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Abstract: The use of cumulative incidence functions for characterizing the risk of one type of event in the
presence of others has become increasingly popular over the past two decades. The problems of modeling,
estimation and inference have been treated using parametric, nonparametric and semi-parametric methods.
Efforts to develop suitable extensions of machine learning methods, such as regression trees and ensemble
methods, have begun comparatively recently. In this paper, we propose a novel approach to estimating
cumulative incidence curves in a competing risks setting using regression trees and associated ensemble
estimators. The proposed methods use augmented estimators of the Brier score risk as the primary basis for
building and pruning trees, and lead to methods that are easily implemented using existing R packages. Data
from the Radiation Therapy Oncology Group (trial 9410) is used to illustrate these new methods.

Keywords: Brier score; CART; cause-specific hazard; competing risks; Fine and Gray model; random forests.

1 Introduction
A subject being followed over time may experience several types of events, possibly even fatal. For example,
in a Phase III trial of concomitant versus sequential chemotherapy and thoracic radiotherapy for patients
with inoperable non-small cell lung cancer (NSCLC) conducted by the Radiation Therapy Oncology Group
(RTOG), patients were followed up to 5 years, where both the occurrence of disease progression and death
are of particular interest. Such “competing risks” data are often encountered in cancer and other biomedical
follow-up studies, in addition to the potential complication of right-censoring on the event time(s) of interest.

Two quantities are often used when analyzing competing risks data: the cause-specific hazard function
(CSH) and the cumulative incidence function (CIF). For a given event, the former describes the instantaneous
risk of this event at time t, given that no events have yet occurred; the latter describes the probability of
occurrence, or absolute risk, of that event across time and can be derived directly from the subdistribution
hazard function [1]. Dignam et al. [2] provides a review of methods for handling competing risks data as of
2012, where parametric and semi-parametric approaches tomodeling both the CSHandCIF using hazard-type
regression modeling are considered. The literature on tree-based methods for estimating the CIF, including
ensemble approaches like random forests [RF; 3], remains comparatively under-developed. Indeed, there
is no software package currently available that specifically focuses on estimating the CIF using regression
tree methods, and ensemble-based methods for estimating the CIF are currently limited to the work of
[4, 5]. The methods described in [4] are implemented as part of the randomForestSRC package [6], where
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the unpruned regression trees that make up the bootstrap ensemble are built using logrank-type splitting
rules appropriate for competing risks [e.g., 7]. The method of [5] instead replaces all censored observations
with jackknife pseudovalues (i.e., an imputation) derived from the Aalen-Johansen estimator [8] for a specific
cause of failurem at particular follow-up time t; these authors go on to suggest that these imputed responses
can then be used in any software package capable of fitting a random forest. Further discussion on both
approaches, and contrasts to the methods to be proposed in this paper, can be found in Section 3.3.

In itsmost general form, the original CART algorithm, and by extension RF, relies on the specification of a
loss function that (i) informs all decision-making processes (e.g., what covariate to split on and when/where;
when to stop tree growth) and (ii) induces a particular estimator that minimizes the empirical loss. Motivated
by the recent work of [9, 10] for right-censored survival data, this paper proposes a direct extension of CART
and RF for estimating the CIF in the presence of right-censored competing risks. Specifically, starting with
an appropriate version of the Brier loss function [cf., 11] (i.e., squared error loss for a binary outcome), we
first develop a simple nonparametric estimate of the CIF for a single event by minimizing this loss function
when there is no loss to follow-up (i.e., with full data) and one has specified a fixed partition structure for
the covariate space. Estimation in this case may be viewed as a form of binomial regression, where the mean
function (i.e., CIF) is piecewise constant on the covariate space. For the case where there is loss to follow-up,
we then construct several observed data loss functions that target the same expected loss as the (unobserved)
full data Brier loss function. The simplest of these approaches employs inverse probability of censoring
weighted estimation (IPCW). Finally, we explain how the development of these new loss functions leads to
new splitting and decision rules that can be used by CART and RF algorithms for estimating the CIF, and
importantly, showhow these newmethods can be easily implemented using existing software in combination
with a certain form of imputation. The resulting methods may be viewed as nonparametric alternatives to the
semiparametric binomial regression approach proposed in [12] for estimating a CIF, differing in the approach
to estimation (i.e., through minimizing the Brier loss instead of employing estimating equations). Simulation
studies are used to investigate performance of these newmethods. In addition, we use these newmethods to
conduct some secondary analyses for the RTOG 9410 Phase III lung cancer trial mentioned at the beginning
of this section. The paper concludes with comments on future work.

2 Estimating a CIF by minimizing squared error loss

2.1 Relevant Data Structures
Let T(m) be the time to event for the event type m = 1,… ,K where K ≥ 2 is fixed. Let W be a vector of p
covariates, where W ∈  ⊂ ℝp. Let T = min(T(1),… ,T(K)) be the minimum of all latent event times; it is
assumed that T is observed and has a continuous distribution function. Then, in the absence of other loss
to follow-up, F = (T,W,M) is assumed to be the fully observed (or full) data for a subject, where M is the
observed event type that corresponds to T. The definition of T therefore implies that (T(M),M,W) is observed.
Moreover, it is known form ≠ M thatT(m) > T(M) even thoughT(m) itself is not observed.Define = (F1,… , Fn)
to be the full data observed on n independent subjects, where Fi = (Ti,Wi,Mi), i = 1,… , n are assumed to be
identically distributed (i.i.d.).

In the case where there is also potential random loss to follow-up, we suppose that C is a continuous
random variable that, given W, is statistically independent of (T,M). Then, for a given subject, we instead
observeO = {T̃,Δ,MΔ,W}, where T̃ = min(T,C) andΔ = I(T ≤ C) is the (any) event indicator. The observed
data on n i.i.d. subjects is = (O1,… ,On). Similarly to the case where K = 1, random censoring on T permits
estimation of the CIF from the data . We remark here that the notational set-up intentionally excludes C
from the set of possible event times (T(1),… ,T(K)); the reason for setting the problem up in this way will
become clear in Section 2.3.



Y. Cho et al.: Regression trees and ensembles for CIFs | 399

2.2 CIF estimation via the Brier loss: no loss to follow-up
Let𝜓0m(t; 𝑤) = P(T ≤ t,M = m|W = 𝑤) and defineΨ0 = {𝜓0m(t;𝑤), t ≥ 0;𝑤 ∈ ,m = 1,… ,K}. The set of
CIFs Ψ0 can be estimated from the data  using any suitable parametric or semiparametric method without
further assumptions on the data (e.g., independence of T(1),… ,T(K)). This section describes a simple method
for estimating𝜓0m(t; 𝑤) for a fixed causem and time point t > 0 using the Brier loss function. As preparation
for Section 3,𝜓0m(t; 𝑤) is assumed to be piecewise constant as a function ofW; however, the basic estimation
ideas extend to more complex modeling assumptions in a straightforward manner [e.g., 12].

Let 1,… ,L form a known partition of  . In this section and also in Section 2.3, we assume this
partition is given and, consistent with the assumption that 𝜓0m(t; 𝑤) is a piecewise constant function of𝑤,
that 𝜓0m(t;𝑤) = ∑L

l=1 𝛽0lm(t)I{𝑤 ∈ l}, where 𝛽0lm(t) = P(T ≤ t,M = m|W ∈ l) is the same function of t
for eachW ∈ l. Define Zm(t) = I(T ≤ t,M = m) and let

𝜓m(t;𝑤) =
L∑
l=1

𝛽lm(t)I{𝑤 ∈ l} (1)

be a model for 𝜓0m(t; 𝑤), 𝑤 ∈  . Then, fixing both t > 0 and m, the so-called Brier loss is given
by Lfullm,t (F, 𝜓m) = {Zm(t)− 𝜓m(t;𝑤)}2 = ∑L

l=1 I{𝑤 ∈ l}{Zm(t)− 𝛽lm(t)}2. Assuming that  is observed, the
corresponding empirical Brier loss is given by

Lemp
m,t ( , 𝜓m) =

1
n

n∑
i=1

Lfullm,t (Fi, 𝜓m) =
1
n

n∑
i=1

L∑
l=1

I{Wi ∈ l}{Zim(t)− 𝛽lm(t)}2. (2)

With t and m fixed and under the assumptions of Section 2.1, Lfullm,t (F, 𝜓m) is an unbiased estimator of the
riskR(t, 𝜓m) = E

[∑L
l=1 I{W ∈ l}{Zm(t)− 𝛽lm(t)}2

]
; hence, so is (2). Considered as a function of 𝛽 lm(t), l =

1,… , L, the risk R(t, 𝜓m) is minimized when 𝛽 lm(t) = 𝛽0lm(t) for each l; the loss (2) is minimized when
𝜓m(t;𝑤) = �̂�m(t;𝑤) = ∑L

l=1 I{𝑤 ∈ l}�̂� lm(t), where

�̂� lm(t) =

n∑
i=1

I{Wi ∈ l}Zim(t)
n∑
i=1

I{Wi ∈ l}
(3)

is a nonparametric estimate for 𝛽0lm(t). By contrast, [12] use a semiparametric binomial regression model to
estimate 𝜓0m(t,𝑤) from (Zim(t),Wi), i = 1,… n.

2.3 CIF estimation via the Brier loss: random loss to follow-up
In follow-up studies with competing risks outcomes, the full data  might not be observed due to loss to
follow-up. In this case, estimating𝜓0m(t; 𝑤) for a specifiedm under the loss function (2) is not possible. One
way to overcome this challenge is to use a modified loss function that (i) depends only on the observed data
 and (ii) has the same risk as the (unobserved) full data loss [c.f., 14, 13, 9]. Following [9, 10], we propose an
appropriate class of inverse probability of censoring weighted (IPCW), and subsequently augmented IPCW
(AIPCW), loss functions that share the same riskR(t, 𝜓m) as the (unobservable) empirical loss (2). This allows
us to derive a new observed data estimator of the CIF with both t and m fixed. We then extend this class of
losses to the setting of a composite loss function, where the goal is to simultaneously estimate 𝜓0m(t j; 𝑤) at
time t j, j = 1,… , J. As in the previous section, we assume that 𝜓0m(t;𝑤) = ∑L

l=1𝛽0lm(t)I{𝑤 ∈ l}, where the
partition {1,… ,L} of  is known.
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2.3.1 CIF estimation via the IPCW and AIPCW Brier losses

Fix t > 0, define G0(s|W) = P(C ≥ s|W) for any s ≥ 0 and suppose that G0(Ti|Wi) ≥ 𝜖 almost surely for some
𝜖 > 0 (i = 1,… , n). Define Z̃im(t) = I(T̃i ≤ t,Mi = m), i = 1,… , n; easy calculations then show

E
[

Δi
G0(T̃i|Wi)

(Z̃im(t)− 𝜓m(t;Wi))2
]
= E

[
(Zim(t)− 𝜓m(t;Wi))2

]
=R(t, 𝜓m)

for a fixed 𝜓m(t; 𝑤). This risk equivalence motivates the construction of an IPCW-type loss function. In
particular, define for any suitable survivor function G(⋅|⋅)

Lipc𝑤m,t (, 𝜓m;G) =
1
n

n∑
i=1

L∑
l=1

I{Wi ∈ l}
[
Δi{Z̃im(t)− 𝛽lm(t)}2

G(T̃i|Wi)

]
; (4)

then, it is easy to see that (4) is minimized by

�̂�
ipc𝑤
lm (t;G) =

n∑
i=1

I{Wi ∈ l} Δi Z̃im(t)
G(T̃i|Wi)

n∑
i=1

I{Wi ∈ l} Δi
G(T̃i|Wi)

, l = 1,… , L, (5)

implying that �̂�m(t;𝑤) = ∑L
l=1I{𝑤 ∈ l}�̂� ipc𝑤lm (t;G) is the corresponding estimator for the CIF at time t for

causem. Moreover, Lipc𝑤m,t (, 𝜓m;G0) is an unbiased estimate ofR(t, 𝜓m). Observe that (4) and (5) respectively
reduce to (2) and (3) if censoring is absent.

When K = 1, the loss (4) is just a special case of that considered in Molinaro et al. [13]; see also Lostritto
et al. [14]. In practice, an estimator Ĝ(⋅|⋅) for G0(⋅|⋅) is used in (4); popular approaches here include product-
limit estimators derived from the Kaplan–Meier and Cox regression estimation procedures. Of course, other
methods could be used, such as regression trees or ensembles for right-censored survival data [e.g., 9, 10, 15].

As in [9], one can use semiparametric estimation theory for missing data to construct an improved
estimator of the full data riskR(t, 𝜓m) by augmenting the IPCW loss function (4) with additional information
on censored subjects. In particular, consider the loss function Lipc𝑤m,t (, 𝜓m;G). Recall that Ψ0 defines the
set of CIFs of interest and let Ψ denote a corresponding model that may or may not contain Ψ0. Define
Vlm(u; t,𝑤,Ψ) = EΨ

[
(Zm(t)− 𝛽lm(t))2|T ≥ u,W = 𝑤

]
for any t, u ≥ 0 and 𝑤 ∈ ; it is shown later how this

expression specifically depends on Ψ. Then, fixing 𝛽1m(t),… , 𝛽Lm(t), the augmented estimator of R(t, 𝜓m)
having the smallest variance that can be constructed from the unbiased estimator Lipc𝑤m,t (, 𝜓m;G0) is given
by Ldrm,t(, 𝜓m;G0,Ψ0) = Lipc𝑤m,t (, 𝜓m;G0)+ Laugm,t (, 𝜓m;G0,Ψ0) where

Laugm,t (, 𝜓m;G,Ψ) =
1
n

L∑
l=1

n∑
i=1

I{Wi ∈ l}
T̃i

∫
0

Vlm(u; t,Wi,Ψ)
G(u|Wi)

dMG(u|Wi) (6)

is defined for suitable choices ofΨ,G(⋅|⋅) andMG(t|𝑤) = I(T̃ ≤ t,Δ = 0)− ∫
t
0 I(T̃ ≥ u)dΛG(u|𝑤), whereΛG(⋅|⋅)

denotes the cumulative hazard function corresponding to the model G(⋅|⋅) [cf. 16, Section 9.3 and 10.4]. The
“doubly robust” loss Ldrm,t(, 𝜓m;G,Ψ) reduces to a special case of the class of loss functions proposed in
Steingrimsson et al. [9] when K = 1.

The loss function Ldrm,t(, 𝜓m;G,Ψ) can be simplified further: because Zm(t) is binary,

Vlm(u; t,𝑤,Ψ) = ym(u; t,𝑤,Ψ)− 2ym(u; t,𝑤,Ψ)𝛽lm(t)+ 𝛽2lm(t) (7)

for any suitableΨ (e.g.,Ψ0), where ym(u; t,𝑤,Ψ) = EΨ{Zm(t)|T ≥ u,W = 𝑤} reduces to

ym(u; t,𝑤,Ψ) =
⎧⎪⎨⎪⎩
PΨ(u ≤ T ≤ t,M = m|W = 𝑤)

PΨ(T ≥ u|W = 𝑤) if u ≤ t

0 otherwise
. (8)
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The notation EΨ and PΨ means that these quantities are calculated under the CIF model specification Ψ.
Hence, under amodelΨ, the calculation of Ldrm,t(, 𝜓m;G,Ψ) requires estimating both the CIF for causem and
the all-cause survival probability PΨ(T ≥ u|W = 𝑤).

Considering Ldrm,t(, 𝜓m;G,Ψ) as a function of the L scalar parameters 𝛽1m(t),… , 𝛽Lm(t) only and
differentiating with respect to each one, it can be shown that

�̃�drlm(t;G,Ψ) =

n∑
i=1

I{Wi ∈ l}
[
T̃S11,im(t)+ T̃S12,im(t)

]
n∑
i=1

I{Wi ∈ l}
[
T̃S01,im + T̃S02,im

] , l = 1,… , L (9)

minimize Ldrm,t(, 𝜓m;G,Ψ), where

T̃S01,im = Δi
G(T̃i|Wi)

T̃S02,im =
T̃i

∫
0

dMG(u|Wi)
G(u|Wi)

T̃S11,im(t) =
Z̃im(t)Δi
G(T̃i|Wi)

T̃S12,im(t) =
T̃i

∫
0

ym(u; t,Wi,Ψ)
G(u|Wi)

dMG(u|Wi). (10)

The validity of this result relies on the assumption that G(T̃i|Wi) ≥ 𝜖 > 0 for some 𝜖 and each i = 1,… , n.
Under this same assumption, Lemma 1 of [17] implies

T̃S01,im + T̃S02,im = Δi
G(T̃i|Wi)

+ 1−Δi
G(T̃i|Wi)

−
T̃i

∫
0

dΛG(u|Wi)
G(u|Wi)

= 1;

letting Nl =
∑n

i=1I{Wi ∈ l}, l = 1,… , L, it follows that (9) can be rewritten as

�̂�drlm(t;G,Ψ) =
1
Nl

n∑
i=1

I{Wi ∈ l}
[
T̃S11,im(t)+ T̃S12,im(t)

]
, l = 1,… , L. (11)

Similarly to Section 2.3.1, �̂�m(t;𝑤) = ∑L
l=1I{𝑤 ∈ l}�̂�drlm(t;G,Ψ) now generates the corresponding CIF esti-

mate at time t for causem and, in addition, Ldrm,t(, 𝜓m;G,Ψ) and (11) respectively reduce to (2) and (3) when
censoring is absent.

The specification G(t|𝑤) = G̃(t|𝑤) = 1 for all t ≥ 0 and 𝑤 ∈  generates an interesting special case of
Ldrm,t(, 𝜓m;G,Ψ) despite G̃(⋅|⋅) being incorrectly modeled in the presence of censoring. In particular, for
suitableΨ, (i) Ldrm,t(, 𝜓m; G̃,Ψ) =

∑L
l=1L

b j
ml,t(, 𝜓m;Ψ) where

Lb jml,t(, 𝜓m;Ψ) =
1
n

n∑
i=1

I{Wi ∈ l}
[
Δi{Z̃im(t)− 𝛽lm(t)}2 + (1−Δi)Vlm(T̃i; t,Wi,Ψ)

]
;

and, (ii) for Ψ = Ψ0, Ldrm,t(, 𝜓m; G̃,Ψ0) is an unbiased estimator of the riskR(t, 𝜓m). Noting that (7) implies
Vlm(T̃i; t,Wi,Ψ) can be rewritten in terms of ym(T̃i; t,𝑤,Ψ) for every i, the minimizer of Lb jml,t(, 𝜓m;Ψ) is given
by

�̃�
b j
lm(t;Ψ) =

1
Nl

n∑
i=1

I{Wi ∈ l}[ΔiZ̃im(t)+ (1−Δi)ym(T̃i; t,Wi,Ψ)].

That is, under the loss Lb jml,t(, 𝜓m;Ψ), the estimator for 𝛽 lm(t) is the Buckley–James (BJ) estimator of themean
response within the partitionl [18], an estimator that can also be derived directly from (11) by settingG = G̃.
For this reason, we refer to Ldrm,t(, 𝜓m; G̃,Ψ) as the Buckley–James loss function. For a fixed value of m and
l, the function 𝛽 lm(t) (i.e., the cumulative incidence for type m within nodel) is monotone increasing in t.



402 | Y. Cho et al.: Regression trees and ensembles for CIFs

In contrast to the doubly robust loss, the Buckley–James loss function therefore preserves monotonicity; this
property is useful when considering multiple time points, as considered in the next section.

2.3.2 Composite AIPCW loss functions: the case of multiple time points

Under the piecewise constant model (1), the quantity being estimated within each partition depends on t;
however, the set of partitions remains the same across time. As a result, for a givenm, it is reasonable to antic-
ipate reduced variability when estimating𝜓0m(t; 𝑤) by considering losses constructed from Ldrm,t(, 𝜓m;G,Ψ)
that incorporate information across several time points.

Recall that Ldrm,t(, 𝜓m;G,Ψ) = Lipc𝑤m,t (, 𝜓m;G)+ Laugm,t (, 𝜓m;G,Ψ) where Lipc𝑤m,t (, 𝜓m;G) is given by (4)
and Laugm,t (, 𝜓m;G,Ψ) is given by (6). For a given set of time points 0 < t1 < t2 < · · · < tJ < ∞, a simple
composite loss function for a given event typem can be formed by calculating

Lmult,dr
m,t (, 𝜓m;G,Ψ) =

J∑
j=1

𝛼 jLdrm,t j (, 𝜓m;G,Ψ), (12)

where 𝛼 j > 0, j = 1,… , J are pre-specified weights such that∑J
j=1𝛼 j < ∞. We obtain

�̃�
mult,dr
lm (t j;G,Ψ) =

1
Nl

n∑
i=1

I{Wi ∈ l}
[
T̃S11,im(t j)+ T̃S12,im(t j)

]
, (13)

as the minimizers of (12) with respect to 𝛽 lm(t j) for j = 1,… , J; l = 1,… , L. In the absence of censoring, the
indicated composite loss function and partition-specific estimators reduce to that which would be computed
by extending the loss function introduced in Section 2.2 in the manner described above.

One question that might be asked at this stage is how one should choose 0 < t1 < t2 < · · · < tJ < ∞.
In many biomedical applications, there will be one or more specific time points of interest; in this case, the
choice of t1,… , tJ is reasonably clear. In the absence of interest in specific time points, there is less formal
guidance available. In part, this is because the loss function (12) is well-defined, and can be used, in its own
right for any given sequence of time points. For example, one could simply choose 0 < t1 < t2 < · · · < tJ < ∞
according to specifiedquantiles of themarginal (i.e., all-cause) distribution ofT and specifyweights to equally
or unequally weight loss contributions across time. Using equal weights, for example, limited simulation
experiments (not shown) have shown that using J = 3, 4, or 5 time points spread across quantiles that are not
too extreme generally results in very similar estimators. A more objective perspective for choosing t1,… , tJ
would instead be to regard the weighted composite loss as an approximation to the integrated Brier score on
[0, tJ] [e.g., 19]. For example, taking 0 < t1 < t2 < · · · < tJ < ∞ to be equally spaced with grid spacing h > 0,
one can set 𝛼 j = h to obtain a trapezoidal rule approximation to the integrated Brier score on [0, tJ]; more
generally, one can take 0 < t1 < t2 < · · · < tJ < ∞ to be unequally spaced and obtain a different trapezoidal
rule approximation by selecting the 𝛼 js accordingly. Under certain smoothness assumptions on the Brier
score, it is then possible to select J to approximate the integrated Brier score on an finite interval to within a
certain degree of error [e.g., 20]. However, in view of comments made earlier on the sensitivity of the results
to the choice of J, the use of highly accurate integral approximations seems unnecessary.

Thus far, we have assumed the existence of a fixed partition {1,… ,L} of  . In this situation, and
regardless of how 0 < t1 < t2 < · · · < tJ < ∞ are chosen, the use of a composite loss like (13) actually yields
no extra efficiency gain for estimating the CIF for cause m within each partition. This can be seen from (13),
which is exactly equal to (11) computed for t = t j; that is, the partition-specific estimators for t1,… , tJ do
not depend on 𝛼1,… , 𝛼J . We stress here that this is a direct consequence of the absence of further modeling
assumptions that restrict the relationship between 𝛽 lm(t) (i.e., the CIF whenW ∈ l) and 𝛽 l′m(t) (i.e., the CIF
whenW ∈ l′ ) when l ≠ l′.
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However, in the case of regression trees, and by extension ensembles of trees (e.g., RF), the partition
{1,… ,NL} for every tree is estimated adaptively from the data. In this situation, the use of a weighted
composite loss (13) directly influences both the selection of L and the chosen partition boundaries, hence
results in some implicit dependence between 𝛽 lm(t) and 𝛽 l′m(t) for l ≠ l′. Consequently, performance gains
may still be expected when estimating 𝜓m0(t j; 𝑤), j = 1,… , J using a composite loss function whether one
uses trees or ensembles of trees. We consider such methods further in the next section.

3 CIF regression trees and ensembles
The developments in Section 2 provide an important building block for developing new splitting and eval-
uation procedures when using CART to build regression trees for estimating the CIF, with or without loss to
follow-up. Because RF relies on bootstrapped ensembles of CART trees, the loss-based estimation procedures
have similarly important implications for RF. In the coming sections, we propose several variants on CART
and RF for competing risks data that use the loss functions introduced in previous section.

3.1 Estimating a CIF via CART or RF: no loss to follow-up
Given a specified loss function, CART [21] fits a regression tree as follows:
(1) Using recursivebinarypartitioning, growamaximal treeby selectinga (covariate, cutpoint) combination

at every stage that minimizes the chosen loss function;
(2) Using cross-validation, select the best tree from the sequence of candidate trees generated by Step 1 via

cost complexity pruning (i.e., using penalized loss).

In its most commonly used form for regression problems with a continuous outcome, CART estimates the
conditional mean response as a piecewise constant function on , making all decisions on the basis of
minimizing squared error loss. The resulting tree-structured regression function estimates the predicted
response within each terminal node (i.e., partition of ) using the sample mean of the observations falling
into that node. The set of terminal nodes (i.e., the partition structure) is determined adaptively from the data
as a result of steps 1 and 2 above.

The random forests algorithm [RF; 3] is an ensemble-based extension of CART:
(1) Bootstrap the data; that is, draw B random samples with replacement from  .
(2) For eachbootstrappeddataset, run Step 1 of the CARTalgorithmabove, possibly randomly selecting a set

of p∗ ≤ p candidate covariates when determining a (covariate, cutpoint) combination at each possible
splitting stage.

(3) Compute the terminal node estimators for each subject for each of theB trees and average these to obtain
an ensemble predictor.

The critical step that underpins both CART and RF is Step 1 of the CART algorithm, where connections to the
developments of Section 2 should now be evident. In particular, in the absence of censoring and under the
piecewise constant model (1) for 𝜓0m(t; 𝑤), Section 2.2 shows that a nonparametric estimate for 𝜓0m(t; 𝑤)
at t can be obtained by minimizing the loss (2). This basic estimation problem is equivalent to estimating the
conditional mean response using the modified dataset red,t =

{
(Zim(t),W′

i )
′, i = 1,… n

}
by minimizing the

squared error loss (2). Therefore, any implementation of CART or RF for squared error loss applied tored,t will
produce a corresponding CART- or RF-based estimate of 𝜓0m(t; 𝑤). For example, CART estimates L and the
associated set of terminal nodes {1,… ,L} from the data red,t, and within each terminal node, estimates
𝜓0m(t; 𝑤) by (3).

For the case of multiple time points, a composite loss function analogous to (indeed, a special case of)
(12) is given by
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Lemp
m,t ( , 𝜓m) =

L∑
l=1

n∑
i=1

I{Wi ∈ l}
( J∑

j=1

𝛼 j
n {Zim(t j)− 𝛽lm(t j)}2

)

=
L∑
l=1

n∑
i=1

I{Wi ∈ l}{Zim − 𝜷 lm}⊤D−1{Zim − 𝜷 lm} (14)

where Zim = (Zim(t1),… , Zim(tJ))⊤, 𝜷 lm = (𝛽lm(t1),… , 𝛽lm(tJ))⊤, and D is a diagonal matrix with Dj j = n𝛼−1
j ,

j = 1,… , J. One can therefore estimate the desired CIF either by a tree or random forest directly from the
data

{(
Zim,W′

i
)′
, i = 1,… n

}
using the MultivariateRandomForest package [22], which builds regression

trees using a Mahalanobis loss function of the form (14); see also [23]. The randomForestSRC package also
accommodates multivariate response data, but currently uses loss functions in the case of squared-error loss
that involve repeatedly (i.e., dynamically) standardizing the outcomes when determining where and when to
split. Since this process of repeated standardization has implications for certain equivalences on which we
later rely, we use the MultivariateRandomForest package to implement ourmethods in the next subsection.

3.2 Estimating a CIF via CART or RF: loss to follow-up
The CART and RF algorithms as outlined in the previous subsection extend easily to more general loss
functions, where decisions and predictions are instead derived from minimizing the chosen loss function. In
particular, the loss Ldrm,t(, 𝜓m;G,Ψ) or its composite extension Lmult,dr

m,t (, 𝜓m;G,Ψ) could be used in place
of (2) in either algorithm in the presence of censoring. A detailed description of such an algorithm in the
case of CART (i.e., for building regression trees) can be found in [24], along with extensive simulation studies
evaluating the performance of several different loss functions derived from (12). There, it was found that
the use of the doubly robust and Buckley–James forms of the loss function, with the augmentation term
parameterΨ estimated using themethods of [4], provided the second best performance overall, being inferior
only to the “oracle” setting where a correctly specified family of parametric models is chosen forΨ.

Although the algorithms extend quite easily to more general loss functions, existing software may not be
able to easily accommodate these extensions. As will be shown below, however, algorithms that use the loss
function Ldrm,t(, 𝜓m;G,Ψ) or Lmult,dr

m,t (, 𝜓m;G,Ψ) can be implemented easily with existing software using a
certain form of response imputation; see [10] for related results in the case where K = 1.

Recall that Ldrm,t(, 𝜓m;G,Ψ) = Lipc𝑤m,t (, 𝜓m;G)+ Laugm,t (, 𝜓m;G,Ψ) where Lipc𝑤m,t (, 𝜓m;G) is given by (4)
and Laugm,t (, 𝜓m;G,Ψ) is given by (6). Using the results in (7) and (8) and notation defined in (10), calculations
similar to [10] show that

Ldrm,t(, 𝜓m;G,Ψ) =
1
n

n∑
i=1

L∑
l=1

I(Wi ∈ l)
[
𝛽2ml(t)− 2Hdr

m (t;Oi,G,Ψ)𝛽ml(t)+ Hdr
m (t;Oi,G,Ψ)

]

where Hdr
m (t;Oi,G,Ψ) = T̃S11,im(t)+ T̃S12,im(t). Define the modified “imputed” loss function

Ldr,∗m,t (, 𝜓m;G,Ψ) =
n∑
i=1

L∑
l=1

I(Wi ∈ l)(Hdr
m (t;Oi,G,Ψ)− 𝛽ml(t))2

=
n∑
i=1

L∑
l=1

I(Wi ∈ l)
{
𝛽2ml(t)− 2Hdr

m (t;Oi,G,Ψ)𝛽ml(t)+
[
Hdr
m (t;Oi,G,Ψ)

]2} .

Importantly, observe Ldrm,t(, 𝜓m;G,Ψ)− Ldr,∗m,t (, 𝜓m;G,Ψ) does not depend on 𝛽ml(t), l = 1,… , L when
Hdr
m (t;Oi,G,Ψ), i = 1,… , n does not depend on these terms. Hence, a CART tree or RF built using

Ldrm,t(, 𝜓m;G,Ψ) will be identical to that built using Ldr,∗m,t (, 𝜓m;G,Ψ) [see also 10, Thm. 4.1].
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A similar correspondence can be established between the composite loss Lmult,dr
m,t (, 𝜓m;G,Ψ) in (12) and

the Mahalanobis-type loss function

Lmult,dr,∗
m,t (, 𝜓m;G,Ψ) =

L∑
l=1

n∑
i=1

I(Wi ∈ l)
(
Hdr
im − 𝜷 lm

)⊤ D−1 (Hdr
im − 𝜷 lm

)
, (15)

whereHdr
im = (Hdr

m (t1;Oi,G,Ψ),… ,Hdr
m (tJ;Oi,G,Ψ))⊤, j = 1,… , J; compare with (14). Hence, a CART tree or RF

built using (12) is identical to that built using (15).
Critically, these results imply that a CART or RF algorithm that uses the loss function Lmult,dr

m,t (, 𝜓m;G,Ψ)
can be implemented by applying a version of that algorithm designed for squared error loss to the modified
dataset

(
Hdr
im,Wi

)
,= 1… , n, whereHdr

im is an imputed univariate (J = 1) or multivariate (J > 1) response. This
includes the case of Buckley–James loss, which results as a special case upon setting G(t|𝑤) = 1 for all t > 0
and 𝑤 ∈  . Specifically, for a fixed set of times 0 < t1 < · · · < tJ < ∞ and event type m, the relevant RF
estimation algorithm is as follows:
AlgorithmM0:
1. Compute Ĝ and Ψ̂ by appropriate modeling;
2. Compute Hdr

m (t j;Oi, Ĝ, Ψ̂) for i = 1,… , n, j = 1,… , J;
3. Run MultivariateRandomForest on the imputed dataset

(
Ĥdr
im,Wi

)
,= 1… , n, where

Ĥdr
im = (Hdr

m (t1;Oi, Ĝ, Ψ̂),… ,Hdr
m (tJ;Oi, Ĝ, Ψ̂))⊤, j = 1,… , J.

The above procedure extends in an obvious way to other tree- and forest-based algorithms that make all
decisions on the basis of minimizing squared error loss.

3.2.1 A modified imputation approach for doubly robust losses

Recall that Hdr
im = (Hdr

m (t1;Oi,G,Ψ),… ,Hdr
m (tJ;Oi,G,Ψ))⊤ where Hdr

m (t;Oi,G,Ψ) = T̃S11,im(t)+ T̃S12,im(t) and
T̃S1r,im(t), r = 1, 2 are defined as (10). Observing that

T̃S12,im(t) = (1−Δi)
ym(T̃i; t,Wi,Ψ)

G(T̃i|Wi)
−

T̃i

∫
0

ym(u; t,Wi,Ψ)
G2(u|Wi)

Yi(u)dḠ(u|Wi),

it can be seen that this term has the potential to be estimated with undesirably high variability due to the
presence of G2(⋅|Wi) in the denominator of the second term.

In the context of devising testingprocedures for theCox regressionmodel, Lin,Wei andYing [25] proposed
approximating certainmartingale integrals using a simple but effective simulation technique. The basic idea,
applied here, involves replacing MG(u|Wi) by M∗

G(u) = 𝜉iI(T̃i ≤ u,Δi = 0), where 𝜉 ∼ N(0, 1). In particular,
suppose that T̃S12,im(t) in the term Hdr

m (t;Oi,G,Ψ) is replaced by

T̃S12,im(t, 𝜉i) =
T̃i

∫
0

ym(u; t,Wi,Ψ)
G(u|Wi)

dM∗
G(u) = 𝜉i(1−Δi)

ym(T̃i; t,Wi,Ψ)
G(T̃i|Wi)

.

Defining Hdr
m (t, 𝜉i;Oi,G,Ψ) = T̃S11,im(t)+ T̃S12,im(t, 𝜉i), we obtain the alternative loss function

Ldr,∗m,t (, 𝜓m, 𝜉;G,Ψ) =
n∑
i=1

L∑
l=1

I(Wi ∈ l)(Hdr
m (t, 𝜉i;Oi,G,Ψ)− 𝛽ml(t))2.

A straightforward conditioning argument shows that each of E
[
Ldrm,t(, 𝜓m;G,Ψ)

]
, E

[
Ldr,∗m,t (, 𝜓m;G,Ψ)

]
and

E
[
Ldr,∗m,t (, 𝜓m, 𝜉;G,Ψ)

]
have the sameminimizers; however, a CART tree or RF built using Ldr,∗m,t (, 𝜓m, 𝜉;G,Ψ)
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is no longer guaranteed to be identical to that built using either Ldrm,t(, 𝜓m;G,Ψ) or Ldr,∗m,t (, 𝜓m;G,Ψ) because
Ldr,∗m,t (, 𝜓m, 𝜉;G,Ψ) contains an extra mean zero term involving 𝛽ml(t).

Define the vector Hdr
im(𝜉i) = (Hdr

m (t1, 𝜉i;Oi,G,Ψ),… ,Hdr
m (tJ , 𝜉i;Oi,G,Ψ))⊤. Then, for a fixed set of times

0 < t1 < · · · < tJ < ∞ and event type m, we obtain a modified version of the algorithm presented in
Section 3.2:
AlgorithmM1:
(1) Compute Ĝ and Ψ̂ by appropriate modeling;
(2) Loop over r = 1,… ,R, where R ≥ 1 is set by the user:

(a) Generate 𝜉(r)i ∼ N(0, 1) for i = 1,… , n.
(b) Compute Hdr

m (t j, 𝜉
(r)
i ;Oi, Ĝ, Ψ̂) for i = 1,… , n, j = 1,… , J.

(c) Run MultivariateRandomForest on the modified imputed dataset (Ĥdr
im(𝜉

(r)
i ),Wi),= 1,… , n,

where Ĥdr
im(𝜉

(r)
i ) = (Hdr

m (t1, 𝜉
(r)
i ;Oi, Ĝ, Ψ̂),… ,Hdr

m (tJ , 𝜉
(r)
i ;Oi, Ĝ, Ψ̂))⊤, j = 1,… , J.

(d) Record rth result.
(3) Average the R ensemble estimates to obtain a final ensemble predictor.
Analogously toAlgorithmM0, Step 2(c) of the above algorithm involves bootstrapping the rthmodified version
of the input dataset B times to obtain a RF predictor for the rth modified dataset. Step 3 then averages these
R different RF estimates to produce a single ensemble predictor. As a computationally efficient version of this
algorithm, Step 2(c) could be run with B = 1 only; that is, instead of generating a full RF at this stage, one
builds a single tree using random feature selection without pruning. The resulting algorithm then reduces to
a RF-type algorithm based on R bootstrap samples, but where there is an extra component of randomization
used in the generation of each bootstrap sample.

3.3 Some further remarks
We now provide some high-level comparisons between the proposed methods and the approaches of [4, 5] to
building CIF ensemble estimators. Our proposedmethods share greater similarity with themethods proposed
in [5], as will be discussed below; hence, we consider that work first.

In [5], each censored outcome is replaced with a jackknife pseudovalue derived from themarginal Aalen-
Johansen estimator [8]. These authors then build a random forest by bootstrapping these pseudovalues (i.e.,
computed for a specific cause of failure m at particular follow-up time t, treating each as a fully observed
response) and constructing an ensemble estimator from the bootstrapped regression trees. In the presence of
censoring, their specific proposal amounts to running RFwith squared error loss on a set of imputed response
variables (i.e., pseudovalues). The justification for this approach is that the ith jackknife pseudovalue reduces
to Zim(t) if the ith response is uncensored and it gives an approximately unbiased estimate of the marginal
CIF for causem at time t if the ith observation is censored. Hence, averaging these values in a terminal node
in a given tree should result in a sensible estimator of the CIF within any given terminal node provided that
censoring is independent of failure, cause of failure and all covariates.

Similarly to [5], the methods described in [4] also make direct use of the Aalen-Johansen estimator [8].
Specifically, for each nonparametric bootstrap sample drawn from the original training dataset, an unpruned
regression tree is built using logrank-type splitting rules appropriate for competing risks [e.g., 7]. One can then
respectively form the Aalen-Johansen estimate using all observations that fall into each terminal node, and
average those estimates over all bootstrap samples to obtain an estimated CIF. The approach taken in [4] to
building the individual trees thatmakeup the ensemblepredictor involvesmaximizingheterogeneity between
terminal nodes (i.e., “goodness of split”) using a statistic specifically designed for testing for differences
between CIFs; this differs from RF, which in standard form intends to maximize homogeneity within nodes
through minimizing a specified loss function (e.g., squared error).

The methods described in [4] differ from those proposed here in several ways. Most importantly, the
trees that make up the ensemble are built using a “goodness of split,” not loss-based, criterion function. In
addition, response imputation is not used (or needed); as such, an ensemble estimate is constructed from



Y. Cho et al.: Regression trees and ensembles for CIFs | 407

averages of Aalen–Johansen estimates of the CIF within each terminal node (hence a function of time) rather
than from themean of imputed response variables. Focusing on the specific case of regression tree algorithms
that use squared error loss, the most important differences between the approach taken in [5] and our
proposedmethods stem from (i) our adherence to a principled loss-based approach to estimation that directly
generalizes that used by CART and RF for uncensored data; (ii) a rigorous justification for implementation
when using the imputed responses defined in Section 3.2; and (iii) the actual form of the imputed responses.
More specifically, in the setting where the loss function Ldrm,t(, 𝜓m;G,Ψ) is constructed using a single time
point t, the corresponding equivalent squared error loss Ldr,∗m,t (, 𝜓m;G,Ψ) utilizes imputed responses of the
form Hdr

m (t;Oi,G,Ψ) = T̃S11,im(t)+ T̃S12,im(t) for i = 1,… , n. These imputed responses differ from, but may be
considered analogous to, the jackknife pseudovalues of [5]. Indeed, similarly to [5], Hdr

m (t;Oi,G,Ψ) reduces
to Zim(t) if the ith response is uncensored and is an unbiased estimate of the conditional CIF for cause m at
time t (i.e., for a correct censoring distribution G). In contrast to [5], our approach only requires censoring to
be independent of failure and cause of failure conditional on covariates. Use of the doubly robust loss is also
robust to misspecification of one of G andΨ (but not both). In addition, using the jackknife pseudovalues of
[5] as the observed responses in a RF algorithm that employs squared error loss loses the direct connection
being exploited in Section 3.2, that is, the equivalence between the imputed loss Ldr,∗m,t (, 𝜓m;G,Ψ) (i.e.,
squared error loss derived from the imputed responsesHdr

m (t;Oi,G,Ψ), i = 1,… , n) and the observed data loss
Ldrm,t(, 𝜓m;G,Ψ) (i.e., an approximately unbiased estimator of the desired full data risk function).

The methodology proposed in [5] does not consider the possibility of estimating the CIF at multiple time
points, though their estimator can be extended to this setting in a manner similar to that done here. The
methodology proposed in [4] does not require pre-specification of t1,… , tJ and can be used to estimate the
CIF at any time point, hence the CIF curve, within the range of the observed data. In this regard, the need to
specify a grid of times is a disadvantage of methods that average terminal node estimates constructed directly
from imputed time-specific outcomes. In the case where the full CIF curve is desired, one easy solution is to
generate the desired CIF estimate on amodest number of time points (e.g., J ∈ {5,… , 10}) and then construct
a curve using monotone interpolation. In settings where software provides easy access to each individual
tree that makes up the ensemble estimate of the CIF, alternative approaches are possible that use terminal
node estimates (e.g., Aalen–Johansen estimator) that differ from the natural mean estimate induced by the
composite loss.

4 Simulation study: CIF estimation via RF

4.1 Main simulation setting
In this section, we will evaluate the performance of estimators derived using Algorithms M0 and M1 and
compare the prediction errors to the RF procedure for CIF estimation proposed by [4], which is implemented
in the R package randomForestSRC. The methods of [5] are not considered here due to the absence of an
explicit proposal for handling multiple time points.

LetWi ∼ N(0, 1), i = 1,… , 20be independent predictor variables. Define the trueCIFs𝜓0m(t; W),m = 1, 2
as follows:

𝜓01(t;W) = 1− (1− p(1− e−t))exp(𝜷
T
1 Z(W)) (16)

𝜓02(t;W) = (1− p)exp(𝜷
T
1 Z(W)) × (1− exp(−t exp(𝜷T

2 Z(W)))), (17)

where Z(W) = (sin(𝜋W1W2),W2
3 ,W10, I(W11 > 0),W12, exp(W15)) and the regression coefficients are given by

𝜷1 = (0.5,0.5,0.5,0.5,0.6,−0.3)⊤ and 𝜷2 = (0,−0.5,−0.5,−0.5,0.5,0.1)⊤. Random censoring is generated
from log normal distribution with mean 0.1+ 0.1 ⋅ |W1 +W3 +W5|+ 0.1 ⋅ |W11 +W13 +W15| and variance 1.
In this setting, the overall censoring rate is approximately 28.1%.
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4.2 Simulation results

4.2.1 Algorithms to be compared

Wefocusonestimationof theCIFat the 25th, 50thand75th timepoints of themarginal failure timedistribution
T; these are approximated outside the main simulation using a single, very large random sample. These time
points are also used in the computation of all composite loss functions. CIF estimates are obtained using
both Algorithms M0 (Section 3.2) and M1 (Section 3.2.1), and compared to those produced by rfsrc in the
randomForestSRC package [6]. For AlgorithmM1, we set R = 1 and B = 500; for each simulated dataset; this
corresponds to generating a single set of n independent standard normal random variables to be used in
the computation of the modified imputed loss Ldr,∗m,t (, 𝜓m, 𝜉;G,Ψ), and then using 500 bootstrap samples to
generate a RF predictor.

For calculating ym(u; t,𝑤,Ψ) in (8), we estimateΨ using rfsrc. We denote the resulting Buckley–James
(BJ-RF) and doubly robust (DR-RF) transformations Hbj∗

m (t,Oi; Ψ̂) and Hdr∗
m (t,Oi; Ĝ, Ψ̂), i = 1,… , n, where the

censoring distribution estimate Ĝ is obtained using the methods of [26]. Specifically, Ĝ is estimated using
the rpart package [27] with the minimum number of observations in each node (i.e., minbucket) set to 30.
For comparison, we also compute (a) versions of these same estimators using correctly specified parametric
modelsderiveddirectly from(16),with relevantparametersestimatedusing themaximumlikelihoodapproach
detailed in Jeong and Fine [28]; these results for the parametric Fine-Gray-type model for the CIF are denoted
BJ-FG (true) and DR-FG (true), respectively, and, (b) the RF estimator of the CIF obtained using rfsrc.

Tuningparametersplayan important role in theperformanceofensembleestimators. In thecaseofrfsrc,
two key tuning parameters are (i) the minimum number of observations in each terminal node (nodesize)
and (ii) the number of candidate variables selected for consideration at each split (mtry). There are iden-
tical parameters with different names to be selected for use with the package MultivariateRandomForest,
specifically through the use of the required function build_single_tree; for simplicity, we present and
summarize results using the labels nodesize andmtry. For each algorithm,we calculate the relevant ensemble
estimators by setting these tuning parameters as follows:
– Tuning Set 1: nodesize= 20 andmtry = ⌊√p⌋.
– Tuning Set 2: nodesize andmtry are selected to minimize the out-of-bag (OOB) error.

Results with the suffix -opt correspond to parameters selected under Tuning Set 2. Hence, results are reported
for 4 cases:
(i) Fixedmtry and nodesizewith AlgorithmM0;
(ii) Optimizedmtry and nodesizewith AlgorithmM0;
(iii) Fixedmtry and nodesizewith AlgorithmM1;
(iv) Optimizedmtry and nodesizewith AlgorithmM1.

4.2.2 Summary of results

For all simulation settings, results are obtained for 400 independent (estimation, test) dataset pairs. The
estimation dataset is generated as in Section 4.1,with n = 250; an independent test dataset of size ntest = 2000
consisting only of the covariates is generated similarly. For all simulation settings, we compute the mean
square error

1
ntest

ntest∑
r=1

{�̂�m(t|Wr)− 𝜓0m(t|Wr)}2

to compare the performance of different algorithms at different values of t. Figures 1–4 show the results
from the simulation setting with forests with multiple time points and comparisons with results obtained
using rfsrc using the same approaches to selecting mtry and nodesize. Figures 1 and 2 focus on m = 1 and
respectively compare the results for Algorithms M0 and M1 with fixed and optimized tuning parameters;
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Figures A.1 and A.2 in Section A.1.1 of the Supplementary Materials respectively compares the results with
fixed and optimized tuning parameters for each algorithm. Figures 3, 4, A.3 and A.4 repeat these results for
m = 2. We give an overall summary of these results below:
– AlgorithmsM0 andM1 exhibit similar performance for the 25th and 50th percentile time points; however,

Algorithm M1 tends to perform better for the 75th percentile, where the impact of the censoring rate is
higher.

– With optimization of tuning parameters, all methods demonstrate similar or slightly improved perfor-
mance than the same approach using fixed choices of nodesize and mtry, at least for the 25th and 50th
percentile. For the 75th percentile, the effects are somewhat less evident, and in the case of the event
m = 2, slightly worse for algorithmsM0 andM1.

– Thebestoverallperformance isobserved forBJ (FG-true)withoptimizationof tuningparameters, followed
by BJ-RF with optimization of tuning parameters. The BJ approach has the advantage of not needing
to estimate the censoring distribution at all. In general, algorithms that use the approach of [28] for
estimating the Ψ required for computing the augmentation term (i.e., a parametric model that agrees
with data generating mechanism) perform somewhat better than those that use rfsrc for this same
limited purpose; however, the results are not dramatically different.

– The proposed algorithms perform as well, and often somewhat better, than rfsrc in terms of minimizing
MSE(t), whether or not tuning parameters are optimized.

The results using Algorithm M1 were also re-run with R = 500 and B = 1, and were indistinguishable from
those summarized here (results not shown).

4.3 Other simulation results
The Supplementary Material contains additional simulation results. In Section A.1.2 results are provided
for the same model as described in Section 4.1, but where the covariates are correlated with each other; see
FiguresA.5–A.8which repeat the figures generated for themain simulation study in this alternative setting for
m = 1. The simulations summarized in themain paper, and in SectionA.1.2, are then repeated for n = 500; see
Figures A.9–A.16 in Section A.1.3. Finally, a different simulation model based on the accelerated failure time
model for competing risks described in [29], where we consider n = 250 as in the main paper; the model and
results can be found in Section A.1.4. In all cases, the results follow the same general patterns as summarized
in the previous section.

5 Example: lung cancer treatment trial

5.1 Main results
We illustrate ourmethodsusingdata from theRTOG9410, a randomized trial of patientswith locally advanced
inoperable non-small cell lung cancer. The motivation for this trial was to ascertain whether sequential
or concurrent delivery of chemotherapy and thoracic radiotherapy (TRT) is a better treatment strategy.
The original RTOG 9410 study randomized 610 patients to three treatment arms: sequential chemotherapy
followed by radiotherapy (RX = 1); once-daily chemotherapy concurrent with radiotherapy (RX = 2); and,
twice-daily chemotherapy concurrent with radiotherapy (RX = 3). The primary endpoint of interest was
overall survival and the main trial analysis results were published in [30], demonstrating a survival benefit
of concurrent delivery of chemotherapy and TRT compared with sequential delivery. Secondary analyses of
the data using the time from randomization to the first occurrence of three possible outcomes are considered:
in-field failure (cancer recurrence within the treatment field for TRT); out-field failure (cancer recurrence and
distant metastasis outside of the treatment field for TRT); and, death without documented in-field or out-field
failure (i.e., without observed cancer progression). Among these event types, those that first experienced
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out-field failures are of particular interest since these patients typically have suboptimal prognosis and may
be candidates for more intensified treatment regimens intended to prevent distant metastasis, including but
not limited to consolidative chemotherapy, prophylactic cranial irradiation (for brain metastases), and so on.
As such, patients that experienced both in-field failure and out-field failure were considered to be out-field
failures for purposes of this analysis.

At the time the study database was last updated in 2009, there were 577 patients, with approximately
4% censoring on the aforementioned outcomes. Our methods could be applied to directly analyze this final
dataset. However, because the censoring rate is so low, we have decided to take a more illustrative approach.
Specifically, we first create a “fully observed” dataset by removing the 23 censored observations. We then
compare the results of analyses of the resulting uncensored dataset of 554 patients to analyses of data that
were created from this uncensored dataset using an artificially induced censoring mechanism. The main
purpose of doing this analysis is two-fold; first, with such a low censoring rate, the results for the uncensored
dataset should largely reflect an analysis that would be done for the full dataset of 577 patients; second,
we are now able to study how the introduction of (artificial) censoring affects the results and, in particular,
illustrate how well the various procedures recover the estimator that would be obtained had outcomes been
fully observed (i.e., no random loss to follow-up).

We focus on building forests for each outcome (i.e., out-field failure, death) using a composite loss
function with three time points (5.2, 8.5, 15.9 months), selected as the 25th, 50th and 75th percentiles of the
observed “all cause” event time distribution (i.e., T). Some related analyses using regression trees alone may
be found in [24]. Baseline covariates included in this analysis are RX (Treatment), Age, Stage (American Joint
Committee on Cancer [AJCC] stage IIIB vs. IIIA or II), Gender, KPS (Karnofsky performance score of either
70, 80, 90 or 100), Race (White vs. non-White), and Histology (Squamous vs. non-Squamous). Censoring is
created according to aUniform [0, 50] distribution, generating approximately 29% censoring on T. In addition
to building forests using the uncensored version of the dataset using the methods described in Section 3.1,
we consider the methods BJ-RF and DR-RF based on Algorithm M1 using optimally tuned parameters as
described in the Simulation results, with R = 500 and B = 1 (i.e., 500 bootstrap samples). For comparison,
we also report results obtained using rfsrc using the same approaches to setting the indicated parameters.

To summarize the results in a meaningful way, we created partial dependence plots (PDP) [e.g., [31] to
characterize the influence of Age and KPS on the CIF. For reference, themiddle 50% of patients in this dataset
are aged 54–67, and 76% of patients have KPS scores of 90 or above. The PDPs for the 50th percentile time
point for the outfield failure and death outcomes are summarized in Figure 5. For outfield failure, the CIFs do
not demonstrate substantial changes across the levels of KPS, though a slight uptick in risk is observed for
the healthiest patients when using both BJ-RF and DR-RF; however, there is a decreasing risk with increasing
age, which may possibly be due to patients dying before experiencing outfield failure. For death, all methods
suggest a decreased risk of death for healthier patients, and an increasing risk of death as patients age,
particularly for the oldest patients. Similar trends are observed when looking at the CIF values calculated
at other time points; see Figure A.21–A.24 in Section A.2 of the Supplementary Material. Other noteworthy
features from these plots include (i) the trends seen in the PDPs for all methods are generally comparable;
and, (ii) the CIF estimates produced by rfsrc are always smaller than those obtained using the proposed
methods for these data, even in the case where the data are not censored.

In Figure 6, the difference in the PDPs for KPS and Age that are obtained using censored and uncensored
data are compared. Specifically, for BJ-RF and DR-RF, we calculate the difference compared to the uncen-
sored estimator obtained using the methods described in Section 3.1; for rfsrc, we compute the estimators
obtained using the censored and uncensored outcomes and calculate the difference. In general it can be
seen that censoring has a minimal effect on the PDP estimates for all methods, though there is evidence of
a somewhat more pronounced difference for outfield failure at the lowest and highest ages, particularly for
rfsrc. Importantly, however, these results may reflect the comparatively small number of patients at these
ages (i.e., only 5% of the patients are under 45, and only 5% are older than 74). Overall, BJ-RF tends to exhibit
the smallest changes when comparing results for censored and uncensored data.
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Figure 5: Partial dependence plots with respect to KPS (top) and age (bottom) from forests with outfield failure (left) and death
(right) using artificially censored data and uncensored data for 50th percentile time. The five lines are as follows: black= BJ;
blue= DR; red = rfsrc(censored); brown= uncensored data estimate using proposed methods in Section 3.1; dark green =
uncensored data estimate using rfsrc.

We also compute similar measures for the categorical variables and report those in Tables A.1 and
A.2 of the SupplementaryMaterial. Similarly to Age and KPS, the proposedmethods tend to estimate CIFs that
are larger than those estimated by rfsrc for these data. In all cases, the estimated CIF values demonstrate
monotonicity in time; this is easier to see in Tables A.1 and A.2 than it is in the figures generated for KPS and
Age. In addition, we again observe that the impact of censoring is relatively small when comparing the results
for censored and uncensored data within each method for estimating the CIF.

The difference in the estimates obtained between rfsrc and the proposed methods persist whether or
not there is censoring present. In the absence of censoring, both rfsrc and the proposed methods use a
bootstrap ensemble of trees; moreover, for each tree in the ensemble, the CIF is estimated in each terminal
node using the corresponding average cause-specific number of events in that node. Hence, the differences
observed here in the case of uncensored data, and consequently also in the case of censored data, appear to
stem from the different splitting rules used to build the trees that make up each ensemble.
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Figure 6: Plots of the difference in partial dependence CIF estimates with respect to KPS (top) and age (bottom) between
uncensored and censored data with outfield failure (left) and death (right) for 50th percentile time (black = BJ; blue= DR; red =
rfsrc).

5.2 Predictive performance and variable importance
In order to quantify the predictive performance of the ensemble models fit to the data, hence prognostic
potential, we used the methods of [19, Thm. 4.1] to estimate the expected quadratic loss of prediction (i.e.,
expected Brier score) using a weighted mean squared error calculation. This risk estimate is calculated using
5-fold cross-validation to reduce the potential finite sample bias resulting from using the same data to both
estimate the CIF and assess prediction performance. The results are reported in Supplementary Table A.3
for the artificially censored outcomes. The table shows (i) negligible differences across methods; and, (ii)
prediction error increases with time, as expected.

Measures of variable importance for the artificially censored outcomes have also been computed. Cur-
rently, MultivariateRandomForest only reports the average number of occurrences of each variable across
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all splits in all bootstrap trees. Because we have not seen this measure used elsewhere, we have elected to
compute the default Breiman–Cutler measure of variable importance that is supplied by rfsrc [4]. As noted
earlier, the multivariate regression loss functions used in [4] use a dynamic form of normalization that fails
to maintain the desired equivalence between (12) and (15). Hence, for the proposed methods, we use rfsrc
to implement these losses separately at each time point (i.e., using Algorithm M0 in the case of DR); for
comparison, we also compute the default measure reported by rfsrc as implemented for a competing risk
outcome. This approach complements the composite univariatemeasure reported byrfsrc by allowing auser
to investigate how a variable’s importancemay change across time. Tables A.4–A.7 summarize the results for
the outfield failure and death events. Tables A.4 and A.6 report the computed variable importance measure;
Tables A.5 and A.7 report the corresponding ranks of the variables within each method to facilitate compar-
isons across time and method. Tables A.5 and A.7 show, in particular, that while there is some variability in
the ranked importance measures (i.e., across time as well as method), there is also a reasonable degree of
agreement as far as the variables that rank as beingmost important. For example, taking the median rank for
outfield field failure across time for the doubly robust andBuckley–James losses, the variables Age,Histology,
and AJCC stage are ranked as most important; for rfsrc as implemented for a competing risk outcome, the
variables Age, AJCC, and Karnofsky Performance score are ranked as most important. In the case of death,
we instead respectively see that Age, Histology and Gender and Karnofsky Performance score, Histology and
Age are ranked as most important.

6 Discussion
In our simulation studies, the proposedmethods demonstrate similar or better performance (i.e., with respect
to the chosen MSE measure) compared to the methods of [4], as implemented in the randomForestSRC
package.Of interest is the easewithwhich theproposedmethods canbe implementedusing existing software,
including for CIF regression trees.

The proposed methods focus on building a tree or ensemble estimator for a single cause in the presence
of other possible causes. When interest lies in multiple causes, the method can be applied to each cause
in exactly the same manner. However, this is arguably inefficient, and one interesting direction for further
research would be to extend both regression tree and ensemble procedures to the problem of simultaneous
estimationofmultipleCIFs. For example,whenbuildinga regression tree, one could easily adapt the approach
takenearlier to accommodatemultiple causes inaddition tomultiple timepoints; see [4] for a similar proposal.
In the case of a regression tree, such an approach makes the restrictive assumption that the predictor space
is to be partitioned in the same way for all causes. This restriction may ultimately be less worrisome when
building a predictor derived from ensembles of trees, but it would be interesting to explore alternative ways
in which one might proceed. A second area of possible extension would be to consider generalizations of
the model-based recursive partitioning algorithm proposed in [32] to the setting of CIF estimation using a
composite loss function, leading to alternative tree and/or ensemble estimators.

The reliance of the proposed methods on the need to estimate a “nuisance” parameter that coincides
with the target of primary interest (i.e., the CIF) is an evident drawback of the proposed approach. Of course,
this problem is inherent to using all augmented IPCW estimators. Currently, we use rfsrc for this purpose,
and it is therefore perfectly reasonable to ask whether the proposed approach offers any advantages over the
methods introduced in [4]. We believe the answer to this question is affirmative. For example, our approach
provides the ability to estimatewhat happens at specificpoints in time. In addition,rfsrcuses a log-rank-type
splitting process for competing risks that may be adversely influenced by informative censoring, particularly
so in the early stages of splitting; see, for example [9, 10], and especially [33] for discussion and results in
the case of right-censored survival data. Although the validity of the proposed methods also requires that
(T,M)⊥C ∣ W, the observed data loss functions used in Algorithms M0 and M1 are approximately unbiased
both conditionally and unconditionally on W and should be less susceptible to similar biases. It would be
interesting to study the performance of iterated versions of the proposed algorithms in which the CIF required
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for computing the augmentation term is updated with each iteration of the proposed algorithm, possibly only
being initialized with rfsrc.
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