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Abstract

The common forms of metabolic diseases are highly complex, involving hundreds of genes, 

environmental and lifestyle factors, age-related changes, sex differences and gut–microbiome 

interactions. Systems genetics is a population-based approach to address this complexity. In 

contrast to commonly used ‘reductionist’ approaches, such as gain or loss of function, that 

examine one element at a time, systems genetics uses high-throughput ‘omics’ technologies to 

quantitatively assess the many molecular differences among individuals in a population and then to 

relate these to physiologic functions or disease states. Unlike genome-wide association studies, 

systems genetics seeks to go beyond the identification of disease-causing genes to understand 

higher-order interactions at the molecular level. The purpose of this review is to introduce the 

systems genetics applications in the areas of metabolic and cardiovascular disease. Here, we 

explain how large clinical and omics-level data and databases from both human and animal 

populations are available to help researchers place genes in the context of pathways and networks 

and formulate hypotheses that can then be experimentally examined. We provide lists of such 

databases and examples of the integration of reductionist and systems genetics data. Among the 

important applications emerging is the development of improved nutritional and pharmacological 

strategies to address the rise of metabolic diseases.
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Most diseases and other traits exhibit complex forms of inheritance resulting from the 

combined effects of multiple genetic variants together with environmental factors. The 

sequencing of the human genome enabled genome-wide association studies (GWAS) that 

have now identified more than 6,000 genomic loci for common diseases (Box 1). These 

studies have revealed that most common disorders, such as obesity, diabetes and heart 

disease, have a genetic architecture that is highly heterogeneous, involving small 

contributions from hundreds or thousands of genetic variants, each explaining a tiny fraction 

of the total genetic susceptibility.

Systems genetics, also termed integrative genetics, was developed to address such 

complexity. Systems genetics uses high-throughput omics technologies, such as DNA 

sequencing, RNA sequencing or mass-spectrometry-based metabolomics, to quantify 

molecular phenotypes alongside the clinical phenotypes in populations of humans or 

experimental organisms. The data can then be integrated through correlation, co-mapping or 

various modelling approaches to generate hypotheses relating the molecular and clinical 

traits. The underlying concept is that genetic variation affects complex clinical traits by 

perturbing molecular traits, such as gene expression or metabolite levels, and thus through 

measuring these traits as a function of genetic variation (that is, in individuals in a 

population), their relationships can be understood1.

Systems genetics studies with populations of model organisms, such as rats, mice, flies or 

yeast, have been particularly useful for examining the overall architecture of complex traits, 

including issues such as gene-by-gene (GxG) and gene-by-environment (GxE) interactions. 

Studies in model organisms have an important advantage in that environmental factors and 

other sources of heterogeneity can be controlled. In addition, studies of model organisms 

allow access to relevant tissues, which is generally not feasible in human studies. The 

genetic loci contributing to clinical or physiological traits in animal models are generally 

termed quantitative trait loci (QTL; Box 1). The loci contributing to molecular traits are 

similarly designated expression QTL (eQTL) for transcript levels, protein QTL (pQTL) for 

protein levels and so forth.

Systems genetics approaches have recently been reviewed2–4, and our focus in this Review 

is discussing how systems genetics data can be of use to researchers in the metabolism field. 

We first provide an overview of systems genetics, including examples relevant to 

metabolism research. In particular, we have attempted to illustrate how systems genetics data 

can be useful to reductionist researchers. We then discuss certain specialized aspects such as 

network modelling, non-additive interactions and therapeutic applications. We conclude with 

a summary and some thoughts on future applications. We note that, owing to space 

limitations, we have not included a historical perspective of the field, and we have omitted 

discussion of systems genetics in organisms such as yeast and flies.

Systems genetics applications in metabolism research

Comparison of reductionist and systems genetics approaches

Metabolism research is now dominated by reductionist (traditional) approaches, such as 

gain- or loss-of-function studies in mice. These approaches are powerful in that they 
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establish causality, but they have some important limitations that hinder full understanding 

of the architecture of complex traits, as discussed below. In contrast, systems genetics 

studies must generally be combined with experimental studies to conclusively establish 

causality. Therefore, a combination of the two approaches is most powerful.

One constraint with the purely reductionist approach is that it usually involves perturbation 

of a single gene in a single genetic background and thus is unlikely to detect genetic 

interactions, such as modifier genes5. In other words, a genetic variation acts in the context 

of the genetic background, and by examining the effect of a gain or loss of function in only a 

single genetic background, an incomplete view of the function of the gene will be obtained. 

For example, engineered mutations in mice often exhibit strikingly different phenotypes 

when examined in different strains, as discussed below6. Another consideration with some 

reductionist approaches is that the perturbations are often unrealistically extreme (for 

example, complete knockout) and thus do not correspond to the more subtle variations 

observed for complex traits in nature. A complete knockout can have very broad phenotypic 

effects that may perturb genes far from the core functional genes (as in the ‘omnigenic’ 

model discussed below).

An important feature of systems genetics approaches is that they are relatively unbiased. 

Reductionist scientists usually generate hypotheses based on results from previous studies, 

and thus some genes or pathways are explored in great depth, whereas others are ignored. A 

recent study7 has found that more than one-quarter of coding genes have never been the 

subject of a single paper, and most other genes have been largely neglected, whereas 

approximately 2,000 genes (less than 10% of the coding genome) have hogged most of the 

attention. Systems genetics hypotheses, in contrast, are driven by natural variation paired 

with global measures of omics data and are therefore relatively unbiased.

The power of natural variation derives from the multitude of genetic perturbations that occur 

in all combinations in a population. Generally, a large fraction of genes and pathways are 

perturbed. For example, in human populations, the expression of nearly every gene is 

influenced by genetic variation8. Thus, in terms of generating hypotheses, systems genetic 

approaches offer fairly complete coverage of biologic processes and incorporate both 

perturbations and interactions of realistic effect sizes. In a sense, systems genetics studies 

can be viewed as a global mutagenesis screen9.

Systems genetics study design

A typical systems genetics study involves the following steps: (1) identification of an 

important question, or set of questions, that could be addressed with a systems genetics 

study; (2) selection of an appropriate population, on the basis of the trait of interest and the 

required statistical power; (3) phenotyping of the population for physiological, pathological 

and molecular traits of interest; (4) integration of the resulting data through statistical 

methods and genetic mapping; (5) formulation of hypotheses, such as potential causal 

relationships; and (6) experimental perturbations, generally in a single genetic background, 

to test the hypotheses2.
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An overriding consideration in developing such studies is the cost. Animal studies generally 

require hundreds of individuals, and human studies may involve thousands. Detailed 

phenotyping is critical to the success of a study, and the generation of omics-level data is 

usually very expensive. Therefore, the study must crucially be designed to enable important 

questions to be addressed, and it should have a clear purpose rather than simply aiming to 

collect a large amount of data. The study should also be designed so that the resulting data 

might be useful to other researchers in the field.

Several animal ‘reference’ populations have been developed specifically for systems 

genetics studies (Box 1 and Table 1). These include panels of diverse rodent inbred strains, 

such as the Hybrid Mouse Diversity Panel (HMDP)10, the C57BL/6J × DBA/2J (BXD) 

panel of recombinant inbred (RI) mouse strains4,11,12 and the Collaborative Cross (CC)13, a 

set of RI mouse strains derived from an intercross of eight highly diverse inbred strains. The 

eight strains used in the CC were also used to develop an outbred population known as the 

Diversity Outbred (DO) panel14, which is maintained at The Jackson Laboratory. The 

genetic structure of these reference populations is illustrated in Fig. 1. Each resource has 

certain advantages and disadvantages. The DO is much more diverse than the others and 

comprises approximately eight times as many total SNPs. However, because the HMDP and 

BXD RI strains are inbred, replication and time-course studies are feasible. There are many 

additional resources that are proving useful for systems genetics studies, such as various 

outbred mouse populations15,16, advanced intercross lines17, heterogeneous stock rats18 and 

congenic strains19.

Likewise, several human cohorts have been developed for the collection of broad clinical, 

metabolic and molecular phenotypes, such as the Metabolic Syndrome in Men cohort 

(METSIM)20, Twins UK21 and the Framingham Heart Study22–24. Some human studies, 

such as the Genotype-Tissue Expression (GTEx) project8 and the Stockholm–Tartu 

Atherosclerosis Reverse Networks Engineering Task (STARNET) study25, have generated 

global transcriptomic data from many human tissues. Primary, transformed and induced 

pluripotent cell lines derived from different individuals have also been used to integrate traits 

such as drug response and gene expression26–29.

Integration across biologic scales

Various biologic scales can be examined in a systems genetics study (illustration and 

examples in Fig. 1a). Among the scales, DNA variation is unique in that information only 

flows out, thus providing a causal anchor for modelling studies. Therefore, pairwise analysis 

of genetic variants such as single-nucleotide polymorphisms (SNPs) against intermediate 

molecular traits (such as those in the epigenome, spliceome, transcriptome, proteome and 

metabolome) can collectively reveal the information flow from DNA sequence to these 

additional layers (Fig. 1a). Information can also flow in reverse: just as metabolites, proteins 

and transcripts can affect the epigenome, so can proteins affect the transcriptome, and so on. 

Information also flows horizontally in a biologic scale; for example, proteins form 

complexes with each other. Biological processes occur as a cumulative result of interactions 

within and between layers, and molecular traits can be linked to physiologic and clinical 

traits.
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There are three basic operations that can be used to integrate multi-omic data spanning 

multiple biologic scales, each of which is highlighted in Fig. 1b–d. The most straightforward 

is correlation. As information travels across scales, such as from transcript levels to protein 

levels, some degree of correlation would be expected in many cases. Correlation structure 

would also frequently be expected between a clinical trait and the genes that are either 

causal or reactive for that trait, although caution must be taken, because correlation can 

occur for many different reasons, including artefacts such as batch effects. Another 

important method, given sufficient power, is mapping traits from different scales (such as a 

clinical trait and a transcript-level trait) to the same genetic locus. Such co-mapping raises 

the possibility of one trait being causal for the second. A third approach for the integration 

of systems genetics data is statistical modelling, discussed below.

A nice illustration of how systems genetics approaches can dissect the flow of biological 

information is provided by some studies that have comprehensively examined the 

relationships between the levels of transcripts and the proteins that they encode as a function 

of genetic variation. These studies, using the HMDP and DO mouse populations (Fig. 1b 

and Box 1), have observed unexpectedly little correlation between transcript levels and 

protein levels, with an average correlation coefficient of approximately 0.3, and also 

correspondingly little overlap between eQTL and pQTL30,31. These discordances probably 

have several causes, as discussed in ref. 32. For example, protein turnover can be influenced 

by genetic variation, and thus some loci may affect protein levels (pQTL) but not transcript 

levels (eQTL) (Fig. 1b). Another important cause appears to be related to protein–protein 

interactions; for example, if several different proteins interact to form a complex, any excess 

subunits produced will probably be degraded. Recently, Parker and colleagues have extended 

such analyses and focused on correlation structures between protein levels and lipid levels, 

thus leading to the identification of some novel lipid-metabolism pathways33 (Fig. 1c).

Similarly, systems genetics can be used to connect molecular traits to physiologic functions. 

For example, in an elegant systems genetics study, Williams and colleagues12 have analysed 

the BXD mouse panel and revealed the regulation of mitochondria in the liver (Fig. 1d). The 

mice were subjected to normal chow or high-fat diets and then comprehensively 

characterized for global molecular phenotypes (transcriptome, proteome and metabolome) 

as well as clinical/physiologic traits (oral glucose tolerance and exercise regimen). The 

authors observed many co-regulated genes and proteins, whose integration with phenotypic 

traits highlighted a major role of mitochondrial function in mediating health status. Layering 

of molecular phenotypes on top of genetic associations allowed the authors to uncover 

genetic loci driving higher-order respiratory functions, such as the formation of electron-

transport-chain supercomplexes in the liver. Recently, Jha and colleagues have used liver and 

plasma lipidomics from the same population to identify new lipid species and co-regulated 

modules34,35. By overlaying these data with phenotypic observations, the authors identified 

new lipid species and modules, thereby bridging previously studied molecular phenotypes 

(for example, proteomics) with mitochondrially mediated hepatic lipid metabolism. These 

observations were integrated with plasma lipidomics measures in the same mice to identify 

circulating biomarkers of lipid content in the liver, such as cardiolipin.
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Systems genetics is also useful for the integration of genetic and environmental effects. 

Whereas GWAS results reflect only the heritable component of a trait, molecular and 

clinical phenotypes can capture both genetic and environmental factors36. The microbiome 

‘scale’ is highly responsive to the environment and also strongly interconnected with the 

host metabolism37.

Integration through statistical modelling

According to the concept that information from DNA is unidirectional, causal pathways can 

be modelled, and whether certain ‘mediators’, such as transcript levels or chromatin marks, 

mediate the effect of DNA variation on a complex phenotype can be determined. For 

example, if both a clinical trait and the levels of a transcript are correlated and map to the 

same locus, researchers can condition on the transcript levels and ask whether a significant 

association between the locus and the clinical trait remains. If so, the results suggest that the 

effect on the clinical trait is not mediated by the transcript. Various causal inference tests 

have been developed and are typically referred to as mediation analysis38,39. Mendelian 

randomization is one form of mediation analysis that has especially strict criteria in that the 

mediator (such as the levels of a protein) is required to explain all of the association between 

a SNP and a complex trait. Whereas Mendelian randomization studies typically require quite 

large sample sizes (on the order of 100,000 individuals in humans), they have been 

particularly informative in dissecting causal influence between intermediate physiologic 

traits and pathophysiology. For example, mediation has been used to suggest that elevated 

plasma high-density-lipoprotein levels do not have a causal role in cardiovascular disease40.

Several statistical methods have been developed in recent years to facilitate multi-omics 

integration41,42. These methods can be broadly categorized into two types: those purely 

relying on data patterns across omics domains and those incorporating biological 

information. An example of the former category is Multi-omics Factor Analysis (MOFA)43, 

which uses dimension-reduction techniques to infer hidden factors reflecting biological and 

technical variability across multi-omics data types gathered from a study population. An 

example of the latter category is Mergeomics44,45, which builds on the explicit hypothesis 

that multi-omics modalities are functionally related and together can provide information on 

interconnected biological processes (discussed below).

An important advance in applying systems genetics to human populations has been the 

development of methods that integrate gene expression data with summary association 

statistics from GWAS to impute genes whose cis-regulated expression is associated with 

complex traits46. For example, Gusev and colleagues have used expression data from blood 

and adipose tissue to impute gene expression into large GWAS data; they have identified 69 

genes significantly associated with obesity-related traits. Additional tools have been 

developed (http://predictdb.hakyimlab.org/) and compared47 to impute eQTL data onto 

larger GWAS datasets. Beyond eQTL data, imputation packages are being developed for 

protein and metabolite QTL measures. These packages also enable users to estimate 

variances explained by a given molecular layer to a trait of interest (https://github.com/

hakyimlab/summary-gwas-imputation/).
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Examples of the types of questions that can be asked by using available systems genetics 
data

Using systems genetics data is not just for geneticists or statisticians. Indeed, some of the 

most impactful science at present is performed by reductionist investigators using systems 

genetics data to generate hypotheses or support results. Crucially, systems genetics enables 

the formulation of unbiased hypotheses that can then be tested through experimental 

approaches. Below, we provide several examples of the types of questions that have been 

addressed with publicly available systems genetics data (Table 1).

Which gene at a GWAS locus is causal?—Identification of the causal gene 

underlying a GWAS locus can be challenging because of linkage disequilibrium (the 

correlation structure among genetic variants at the locus) and the ability of genetic variants 

to affect the expression of genes at distances up to hundreds of kilobases. In the absence of 

other evidence, the prime candidate is often assumed to be the one nearest to the peak SNP. 

One approach is to ask whether the lead SNP is associated with the expression of a gene at 

the locus, thus providing a potential mechanistic link. Variation in gene expression can be 

examined through technologies such as RNA sequencing if relevant tissue samples are 

available from some individuals in the population or can be imputed as discussed above48. In 

contrast to Mendelian disorders, in complex traits, genetic variation is most often regulatory, 

that is, involving enhancers or promoters rather than encoding protein49. In addition to 

testing for changes in gene expression, epigenetic- and chromosomal-interaction databases 

can be examined to identify regions that are likely to be enhancers or to bind specific 

transcription factors33,50. For example, Kessler and colleagues were interested in follow-up 

study of a GWAS locus for coronary artery disease that contained the candidate gene 

GUCY1A3, encoding a subunit of guanylyl cyclase51. They used previously published 

systems genetics data in both humans and mice to show that GUCY1A3 expression is 

regulated by the lead SNP (that is, that it constitutes a local eQTL). They also showed that 

the SNP is present in an enhancer region and affects the binding of the transcription factor 

ZED1. There are now many such examples of the use of systems genetics data to prioritize 

candidate genes at human, mouse and rat loci for metabolic and cardiovascular 

traits14,16,52,53.

What are the likely pathways contributing to a trait of interest?—Beyond 

suggesting candidate genes, systems genetics has also been used to uncover pathways 

underlying complex traits. For example, Kojima and colleagues have recently identified 

CD47 as a key regulator of efferocytosis in atherosclerotic lesions54. Given the complexity 

and heterogeneity of the disease, pinpointing the pathways underlying this efferocytotic 

signal would have been challenging through reductionist approaches. Therefore, the authors 

interrogated mouse (HMDP) and human (Biobank of Karolinska Endarterectomy (BiKE) 

study) atherosclerotic-plaque expression data, specifically looking for pathways enriched in 

genes correlated with CD47. This analysis suggested an inflammatory role of CD47, 

specifically in the expression of tumour necrosis factor, which was then validated 

experimentally.
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Which tissue is likely to mediate the effects of genetic variation on disease 
susceptibility?—Because each cell type and tissue exhibits a specific set of regulatory 

elements and epigenetic modifications, thus resulting in differences in chromatin properties 

such as DNase I hypersensitivity, the locations of peak GWAS SNPs along the genome can 

provide information about the likely cell types and tissues in which the SNPs contribute to 

disease phenotypes. For example Mahajan and colleagues have generated a comprehensive 

dataset of GWAS loci contributing to type 2 diabetes and overlaid it with epigenomic data, 

thereby implicating pancreatic islets as a key regulatory tissue50. This study has identified 

several enhancers that are located within islets and may mechanistically link specific genetic 

variants to the progression of type 2 diabetes (Fig. 2a). A new nonparametric visualization 

tool has recently been reported in which users can upload GWAS SNPs and view cell-type-

specific enrichment of chromatin marks available from ENCODE data55.

Are gain- or loss-of-function studies consistent with population data?—Studies 

on a single genetic background can often be difficult to translate to population-level 

variation. This translation can be accomplished in a relatively straightforward fashion by 

assessing mapping or correlation structure by using systems genetics data. For example, 

Rajbhandari and colleagues have recently identified a novel role of the cytokine IL-10 in 

suppressing obesity and insulin resistance through adipose-tissue beiging56. Because these 

studies were performed on a C57BL/6J background, the authors were interested in 

determining whether relationships between IL-10 and metabolic phenotypes persisted on a 

population scale. The authors confirmed a positive correlation among IL-10, insulin 

resistance (HOMA-IR score) and adiposity in both mouse (HMDP) and human (METSIM) 

systems genetics data.

Which molecular signatures account for cellular heterogeneity?—Cell types 

often exhibit substantial functional heterogeneity, which is often defined by a small set of 

markers. For example, various lymphocytes and monocyte or macrophage subtypes have 

historically been identified with various cell-surface markers. However, the overall 

functional heterogeneity of such subtypes has generally not been studied at the population 

level. Buscher and colleagues sought to understand the functional heterogeneity of 

macrophages and their responses to inflammatory mediators such as bacterial 

lipopolysaccharide57. The authors first surveyed published human and mouse macrophage 

expression data under normal or lipopolysaccharide-stimulated conditions. Whereas gene 

expression signatures showed striking heterogeneity between mouse strains or human 

subjects, the authors identified a set of core signature genes for the inflammatory insult. 

Expression of these core genes elucidated conserved regulators of NF-κB responsive 

elements and also predicted macrophage-associated tumour survival58.

What factors mediate tissue–tissue cross-talk?—Metabolic homeostasis involves 

tight interactions across multiple tissues, but elucidating the nature of such tissue–tissue 

cross-talk has been challenging. Seldin and colleagues59 have developed a statistical 

approach to identify novel tissue–tissue endocrine circuits by using expression data from 

multiple tissues of a mouse population (Fig. 2b–e). They postulated, on the basis of 

hundreds of secreted proteins having no known function, that many endocrine factors remain 
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to be identified. The first step in the method was identifying secreted proteins in one tissue 

that exhibit high correlation with the total transcriptome of a second tissue (Fig. 2b). The 

next step was identifying which pathways underlie these strong correlations by determining 

whether gene-set enrichment was present for each potential endocrine factor (Fig. 2c). These 

candidate endocrine proteins were then assessed for tissue-specific enrichment and 

relationships with clinical-trait data (Fig. 2d). Finally, predicted tissue–tissue circuits were 

validated experimentally in cell-culture or mouse models (Fig. 2e). Using this approach, the 

authors have identified a novel adipose–skeletal muscle circuit mediated by Lcn5 that 

stimulates mitochondrial activity and insulin sensitivity in skeletal muscle. Other 

mechanisms of tissue–tissue communication, including novel factors mediating adipose-

tissue thermogenesis and the cardiac starvation response, have also been uncovered59. 

Similar approaches could potentially be used to identify cross-talk mediated by metabolites, 

circulating microRNAs or exosomes; in addition, population-based single-cell-sequencing 

data could be used to examine cell–cell communication within a tissue60.

Specialized topics

Systems genetics and network modelling

Systems genetics emphasizes the interconnections among biological spaces, depicting how 

molecules are organized and function together in complex systems, thus making pathways 

and networks a natural and intuitive framework for systems genetics. Pathways depict 

cascades of reactions, interactions or signalling events among a group of biological 

molecules that perform a particular function. For instance, the cholesterol-biosynthesis 

pathway involves a series of enzymes, substrates and products that perform the function of 

synthesizing cholesterol, and the insulin signalling pathway depicts how insulin interacts 

with its receptors and triggers downstream signalling cascades and activation of various 

transcriptional programs that regulate glucose and lipid homeostasis. In recent decades, 

numerous databases have been established to curate various knowledgebased biological 

processes and pathways. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 

(KEGG), Biocarta, Reactome and MsigDB are among the most widely used (Table 1). 

Various network-modelling approaches have been compared and comprehensively 

reviewed61.

Weighted gene co-expression network analysis (WGCNA)—Among network-

modelling approaches, WGCNA is the most commonly used. It uses the correlation patterns 

among molecular traits across a series of samples to search for higher-level co-regulation 

structures and to define cohesive ‘modules’, each containing a group of molecules that are 

not only directly correlated but also share similarities in their relationships with the other 

molecules62. Each module is biologically meaningful and contains genes that share 

regulatory mechanisms, perform similar functions or relate to similar diseases63,64. 

Numerous studies have applied WGCNA to studying the molecular mechanisms underlying 

metabolic disorders65. More recently, multiscale embedded gene co-expression network 

analysis (MEGENA) has emerged as a complementary approach to WGCNA for 

coexpression-based network construction. Although MEGENA is also based on correlation 

structure, it uses a different algorithm and addresses several limitations of WGCNA, 
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including large and less coherent modules and mutually exclusive modules that are forced to 

include distinct molecules66.

Excellent examples of the use of WGCNA to derive mechanistic understanding include 

studies by Farber and colleagues on bone mineral density (BMD) in mice67–69. The authors 

initially quantified BMD and global transcript levels in a panel of inbred strains of mice 

(HMDP). They then generated co-expression networks by using WGCNA and layered them 

on top of trait-association and eQTL data. The results implicated the gene Asxl2 as a driver 

of a co-expression network of genes involved in the differentiation of osteoclasts, and this 

finding was experimentally confirmed67,69. Subsequent network biology studies led to 

insights into the cellspecific processes that regulate BMD68,70. In particular, Calabrese and 

colleagues have used the above network to predict causal genes in human BMD GWAS loci 

on the basis of the premise that genes underlying disease are often functionally related. In 

this way, the authors predicted and inferred the functions for 30 of 64 human GWAS loci 

and experimentally validated two of these68.

Mergeomics—Mergeomics is another pathway- and network-based tool that has been 

successfully used to identify pathways and genes underlying complex metabolic disorders, 

as highlighted in Fig. 3. Unlike other tools that require all multi-omics data types to be 

derived from the same population, Mergeomics uses only summary-level multi-omics data, 

which can be derived from different studies or even species. Briefly, multi-layer disease-

association signals are mapped to pathways or networks comprising interacting molecules to 

reveal pathogenic processes perturbed by individual omics variants as well as those affected 

by multiple omics layers. Recent applications of Mergeomics have yielded substantial 

insights into the tissue-specific biological processes and regulatory genes involved in 

individual diseases and those shared between diseases71.

The application of Mergeomics to identify pathways and genes underlying steatosis in a 

mouse model of nonalcoholic fatty liver disease is illustrated in Fig. 3. The tool has been 

used to identify pathway and ‘key-driver’ genes, most of which converged on mitochondrial 

functions. Experimental perturbation of several of the novel key-driver genes including Pklr 
and Chchd6, confirmed their effects on liver fat and mitochondrial oxidation72. In another 

study, von Scheidt and colleagues have used Mergeomics to integrate data from mouse and 

human GWAS studies along with expression profiling to identify pathways contributing to 

atherosclerosis, revealing ~70% sharing of disease pathways between the two species73.

GWAS applications—Boyle and Pritchard have recently proposed an omnigenic model 

positing that gene regulatory networks are sufficiently dense to cause some genetic 

variations to ‘percolate’ throughout the network in a relevant tissue74. The resulting GWAS 

loci may thus represent genetic variation in genes whose functions are only distantly 

unrelated to traits. In this model, ‘core’ genes that are more central in the networks are more 

likely to have a major effect on diseases and serve as more effective targets to modulate 

susceptibility or outcome. If the omnigenic model indeed proves correct, network modelling 

will be useful for the identification of these core genes.
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Genetic interactions

One important application of systems genetics is to help understand genetic interactions. The 

term epistasis refers to the phenomenon in which variations in different genes combine and 

result in a phenotype different from the expectation based on the individual variation (that is, 

the effects are not additive). Thus, epistasis involves GxG interactions. Genetic variations 

can also interact in a non-additive manner with environmental factors (GxE) or sex (GxSex). 

Such genetic interactions are commonly observed in studies of experimental organisms, such 

as mice, for which the genetic background and the environment can be rigorously controlled 

(Fig. 4). However, these interactions have been difficult to study in humans, in which 

complications include the small effect sizes of most common genetic factors as well as the 

inability to assess the environment75. Thus, with some exceptions, most human GWAS 

studies have revealed little evidence of non-additive risk effects76–78.

A clear example of the importance of GxG interactions has come from experiments on 

targeted mutations studied on two or more genetic backgrounds in mice. For example, 

Sitting and colleagues6 have examined the effects of three different engineered mutations on 

behavioural traits in multiple genetic backgrounds and observed striking differences, ranging 

from strong to negligible, in each case (Fig. 4a). Such dependence on the genetic 

background appears to be the rule rather than the exception. These findings suggest that the 

effects of an engineered mutation often cannot be generalized to even different individuals of 

the same species, and thus, unsurprisingly, attempts to generalize from rodents to humans 

frequently fail.

The occurrence of GxE interactions in studies with mice or rats is also pervasive. Examples 

of experimental perturbations that have been studied include responses to diet, drugs, noise, 

temperature and forced exercise, as well as many other perturbations. For example, when the 

HMDP population of 100 inbred strains was exposed to a high-fat, high-sucrose diet for 8 

weeks, the changes in body fat ranged from no increase whatsoever to an approximately 

sixfold increase79 (Fig. 4b). The integration of these phenotypes with microbiome and gene 

expression data has led to the identification of genes and microbes contributing to dietary 

responsiveness80.

Sex differences can have profound effects on complex traits and susceptibility to 

diseases81,82. Unfortunately, they have been greatly understudied in metabolism. In fact, 

studies using model organisms such as mice have frequently examined only males, with 

exceptions such as ageing studies, which have tended to focus only on females83. A recent 

study has systematically examined GxSex interactions for approximately 50 metabolic traits, 

including body fat, insulin resistance, plasma lipids and organ weights in the HMDP 

resource84. All traits with the exception of blood-cell parameters exhibited sex differences, 

and the effects of sex were often dependent on the genetic background. Whereas male mice 

of certain strains gained more fat than female mice in response to a high-fat diet, the reverse 

was true for certain other strains. Integration of the clinical-trait data with adipose gene 

expression data across the strains indicated an important role of adipose mitochondrial 

function in these sex differences. Indeed, studies of isolated mitochondria from several of 

the strains validated striking GxSex differences that were also associated with traits such as 

diet-induced obesity and insulin resistance84 (Fig. 4c). Notably, in contrast to many other 
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strains, C57BL/6J mice exhibited no significant differences in adipose mitochondrial activity 

and abundance between sexes, thus illustrating the limitations of exclusively studying a 

single genotype.

Why might studies in experimental organisms demonstrate pervasive non-additive 

interactions, whereas studies in humans reveal only modest evidence for such interactions? 

Basic biologic differences may contribute but would seem unlikely to entirely account for 

the discrepancy. In a recent essay, Sackton and Hartl75 have distinguished ‘statistical 

epistasis’ and ‘physiologic epistasis’ and argue that the latter can be pervasive and still result 

in negligible levels of the former. Because additive models are fit by least squares, some of 

the effects of epistasis are tallied with additive or dominant inheritance. In addition, the 

ability to detect statistical epistasis depends on the frequencies of the multi-locus genotypes. 

Thus, one possible explanation for why non-additive interactions are missed in human 

studies compared with animal studies is the relatively smaller effect sizes of the loci 

contributing to complex traits and the greater heterogeneity, which is difficult to control. 

Indeed, studies in human populations of variations with large effect sizes, such as Mendelian 

traits or eQTLs, have provided strong evidence of non-additive interactions5,76

Therapeutic and diagnostic applications

An approach to drug targeting termed The Connectivity Map (CMAP)85 is ideally suited to 

systems genetics data. The approach uses global expression data obtained after treatment of 

cell lines by many different drugs. A more recent version of CMAP called LINC1000 has 

been developed, incorporating more drugs and more cell lines86. The concept is that if a 

disorder exhibiting a pattern of expression opposite from that of one of the surveyed drugs, 

that drug or a related drug might mitigate or reverse the disorder. Conversely, if a disease-

gene pattern mimics that of a drug, the drug may contribute to toxicity or side effects. For 

example, in one study, endoplasmic reticulum stress pathways were induced by either 

injection of 4-phenyl butyrate or overexpression of X-box-binding protein 1 in genetically 

obese ob/ob mice. Liver gene expression patterns in the mice were then analysed with 

CMAP, which prioritized Celastrol as a potential regulator of endoplasmic reticulum stress 

pathways. The drug was then experimentally validated to have potent anti-obesity effects in 

mice85,87. Systems genetics approaches would appear to offer many advantages for not only 

the identification of novel therapeutics but also understanding of off-target effects and 

variations in responses among individuals.

Systems genetics can also be useful in the identification of novel biomarkers for diagnostic 

applications. For example, on the basis of a strong correlation found between heart-failure 

traits and the expression of Gpnmb in the heart in a mouse cohort, Lin and colleagues have 

postulated that the protein may be a useful biomarker for the disease88. Indeed, the authors 

observed a striking correlation between heart-failure traits and plasma protein levels in both 

mice and human subjects.

Pirie and colleagues89 have recently used systems genetics to examine the pharmacokinetics 

and pharmacodynamics of antisense oligonucleotides (ASOs), which can be used to modify 

the expression of genes in vivo and have become widely used therapeutic agents. ASOs 

exhibit variation in efficacy in patient populations, and the authors have used transcriptomic 
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analysis and genome-wide association in the HMDP mouse population to identify several 

genes associated with the uptake and potency of ASOs.

Conclusions and future directions

Systems genetics approaches are now being applied to many areas of metabolism research, 

and several powerful reference cohorts, both rodent and human, have been developed. In 

addition, such studies have generated large datasets, many of which are publicly available. 

To date, only a small fraction of researchers are taking advantage of the available datasets, 

but this utilization will ideally change as more investigators become aware of the 

complementary nature of systems genetics and reductionist approaches.

Given the great technological and analytical advances in human genetics over the past 20 

years90, studies in animal models have been suggested to be potentially unnecessary or even 

misleading, in terms of understanding common diseases. However, we feel strongly that 

studies in animal models will continue to be critical, given their advantages such as the 

ability to control the environment, access tissues, direct experimental follow-up and engineer 

mutations91,92. With the identification of GWAS loci for complex human traits, examination 

of the overlap between mouse and human genes and pathways has become possible. This 

overlap appears to be extensive for traits such as diabetes, obesity and atherosclerosis26,79,93, 

thus supporting the conclusion that mouse models indeed capture much of the 

pathophysiology of humans.

The development of new technologies is a key driving force in systems genetics. The various 

omics technologies have greatly improved over the past decade, and new technologies 

applicable to systems genetics have been developed. One particularly powerful technology is 

single-cell RNA sequencing94, in which a fraction of the expressed transcripts from a single 

cell can be measured quantitatively. Single-cell RNA sequencing has been successfully 

applied to various tissues to uncover rare cell populations, such as niche stem cells in the 

liver95 or intestine96, and to infer spatial cell population diversity information in a complex 

and heterogeneous tissues, such as brain tissue97. Beyond RNA, technologies for other 

single-cell omics domains, such as single-cell assay for transposase-accessible chromatin 

using sequencing (ATAC-seq) for epigenome profiling and cellular indexing of 

transcriptomes and epitopes by sequencing (CITE-seq) for protein measurements, have also 

been developed98–101. Analysing these single-cell profiles across diverse individuals could 

provide substantial information regarding the genomic regulation of cell identity and 

composition, when they are overlaid with additional data. One recent study has highlighted 

the presence of single-cell QTLs by mapping these data onto the genome in blood cells of 

~40 individuals102. Similar application of this technology to other tissues and populations, 

as well as overlaying with other ‘layers’ of biology, offers the potential to reveal which 

specific cells and pathways are relevant for disease and function, to provide mechanistic 

insights at single-cell resolution.

Several statistical advances have been made, as discussed above. One tool likely to become 

increasingly useful in systems genetics is machine learning, which allows for identification 

of interconnections within datasets that might be missed through traditional linear or 
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nonlinear approaches, such as correlation. Zeevi and colleagues103 have measured gut 

microbiota composition together with blood glucose levels, dietary habits and physical 

activity to predict variable responses in glucose levels after meals. Machine learning was 

used to integrate the data and develop an algorithm that accurately predicted glycaemic 

responses from microbial composition.

The most important future challenges in metabolism are likely to include the areas of 

nutrition, exercise and ageing. Inter-individual differences in response to a dietary challenge 

are clearly mediated not only by host genetics but also by the gut microbiome37,104,105. 

Large-scale systems genetics studies in humans and rodents are likely to be key in dissecting 

such complex host–microbiome–environment interactions. Like diet, exercise clearly has a 

large effect on health, but the mechanisms linking persistent exercise to protective effects 

against disease, apart from weight gain, are largely unknown106. The past decade has seen 

dramatic advances in the identification of mechanisms contributing to ageing, and systems 

genetics studies have indicated the key roles of caloric restriction107 and mitochondrial 

ribosomal abundance108. At the genomic level, population-based approaches suggest that the 

ability to maintain a healthy metabolic state and prolonged lifespan can be attributed to a 

specific ‘resilience’ network of interactions to buffer detrimental mutations109.
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Box 1 |

Glossary of terms used in this review

Biological networks

Representations of patterns of interaction between biological elements, typically shown 

as graphs consisting of nodes (elements) and edges (connections). For example, a protein 

interaction network consists of the proteins, with edges between each interacting protein 

pair.

BXD recombinant inbred (RI) strain set

A mouse reference population consisting of a set of more than 100 RI strains derived 

from the parental strains C57BL/6J (B) and DBA/2J (D).

Diversity Outbred (DO) population

A highly genetically diverse population of outbred mice derived from eight parental 

inbred strains.

Epistasis

A non-additive interaction between two or more genetic variations.

Expression QTL (eQTL)

Genetic loci associated with transcript levels. eQTL that reside near the gene whose 

expression is regulated are termed ‘local’ or ‘cis’ eQTL. Those that are distal are termed 

‘trans’ eQTL.

Genome-wide association study (GWAS)

An approach used for mapping the genes underlying complex traits. Typically, large 

numbers of individuals (thousands or more) are examined for the trait, for hundreds of 

thousands of SNPs spanning the genome. Significant associations between SNP alleles 

and the trait are identified with various statistical tests.

Hybrid Mouse Diversity Panel (HMDP)

A reference population consisting of approximately 100 classical inbred strains of mice.

Inbred strain

A strain derived by brother–sister matings from a species for many generations (typically 

more than 20). Each member of an inbred strain is homozygous across the genome, and 

each member is identical to all others of that strain.

Reductionist approach

An approach to understanding complex traits by reducing them to the interactions of their 

parts, such as the use of mice engineered for specific mutations.

Linkage disequilibrium
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The non-random association of alleles of variants (such as SNPs) that typically occur at 

genetic loci in populations. Such association complicates the identification of causal 

variation and genes in GWAS loci.

Quantitative trait loci (QTL)

Genetic loci contributing to a quantitative trait.

Single-nucleotide polymorphism (SNP)

A genetic variation affecting a single nucleotide. SNPs are the most common variety of 

genetic variants and are used for high-density genotyping in GWAS.

Mediation analysis

A statistical method to examine the causal relationships of traits associated with the same 

genetic variant.

Gene-by-environment interaction (GxE)

An interaction in which the effect of an environmental factor depends on the genetic 

background.
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Fig. 1 |. Integration across biologic scales assayed in three different rodent reference populations.
a, Flow of information. Layers representing molecular or clinical phenotypes are shown as 

rectangles. b–d, Example systems genetics studies using mouse reference populations; 

different colours represent the haplotypes in three widely used rodent systems genetics 

cohorts: DO, HMDP and BXD RI strains. The two copies of a typical chromosome are 

shown for four DO (b) four HMDP (c) and four BXD (d) RI strains. b, The DO mice were 

derived by intercrossing eight diverse inbred strains of mice for many generations and are 

maintained as an outbred stock (top). In the study shown, Chick and colleges measured the 

liver transcriptome and proteome in DO mice30. Association mapping was applied to 

identify cis-eQTLS and pQTLs, and mediation analysis was used to model different causal 

interactions between these layers. For example, loci could be identified that map to a 

transcript only (left) or a protein (Prot) only (middle), or that drive expression of both a 

transcript and its corresponding protein (right). c, The HMDP consists of approximately 100 

‘classic’ inbred strains of mice and RI strains derived from some of these (top). In this 

example, Parker and colleagues examined natural variation in proteome and lipidome 
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structure. They identified proteins showing strong correlation to multiple lipid species and 

validated the protein PSMD9 as a novel driver of hepatic lipid metabolism33. d, The BXD 

RI set of strains was derived by intercrossing the parental strains C57BL/6J and DBA/2J and 

then inbreeding pairs of mice from the F2 generation (top). In the example, Williams and 

colleagues integrated genomic, transcriptomic, proteomic, metabolomic and clinical-trait 

data obtained from the livers of BXD mice fed chow or high-fat diets12. Using a 

combination of mapping and correlation, the authors identified novel mechanisms of 

regulation of the hepatic mitochondrial proteome (bottom).
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Fig. 2 |. Analysis of tissue-specific regulation and tissue–tissue cross-talk by using systems 
genetics.
a, Functional enrichment of human type 2 diabetes GWAS loci. GWAS loci associating with 

type 2 diabetes were identified (left) and overlaid with multiple open chromatin marks, such 

as DNase I hypersensitivity in four metabolically relevant tissues50. The authors observed 

notable overlap between the diabetes SNPs and chromatin marks specific for pancreatic 

islets (middle). Potential mechanisms driving type 2 diabetes were identified by focusing on 

known regulatory functions of islet-specific enhancer regions (right). b–e, Identification of 

novel endocrine circuits. b, Gene expression data from multiple tissues of the HMDP were 

used to identify correlations between the expression of secreted proteins in one tissue and 

overall gene expression in a second tissue. The transcripts exhibiting the strongest 

correlation (the right-hand skew) included many known endocrine factors as well as novel 

candidates. c, Pathway enrichment from the underlying strong correlations was used to 

identify processes likely to be perturbed by each candidate endocrine factor. d,e, Secreted 

proteins were filtered by using tissue-specific expression profiles, clinical traits and 

published literature, and then experimentally validated.
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Fig. 3 |. Application of Mergeomics to identify key regulators of liver and mitochondrial 
functions.
a, HMDP mice exhibited variations in hepatic triglyceride (TG) content after a high fat/high 

sucrose diet. Liver gene expression was measured across the panel to enable mapping of 

traits and analysis of correlation structure. b, Co-expression networks, eQTL and GWAS 

loci were generated with the data, which were then formatted and corrected for linkage 

disequilibrium. c, These data were integrated by using overlap of eQTL and clinical-trait loci 

to identify causal-gene sets (specific pathways or networks) involved in fatty liver. d, 

Weighted key-driver analysis was performed by incorporating the data into a Bayesian 
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network to identify potential drivers of both mitochondrial networks and hepatic TG levels. 

e, Two selected key-driver genes were experimentally validated in cell culture and mouse 

models, thus leading to a proposed mechanism through which Pklr and Chchd6 drive fatty 

liver formation through effects on mitochondrial function.
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Fig. 4 |. Examples of genetic interactions involved in metabolic traits.
a, GxG interactions. Gene-targeted mutations exhibit strikingly different effects on traits 

(methamphetamine sensitivity, blood glucose or acoustic startle response) depending on the 

genetic background. b, GxE interactions. Striking differences in fat-mass gain in response to 

a high-fat/high-sucrose diet were observed among HMDP strains of mice. c, GxSex 

interactions. Isolated mitochondria from adipose tissue of males and females of three HMDP 

mouse strains were monitored for oxygen consumption with a Seahorse bioanalyzer. Image 

reprinted from ref. 84, with permission from Elsevier. Whereas differences between sexes in 

C57BL/6 were modest, A/J and C3H/HeJ showed large sex effects. OCR, oxygen-

consumption ratio.
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