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Abstract

The common forms of metabolic diseases are highly complex, involving hundreds of genes,
environmental and lifestyle factors, age-related changes, sex differences and gut-microbiome
interactions. Systems genetics is a population-based approach to address this complexity. In
contrast to commonly used ‘reductionist’ approaches, such as gain or loss of function, that
examine one element at a time, systems genetics uses high-throughput ‘omics’ technologies to
quantitatively assess the many molecular differences among individuals in a population and then to
relate these to physiologic functions or disease states. Unlike genome-wide association studies,
systems genetics seeks to go beyond the identification of disease-causing genes to understand
higher-order interactions at the molecular level. The purpose of this review is to introduce the
systems genetics applications in the areas of metabolic and cardiovascular disease. Here, we
explain how large clinical and omics-level data and databases from both human and animal
populations are available to help researchers place genes in the context of pathways and networks
and formulate hypotheses that can then be experimentally examined. We provide lists of such
databases and examples of the integration of reductionist and systems genetics data. Among the
important applications emerging is the development of improved nutritional and pharmacological
strategies to address the rise of metabolic diseases.
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Most diseases and other traits exhibit complex forms of inheritance resulting from the
combined effects of multiple genetic variants together with environmental factors. The
sequencing of the human genome enabled genome-wide association studies (GWAS) that
have now identified more than 6,000 genomic loci for common diseases (Box 1). These
studies have revealed that most common disorders, such as obesity, diabetes and heart
disease, have a genetic architecture that is highly heterogeneous, involving small
contributions from hundreds or thousands of genetic variants, each explaining a tiny fraction
of the total genetic susceptibility.

Systems genetics, also termed integrative genetics, was developed to address such
complexity. Systems genetics uses high-throughput omics technologies, such as DNA
sequencing, RNA sequencing or mass-spectrometry-based metabolomics, to quantify
molecular phenotypes alongside the clinical phenotypes in populations of humans or
experimental organisms. The data can then be integrated through correlation, co-mapping or
various modelling approaches to generate hypotheses relating the molecular and clinical
traits. The underlying concept is that genetic variation affects complex clinical traits by
perturbing molecular traits, such as gene expression or metabolite levels, and thus through
measuring these traits as a function of genetic variation (that is, in individuals in a
population), their relationships can be understood?.

Systems genetics studies with populations of model organisms, such as rats, mice, flies or
yeast, have been particularly useful for examining the overall architecture of complex traits,
including issues such as gene-by-gene (GxG) and gene-by-environment (GXE) interactions.
Studies in model organisms have an important advantage in that environmental factors and
other sources of heterogeneity can be controlled. In addition, studies of model organisms
allow access to relevant tissues, which is generally not feasible in human studies. The
genetic loci contributing to clinical or physiological traits in animal models are generally
termed quantitative trait loci (QTL; Box 1). The loci contributing to molecular traits are
similarly designated expression QTL (eQTL) for transcript levels, protein QTL (pQTL) for
protein levels and so forth.

Systems genetics approaches have recently been reviewed?—4, and our focus in this Review
is discussing how systems genetics data can be of use to researchers in the metabolism field.
We first provide an overview of systems genetics, including examples relevant to

metabolism research. In particular, we have attempted to illustrate how systems genetics data
can be useful to reductionist researchers. We then discuss certain specialized aspects such as
network modelling, non-additive interactions and therapeutic applications. We conclude with
a summary and some thoughts on future applications. We note that, owing to space
limitations, we have not included a historical perspective of the field, and we have omitted
discussion of systems genetics in organisms such as yeast and flies.

Systems genetics applications in metabolism research

Comparison of reductionist and systems genetics approaches

Metabolism research is now dominated by reductionist (traditional) approaches, such as
gain- or loss-of-function studies in mice. These approaches are powerful in that they
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establish causality, but they have some important limitations that hinder full understanding
of the architecture of complex traits, as discussed below. In contrast, systems genetics
studies must generally be combined with experimental studies to conclusively establish
causality. Therefore, a combination of the two approaches is most powerful.

One constraint with the purely reductionist approach is that it usually involves perturbation
of a single gene in a single genetic background and thus is unlikely to detect genetic
interactions, such as modifier genes®. In other words, a genetic variation acts in the context
of the genetic background, and by examining the effect of a gain or loss of function in only a
single genetic background, an incomplete view of the function of the gene will be obtained.
For example, engineered mutations in mice often exhibit strikingly different phenotypes
when examined in different strains, as discussed below®. Another consideration with some
reductionist approaches is that the perturbations are often unrealistically extreme (for
example, complete knockout) and thus do not correspond to the more subtle variations
observed for complex traits in nature. A complete knockout can have very broad phenotypic
effects that may perturb genes far from the core functional genes (as in the ‘omnigenic’
model discussed below).

An important feature of systems genetics approaches is that they are relatively unbiased.
Reductionist scientists usually generate hypotheses based on results from previous studies,
and thus some genes or pathways are explored in great depth, whereas others are ignored. A
recent study’ has found that more than one-quarter of coding genes have never been the
subject of a single paper, and most other genes have been largely neglected, whereas
approximately 2,000 genes (less than 10% of the coding genome) have hogged most of the
attention. Systems genetics hypotheses, in contrast, are driven by natural variation paired
with global measures of omics data and are therefore relatively unbiased.

The power of natural variation derives from the multitude of genetic perturbations that occur
in all combinations in a population. Generally, a large fraction of genes and pathways are
perturbed. For example, in human populations, the expression of nearly every gene is
influenced by genetic variation8. Thus, in terms of generating hypotheses, systems genetic
approaches offer fairly complete coverage of biologic processes and incorporate both
perturbations and interactions of realistic effect sizes. In a sense, systems genetics studies
can be viewed as a global mutagenesis screen.

Systems genetics study design

A typical systems genetics study involves the following steps: (1) identification of an
important question, or set of questions, that could be addressed with a systems genetics
study; (2) selection of an appropriate population, on the basis of the trait of interest and the
required statistical power; (3) phenotyping of the population for physiological, pathological
and molecular traits of interest; (4) integration of the resulting data through statistical
methods and genetic mapping; (5) formulation of hypotheses, such as potential causal
relationships; and (6) experimental perturbations, generally in a single genetic background,
to test the hypotheses?.
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An overriding consideration in developing such studies is the cost. Animal studies generally
require hundreds of individuals, and human studies may involve thousands. Detailed
phenotyping is critical to the success of a study, and the generation of omics-level data is
usually very expensive. Therefore, the study must crucially be designed to enable important
questions to be addressed, and it should have a clear purpose rather than simply aiming to
collect a large amount of data. The study should also be designed so that the resulting data
might be useful to other researchers in the field.

Several animal ‘reference’ populations have been developed specifically for systems
genetics studies (Box 1 and Table 1). These include panels of diverse rodent inbred strains,
such as the Hybrid Mouse Diversity Panel (HMDP)10, the C57BL/6J x DBA/2J (BXD)
panel of recombinant inbred (RI) mouse strains*11.12 and the Collaborative Cross (CC)13, a
set of RI mouse strains derived from an intercross of eight highly diverse inbred strains. The
eight strains used in the CC were also used to develop an outbred population known as the
Diversity Outbred (DO) panell4, which is maintained at The Jackson Laboratory. The
genetic structure of these reference populations is illustrated in Fig. 1. Each resource has
certain advantages and disadvantages. The DO is much more diverse than the others and
comprises approximately eight times as many total SNPs. However, because the HMDP and
BXD RI strains are inbred, replication and time-course studies are feasible. There are many
additional resources that are proving useful for systems genetics studies, such as various
outbred mouse populations'®18, advanced intercross lines?, heterogeneous stock rats'8 and
congenic strains®®.

Likewise, several human cohorts have been developed for the collection of broad clinical,
metabolic and molecular phenotypes, such as the Metabolic Syndrome in Men cohort
(METSIM)20, Twins UK?! and the Framingham Heart Study22-24. Some human studies,
such as the Genotype-Tissue Expression (GTEX) project® and the Stockholm—Tartu
Atherosclerosis Reverse Networks Engineering Task (STARNET) study2°, have generated
global transcriptomic data from many human tissues. Primary, transformed and induced
pluripotent cell lines derived from different individuals have also been used to integrate traits
such as drug response and gene expression26-29,

Integration across biologic scales

Various biologic scales can be examined in a systems genetics study (illustration and
examples in Fig. 1a). Among the scales, DNA variation is unique in that information only
flows out, thus providing a causal anchor for modelling studies. Therefore, pairwise analysis
of genetic variants such as single-nucleotide polymorphisms (SNPs) against intermediate
molecular traits (such as those in the epigenome, spliceome, transcriptome, proteome and
metabolome) can collectively reveal the information flow from DNA sequence to these
additional layers (Fig. 1a). Information can also flow in reverse: just as metabolites, proteins
and transcripts can affect the epigenome, so can proteins affect the transcriptome, and so on.
Information also flows horizontally in a biologic scale; for example, proteins form
complexes with each other. Biological processes occur as a cumulative result of interactions
within and between layers, and molecular traits can be linked to physiologic and clinical
traits.
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There are three basic operations that can be used to integrate multi-omic data spanning
multiple biologic scales, each of which is highlighted in Fig. 1b—d. The most straightforward
is correlation. As information travels across scales, such as from transcript levels to protein
levels, some degree of correlation would be expected in many cases. Correlation structure
would also frequently be expected between a clinical trait and the genes that are either
causal or reactive for that trait, although caution must be taken, because correlation can
occur for many different reasons, including artefacts such as batch effects. Another
important method, given sufficient power, is mapping traits from different scales (such as a
clinical trait and a transcript-level trait) to the same genetic locus. Such co-mapping raises
the possibility of one trait being causal for the second. A third approach for the integration
of systems genetics data is statistical modelling, discussed below.

A nice illustration of how systems genetics approaches can dissect the flow of biological
information is provided by some studies that have comprehensively examined the
relationships between the levels of transcripts and the proteins that they encode as a function
of genetic variation. These studies, using the HMDP and DO mouse populations (Fig. 1b
and Box 1), have observed unexpectedly little correlation between transcript levels and
protein levels, with an average correlation coefficient of approximately 0.3, and also
correspondingly little overlap between eQTL and pQTL3%3L, These discordances probably
have several causes, as discussed in ref. 32, For example, protein turnover can be influenced
by genetic variation, and thus some loci may affect protein levels (pQTL) but not transcript
levels (eQTL) (Fig. 1b). Another important cause appears to be related to protein—protein
interactions; for example, if several different proteins interact to form a complex, any excess
subunits produced will probably be degraded. Recently, Parker and colleagues have extended
such analyses and focused on correlation structures between protein levels and lipid levels,
thus leading to the identification of some novel lipid-metabolism pathways33 (Fig. 1c).

Similarly, systems genetics can be used to connect molecular traits to physiologic functions.
For example, in an elegant systems genetics study, Williams and colleagues!? have analysed
the BXD mouse panel and revealed the regulation of mitochondria in the liver (Fig. 1d). The
mice were subjected to normal chow or high-fat diets and then comprehensively
characterized for global molecular phenotypes (transcriptome, proteome and metabolome)
as well as clinical/physiologic traits (oral glucose tolerance and exercise regimen). The
authors observed many co-regulated genes and proteins, whose integration with phenotypic
traits highlighted a major role of mitochondrial function in mediating health status. Layering
of molecular phenotypes on top of genetic associations allowed the authors to uncover
genetic loci driving higher-order respiratory functions, such as the formation of electron-
transport-chain supercomplexes in the liver. Recently, Jha and colleagues have used liver and
plasma lipidomics from the same population to identify new lipid species and co-regulated
modules34:35, By overlaying these data with phenotypic observations, the authors identified
new lipid species and modules, thereby bridging previously studied molecular phenotypes
(for example, proteomics) with mitochondrially mediated hepatic lipid metabolism. These
observations were integrated with plasma lipidomics measures in the same mice to identify
circulating biomarkers of lipid content in the liver, such as cardiolipin.
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Systems genetics is also useful for the integration of genetic and environmental effects.
Whereas GWAS results reflect only the heritable component of a trait, molecular and
clinical phenotypes can capture both genetic and environmental factors36. The microbiome
‘scale’ is highly responsive to the environment and also strongly interconnected with the
host metabolism37.

Integration through statistical modelling

According to the concept that information from DNA is unidirectional, causal pathways can
be modelled, and whether certain ‘mediators’, such as transcript levels or chromatin marks,
mediate the effect of DNA variation on a complex phenotype can be determined. For
example, if both a clinical trait and the levels of a transcript are correlated and map to the
same locus, researchers can condition on the transcript levels and ask whether a significant
association between the locus and the clinical trait remains. If so, the results suggest that the
effect on the clinical trait is not mediated by the transcript. Various causal inference tests
have been developed and are typically referred to as mediation analysis38:39. Mendelian
randomization is one form of mediation analysis that has especially strict criteria in that the
mediator (such as the levels of a protein) is required to explain all of the association between
a SNP and a complex trait. Whereas Mendelian randomization studies typically require quite
large sample sizes (on the order of 100,000 individuals in humans), they have been
particularly informative in dissecting causal influence between intermediate physiologic
traits and pathophysiology. For example, mediation has been used to suggest that elevated
plasma high-density-lipoprotein levels do not have a causal role in cardiovascular disease?C.

Several statistical methods have been developed in recent years to facilitate multi-omics
integration4142, These methods can be broadly categorized into two types: those purely
relying on data patterns across omics domains and those incorporating biological
information. An example of the former category is Multi-omics Factor Analysis (MOFA)*3,
which uses dimension-reduction techniques to infer hidden factors reflecting biological and
technical variability across multi-omics data types gathered from a study population. An
example of the latter category is Mergeomics##4°, which builds on the explicit hypothesis
that multi-omics modalities are functionally related and together can provide information on
interconnected biological processes (discussed below).

An important advance in applying systems genetics to human populations has been the
development of methods that integrate gene expression data with summary association
statistics from GWAS to impute genes whose c/s-regulated expression is associated with
complex traits*6. For example, Gusev and colleagues have used expression data from blood
and adipose tissue to impute gene expression into large GWAS data; they have identified 69
genes significantly associated with obesity-related traits. Additional tools have been
developed (http://predictdb.hakyimlab.org/) and compared*’ to impute eQTL data onto
larger GWAS datasets. Beyond eQTL data, imputation packages are being developed for
protein and metabolite QTL measures. These packages also enable users to estimate
variances explained by a given molecular layer to a trait of interest (https://github.com/
hakyimlab/summary-gwas-imputation/).
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Examples of the types of questions that can be asked by using available systems genetics

data

Using systems genetics data is not just for geneticists or statisticians. Indeed, some of the
most impactful science at present is performed by reductionist investigators using systems
genetics data to generate hypotheses or support results. Crucially, systems genetics enables
the formulation of unbiased hypotheses that can then be tested through experimental
approaches. Below, we provide several examples of the types of questions that have been
addressed with publicly available systems genetics data (Table 1).

Which gene at a GWAS locus is causal?—Identification of the causal gene
underlying a GWAS locus can be challenging because of linkage disequilibrium (the
correlation structure among genetic variants at the locus) and the ability of genetic variants
to affect the expression of genes at distances up to hundreds of kilobases. In the absence of
other evidence, the prime candidate is often assumed to be the one nearest to the peak SNP.
One approach is to ask whether the lead SNP is associated with the expression of a gene at
the locus, thus providing a potential mechanistic link. Variation in gene expression can be
examined through technologies such as RNA sequencing if relevant tissue samples are
available from some individuals in the population or can be imputed as discussed above?S. In
contrast to Mendelian disorders, in complex traits, genetic variation is most often regulatory,
that is, involving enhancers or promoters rather than encoding protein®®. In addition to
testing for changes in gene expression, epigenetic- and chromosomal-interaction databases
can be examined to identify regions that are likely to be enhancers or to bind specific
transcription factors33:50, For example, Kessler and colleagues were interested in follow-up
study of a GWAS locus for coronary artery disease that contained the candidate gene
GUCY1A3, encoding a subunit of guanylyl cyclase®. They used previously published
systems genetics data in both humans and mice to show that GUCY1A3 expression is
regulated by the lead SNP (that is, that it constitutes a local eQTL). They also showed that
the SNP is present in an enhancer region and affects the binding of the transcription factor
ZEDL1. There are now many such examples of the use of systems genetics data to prioritize

candidate genes at human, mouse and rat loci for metabolic and cardiovascular
traits14.16,52,53

What are the likely pathways contributing to a trait of interest?—Beyond
suggesting candidate genes, systems genetics has also been used to uncover pathways
underlying complex traits. For example, Kojima and colleagues have recently identified
CDA47 as a key regulator of efferocytosis in atherosclerotic lesions®*. Given the complexity
and heterogeneity of the disease, pinpointing the pathways underlying this efferocytotic
signal would have been challenging through reductionist approaches. Therefore, the authors
interrogated mouse (HMDP) and human (Biobank of Karolinska Endarterectomy (BiKE)
study) atherosclerotic-plaque expression data, specifically looking for pathways enriched in
genes correlated with CD47. This analysis suggested an inflammatory role of CD47,
specifically in the expression of tumour necrosis factor, which was then validated
experimentally.
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Which tissue is likely to mediate the effects of genetic variation on disease
susceptibility?—Because each cell type and tissue exhibits a specific set of regulatory
elements and epigenetic modifications, thus resulting in differences in chromatin properties
such as DNase | hypersensitivity, the locations of peak GWAS SNPs along the genome can
provide information about the likely cell types and tissues in which the SNPs contribute to
disease phenotypes. For example Mahajan and colleagues have generated a comprehensive
dataset of GWAS loci contributing to type 2 diabetes and overlaid it with epigenomic data,
thereby implicating pancreatic islets as a key regulatory tissue®0. This study has identified
several enhancers that are located within islets and may mechanistically link specific genetic
variants to the progression of type 2 diabetes (Fig. 2a). A new nonparametric visualization
tool has recently been reported in which users can upload GWAS SNPs and view cell-type-
specific enrichment of chromatin marks available from ENCODE data®®.

Are gain- or loss-of-function studies consistent with population data?—Studies
on a single genetic background can often be difficult to translate to population-level
variation. This translation can be accomplished in a relatively straightforward fashion by
assessing mapping or correlation structure by using systems genetics data. For example,
Rajbhandari and colleagues have recently identified a novel role of the cytokine IL-10 in
suppressing obesity and insulin resistance through adipose-tissue beiging®®. Because these
studies were performed on a C57BL/6J background, the authors were interested in
determining whether relationships between IL-10 and metabolic phenotypes persisted on a
population scale. The authors confirmed a positive correlation among IL-10, insulin
resistance (HOMA-IR score) and adiposity in both mouse (HMDP) and human (METSIM)
systems genetics data.

Which molecular signatures account for cellular heterogeneity?—Cell types
often exhibit substantial functional heterogeneity, which is often defined by a small set of
markers. For example, various lymphocytes and monocyte or macrophage subtypes have
historically been identified with various cell-surface markers. However, the overall
functional heterogeneity of such subtypes has generally not been studied at the population
level. Buscher and colleagues sought to understand the functional heterogeneity of
macrophages and their responses to inflammatory mediators such as bacterial
lipopolysaccharide®’. The authors first surveyed published human and mouse macrophage
expression data under normal or lipopolysaccharide-stimulated conditions. Whereas gene
expression signatures showed striking heterogeneity between mouse strains or human
subjects, the authors identified a set of core signature genes for the inflammatory insult.
Expression of these core genes elucidated conserved regulators of NF-xB responsive
elements and also predicted macrophage-associated tumour survival®g,

What factors mediate tissue—tissue cross-talk?—Metabolic homeostasis involves
tight interactions across multiple tissues, but elucidating the nature of such tissue-tissue
cross-talk has been challenging. Seldin and colleagues®® have developed a statistical
approach to identify novel tissue-tissue endocrine circuits by using expression data from
multiple tissues of a mouse population (Fig. 2b—e). They postulated, on the basis of
hundreds of secreted proteins having no known function, that many endocrine factors remain
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to be identified. The first step in the method was identifying secreted proteins in one tissue
that exhibit high correlation with the total transcriptome of a second tissue (Fig. 2b). The
next step was identifying which pathways underlie these strong correlations by determining
whether gene-set enrichment was present for each potential endocrine factor (Fig. 2c). These
candidate endocrine proteins were then assessed for tissue-specific enrichment and
relationships with clinical-trait data (Fig. 2d). Finally, predicted tissue—tissue circuits were
validated experimentally in cell-culture or mouse models (Fig. 2e). Using this approach, the
authors have identified a novel adipose—skeletal muscle circuit mediated by Lcn5that
stimulates mitochondrial activity and insulin sensitivity in skeletal muscle. Other
mechanisms of tissue-tissue communication, including novel factors mediating adipose-
tissue thermogenesis and the cardiac starvation response, have also been uncovered®°.
Similar approaches could potentially be used to identify cross-talk mediated by metabolites,
circulating microRNAs or exosomes; in addition, population-based single-cell-sequencing
data could be used to examine cell-cell communication within a tissue8?.

Specialized topics

Systems genetics and network modelling

Systems genetics emphasizes the interconnections among biological spaces, depicting how
molecules are organized and function together in complex systems, thus making pathways
and networks a natural and intuitive framework for systems genetics. Pathways depict
cascades of reactions, interactions or signalling events among a group of biological
molecules that perform a particular function. For instance, the cholesterol-biosynthesis
pathway involves a series of enzymes, substrates and products that perform the function of
synthesizing cholesterol, and the insulin signalling pathway depicts how insulin interacts
with its receptors and triggers downstream signalling cascades and activation of various
transcriptional programs that regulate glucose and lipid homeostasis. In recent decades,
numerous databases have been established to curate various knowledgebased biological
processes and pathways. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), Biocarta, Reactome and MsigDB are among the most widely used (Table 1).
Various network-modelling approaches have been compared and comprehensively
reviewed®?,

Weighted gene co-expression network analysis (WGCNA)—Among network-
modelling approaches, WGCNA is the most commonly used. It uses the correlation patterns
among molecular traits across a series of samples to search for higher-level co-regulation
structures and to define cohesive ‘modules’, each containing a group of molecules that are
not only directly correlated but also share similarities in their relationships with the other
molecules®2. Each module is biologically meaningful and contains genes that share
regulatory mechanisms, perform similar functions or relate to similar diseases®3:64,
Numerous studies have applied WGCNA to studying the molecular mechanisms underlying
metabolic disorders®. More recently, multiscale embedded gene co-expression network
analysis (MEGENA) has emerged as a complementary approach to WGCNA for
coexpression-based network construction. Although MEGENA is also based on correlation
structure, it uses a different algorithm and addresses several limitations of WGCNA,
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including large and less coherent modules and mutually exclusive modules that are forced to
include distinct molecules®.

Excellent examples of the use of WGCNA to derive mechanistic understanding include
studies by Farber and colleagues on bone mineral density (BMD) in mice®7-69, The authors
initially quantified BMD and global transcript levels in a panel of inbred strains of mice
(HMDP). They then generated co-expression networks by using WGCNA and layered them
on top of trait-association and eQTL data. The results implicated the gene Asx/2as a driver
of a co-expression network of genes involved in the differentiation of osteoclasts, and this
finding was experimentally confirmed®7:69. Subsequent network biology studies led to
insights into the cellspecific processes that regulate BMD®8:70, In particular, Calabrese and
colleagues have used the above network to predict causal genes in human BMD GWAS loci
on the basis of the premise that genes underlying disease are often functionally related. In
this way, the authors predicted and inferred the functions for 30 of 64 human GWAS loci
and experimentally validated two of these®8.

Mergeomics—Mergeomics is another pathway- and network-based tool that has been
successfully used to identify pathways and genes underlying complex metabolic disorders,
as highlighted in Fig. 3. Unlike other tools that require all multi-omics data types to be
derived from the same population, Mergeomics uses only summary-level multi-omics data,
which can be derived from different studies or even species. Briefly, multi-layer disease-
association signals are mapped to pathways or networks comprising interacting molecules to
reveal pathogenic processes perturbed by individual omics variants as well as those affected
by multiple omics layers. Recent applications of Mergeomics have yielded substantial
insights into the tissue-specific biological processes and regulatory genes involved in
individual diseases and those shared between diseases’?.

The application of Mergeomics to identify pathways and genes underlying steatosis in a
mouse model of nonalcoholic fatty liver disease is illustrated in Fig. 3. The tool has been
used to identify pathway and ‘key-driver’ genes, most of which converged on mitochondrial
functions. Experimental perturbation of several of the novel key-driver genes including Pk/r
and Chcha6, confirmed their effects on liver fat and mitochondrial oxidation’2. In another
study, von Scheidt and colleagues have used Mergeomics to integrate data from mouse and
human GWAS studies along with expression profiling to identify pathways contributing to
atherosclerosis, revealing ~70% sharing of disease pathways between the two species’3.

GWAS applications—Boyle and Pritchard have recently proposed an omnigenic model
positing that gene regulatory networks are sufficiently dense to cause some genetic
variations to ‘percolate’ throughout the network in a relevant tissue’4. The resulting GWAS
loci may thus represent genetic variation in genes whose functions are only distantly
unrelated to traits. In this model, “‘core’ genes that are more central in the networks are more
likely to have a major effect on diseases and serve as more effective targets to modulate
susceptibility or outcome. If the omnigenic model indeed proves correct, network modelling
will be useful for the identification of these core genes.
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Genetic interactions

One important application of systems genetics is to help understand genetic interactions. The
term epistasis refers to the phenomenon in which variations in different genes combine and
result in a phenotype different from the expectation based on the individual variation (that is,
the effects are not additive). Thus, epistasis involves GXG interactions. Genetic variations
can also interact in a non-additive manner with environmental factors (GXE) or sex (GxSex).
Such genetic interactions are commonly observed in studies of experimental organisms, such
as mice, for which the genetic background and the environment can be rigorously controlled
(Fig. 4). However, these interactions have been difficult to study in humans, in which
complications include the small effect sizes of most common genetic factors as well as the
inability to assess the environment’®. Thus, with some exceptions, most human GWAS
studies have revealed little evidence of non-additive risk effects’6-78,

A clear example of the importance of GXG interactions has come from experiments on
targeted mutations studied on two or more genetic backgrounds in mice. For example,
Sitting and colleagues® have examined the effects of three different engineered mutations on
behavioural traits in multiple genetic backgrounds and observed striking differences, ranging
from strong to negligible, in each case (Fig. 4a). Such dependence on the genetic
background appears to be the rule rather than the exception. These findings suggest that the
effects of an engineered mutation often cannot be generalized to even different individuals of
the same species, and thus, unsurprisingly, attempts to generalize from rodents to humans
frequently fail.

The occurrence of GXE interactions in studies with mice or rats is also pervasive. Examples
of experimental perturbations that have been studied include responses to diet, drugs, noise,
temperature and forced exercise, as well as many other perturbations. For example, when the
HMDP population of 100 inbred strains was exposed to a high-fat, high-sucrose diet for 8
weeks, the changes in body fat ranged from no increase whatsoever to an approximately
sixfold increase’® (Fig. 4b). The integration of these phenotypes with microbiome and gene
expression data has led to the identification of genes and microbes contributing to dietary
responsiveness®.

Sex differences can have profound effects on complex traits and susceptibility to
diseases81:82, Unfortunately, they have been greatly understudied in metabolism. In fact,
studies using model organisms such as mice have frequently examined only males, with
exceptions such as ageing studies, which have tended to focus only on females83. A recent
study has systematically examined GxSex interactions for approximately 50 metabolic traits,
including body fat, insulin resistance, plasma lipids and organ weights in the HMDP
resource84. All traits with the exception of blood-cell parameters exhibited sex differences,
and the effects of sex were often dependent on the genetic background. Whereas male mice
of certain strains gained more fat than female mice in response to a high-fat diet, the reverse
was true for certain other strains. Integration of the clinical-trait data with adipose gene
expression data across the strains indicated an important role of adipose mitochondrial
function in these sex differences. Indeed, studies of isolated mitochondria from several of
the strains validated striking GxSex differences that were also associated with traits such as
diet-induced obesity and insulin resistance84 (Fig. 4c). Notably, in contrast to many other
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strains, C57BL/6J mice exhibited no significant differences in adipose mitochondrial activity
and abundance between sexes, thus illustrating the limitations of exclusively studying a
single genotype.

Why might studies in experimental organisms demonstrate pervasive non-additive
interactions, whereas studies in humans reveal only modest evidence for such interactions?
Basic biologic differences may contribute but would seem unlikely to entirely account for
the discrepancy. In a recent essay, Sackton and Hartl”® have distinguished *statistical
epistasis’ and ‘physiologic epistasis’ and argue that the latter can be pervasive and still result
in negligible levels of the former. Because additive models are fit by least squares, some of
the effects of epistasis are tallied with additive or dominant inheritance. In addition, the
ability to detect statistical epistasis depends on the frequencies of the multi-locus genotypes.
Thus, one possible explanation for why non-additive interactions are missed in human
studies compared with animal studies is the relatively smaller effect sizes of the loci
contributing to complex traits and the greater heterogeneity, which is difficult to control.
Indeed, studies in human populations of variations with large effect sizes, such as Mendelian
traits or eQTLs, have provided strong evidence of non-additive interactions®76

Therapeutic and diagnostic applications

An approach to drug targeting termed The Connectivity Map (CMAP)® is ideally suited to
systems genetics data. The approach uses global expression data obtained after treatment of
cell lines by many different drugs. A more recent version of CMAP called LINC1000 has
been developed, incorporating more drugs and more cell lines®. The concept is that if a
disorder exhibiting a pattern of expression opposite from that of one of the surveyed drugs,
that drug or a related drug might mitigate or reverse the disorder. Conversely, if a disease-
gene pattern mimics that of a drug, the drug may contribute to toxicity or side effects. For
example, in one study, endoplasmic reticulum stress pathways were induced by either
injection of 4-phenyl butyrate or overexpression of X-box-binding protein 1 in genetically
obese ob/ob mice. Liver gene expression patterns in the mice were then analysed with
CMAP, which prioritized Celastrol as a potential regulator of endoplasmic reticulum stress
pathways. The drug was then experimentally validated to have potent anti-obesity effects in
mice®87, Systems genetics approaches would appear to offer many advantages for not only
the identification of novel therapeutics but also understanding of off-target effects and
variations in responses among individuals.

Systems genetics can also be useful in the identification of novel biomarkers for diagnostic
applications. For example, on the basis of a strong correlation found between heart-failure
traits and the expression of Gpnmb in the heart in a mouse cohort, Lin and colleagues have
postulated that the protein may be a useful biomarker for the disease88. Indeed, the authors
observed a striking correlation between heart-failure traits and plasma protein levels in both
mice and human subjects.

Pirie and colleagues8® have recently used systems genetics to examine the pharmacokinetics
and pharmacodynamics of antisense oligonucleotides (ASOs), which can be used to modify
the expression of genes in vivo and have become widely used therapeutic agents. ASOs

exhibit variation in efficacy in patient populations, and the authors have used transcriptomic
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analysis and genome-wide association in the HMDP mouse population to identify several
genes associated with the uptake and potency of ASOs.

Conclusions and future directions

Systems genetics approaches are now being applied to many areas of metabolism research,
and several powerful reference cohorts, both rodent and human, have been developed. In
addition, such studies have generated large datasets, many of which are publicly available.
To date, only a small fraction of researchers are taking advantage of the available datasets,
but this utilization will ideally change as more investigators become aware of the
complementary nature of systems genetics and reductionist approaches.

Given the great technological and analytical advances in human genetics over the past 20
years?, studies in animal models have been suggested to be potentially unnecessary or even
misleading, in terms of understanding common diseases. However, we feel strongly that
studies in animal models will continue to be critical, given their advantages such as the
ability to control the environment, access tissues, direct experimental follow-up and engineer
mutations®1:92, With the identification of GWAS loci for complex human traits, examination
of the overlap between mouse and human genes and pathways has become possible. This
overlap appears to be extensive for traits such as diabetes, obesity and atherosclerosis26:79:93,
thus supporting the conclusion that mouse models indeed capture much of the
pathophysiology of humans.

The development of new technologies is a key driving force in systems genetics. The various
omics technologies have greatly improved over the past decade, and new technologies
applicable to systems genetics have been developed. One particularly powerful technology is
single-cell RNA sequencing®, in which a fraction of the expressed transcripts from a single
cell can be measured quantitatively. Single-cell RNA sequencing has been successfully
applied to various tissues to uncover rare cell populations, such as niche stem cells in the
liver®® or intestine®, and to infer spatial cell population diversity information in a complex
and heterogeneous tissues, such as brain tissue’. Beyond RNA, technologies for other
single-cell omics domains, such as single-cell assay for transposase-accessible chromatin
using sequencing (ATAC-seq) for epigenome profiling and cellular indexing of
transcriptomes and epitopes by sequencing (CITE-seq) for protein measurements, have also
been developed?8-101, Analysing these single-cell profiles across diverse individuals could
provide substantial information regarding the genomic regulation of cell identity and
composition, when they are overlaid with additional data. One recent study has highlighted
the presence of single-cell QTLs by mapping these data onto the genome in blood cells of
~40 individuals'92, Similar application of this technology to other tissues and populations,
as well as overlaying with other “layers’ of biology, offers the potential to reveal which
specific cells and pathways are relevant for disease and function, to provide mechanistic
insights at single-cell resolution.

Several statistical advances have been made, as discussed above. One tool likely to become
increasingly useful in systems genetics is machine learning, which allows for identification
of interconnections within datasets that might be missed through traditional linear or
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nonlinear approaches, such as correlation. Zeevi and colleagues!®3 have measured gut
microbiota composition together with blood glucose levels, dietary habits and physical
activity to predict variable responses in glucose levels after meals. Machine learning was
used to integrate the data and develop an algorithm that accurately predicted glycaemic
responses from microbial composition.

The most important future challenges in metabolism are likely to include the areas of
nutrition, exercise and ageing. Inter-individual differences in response to a dietary challenge
are clearly mediated not only by host genetics but also by the gut microbiome37:104.105,
Large-scale systems genetics studies in humans and rodents are likely to be key in dissecting
such complex host-microbiome—environment interactions. Like diet, exercise clearly has a
large effect on health, but the mechanisms linking persistent exercise to protective effects
against disease, apart from weight gain, are largely unknown8. The past decade has seen
dramatic advances in the identification of mechanisms contributing to ageing, and systems
genetics studies have indicated the key roles of caloric restriction10” and mitochondrial
ribosomal abundancel%. At the genomic level, population-based approaches suggest that the
ability to maintain a healthy metabolic state and prolonged lifespan can be attributed to a
specific ‘resilience’ network of interactions to buffer detrimental mutations9°.
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Box 1 |
Glossary of terms used in this review
Biological networks

Representations of patterns of interaction between biological elements, typically shown
as graphs consisting of nodes (elements) and edges (connections). For example, a protein
interaction network consists of the proteins, with edges between each interacting protein
pair.

BXD recombinant inbred (RI) strain set

A mouse reference population consisting of a set of more than 100 RI strains derived
from the parental strains C57BL/6J (B) and DBA/2J (D).

Diversity Outbred (DO) population

A highly genetically diverse population of outbred mice derived from eight parental
inbred strains.

Epistasis
A non-additive interaction between two or more genetic variations.
Expression QTL (eQTL)

Genetic loci associated with transcript levels. eQTL that reside near the gene whose
expression is regulated are termed ‘local’ or ‘¢/s’ eQTL. Those that are distal are termed
‘trans’ eQTL.

Genome-wide association study (GWAS)

An approach used for mapping the genes underlying complex traits. Typically, large
numbers of individuals (thousands or more) are examined for the trait, for hundreds of
thousands of SNPs spanning the genome. Significant associations between SNP alleles
and the trait are identified with various statistical tests.

Hybrid Mouse Diversity Panel (HMDP)
A reference population consisting of approximately 100 classical inbred strains of mice.
Inbred strain

A strain derived by brother—sister matings from a species for many generations (typically
more than 20). Each member of an inbred strain is homozygous across the genome, and
each member is identical to all others of that strain.

Reductionist approach

An approach to understanding complex traits by reducing them to the interactions of their
parts, such as the use of mice engineered for specific mutations.

Linkage disequilibrium
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The non-random association of alleles of variants (such as SNPs) that typically occur at
genetic loci in populations. Such association complicates the identification of causal
variation and genes in GWAS loci.

Quantitative trait loci (QTL)
Genetic loci contributing to a quantitative trait.
Single-nucleotide polymorphism (SNP)

A genetic variation affecting a single nucleotide. SNPs are the most common variety of
genetic variants and are used for high-density genotyping in GWAS.

Mediation analysis

A statistical method to examine the causal relationships of traits associated with the same
genetic variant.

Gene-by-environment interaction (GXE)

An interaction in which the effect of an environmental factor depends on the genetic
background.
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Fig. 1 |. Integration across biologic scales assayed in three different rodent reference populations.
a, Flow of information. Layers representing molecular or clinical phenotypes are shown as

rectangles. b—d, Example systems genetics studies using mouse reference populations;
different colours represent the haplotypes in three widely used rodent systems genetics
cohorts: DO, HMDP and BXD Rl strains. The two copies of a typical chromosome are
shown for four DO (b) four HMDP (c) and four BXD (d) RI strains. b, The DO mice were
derived by intercrossing eight diverse inbred strains of mice for many generations and are
maintained as an outbred stock (top). In the study shown, Chick and colleges measured the
liver transcriptome and proteome in DO mice30. Association mapping was applied to
identify ¢/s-eQTLS and pQTLs, and mediation analysis was used to model different causal
interactions between these layers. For example, loci could be identified that map to a
transcript only (left) or a protein (Prot) only (middle), or that drive expression of both a
transcript and its corresponding protein (right). ¢, The HMDP consists of approximately 100
‘classic’ inbred strains of mice and RI strains derived from some of these (top). In this
example, Parker and colleagues examined natural variation in proteome and lipidome

Nat Metab. Author manuscript; available in PMC 2020 April 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Seldin et al.

Page 23

structure. They identified proteins showing strong correlation to multiple lipid species and
validated the protein PSMD9 as a novel driver of hepatic lipid metabolism33. d, The BXD
RI set of strains was derived by intercrossing the parental strains C57BL/6J and DBA/2J and
then inbreeding pairs of mice from the F5 generation (top). In the example, Williams and
colleagues integrated genomic, transcriptomic, proteomic, metabolomic and clinical-trait
data obtained from the livers of BXD mice fed chow or high-fat diets!2. Using a
combination of mapping and correlation, the authors identified novel mechanisms of
regulation of the hepatic mitochondrial proteome (bottom).
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Fig. 2 |. Analysis of tissue-specific regulation and tissue-tissue cross-talk by using systems
genetics.

a, Functional enrichment of human type 2 diabetes GWAS loci. GWAS loci associating with
type 2 diabetes were identified (left) and overlaid with multiple open chromatin marks, such
as DNase | hypersensitivity in four metabolically relevant tissues®. The authors observed
notable overlap between the diabetes SNPs and chromatin marks specific for pancreatic
islets (middle). Potential mechanisms driving type 2 diabetes were identified by focusing on
known regulatory functions of islet-specific enhancer regions (right). b—e, Identification of
novel endocrine circuits. b, Gene expression data from multiple tissues of the HMDP were
used to identify correlations between the expression of secreted proteins in one tissue and
overall gene expression in a second tissue. The transcripts exhibiting the strongest
correlation (the right-hand skew) included many known endocrine factors as well as novel
candidates. ¢, Pathway enrichment from the underlying strong correlations was used to
identify processes likely to be perturbed by each candidate endocrine factor. d,e, Secreted
proteins were filtered by using tissue-specific expression profiles, clinical traits and
published literature, and then experimentally validated.
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Fig. 3 |. Application of Mergeomics to identify key regulators of liver and mitochondrial
functions.

a, HMDP mice exhibited variations in hepatic triglyceride (TG) content after a high fat/high
sucrose diet. Liver gene expression was measured across the panel to enable mapping of
traits and analysis of correlation structure. b, Co-expression networks, eQTL and GWAS

loci were generated with the data, which were then formatted and corrected for linkage
disequilibrium. ¢, These data were integrated by using overlap of eQTL and clinical-trait loci
to identify causal-gene sets (specific pathways or networks) involved in fatty liver. d,
Weighted key-driver analysis was performed by incorporating the data into a Bayesian
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network to identify potential drivers of both mitochondrial networks and hepatic TG levels.
e, Two selected key-driver genes were experimentally validated in cell culture and mouse
models, thus leading to a proposed mechanism through which Pk/rand Chchdé drive fatty
liver formation through effects on mitochondrial function.
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Fig. 4 |. Examples of genetic interactions involved in metabolic traits.
a, GXG interactions. Gene-targeted mutations exhibit strikingly different effects on traits

(methamphetamine sensitivity, blood glucose or acoustic startle response) depending on the
genetic background. b, GXE interactions. Striking differences in fat-mass gain in response to
a high-fat/high-sucrose diet were observed among HMDP strains of mice. ¢, GxSex
interactions. Isolated mitochondria from adipose tissue of males and females of three HMDP
mouse strains were monitored for oxygen consumption with a Seahorse bioanalyzer. Image
reprinted from ref. 8, with permission from Elsevier. Whereas differences between sexes in
C57BL/6 were modest, A/J and C3H/HeJ showed large sex effects. OCR, oxygen-

consumption ratio.
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