is valid or not. If it is valid,

depending on which group the performance vector be-

longs to, in our case its workload type, the data will

be transformed with the single projection matrix con-

structed from training. Then a group-specific classifier

will output the label it predicts for the input.

6 Evaluation

We use a standard 10-fold cross-validation for evaluating

the classifiers. The main measure used is balanced accu-

racy ([8, 11], §3.2) to account for the class imbalance

situation. Experiments are carried out in a machine with

a 2.8GHz quad-core processor and 4GB RAM.

6.1 Baseline Result

Table 4 shows the initial result of evaluating common

classifiers on our dataset without addressing the data is-

sues (except that invalid data is already removed) as dis-

cussed in §4. The main measure, balanced accuracy, is

low (around 60%) for all classifiers due to the very high

false negative rate. This is unacceptable to practitioners

Classifier
Balanced False False

accuracy positive negative

DTree 0.61 58 577

Logistic 0.50 2 739

TAN 0.59 172 605

Table 4: Initial balanced accuracy, false positive and

false negative for running common classifiers (decision

tree, logistic regression and tree-augmented Bayesian

network) on summary data.

since it means the majority of performance defects that

were manifested in performance testing would remain

unspotted because of the inaccurate analysis. Therefore,

we focus on improving balanced accuracy by reducing

false negatives.

6.2 Overall Improvement

Classifier
Balanced False False

accuracy positive negative

DTree 0.91 (+0.30) 280 (+222) 122 (-455)

Logistic 0.81 (+0.31) 808 (+806) 253 (-486)

TAN 0.87 (+0.28) 846 (+674) 160 (-445)

Sim-Logistic∗ 0.82 (n/a) 454 (n/a) 117 (n/a)

Table 5: Result after resolving all data issues and apply-

ing new learning scheme. Changes in brackets are with

respect to the baseline result in Table 4. *: the similarity

classifier trains on pairs of vectors and therefore is not

comparable with other results.

We first show in Table 5 the result by addressing all the

data issues and using the proposed new learning scheme.

Overall, we achieve a maximum of 0.31 balanced accu-

racy improvement and reduce the false negative rate to as

low as 16%, making the analysis engine practical to be

adopted in performance regression testing cycles.

The false positive rates increase by 1–4%, which is ac-

ceptable in our scenario. Because compared with manual

analysis on the 20,920 data instances, the automatic so-

lution only requires at most 1,426 (true positive + false

positive) data instances to be manually validated.

In general we find non-linear classifiers such as deci-

sion tree and random forest (not shown) achieve much

better balanced accuracy than linear classifier like logis-

tic regression. This suggests a linear model might not

fully capture the complex relationship between the labels

and performance metrics.

Also note that the result of similarity logistic classifier

we develop to factor in baseline vectors is unfortunately

not comparable with other classifiers in Table 5. This

is because, the original dataset consists of 20,180 per-

formance vectors (target and baseline). Pairing baseline

8

with target in training theoretically reduces the dataset to

10,090 pairs of vectors. But 1,100 target vectors in the

original dataset refer to old baseline data outside the two-

year dataset window. This results in a different, pair-wise

dataset of 9,540 vector pairs, among which 377 (4.0%)

pairs are abnormal. Also, this pair-wise input is difficult

to be supplied to common classifiers except by concate-

nation or subtraction. In §6.7, we compare the similarity

classifier with the concatenation or subtraction approach.

In the following sections, we evaluate the effectiveness

for each individual resolution and technique.

6.3 Using Raw Metrics

Classifier
Balanced False False

accuracy positive negative

DTree 0.81 (+0.2) 179 (+121) 282 (-295)

Logistic 0.54 (+0.04) 43 (+41) 674 (-65)

TAN 0.78 (+0.16) 1149 (+388) 277 (-256)

Table 6: Result of using the 200-metric raw data.

Changes in brackets are with respect to result in Table 4

obtained using summary data.

Although high-level performance data makes man-

ual analysis tractable and is easier to enforce Service

Level Objectives (SLO), we find training with the 200-

dimension raw data features gives clearly better accu-

racy. Table 6 shows the accuracy for using the raw data.

For example, decision tree classifier achieves 0.2 accu-

racy improvement with raw data.

6.4 Grouping

Classifier
Balanced False False

accuracy positive negative

DTree 0.85 (+0.04) 157 (-22) 223 (-59)

Logistic 0.77 (+0.23) 332 (+289) 322 (-352)

TAN 0.83 (+0.05) 390 (-759) 235 (-42)

Table 7: Result of using grouping technique on raw data.

Changes in brackets are with respect to result in Table 6

obtained without grouping.

One of our observations from revisiting the data is

that performance data from different test cases but simi-

lar workloads often exhibits similar characteristics. This

leads us to partition the dataset into 20 groups and learn

a per-group classifier. The grouping criteria we use is the

workload type embedded in the test case name.

Compared with Table 6, grouping boosts accuracy for

all three classifiers. The improvement is most signifi-

cant (0.23) for logistic regression classifier. We suspect

0.6

0.7

0.8

0 10 20 30

Positive to negative misclassification cost ratio (n:1)

B
a

la
n

c
e

d
 a

c
c
u

ra
c
y

classifier Decision tree Bayesian network Logistic regression

Figure 4: Balanced accuracy for different cost ratio. We

keep the negative class misclassification cost as 1 and in-

crease the cost for positive class. 1:1 is without cost adjust-

ment whose balanced accuracy is in Table 6.

this is because the logistic classifier is linear. By having

different logistic models for different groups, the over-

all model is non-linear. In comparison, decision tree’s

overall model is already non-linear even without group-

ing and therefore benefits less from grouping.

6.5 Cost Adjustment and Resampling

Since our performance dataset is highly skewed in the

class distribution, we explore cost adjustment and resam-

pling techniques proposed by existing literature to miti-

gate the issue. The effectiveness of these two techniques

depends on the tuning of the cost ratio parameter and re-

sampling percentage parameter, respectively.

Figure 4 shows the balanced accuracy for different

cost ratio adjustment. We can see that adjusting cost

help if the ratio is set properly. But the improvement

vanishes quickly for decision tree. It even hurts accuracy

for Bayesian network classifier. This means non-trivial

tuning efforts are needed. We use the method described

in §4.4 to automatically set the ratio.

Another technique proposed to address the class im-

balance issue is resampling training data to correct the

skewness in distribution. Undersampling removes data

instances of majority class. Oversampling creates artifi-

cial data instances for minority class.

Figure 5 shows the balanced accuracy for different un-

dersampling percentage setting. Leftmost is the original

majority to minority ratio (28:1) and rightmost is when

majority to minority ratio becomes 1:1. As more in-

stances of the majority class are removed, the balanced

9

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

B
a
y
e
s
ia

n
 n

e
tw

o
rk

L
o
g
is

tic
 re

g
re

s
s
io

n
D

e
c
is

io
n
 tre

e

0481216202428

Majority to minority ratio (n:1) after undersampling

B
a

la
n

c
e

d
 a

c
c
u

ra
c
y

grouping w/ grouping w/o grouping

Figure 5: Balanced accuracy for undersampling. Leftmost

is the original majority to minority ratio (28:1) without un-

dersampling. The “w/ grouping” series are for combining

undersampling with grouping.

accuracy becomes better for logistic classifier but shows

marginal benefits for the other classifiers.

Figure 5 also shows that when combining grouping

with undersampling, the balanced accuracy improves.

This indicates that grouping is compatible with resam-

pling technique.

6.6 Dimensionality Reduction

Data dimensionality affects both efficiency and accuracy

for a learning task. Higher dimensions in general im-

proves accuracy but may also hit the “curse of dimen-

sionality”that hurts accuracy when dimensionality be-

comes very high [9]. Efficiency-wise, higher dimension

slows down classification.

Figure 6 shows the accuracy for different data dimen-

sionality. We can see that for decision trees and Bayesian

network, the accuracy stays relatively stable as dimen-

sionality decreases from 200 to 25 and drops signifi-

cantly afterwards. The accuracy of logistic classifier de-

creases slightly as the dimensionality is reduced.

Figure 7 shows the training time impact of dimen-

sionality reduction. Overall, reducing dimension signif-

icantly helps training time. For example, it takes more

than 45 minutes to learn a decision tree classifier with

200 dimension data but takes less than 5 minutes for

25 dimensions. The training time of decision tree and

Bayesian network is almost linear of data dimension. Lo-

gistic regression classifier has jittering training time but

follows roughly similar trend. Considering Figure 6 and

that the dimensionality reduction process takes around 2

0.5

0.6

0.7

0.8

0 50 100 150 200

Performance data dimension

B
a

la
n

c
e

d
 a

c
c
u

ra
c
y

classifier Decision tree Bayesian network Logistic regression

Figure 6: Balanced accuracy as a function of data dimen-

sion

minutes at most, we can exploit dimensionality reduction

to a large extent for efficiency benefits without severely

hurting accuracy.

6.7 Accounting for Baseline

Classifier
Balanced False False

accuracy positive negative

Sim-Logistic 0.69 379 215

Conc-Logistic 0.61 99 290

Sub-Logistic 0.55 45 334

Conc-DTree 0.81 72 138

Sub-DTree 0.72 148 204

Con-TAN 0.79 411 142

Sub-TAN 0.69 563 209

Table 8: Result of including baseline in classification

with concatenation approach, subtraction approach and

similarity logistic learning.

To leverage the baseline vectors in comparative analy-

sis, we explore three approaches: concatenating baseline

and target vectors; subtracting baseline from target; and

the similarity learning classifier (§4.5).

Table 8 shows the result of these three approaches.

Concatenation has higher accuracy than subtraction for

all three classifiers. But it doubles the dimensionality.

Subtraction has lower accuracy but preserves data di-

mensionality. Our similarity logistic classifier achieves

higher accuracy than the concatenation and subtraction

logistic classifiers. It also has lower training time than

than concatenation logistic classifier.

As explained in §6.2, training on pairs of performance

10

0

1000

2000

0 50 100 150 200

Performance data dimension

T
im

e
 (

s
e

c
o

n
d

s
)

classifier Decision tree Bayesian network Logistic regression

Figure 7: Training time as a function of data dimension.

vectors reduces the dataset so we cannot quantify the ac-

curacy changes from not using baseline. However, look-

ing at the false negative rates, concatenation decision

tree, logistic and similarity logistic classifiers achieve

lower rates than Table 6, which signals potential bene-

fit of including baseline data.

6.8 Efficiency

Our original motivation for an automated analysis solu-

tion is to improve efficiency. Under the new learning

scheme (grouped data, undersampling and cost adjust-

ment), without reducing dimensions, the training time of

logistic regression, decision tree and Bayesian network

classifiers are on average 35, 5 and 3 minutes respec-

tively, which enables the solution to be adopted in con-

tinuous performance testing.

Notice that compared with training with the collected

data, even though partitioning the data and learning a

group of classifiers increase the number of subtasks,

the total training time actually decreases for decision

tree and Bayesian network. This means some subtasks

achieve much more than linear reduction in training time

due to the reduced number of training examples.

7 Related Work

Recent research seeks to automate the comparative per-

formance analysis through three complimentary direc-

tions: statistical technique like control charts [23], as-

sociation rule learning [14], and classification learn-

ing [11]. We explored using pure statistical techniques

in our early prototype but found the assumptions of these

techniques such as each performance metric follows a

Gaussian distribution do not hold in our large-volume

performance dataset. Also our 200-dimension perfor-

mance metrics shows weak association rules that result in

low accuracy if used as anomaly detection criteria. Our

work takes the classification learning approach similar

to Cohen et al. [11] and uses its proposed TAN (Tree-

Augmented Bayesian Networks) model.

Unlike [11], our work focuses on the pragmatic ex-

perience in building the model and incorporating other

state-of-the-art classifiers into an analysis engine for a

commercial system. In particular, we discuss five impor-

tant data issues that are not addressed in previous work.

These issues cause high false negative rates which pre-

vent the classifiers from being adopted. We show that

addressing these issues achieves significant false nega-

tive rate reduction and improves accuracy to acceptable

range.

Jain’s book on general performance analysis [17] pro-

vides a comprehensive guide on the statistical techniques

useful for analyzing system performance data. This

guide is popularly referred among performance analysts

in practice. Our work automatically induces classifica-

tion models by learning from the past wisdom of perfor-

mance analysts.

There are other works on performance signature con-

struction [8, 12], modeling [6, 25, 26, 28], issues detec-

tion and diagnosis [4, 5, 10, 15, 18, 19, 22]. Our problem

domain is comparative analysis of performance data as

an oracle for performance testing. Therefore it is orthog-

onal to the above directions.

8 Conclusion

Comparative performance analysis is commonly used to

analyze performance measurement data for evolving sys-

tems. The efficiency of the analysis affects whether per-

formance testing can be run continuously in a timely

fashion. The accuracy of the analysis affects the quality

control of system performance. Currently, this analysis

is mainly conducted by human analysts, which is time

consuming and can be ad-hoc.

In this paper, we share our experience in building an

automatic analysis engine for a commercial system from

a leading data warehouse company. We discuss and ad-

dress several practical issues overlooked in previous lit-

erature that cause an average of 86% false negative rate

in the initial evaluation of state-of-the-art classifiers. We

show that resolving these issues and leveraging the data

properties can help reduce false negative rate to as low

as 16% and achieve maximum 0.91 balanced accuracy, a

0.3 improvement. The training time of the engine can be

as low as 3 minutes, which meets our efficiency goal.

11

References

[1] Btrfs did regress hard in the Linux 2.6.35 kernel. http://www.

phoronix.com/scan.php?page=news_item&px=ODQ4Nw.

[2] Chromium performance testing framework, Telemetry. http://

www.chromium.org/developers/telemetry.

[3] Mozilla performance testing framework, Talos. https://wiki.

mozilla.org/Buildbot/Talos.

[4] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,

REYNOLDS, P., AND MUTHITACHAROEN, A. Performance de-

bugging for distributed systems of black boxes. In SOSP ’03

(New York, NY, USA, 2003), ACM, pp. 74–89.

[5] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: automat-

ing root-cause diagnosis of performance anomalies in production

software. In OSDI’12 (Berkeley, CA, USA, 2012), USENIX As-

sociation, pp. 307–320.

[6] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER,

R. Using magpie for request extraction and workload modelling.

In OSDI’04 (Berkeley, CA, USA, 2004), USENIX Association,

pp. 18–18.

[7] BISHOP, C. M. Pattern Recognition and Machine Learning (In-

formation Science and Statistics). Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2006.

[8] BODÍK, P., GOLDSZMIDT, M., AND FOX, A. Hilighter: au-

tomatically building robust signatures of performance behavior

for small- and large-scale systems. In SysML’08 (Berkeley, CA,

USA, 2008), USENIX Association, pp. 3–3.

[9] CARUANA, R., KARAMPATZIAKIS, N., AND YESSENALINA,

A. An empirical evaluation of supervised learning in high di-

mensions. In ICML ’08 (New York, NY, USA, 2008), ACM,

pp. 96–103.

[10] CHEN, T., ANANIEV, L. I., AND TIKHONOV, A. V. Keeping

kernel performance from regressions. In OLS’ 07 (2007), vol. 1,

pp. 93–102.

[11] COHEN, I., GOLDSZMIDT, M., KELLY, T., SYMONS, J., AND

CHASE, J. S. Correlating instrumentation data to system states: a

building block for automated diagnosis and control. In OSDI’04

(Berkeley, CA, USA, 2004), USENIX Association, pp. 16–16.

[12] COHEN, I., ZHANG, S., GOLDSZMIDT, M., SYMONS, J.,

KELLY, T., AND FOX, A. Capturing, indexing, clustering, and

retrieving system history. In SOSP ’05 (New York, NY, USA,

2005), ACM, pp. 105–118.

[13] DOMINGOS, P. Metacost: A general method for making classi-

fiers cost-sensitive. In KDD ’99 (New York, NY, USA, 1999),

ACM, pp. 155–164.

[14] FOO, K. C., JIANG, Z. M., ADAMS, B., HASSAN, A. E.,

ZOU, Y., AND FLORA, P. Mining performance regression test-

ing repositories for automated performance analysis. In QSIC ’10

(Washington, DC, USA, 2010), IEEE Computer Society, pp. 32–

41.

[15] GRECHANIK, M., FU, C., AND XIE, Q. Automatically finding

performance problems with feedback-directed learning software

testing. In ICSE ’12 (Piscataway, NJ, USA, 2012), IEEE Press,

pp. 156–166.

[16] GUNTHER, N. The Practical Performance Analyst. McGraw-

Hill series on computer communications. iUniverse, 2000.

[17] JAIN, R. The art of computer systems performance analysis:

techniques for experimental design, measurement, simulation,

and modeling. Wiley professional computing. Wiley, 1991.

[18] JIN, G., SONG, L., SHI, X., SCHERPELZ, J., AND LU, S. Un-

derstanding and detecting real-world performance bugs. In PLDI

’12 (New York, NY, USA, 2012), ACM, pp. 77–88.

[19] KILLIAN, C., NAGARAJ, K., PERVEZ, S., BRAUD, R., AN-

DERSON, J. W., AND JHALA, R. Finding latent performance

bugs in systems implementations. In FSE ’10 (New York, NY,

USA, 2010), ACM, pp. 17–26.

[20] MASNADI-SHIRAZI, H., AND VASCONCELOS, N. Risk

minimization, probability elicitation, and cost-sensitive SVMs.

In ICML ’10 (Haifa, Israel, June 2010), J. Fürnkranz and

T. Joachims, Eds., Omnipress, pp. 759–766.

[21] MYTKOWICZ, T., DIWAN, A., HAUSWIRTH, M., AND

SWEENEY, P. F. Producing wrong data without doing anything

obviously wrong! In ASPLOS XIV (New York, NY, USA, 2009),

ACM, pp. 265–276.

[22] NAGARAJ, K., KILLIAN, C., AND NEVILLE, J. Structured com-

parative analysis of systems logs to diagnose performance prob-

lems. In NSDI ’12 (Berkeley, CA, USA, 2012), USENIX Asso-

ciation, pp. 26–26.

[23] NGUYEN, T. H., ADAMS, B., JIANG, Z. M., HASSAN, A. E.,

NASSER, M., AND FLORA, P. Automated detection of perfor-

mance regressions using statistical process control techniques. In

ICPE ’12 (New York, NY, USA, 2012), ACM, pp. 299–310.

[24] PROVOST, F. Machine learning from imbalanced data sets 101

(extended abstract).

[25] SHEN, K. Request behavior variations. In ASPLOS XV (New

York, NY, USA, 2010), ACM, pp. 103–116.

[26] SHEN, K., ZHONG, M., AND LI, C. I/O system performance de-

bugging using model-driven anomaly characterization. In FAST

’05 (Berkeley, CA, USA, 2005), USENIX Association, pp. 23–

23.

[27] SMITH, J. E. Characterizing computer performance with a single

number. Commun. ACM 31, 10 (oct 1988), 1202–1206.

[28] STEWART, C., AND SHEN, K. Performance modeling and sys-

tem management for multi-component online services. In NSDI

’05 (Berkeley, CA, USA, 2005), USENIX Association, pp. 71–

84.

[29] WITTEN, I. H., FRANK, E., AND HALL, M. A. Data Mining:

Practical Machine Learning Tools and Techniques, 3rd ed. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2011.

12

http://www.phoronix.com/scan.php?page=news_item&px=ODQ4Nw
http://www.phoronix.com/scan.php?page=news_item&px=ODQ4Nw
http://www.chromium.org/developers/telemetry
http://www.chromium.org/developers/telemetry
https://wiki.mozilla.org/Buildbot/Talos
https://wiki.mozilla.org/Buildbot/Talos

	Introduction
	Motivation
	Threats to Validity

	Problem Statement and Goals
	Input
	Output
	Analysis
	Goal

	Dataset and Baseline Result
	Classifiers
	Measures

	Data Issues and Hindsights
	Data Validity
	Summary Metrics vs. Raw Metrics
	Collected vs. Partitioned Data
	Class Imbalance Issue
	Ignorance of Baseline

	Comparative Performance Analysis Engine
	Training
	Prediction

	Evaluation
	Baseline Result
	Overall Improvement
	Using Raw Metrics
	Grouping
	Cost Adjustment and Resampling
	Dimensionality Reduction
	Accounting for Baseline
	Efficiency

	Related Work
	Conclusion

