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ARTICLE

Neural complexity is a common denominator of
human consciousness across diverse regimes of
cortical dynamics
Joel Frohlich 1,14✉, Jeffrey N. Chiang2, Pedro A. M. Mediano 3,4, Mark Nespeca5,6, Vidya Saravanapandian7,

Daniel Toker1, John Dell’Italia8, Joerg F. Hipp9, Shafali S. Jeste7,15, Catherine J. Chu10, Lynne M. Bird 11,12 &

Martin M. Monti 1,13

What is the common denominator of consciousness across divergent regimes of cortical

dynamics? Does consciousness show itself in decibels or in bits? To address these questions,

we introduce a testbed for evaluating electroencephalogram (EEG) biomarkers of con-

sciousness using dissociations between neural oscillations and consciousness caused by rare

genetic disorders. Children with Angelman syndrome (AS) exhibit sleep-like neural dynamics

during wakefulness. Conversely, children with duplication 15q11.2-13.1 syndrome (Dup15q)

exhibit wake-like neural dynamics during non-rapid eye movement (NREM) sleep. To identify

highly generalizable biomarkers of consciousness, we trained regularized logistic regression

classifiers on EEG data from wakefulness and NREM sleep in children with AS using both

entropy measures of neural complexity and spectral (i.e., neural oscillatory) EEG features. For

each set of features, we then validated these classifiers using EEG from neurotypical (NT)

children and abnormal EEGs from children with Dup15q. Our results show that the classifi-

cation performance of entropy-based EEG biomarkers of conscious state is not upper-

bounded by that of spectral EEG features, which are outperformed by entropy features.

Entropy-based biomarkers of consciousness may thus be highly adaptable and should be

investigated further in situations where spectral EEG features have shown limited success,

such as detecting covert consciousness or anesthesia awareness.

https://doi.org/10.1038/s42003-022-04331-7 OPEN
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EEG is an attractive modality for obtaining readouts of cor-
tical activity and conscious state, as it is a direct, non-
invasive measure of neural activity that is inexpensive and

easily deployed at the bedside or in the operating room. Many EEG
features have been identified as candidate biomarkers of conscious
state1,2. In spontaneous EEG, features of interest include: (1) spectral
features, such as delta (1–4Hz) power3,4 and (2) entropy or “com-
plexity” estimates such as Lempel-Ziv complexity (LZ)5–7. Further-
more, both spectral and entropy measures can reflect activity at single
channels (SC) or statistical dependencies, i.e., functional connectivity
(FC), between channels. When EEG recordings are highly abnormal,
it remains unclear whether the classification performance of entropy
features is upper-bounded by spectral features, or if entropy might
convey additional information.

By utilizing EEG data recorded from patients in the vegetative
state (also known as unresponsive wakefulness syndrome) or
minimally conscious state, as well as EEG data recorded from
healthy volunteers in non-rapid eye movement (NREM) sleep or
under anesthesia, prior studies3,7,8 have described EEG bio-
markers of consciousness based on both spectral and complexity/
entropy features. These approaches are informative and well
suited to discovering EEG features that contrast conscious and
unconscious states within a particular clinical spectrum, such as
disorders of consciousness (DOC), or a particular manipulation,
such as anesthesia induction. In the former case, however, the
ground truth may not be fully known due to a high rate of
misdiagnosis9–11, whereas in the latter case, generalizability to
instances of cortical pathology may be limited.

Here, we introduce an alternative approach that leverages two rare
genetic disorders with abnormal EEG phenotypes to challenge EEG
biomarkers of conscious state by testing their generalizability across
diverse oscillatory regimes. Specifically, we examined (1) a cohort of
children with Angelman syndrome (AS), caused by deletions of
maternal 15q11.2-q13.1 and other etiologies that inhibit UBE3A
gene expression12, (2) a cohort of children with the opposite genetic
lesion, duplication 15q11.2-q13.1 syndrome (Dup15q)13, and (3) a
cohort of neurotypical (NT) children. Despite severe developmental
delays in AS and Dup15q, all three groups exhibit the conventional
behavioral traits associated with consciousness during wakefulness
and diminished consciousness during NREM sleep. For instance,
children with AS show the same level of social imitation of novel
actions as NT children14, and children with AS who are nonverbal
may communicate using gestures or alternative communication
devices15,16. Nonetheless, the EEG phenotypes of these three groups
are starkly different. Specifically, children with AS display low-
frequency delta activity in their wake EEGs typical of slow-wave
sleep or anesthesia, even when the children are fully awake and
conscious17. Conversely, children with Dup15q display high-
frequency beta activity in their EEGs that can persist into NREM
sleep, often resulting in no identifiable slow-wave sleep18. Utilizing
these two rare genetic disorders together with NT children, we have
created a testbed for biomarkers of conscious state.

To assess whether the sensitivity of EEG entropy for con-
sciousness is upper-bounded by that of spectral EEG features, we
used binary classifiers to identify features that are sensitive to
consciousness even under abnormal conditions in AS and then
applied these features to two independent validation sets: wake
and NREM sleep EEGs from NT children and children with
Dup15q. Specifically, we examined the following EEG features:
(1) absolute and relative spectral power as SC measures, and an
FC measure, the debiased weighted phase lag index (dwPLI), in
six octaves: slow (0.5–1.0 Hz), δ1 (1–2 Hz), δ2 (2–4 Hz), θ
(4–8 Hz), α-σ (8–16 Hz), and β (16–32 Hz), and (2) signal
entropy, including SC measures such as LZ and context tree
weighting (CTW), modified multiscale entropy (mMSE), per-
mutation entropy (PermEn), and an FC measure, the weighted
symbolic mutual information (wSMI), which captures spatio-
temporal complexity. For detailed descriptions of the EEG fea-
tures, see “Methods”. Our results show that entropy measures
convey information beyond that of spectral measures and out-
perform them as biomarkers for detecting consciousness across
oscillatory regimes.

Results
We acquired spontaneous wake and NREM sleep EEG from NT
children, children with AS, and children with Dup15q. See
Table 1 for details including sample size, age, sex, and data length
and Supplementary Data 1 for channel-averaged EEG feature
values and demographic variables. Written consent to participate
in the study was obtained from families according to the
Declaration of Helsinki and was approved by the institutional
review boards of the participating sites. All data were collected as
spontaneous 19-channel EEG using the international 10–20
montage. Data containing seizures were not analyzed. Note that
no participant in our study had a disorder of consciousness, i.e.,
periods during which participants were awake coincided with
consciousness in both NT children and children with 15q
disorders.

Approach and rationale. Given that oscillatory spectral features
are dissociated from conscious state in AS and Dup15q, we asked
whether EEG entropy features would show a similar dissociation.
We thus compared spectral and entropy EEG features head-to-
head as biomarkers of consciousness to determine whether the
classification performance of entropy features is upper-bounded
by that of spectral EEG features. Although we previously inves-
tigated this question in AS alone17, our current investigation
builds on the prior study by using EEG data from AS together
with data from its genetic converse, Dup15q, as well as NT
children, to build a testbed for finding EEG biomarkers of con-
scious state that generalize across diverse oscillatory regimes. In
the main analysis, we chose sets of spectral and entropy features
based on their ability to separate wakefulness and NREM sleep in

Table 1 Sample size, age, sex ratio, and data length for each cohort.

Cohort N Age (months) Sex ratio (M:F) Wake data length (minutes) Sleep data length (minutes)

AS (all EEGs) 43 50.2 ± 30.8 29:18 14.2 ± 24.3 18.7 ± 18.4
AS (participants) 34 50.6 ± 30.7 10:7 15.9 ± 27.4 19.3 ± 20.1
NT 37 79.9 ± 13.9 11:10 5.7 ± 3.4 13.1 ± 7.2
Dup15q 11 69.3 ± 38.1 6:5 18.1 ± 4.5 28.3 ± 10.0

Age and data length are reported above as mean ± std. Because some participants with Angelman syndrome (AS) had multiple EEGs, we report separate descriptives for all EEGs (first row) and for
unique participants after first averaging within participants (second row). N= 25 participants with AS had partial deletions of 15q, with the remaining participants having other etiologies, e.g., UBE3A point
mutations. N= 26 participants with AS had one dataset retained following preprocessing, N= 7 participants had two datasets retained, and N= 1 participant had three datasets retained. N= 9
participants with Dup15q had an extranumerary chromosome (i.e., isodicentric duplication or tetrasomy 15q) while the remaining N= 2 participants had interstitial duplications (i.e., trisomy 15q). See
Extended Data for channel-averaged EEG feature values, as well as age, sex, genotype, cohort, conscious state, and usable data length for each participant’s dataset.
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children with AS; we then trained binary classifiers on these
features in AS data and validated these classifiers using NT and
Dup15q data. This approach evaluated whether features that
distinguish consciousness from unconsciousness in AS general-
ized to other oscillatory regimes, both normal (NT) and abnormal
(Dup15q). A possible shortcoming of this approach, however, is
that even if the features yielded generalize to other oscillatory
regimes, the feature selection is arguably idiosyncratic to AS and
thus overly restrictive. For this reason, we also performed a
supplementary analysis in which we chose sets of spectral and
entropy features based on their ability to separate wakefulness
and NREM sleep in NT children with normal EEGs. Binary
classifiers were then trained using these EEG features in NT data
and validated using abnormal EEGs from children with AS and
Dup15q.

EEG features were averaged across all 19 channels for SC
measures or separately across short-range and long-range channel
pairings for FC measures (Supplementary Fig. 1). Following
averaging, all EEG features were pooled across cohorts and
z-scored. We then utilized two complementary approaches for
EEG feature selection. In one approach, we fit linear mixed models
(LMMs) to each feature in the AS data, using conscious state and
random intercepts to predict EEG features. We then selected
features with large regression coefficients for conscious state,
specifically, |β| > 0.5. In another approach, we applied principal
component analysis (PCA) to EEG features (wakefulness – sleep)
derived from AS data to exploit interactions between features. PCA
was applied separately to EEG features in each category (see Table 2
for categories). For each feature category, we then selected the
minimum number of PCs needed to explain at least 90% of the
variance, and PCA loadings were then applied to data from all
participants. Unlike the former approach using LMMs, this
approach may take advantage of the potentially synergistic
interactions between individual EEG features which combine into
PCs. Having selected features, regularized logistic regression (RLR)
models were subsequently tuned using cross-validation for
hyperparameter selection, trained within the AS data, and evaluated
on two external datasets (NT and Dup15q) to assess classification
performance. See Fig. 1 for an overview of the data analysis pipeline
and Table 2 for a complete list of EEG feature abbreviations.

Behavioral responsiveness. Developmental assessments, per-
formed for nearly all children with AS (97% of participants) and
Dup15q (91% of participants), quantified each child’s behavioral
responsiveness during wakefulness, e.g., in the form of receptive
and expressive language abilities (see “Methods”). Note that these
assessments were not performed during EEG, as this would have
been impractical given delayed developmental abilities in these
children. However, in the case of children with AS, assessments
were usually performed the same day as EEG (65% of recordings)
or within one day of EEG (84% of recordings). During wakeful-
ness, children with AS and Dup15q were behaviorally responsive
and clearly conscious, as indicated by measurable expressive and
receptive language abilities (see Supplementary Table 1 and
Supplementary Table 2). Note that this is consistent with results
of both the AS Natural History Study (n= 250)19 and a prior
study of Dup15q (n= 41)20 in which all children displayed
measurable communication abilities, even if they were considered
“nonverbal” in the conventional sense. If, conversely, it were the
case that some children lacked behavioral responsiveness, one
would expect to see a flooring effect in these data. In fact, no
flooring effect was observed in our data or the studies cited above.

EEG spectral power and connectivity. Most NT participants
(N= 37) exhibited an α-σ band EEG peak during wakefulness,

with a slowing toward the θ band as the modal peak frequency
across channels during NREM sleep (Fig. 2a). By contrast, nearly
all EEGs from participants with AS (N= 34 participants, 43
EEGs) showed peaks in the δ2 band during both wakefulness and
NREM sleep (Fig. 2b). Also, note that even beyond the δ2 band,
absolute power for participants with AS during wakefulness is
greater than that of the other two cohorts at nearly all frequencies
lower than the β band (Supplementary Fig. 2). The modal EEG
peak frequency of participants with Dup15q (N= 11) appeared in
the β band during wakefulness, with a slowing toward the α-σ
band during NREM sleep (Fig. 2c). The Dup15q cohort also
showed substantially greater variance in EEG power than other
cohorts (Supplementary Fig. 2c, d) as indicated by 95% con-
fidence intervals (CIs). Note that no peak was detected for two
participants with Dup15q during wakefulness and one participant
with Dup15q during NREM sleep. See Supplementary Fig. 2 for
channel-averaged spectra for each group during wakefulness and
NREM sleep and Supplementary Data 2 for EEG peak data.

For all three cohorts, both short-range and long-range dwPLI
spectra appeared highly similar (Supplementary Fig. 3). Partici-
pants with AS displayed the greatest dwPLI during wakefulness in
the δ2 and θ bands; during sleep, dwPLI is was elevated in the δ2
band, but somewhat diminished in the θ band (Supplementary
Fig. 3a, b). As with spectral power, dwPLI also appeared highly
similar between wakefulness and sleep in AS, with the greatest
connectivity occurring in the δ2 and θ bands (Supplementary
Fig. 3a, b), whereas NT and Dup15q cohorts generally exhibited
greater dwPLI values during sleep. Participants with Dup15q
showed elevated dwPLI in the slow (s) and low α-σ bands during
sleep but not wakefulness (Supplementary Fig. 3c, d). Finally, NT
participants (Supplementary Fig. 3e, f) showed generally elevated
dwPLI during sleep, with large peaks in the θ and α-σ bands. The
maximum dwPLI in the α-σ band occurred at a lower frequency
during wake than during sleep.

Machine learning classification. Using simulated data, we con-
firmed that our choice of window length for entropy measures
was appropriate (Supplementary Fig. 4). Moreover, in our actual
data, we confirmed using LMMs that EEG data length did not
significantly influence EEG feature estimates (Supplementary
Fig. 5); see Supplementary Results for further details. In RLR
models fitted prior to averaging features across channels, we
observed low spatial variability of classifier performance in scalp
topographies (Supplementary Fig. 6, Supplementary Fig. 7), with
the only exception being three frontal channels (F7, F8, and Fp1)
in the NT validation set (Supplementary Fig. 7aii). This local
noise, possibly related to ocular artifacts which could reduce
signal entropy during wakefulness, washes out in the spatial
average we used to evaluate classifiers, thus supporting our
decision to average features across channels. To inspect the per-
formance of each individual feature, we performed univariate
classifications without regularization and computed the area
under the curve (AUC), accuracy, precision, recall, and specificity
for all features (Figs. 3, 4; see Supplementary Data 3). The results
show an overall pattern of stronger performance for entropy
rather than spectral features (Fig. 2d, Supplementary Fig. 8). For
the results that follow, we selected between 2 and 5 individual
EEG features in each category listed in Table 2 based on LMMs
and 2–5 PCs which explained at least 90% of the wakefulness—
NREM sleep variance in AS data in each category (see Table 2 for
selected features and beta coefficients from LMMs). For PCA
loadings and normalized eigenvalues, as well as regression coef-
ficients from LMMs, see Supplementary Fig. 9 and Supplemen-
tary Fig. 10. For receiver operating characteristic (ROC) curve
data, see Supplementary Data 4.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04331-7 ARTICLE

COMMUNICATIONS BIOLOGY | (2022)5:1374 | https://doi.org/10.1038/s42003-022-04331-7 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


For 12 out of 18 comparisons of entropy versus spectral
features listed in Table 3, entropy features performed significantly
better than spectral features [Figs. 5, 6, p < 0.05, false discovery
rate (FDR) corrected], and in nine such comparisons, results were
highly significant (Figs. 5, 6, p < 10−10, FDR corrected); see
Supplementary Data 5 for AUC histogram bin data (bootstrapped
resamples). In those comparisons for which entropy features did
not perform significantly better than spectral features, we noted
performance saturation, i.e., RLR classifiers yielded AUCs > 90%
for both entropy and spectral features. Spectral features never
yielded larger AUCs than entropy features, i.e., AUCs were

numerically larger for entropy features than for spectral features
in all 18 comparisons, even those that were not significant. Most
classifiers (25 out of 30) performed significantly better than
chance (Supplementary Table 3, p < 0.05 using one-tailed tests,
FDR corrected). Of the remaining five classifiers, four were
trained on fcSpectral features and yielded AUCs < 50%, i.e., these
classifiers yielded worse-than-chance performance, though our
one-tailed tests only evaluated statistical significance for better-
than-chance performance. Similar results were obtained even
when the AUC for AS was computed with 10-fold cross-
validation rather than from training performance (Supplementary

Table 2 Abbreviations for EEG features.

Abbreviation EEG feature name EEG feature type Betas Selected

mMSE Modified multiscale entropy scEntropy −0.43 FALSE
LZ Lempel-Ziv complexity scEntropy −0.42 FALSE
CTW Context-tree weighted complexity scEntropy −0.44 FALSE
PermEn8 16–40 Hz Permutation entropy (τ= 8ms) scEntropy −1.09 TRUE
PermEn16 8–20 Hz Permutation entropy (τ= 16 ms) scEntropy −0.68 TRUE
PermEn32 4–10 Hz Permutation entropy (τ= 32ms) scEntropy −0.57 TRUE
PermEn64 2–5 Hz Permutation entropy (τ= 64ms) scEntropy −1.56 TRUE
PermEn128 1–2.5 Hz Permutation entropy (τ= 128ms) scEntropy 0.03 FALSE
SRwSMI8 Short-range 16–40 Hz weighted symbolic mutual information

(τ= 8ms)
fcEntropy 1.12 TRUE

SRwSMI16 Short-range 8–20 Hz weighted symbolic mutual information
(τ= 16 ms)

fcEntropy 0.24 FALSE

SRwSMI32 Short-range 4–10 Hz weighted symbolic mutual information
(τ= 32 ms)

fcEntropy −0.22 FALSE

SRwSMI64 Short-range 2–5 Hz weighted symbolic mutual information (τ= 64ms) fcEntropy 0.16 FALSE
SRwSMI128 Short-range 1–2.5 Hz weighted symbolic mutual information

(τ= 128ms)
fcEntropy 0.21 FALSE

LRwSMI8 Long-range 16–40 Hz weighted symbolic mutual information
(τ= 8ms)

fcEntropy −0.69 TRUE

LRwSMI16 Long-range 8–20 Hz weighted symbolic mutual information
(τ= 16 ms)

fcEntropy −0.56 TRUE

LRwSMI32 Long-range 4–10 Hz weighted symbolic mutual information
(τ= 32 ms)

fcEntropy −0.60 TRUE

LRwSMI64 Long-range 2–5 Hz weighted symbolic mutual information (τ= 64ms) fcEntropy −0.57 TRUE
LRwSMI128 Long-range 1–2.5 Hz weighted symbolic mutual information

(τ= 128ms)
fcEntropy 0.03 FALSE

sA Absolute 0.5–1.0 Hz (slow) power scSpectralA 0.00 FALSE
δ1A Absolute 1–2 Hz (delta1) power scSpectralA 0.92 TRUE
δ2A Absolute 2–4 Hz (delta2) power scSpectralA 0.35 FALSE
θA Absolute 4–8 Hz (theta) power scSpectralA 0.16 FALSE
α-σA Absolute 8–16 Hz (alpha-sigma) power scSpectralA 0.50 TRUE
βA Absolute 16–32 Hz (beta) power scSpectralA −0.04 FALSE
sR Relative 0.5–1.0 Hz (slow) power scSpectralR 0.03 FALSE
δ1R Relative 1–2 Hz (delta1) power scSpectralR 1.10 TRUE
δ2R Relative 2–4 Hz (delta2) power scSpectralR −0.18 FALSE
θR Relative 4–8 Hz (theta) power scSpectralR −0.85 TRUE
α-σR Relative 8–16 Hz (alpha-sigma) power scSpectralR −0.03 FALSE
βR Relative 16–32 Hz (beta) power scSpectralR −0.10 FALSE
SRdwPLIs Short-range 0.5–1.0 Hz (slow) debiased weighted phase lag index fcSpectral 0.03 FALSE
SRdwPLIδ1 Short-range 1–2 Hz debiased weighted phase lag index fcSpectral 0.25 FALSE
SRdwPLIδ2 Short-range 2–4 Hz debiased weighted phase lag index fcSpectral −0.01 FALSE
SRdwPLIθ Short-range 4–8 Hz (theta) debiased weighted phase lag index fcSpectral −0.51 TRUE
SRdwPLIα-σ Short-range 8–16 Hz (alpha-sigma) debiased weighted phase lag index fcSpectral 0.21 FALSE
SRdwPLIβ Short-range 16–32 Hz (beta) debiased weighted phase lag index fcSpectral 0.32 FALSE
LRdwPLIs Long-rage 0.5–1.0 Hz (slow) debiased weighted phase lag index fcSpectral 0.00 FALSE
LRdwPLIδ1 Long-rage 1–2 Hz debiased weighted phase lag index fcSpectral 0.22 FALSE
LRdwPLIδ2 Long-rage 2–4 Hz debiased weighted phase lag index fcSpectral −0.02 FALSE
LRdwPLIθ Long-rage 4–8 Hz (theta) debiased weighted phase lag index fcSpectral −0.54 TRUE
LRdwPLIα-σ Long-rage 8–16 Hz (alpha-sigma) debiased weighted phase lag index fcSpectral 0.21 FALSE
LRdwPLIβ Long-rage 16–32 Hz (beta) debiased weighted phase lag index fcSpectral 0.18 FALSE

The column “Betas” gives the beta coefficients from the term CONSCIOUS in the linear mixed model (LMM) used to predict the EEG feature after training on AS data. The column “Selected” indicates
whether each feature was selected for machine learning classification based on |β| > 0.5.
scEntropy single-channel entropy, fcEntropy entropy-based functional connectivity, scSpectralA absolute spectral power, scSpectralR relative spectral power, fcSpectral spectral-based functional connectivity.
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Table 4). To test the robustness of k in the k-fold cross-validation
used to fit the regularization parameter and to report cross-
validation performance in AS, we also performed the analysis
with 5-fold cross-validation and observed highly similar results
(Supplementary Table 5). A supplementary analysis also directly
compared entropy and spectral EEG features after performing

feature selection and training based on NT data, with results that
were also favorable to entropy features (see Supplementary
Results, Tables S6 and S7).

Univariate classifications without regularization demonstrated
that only entropy features achieved AUCs ≥ 90% for all three
datasets (Fig. 2d, Fig. 4; see Supplementary Data 3). Specifically,
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the features that achieved this high level of performance were
PermEn8, PermEn16, PermEn32, PermEn64, LRwSMI8, and
LRwSMI64. No spectral EEG features achieved the same level of
univariate classification performance across all three datasets.
When using other performance measures, such as accuracy,
precision (i.e., positive predictive value), and sensitivity (i.e., true
positive rate or recall), we also found that only entropy features
achieved ≥ 90% performance across all three datasets (Supple-
mentary Fig. 8a–c, Fig. 3b, c). Only specificity [i.e., true negative
rate, or 1 - (false positive rate)] was an exception in this regard,
with spectral features sA and δ2A achieving ≥ 90% specificity in

all three datasets (Supplementary Fig. 8d). These spectral features
rarely mislabeled NREM sleep as consciousness (likely because
low frequency oscillations indicating unconsciousness are present
in the AS dataset during NREM sleep) but more often failed to
detect consciousness (likely because low frequency oscillations are
also present in the AS dataset during wakefulness).

Entropy decomposition. To further investigate how signal
entropy varies with conscious state in AS despite the presence of
high amplitude delta oscillations during both NREM sleep and

Fig. 1 Schematic overview of the data analysis pipeline. Data from children with AS, NT children, and children with Dup15q were analyzed during
wakefulness and NREM sleep. Children with AS generally have either genetic mutations or partial 15q deletions affecting the gene UBE3A, and an abnormal,
high voltage delta EEG phenotype during both wakefulness (ai) and NREM sleep (aii). NT children generally display low voltage, fast EEG activity during
wakefulness (bi) and high amplitude, slow activity during NREM sleep (bii). Children with Dup15q have partial trisomy or tetrasomy of 15q and an abnormal
EEG phenotype characterized by fast β activity during wakefulness (ci) and, to some extent, NREM sleep (cii). We extracted spectral (d) and entropy (e)
features from wake and NREM sleep EEG recordings from the above cohorts. We then computed the mean across channels (a global average for single
channel measures) or channel-pairs (a short-range or long-range average for functional connectivity measures) and subsequently z-scored these values
(f). Next, we used two approaches for machine learning: feature selection was performed using linear mixed models (LMMs) to find features in each
category that best differentiated wake from NREM sleep in AS as judged by regression coefficients (g). As an alternative, we also performed feature
selection using PCA on the wakefulness—sleep feature contrast in AS and utilized the loadings from the first N PCs needed to explain ≥90% of the
variance (h). In both approaches, we fit the regularized hyperparameter using 10-fold cross validation on AS data (i). Having determined this parameter, we
then trained a regularized logistic regression classifier on AS data (j) and utilized two separate validations sets comprised of Dup15q (k) and NT (l) data.
Finally, we repeated analysis steps h–l with the roles of NT and AS data switched (m), i.e., we trained classifiers on NT data and used Dup15q and AS data
as validation sets. For channel-averaged EEG feature values and demographic variables, see Supplementary Data 1.

Fig. 2 EEG entropy measures of neural complexity are the common denominator of consciousness under conditions of both normal (neurotypical) and
abnormal (Angelman syndrome, Duplication 15q11.2-13.1 syndrome) cortical dynamics. The above histograms report the modal peak frequency across
channels for NT children (a), children with AS (b), and children with Dup15q (c). The Venn diagram reports EEG features that yield an area under the
receiver operating characteristics curve (AUC)≥ 90% for NT children (green circle, a), children AS (blue circle, b), and children with Dup15q (red circle, c).
Abbreviations of entropy features are written in black font, spectral features in blue font, and functional connectivity (FC) features in italicized font. The
intersection of all three groups is reported in (d) and contains only entropy features, thus demonstrating that entropy is a common denominator of
consciousness across different populations with diverse cortical dynamics. Source data are presented in Supplementary Data 2 (a, b, c) and Supplementary
Data 3 (d). NREMS Non-rapid eye movement sleep.
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wakefulness, we performed an entropy decomposition that
quantified the extent to which signal amplitude versus non-
amplitude factors (e.g., phase or phase × amplitude interactions)
drive changes in signal entropy between wakefulness and NREM
sleep (see Supplementary Data 6). We focused our entropy
decomposition on PermEn, given that we found large sleep/
wakefulness regression coefficients in AS using PermEn measures
with LMMs. As seen in Fig. 7, PermEn increased in wakefulness
relative to NREM sleep in most cases. Given that we were pri-
marily interested in whether entropy changes are due to signal
amplitude, we summed together phase and interaction terms to
create a non-amplitude term. For each AS dataset, we randomly
sampled 20 5-s segments of usable EEG data. Below, we report
statistics using FDR corrected P-values and the Cohen’s d effect
sizes. Changes in PermEn due to non-amplitude factors (Fig. 7)
were significantly greater than those due to signal amplitude with
moderate effect sizes for PermEn8 (p= 0.00014, FDR corrected,
d= 0.60) and PermEn64 (p= 4.83 × 10−5, FDR corrected, d=
0.58). Note that for the 1–2.5 Hz and 2–5 Hz PermEn, the
entropy change driven by amplitude is very small with very low
variance (Fig. 7), likely due to the AS delta EEG phenotype that is
largely unchanged by conscious state. The above results demon-
strate that changes in entropy that occur with NREM sleep in AS

are not merely attributable to more trivial concurrent changes in
signal amplitude or spectral power.

Discussion
In this work, we obtained dissociations between cortical oscilla-
tions and consciousness in rare genetic disorders and used these
disorders as a testbed for identifying EEG biomarkers of con-
sciousness that generalize across different oscillatory regimes,
including highly abnormal cortical dynamics. We found that (1)
the performance of entropy or “complexity” features is not upper-
bounded by the performance of spectral features, (2) entropy
features generalized significantly better than spectral features for
most comparisons and (3) spectral features never outperformed
entropy features when classifiers were trained on AS data.
Additional analyses revealed that spatial distributions of classi-
fiers’ performances across the scalp were nearly homogeneous
(Supplementary Figs. 6, 7), and that the strongest individual
features were those belonging to PermEn or LRwSMI categories
(Figs. 2, 3, and 4). Our results demonstrate that EEG entropy
measures are highly adaptable and may perform accurately even
under pathological and abnormal cortical conditions. These
findings challenge current opinion in the field, as reflected by a

Fig. 3 Classification performance of EEG features in each cohort. Receiver operating characteristic curves color-coded by category (a) for each the AS
training set (1), NT validation set (2), and the Dup15q validation set (3) all show larger AUCs for entropy features than for corresponding (i.e., single-
channel or functional connectivity) spectral features. Features selected using PCA are shown with solid lines and features selected using LMMs are shown
with dashes lines. To visualize the usefulness of models trained on individual features, we plotted precision (i.e., positive predictive value) versus recall (i.e.,
sensitivity) for each feature color-coded by category (b); regularization was not performed for univariate models. Diamonds represent features selected
using LMMs and stars represent PCs of a given feature category. To better visualize individual features, we separately plotted the upper quadrant of each
precision versus recall plot with features labeled (c). For brevity, abbreviations are shorted to cut information given in color-coded labels, i.e., yellow
symbols omit “wSMI”, green symbols omit “dwPLI”, blue symbols omit “A”, and purple symbols omit “R”. PCs (stars) are labeled according to rank
(proportion of variance explained). Source data are presented in Supplementary Data 4 (a) and Supplementary Data 3 (b, c).
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recent survey of consciousness researchers21; fewer than 10% of
participants listed non-integration entropy measures in their top
three most trusted neural measures of consciousness, with several
spectral measures, including local synchrony, ranked above
entropy. In contradiction to these widely held opinions, we
conclude based on our findings that consciousness largely reveals
itself in bits (i.e., entropy features) rather than decibels (i.e.,
spectral features). Based on the generalizability of entropy fea-
tures across oscillatory regimes, we conclude that entropy is a
common denominator of consciousness across diverse and
divergent regimes of cortical dynamics

Beyond spectral EEG measures. Loss of consciousness often
reveals itself in the form of slow spectral features such as high
amplitude delta oscillations (HADOs), e.g., as observed during
slow wave sleep, anesthesia, absence seizures, and DOC4,22,23.
Nonetheless, convergent evidence from a variety of contexts

suggests that HADOs are insufficient to demonstrate an absence
of consciousness1. Individuals with AS17,24, Rett syndrome25,
Lennox-Gastaut syndrome26, non-convulsive status epilepticus27,
mitochondrial diseases28, hepatic encephalopathy29, post-
operative delirium30, and “phantom” absence seizures not
affecting consciousness31 have all demonstrated HADOs during
the awake and conscious state. Similarly, pharmacological chal-
lenge with drugs such as gamma-hydroxybutyrate (GHB)32,33,
baclofen34, atropine35,36, carbamazepine and tiagabine37, as well
as some highly potent psychedelic tryptamines38,39, all induce
slow EEG activity suggestive of loss of consciousness while
nonetheless preserving, or even phenomenologically enhancing38,
consciousness. Considering these lines of evidence, alternative
markers of consciousness are greatly needed to detect covert
consciousness amongst a background of diffuse delta waves.

Compared with spectral features, we found that entropy
features that were matched on measure type (i.e., SC or FC)

Fig. 4 Unregularized logistic regression univariate classifier performance for all channel-averaged variables. Model fitting was performed without
regularization for univariate classification. AUC area under ROC curve, ACC accuracy, PPV positive predictive value (precision), TPR true positive rate
(recall or sensitivity), TNR true negative rate (specificity). Asterisks denote features selected using LMMs. Source data are presented in Supplementary
Data 3.

Table 3 Comparison of areas under the curve (AUC) of receiver operating characteristic plots for entropy versus spectral
measures.

Train on Feature selection Cohort N Test Larger AUC PFDR Entropy AUC Spectral AUC

AS PCA AS 43 fcEntropy vs fcSpectral Entropy 1.40E−41 0.938 0.747
AS PCA NT 37 fcEntropy vs fcSpectral Entropy 2.40E−119 1.000 0.240
AS PCA Dup15q 11 fcEntropy vs fcSpectral Entropy 2.70E−05 0.719 0.446
AS PCA AS 43 scEntropy vs scSpectralA Entropy 4.75E−29 0.962 0.803
AS PCA NT 37 scEntropy vs scSpectralA Entropy 2.40E−05 1.000 0.928
AS PCA Dup15q 11 scEntropy vs scSpectralA Entropy 0.352 1.000 0.934
AS PCA AS 43 scEntropy vs scSpectralR Entropy 1.11E−19 0.962 0.832
AS PCA NT 37 scEntropy vs scSpectralR Entropy 0.557 1.000 0.988
AS PCA Dup15q 11 scEntropy vs scSpectralR Entropy 0.002 1.000 0.802
AS LMM AS 43 fcEntropy vs fcSpectral Entropy 3.16E−112 1.000 0.683
AS LMM NT 37 fcEntropy vs fcSpectral Entropy 2.40E−119 1.000 0.156
AS LMM Dup15q 11 fcEntropy vs fcSpectral Entropy 8.14E−12 0.818 0.380
AS LMM AS 43 scEntropy vs scSpectralA Entropy 6.54E−77 1.000 0.738
AS LMM NT 37 scEntropy vs scSpectralA Entropy 0.932 1.000 0.998
AS LMM Dup15q 11 scEntropy vs scSpectralA Entropy 0.774 1.000 0.975
AS LMM AS 43 scEntropy vs scSpectralR Entropy 6.19E−31 1.000 0.836
AS LMM NT 37 scEntropy vs scSpectralR Entropy 0.916 1.000 0.997
AS LMM Dup15q 11 scEntropy vs scSpectralR Entropy 0.142 1.000 0.901

All P-values are FDR corrected (PFDR) for multiple testing.
AS Angelman syndrome, NT neurotypical, Dup15q duplication 15q11.2-q13.1 syndrome, PCA principal components analysis, LMM linear mixed model, scEntropy single-channel entropy, fcEntropy entropy-
based functional connectivity, scSpectralA absolute spectral power, scSpectralR relative spectral power, fcSpectral spectral-based functional connectivity.
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yielded larger AUCs under all circumstances after training models
on AS data. These differences were statistically significant for the
majority of comparisons and are in agreement with a recent study
of neonates that found significantly greater accuracy for sleep
stage classification using entropy features rather than spectral
features40. In our study, when models were trained on NT data,
the advantage afforded by entropy features appeared slightly
weaker, given that the EEGs in the training set displayed normal
oscillations that were useful for classification; yet, AUCs for
spectral features only numerically exceeded those of entropy
features in one non-significant comparison (Table 3), and AUCs
were significantly greater for entropy features than spectral
features in all comparisons involving AS, whose data were now
used as a validation set. As revealed by an entropy decomposition,
decreases in EEG entropy in AS during NREM sleep in two
frequency bands (2–5 Hz and 16–40 Hz) are not driven by the
signal amplitude, but rather by changes in signal phase and/or
phase × amplitude interactions (Fig. 7), thus demonstrating that
entropy changes with conscious state are independent of power
spectral changes.

Implications for the biology of consciousness. Several frame-
works for understanding consciousness—namely, integrated
information theory (IIT)41 and the entropic brain hypothesis
(EBH)42—emphasize the role of complexity/entropy in con-
sciousness. This theoretical work is bolstered by findings of
decreased neural entropy during unconscious states and increased

neural entropy during conscious wakefulness and, even more so,
psychedelic states5,7,38,43–47. In particular, studies in DOC
patients have highlighted PermEn and wSMI as useful entropy
features for discerning the level of consciousness in patients8,48,49.
A number of studies have also examined PermEn as an accurate
marker of loss of consciousness under anesthesia50–53 and, more
recently, sleep54. Building on the foregoing work, we tested
whether PermEn and wSMI, among other entropy measures,
would also perform well in both healthy and abnormal regimes of
cortical dynamics. We found that PermEn and wSMI performed
exceptionally well for all timescales except for τ= 128 ms (1–
2.5 Hz, as also found by Bourdillon et al., 2020; see Figs. 3, 4). Our
study thus adds to the existing literature by confirming that
PermEn and wSMI accurately detect the presence/absence of
consciousness when it vanishes during NREM sleep, even in
individuals with persistent HADOs (AS) or beta activity
(Dup15q). More generally, our finding of larger AUCs using
entropy versus spectral features supports theories (e.g., IIT and
EBH) that emphasize the role of information in consciousness.
Contrary to theories that emphasize cortical oscillations in
consciousness55–57, our findings suggest that spectral phenomena
are of secondary importance to consciousness versus more fun-
damental, complexity-based quantities. Indeed, prior work shows
that spectral features58 are sometimes inadequate for discerning
consciousness from unconsciousness59–62.

Given that spectral EEG features such as delta power often
reflect periodic cortical down states63, in which pyramidal cells

Fig. 5 Comparison of areas under the receiver operating characteristics curve (AUCs) for entropy (red) and spectral (blue) features selected using
principal component analysis (PCA). We performed three basic comparisons (a fcEntropy vs fcSpectral; b scEntropy vs scSpectralA; c scEntropy vs
scSpectralR) with EEG data from three datasets [AS (top row) training data; NT (middle row) validation data; Dup15q (bottom row) validation data]. In
each case, we generated 10000 bootstrapped resamples to derive AUC confidence intervals in Supplementary Table 3. Note that the number of resamples
on the vertical axis of each histogram is log-scaled due to the very large range of resamples across histogram bins. Also note that classifier performance
was saturated using entropy features for all comparisons using NT data and two comparisons using Dup15q data, i.e., all bootstrapped resamples yielded
100% AUC for entropy features in these instances. Seven out of the nine comparisons above yield significantly larger AUCs for entropy features, as
indicated by asterisks. Source data are presented in Supplementary Data 5.
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Fig. 6 Comparison of areas under the receiver operating characteristics curve (AUCs) for entropy (red) and spectral (blue) features selected using
linear mixed models (LMMs). As in Fig. 5, we performed three basic comparisons (a fcEntropy vs fcSpectral; b scEntropy vs scSpectralA; c scEntropy vs
scSpectralR) with EEG data from three datasets [AS (top row) training data; NT (middle row) validation data; Dup15q (bottom row) validation data]. In
each case, we generated 10,000 bootstrapped resamples to derive AUC confidence intervals in Supplementary Table 3. Note that the number of resamples
on the vertical axis of each histogram is log-scaled due to the very large range of resamples across histogram bins. Also note that classifier performance
was saturated using entropy features for all comparisons except for aiii (Dup15q FC features), i.e., all bootstrapped resamples yielded 100% AUC for
entropy features in these instances. Five out of the nine comparisons above yield significantly larger AUCs for entropy features, as indicated by asterisks.
Source data are presented in Supplementary Data 5.

Fig. 7 Permutation Entropy (PermEn) decomposition. Violin plots (top row) display ΔPermEn in AS between wakefulness and NREM sleep driven by
amplitude (blue-gray) and non-ampltidue amplitude (pink) effects for a PermEn8, b PermEn16, c PermEn32, d PermEn64, and e PermEn128. Positive values
of ΔPermEn indicate greater PermEn during wakefulness. Solid black horizontal lines inside violin plots represent the mean of each distribution, and
statistically significant comparisons of amplitude and non-amplitude contributions are marked with asterisks. Topographic scalp plots (bottom row) show
the spatial distribution of ΔPermEn averaged across all participants with AS. Source data are presented in Supplementary Data 6.
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are hyperpolarization in a manner that likely limits
consciousness64, why are spectral measures outperformed by
entropy measures? In addition to a theoretical and fundamental
identity linking certain forms of entropy/information to
consciousness65, entropy features are also preferable over spectral
features for detecting consciousness because the latter suffer from
several shortcomings. Most relevant to our current study, when
HADOs are used to infer unconsciousness, one must be cautious
of focal generators of delta activity. These focal sources, which
might be present in children with AS, appear global at the scalp
level due to volume conduction, leading to a false impression of
global cortical down states17. In addition, the overall oscillatory
amplitude might be influenced by synaptic properties that do not
affect consciousness, e.g., in disorders such as AS with abnormal
dendritic spine density66. Finally, some delta oscillations may
reflect hyperpolarization limited to primary sensory cortices, e.g.,
during states of unresponsive consciousness67,68. To better
understand why entropy measures outperform spectral measures
as biomarkers of consciousness, we direct the interested reader to
Frohlich et al.1.

15q disorders as models for abnormal cortical dynamics. Our
work utilizes EEG from children with AS and Dup15q to chal-
lenge and discover EEG biomarkers of conscious state with
applications outside of these disorders. AS is rooted in under-
expression of the gene UBE3A, most commonly caused by
15q11.2-q13.1 deletion12, and children with AS present a para-
doxical EEG that strongly resembles slow wave sleep during
wakefulness1,17. Dup15q, on the other hand, is the genetic con-
verse of AS featuring duplication, rather than deletion, of
15q11.2-q13.1 and is characterized by an abnormally fast, rather
than slow, EEG phenotype13,69. Given that 60% of children with
Dup15q completely lack N3 slow wave sleep in overnight EEGs,
there is some evidence that Dup15q presents the opposite para-
dox as AS, with fast EEG oscillations typical of wakefulness
during NREM sleep18.

As models of abnormal cortical dynamics, 15q disorders
demonstrate that typical EEG patterns, such as fast EEG activity
during wakefulness and slow EEG activity during NREM sleep,
are not necessary for consciousness and unconsciousness,
respectively. EEGs from these disorders may therefore be useful
for distilling the essential common denominator across biomar-
kers of consciousness, thus deriving biomarkers of consciousness
applicable across a broad range of dynamical regimes. Biomarkers
of consciousness are most needed in situations where conscious-
ness is dissociated from behavior70,71. In these situations (e.g.,
severe brain injury), cortical dynamics may be highly abnormal.
For instance, coma patients often exhibit pathological cortical
hyper-synchronization72–74 and post-traumatic epilepsy75. Train-
ing and validating classifiers on EEGs from 15q disorders
addresses this challenge by removing typical EEG patterns that
would otherwise guide classification of conscious state under
healthy, normal conditions. While our approach is useful for
distilling the essential common denominator of consciousness
across a broad range of oscillatory regimes, further work will be
needed to provide direct evidence that entropy features
distinguish covert consciousness from unconsciousness.

Prior research using AS and Dup15q as model disorders has
often focused on autism and epilepsy (e.g., see Frohlich et al.69).
Our work departs from these prior studies by applying 15q
disorders as general models of abnormal cortical dynamics that
may challenge, and therefore strengthen, EEG biomarkers of
conscious state. We emphasize that our findings should in no way
be interpreted to mean that children with Angelman syndrome
are unconscious when awake, nor than children with Dup15q are

vividly dreaming throughout NREM sleep. Indeed, such an
interpretation would not only be entirely unjustified given
accompanying behaviors but would also undermine the very
rationale for using EEG during sleep and wakefulness from these
disorders to identify biomarkers of conscious state. In addition,
we wish to clearly emphasize that our work herein does not
directly benefit individuals with AS or Dup15q, but may instead
benefit otherwise neurotypical yet unresponsive patients with
severe brain injuries for whom it is exceedingly difficult to
determine the patient’s level of consciousness. However, we
encourage other researchers to utilize Supplementary Data 1 to
test hypotheses about 15q disorders.

Limitations and future directions. Our study only examined
children due to the fact that the vast majority of EEG data col-
lected in 15q disorders are from children and, moreover, the AS
delta EEG phenotype is most pronounced at younger ages24. In
addition, due to the low developmental abilities of children with
AS and Dup15q, it was infeasible to quantitatively measure
behavioral responsiveness during EEG. Future work should aim
to reproduce our findings in adult participants, e.g., using phar-
macological manipulations in healthy adults to reversibly induce
a dissociation between consciousness and neural oscillations33.

In addition, several caveats of our machine learning approach
should be noted. Firstly, our Dup15q validation sample size was
admittedly small (n= 11). However, given that we also utilized a
larger NT validation set (n= 37), we do not view this as a crucial
limitation. Secondly, in the AS training set, the number of EEG
datasets was larger than the number of unique participants, with
multiple data for 8 AS participants spaced at least 52 weeks apart.
Nonetheless, to assess generalizability, we performed both 5-fold
and 10-fold cross-validation on the training set to estimate AUCs
for models trained on AS data. We found very similar AUC
values and other results between all approaches (Table 3,
Tables S4 and S5), suggesting that our models did not overfit to
the training data and indeed generalized from AS to the
validation sets. In fact, unlike many machine learning studies,
the validation AUC and accuracy were often greater than the
training AUC and accuracy (Supplementary Table 3), likely due
to the relative ease of classification using normal EEGs from
participants in the NT validation set.

Finally, while our study improves on earlier work17 with a
review of all EEG data by a neurologist to ensure correct sleep
labeling, it is exceedingly difficult to score sleep from AS, and we
were therefore unable to determine exact NREM stages (N1, N2,
or N3) in AS. Furthermore, while we treated NREM sleep as
unconscious, some conscious mentation may occur during
NREM sleep76. However, the relative level of consciousness in
NREM sleep is widely acknowledged to be much less than that of
wakefulness or REM sleep77,78 and efforts to control for this
confound in a prior study of AS17 found the same general pattern
of EEG changes during NREM sleep as when this factor was not
controlled for. Finally, while extracting REM sleep EEG might
have also allowed us to examine entropy in the context of
unresponsive consciousness, this was not feasible given that
nearly all AS EEGs were recorded during daytime sleep that
lacked sufficient REM durations.

Conclusions
Our findings capitalize on data from rare genetic syndromes to
demonstrate that EEG entropy measures of complexity success-
fully detect consciousness even when the spectral characteristics
of neural oscillations diverge from those seen in typical conscious
and unconscious states. EEG entropy measures outperformed
corresponding spectral EEG measures for both individual EEG
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signals and EEG connectivity. Our results thus support theories
that emphasize the role of complexity in consciousness and point
toward future studies of neural complexity measures as markers
of covert consciousness.

Methods
Data collection overview. To focus our analysis on the age range typically studied
in 15q disorders (children and adolescents), we limited our analyses to participants
aged no older than 215 months (i.e., 17 years and 11 months), thus excluding data
from adults. This age range was quite broad because recruitment of narrow age
ranges is infeasible in rare disorders affecting no more than 1 in 10,000 births79,80.
Furthermore, while the chronological ages of participants were quite broad, chil-
dren with AS and Dup15q display profound developmental delays. For this reason,
children in these cohorts were more developmentally alike than their chronological
age range would otherwise imply, e.g., no participant with AS had an expressive
language age equivalent greater than 14 months (see Supplementary Table 1 and
Supplementary Table 2 for developmental scores of children with AS and Dup15q,
respectively). Besides excluding data from adult participants, we also excluded data
from one very young participant (EEG recorded at 8 months of age) in the Dup15q
cohort whose developmental abilities were similar to that of a newborn when tested
at 6 months of age. Next, we discarded datasets from participants who did not have
at least 15 valid windows (i.e., 15 windows of 10.9 s duration each containing no
more than 20% artifact sections) in both the wake and NREM sleep condition for
the 0.5 Hz Morlet wavelet transform (see EEG features below). All datasets retained
had at least 1 min of usable wake or NREM sleep data; note, however, that the
average data length was much longer than this (see Table 1). For a justification of
this minimum data length, see Supplementary Fig. 4 and Supplementary Fig. 5. For
reference, studies of early childhood development often compute spectral EEG
features from children using as little as 30 s of usable data from 2min recording
given the challenges of recording EEG from young children81.

AS data collection. Children with AS were recruited through an NIH funded
Angelman syndrome Natural History Study [NCT00296764] and spontaneous
EEG data were recorded using Xltek/Natus acquisition software at two sites
(Boston Children’s Hospital and Rady Children’s Hospital San Diego) as part of the
study during wakefulness and sleep in a clinical setting. Institutional review boards
of Harvard Medical School and the University of California San Diego approved
the study protocol. In addition, we included one child with AS whose EEG data
were recorded outside of the Natural History Study as part of an overnight sleep
study. Children with AS who participated in the Natural History Study were
developmentally assessed using the Bayley Scales of Infant and Toddler Develop-
ment, third edition (Bayley-III)82. Scores from this assessment can be used to
quantify, among other things, behavioral responsiveness in the form expressive and
receptive language.

All EEG data were acquired at one of three sampling rates: 250, 256, or 512 Hz.
Some children with AS gave data at multiple visits; in these cases, we limited our
analysis to data spaced at least 52 weeks apart. Periods of drowsiness and sleep
were delineated by the EEG technician during recordings using data annotations,
and EEG annotations were visually reviewed for quality control by a certified
neurologist (coauthor M.N.), who took into account data artifacts unrelated to
EEG, such as eyeblinks and muscle activity. After EEG recordings were reviewed by
M.N., we excluded EEG from a 12-year-old girl with AS for whom the presence of
sleep could not be confirmed. Note that because the AS EEG phenotype generally
resembles slow wave sleep, sleep scoring of AS EEG into specific NREM stages (i.e.,
N1, N2, or N3) is often unreliable, and wake EEG can potentially be mislabeled as
sleep EEG, particularly in the absence of annotations provided by an EEG
technician. We therefore did not attempt to extract any particular stage of NREM
sleep, though the daytime naps we recorded likely captured NREM stage 1 (N1)
and stage 2 (N2) sleep. REM sleep was not obtained in daytime naps. We identified
usable wake and NREM sleep in 49 EEG recordings from 37 children with AS
which entered preprocessing. For further details of AS data collection, see Frohlich
et al.17.

NT data collection. Children referred to Massachusetts General Hospital (MGH)
who tested negative for epilepsy or neurodevelopmental disorders were included as
NT participants. These participants were not taking any medications acting on the
central nervous system, had normal neurodevelopment, no history of events
expected to alter EEG rhythms, and were born full term with a gestational age of at
least 37 weeks. Children with any neurological or psychiatric diagnosis more severe
than mild attentional deficits, depressive symptoms, or tics not requiring medi-
cations were excluded. Although our use of EEG data from children who were
evaluated for an abnormal event at MGH biases our sample, the crucial fact for the
purposes of our analysis is that all NT children had normal EEGs and could thus
satisfy the requirements of a validation group with typical neural dynamics. The
institutional review board of Harvard Medical School approved the study protocol.
Spontaneous EEG signals were recorded from sleeping and waking states (Xltek
acquisition software). All EEG data were acquired at one of four sampling rates:
200, 250, 500, or 512 Hz. Sections of clear N2 sleep during daytime naps were
identified in clinical recordings by a neurophysiologist and extracted for

comparison with wake sections of the same EEG recordings. As with the AS cohort,
sleep was obtained during the daytime, thus precluding the possibility of extracting
sufficient data from REM sleep. The duration of available N2 sleep and wake EEG
varied by participant (see Results). Data from 41 NT children entered preproces-
sing. The raw EEG data can be accessed through the LADDER database83.

Dup15q data collection. Based on the number autism spectrum disorder cases
featuring this copy number variant84, Dup15q is estimated to have a similar pre-
valence as AS—roughly 1 in 10,000–24,000 births79,80—yet unlike AS, we did not
benefit from an NIH-funded natural history study to collect a large sample of EEG;
rather, children with Dup15q were recruited locally through the University of
California Los Angeles (UCLA), and the institutional review board of UCLA
approved the study protocol. This yielded a small yet highly valuable validation
cohort. Children with Dup15q were referred through the Dup15q clinic at UCLA
or recruited through the UCLA Intellectual Disability and Development Research
Center (IDDRC). Overnight EEG data were recorded at the UCLA Ronald Reagan
Medical Center. Developmental assessments were also administered to children at a
separate visit to the UCLA Center for Autism Research and Treatment (CART) or
at the Dup15q Alliance International Family Conference using the Mullen Scales of
Early Learning85. All EEG data were acquired at a sampling rate of 200 Hz (Nihon
Kohden EEG-1200 acquisition software). To find sections of suitable NREM sleep
for our analysis, N2 sleep periods delineated by sleep spindles were automatically
detected using the Python-based toolbox YASA (Yet Another Spindle
Algorithm)86. The duration of available N2 sleep varied by participant (see
Results). We also extracted 30-min sections of wake recordings during mid-to-late
afternoon. Wakefulness was inferred by the presence of ocular (e.g., blink or sac-
cades) and electromyogram (EMG) artifacts in data. A certified neurologist
(coauthor M.N.) visually reviewed all extracted EEG sections to confirm that they
were scored correctly as wakefulness or NREM sleep. After excluding data from
one 8-month-old infant, EEG data from 11 children with Dup15q entered
preprocessing.

Preprocessing. All data were preprocessed in MATLAB R2019b (The MathWorks
Inc., Torrance, CA, USA). We first lowpass filtered EEG signals at 45 Hz using a
finite impulse response filter with the filter order selected as twice the sampling rate
of the signal. Next, we highpass filtered EEG signals at 0.4 Hz using a 5th order
Butterworth filter; the stopband attenuation and roll-off of this filter were optimal
for attenuating drift artifacts while minimally attenuating slow oscillations ≥ 0.5 Hz
(0.44 dB attenuation at 0.5 Hz). Following filtering, data were re-referenced to
average to ensure that all recordings used the same reference before continuing
with preprocessing. Next, we manually marked EEG sections with gross physio-
logical and technical artifacts, which were later excluded from all analyses. Periods
of flickering light stimulation intended to trigger epileptiform activity in partici-
pants with AS were also excluded. Next, we marked noisy channels to be excluded
from independent component analysis (ICA) and later interpolated following data
cleaning. ICA was then used (FastICA algorithm) to remove stereotyped artifacts
such as EMG and eye movements87. Finally, we spatially interpolated noisy
channels and repeated average referencing. EEG datasets were rejected if they did
not yield at least 15 valid frequency transform windows for 0.5 Hz, i.e., the lowest
frequency analyzed, in both the wake and sleep condition (i.e., a minimum of 39.2 s
of data were required in each condition, given that the windows size for the 0.5 Hz
wavelet was 10.9 s, windows overlapped by 75%, and at least 80% of the data in the
window were required to be usable).

EEG features overview. We computed spectral and entropy EEG measures using
both SC and FC measures. Unless otherwise noted, SC measures were averaged
across all EEG channels, as these measures generally show low spatial variability
due to volume conduction. FC measures were averaged across short-range and
long-range channel pairings.

Single-channel spectral measures (scSpectral). EEG spectral power was com-
puted using a Morlet wavelet transform. Wavelets were logarithmically spaced (8
per octave) between 0.5 and 32 Hz. The window size for each wavelet was deter-
mined by the kernel size and the standard deviation, with lower frequencies having
larger windows. In all cases, windows overlapped by 75%. Additional imple-
mentation details can be found in Frohlich et al.17. Elements of time-frequency
representations were averaged across time to compute power spectral densities
(PSDs) with units μV2/Hz. Next, power was integrated within each octave to
compute both absolute and relative power in each of the following frequency bands
(lower bounds are inclusive, upper bounds are exclusive): s (i.e., “slow” oscillations,
0.5–1 Hz), δ1 (1–2 Hz), δ2 (2–4 Hz), θ (4–8 Hz), α-σ (8–16 Hz, encompassing both
alpha oscillations and sleep spindles), and β (16–32 Hz). Because EEG data were
lowpass filtered at 45 Hz to attenuate muscle artifacts and line noise, it was not
possible for us to examine the 32–64 Hz octave corresponding to the gamma band.
Relative power was computed by normalizing the absolute power in a frequency
band according to the total integrated broadband power.

Single-channel entropy measures (scEntropy). Entropy reflects the number of
possible ways in which a sequence can be arranged and is related to how much
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information it contains. Though less commonly applied to EEG signals than
spectral measures, entropy measures have been used in EEG analysis for decades,
particularly in the context of nonlinear dynamics88. We utilized two approaches to
estimating signal entropy: (1) modified multiscale entropy, which is based on
reoccurring motifs within the signal at different timescales89–91, and (2) permu-
tation entropy, which is based on unique permutations created by ordinal rankings
of data92. These permutations depend on the temporal separation (τ) between EEG
samples and the embedding dimension (m).

Permutation entropy. The permutation entropy (PermEn) of a time series is given
as

PermEn mð Þ ¼ � 1
lnðm!Þ ∑

m!

j¼1
pjln pj

� �
ð1Þ

where m is the number of samples considered in each permutation (i.e., the
embedding dimension) and pj is the jth permutation. PermEn was computed using
code by King et al.48 in 5-s windows with 50% overlap after downsampling to
125 Hz with m= 3. Because we had not previously investigated which values of τ
best separate wake and NREM sleep using PermEn in AS, we explored several
different values of τ= 8, 16, 32, 64, and 128 ms (corresponding to EEG activity at
16–40 Hz, 8–20 Hz, 4–10 Hz, 2–5 Hz, and 1–2.5 Hz, respectively) without aver-
aging across these timescales. These are the same values reported in a recent
publication by Bourdillon et al.49, with the exception of τ= 4 ms (32–80 Hz),
which we chose not to examine due to contamination of this frequency band by
muscle activity in EEG data from young children. We then chose to downsample
EEG to 125 Hz for this analysis based on the Supplemental Information of King
et al.48 demonstrating that wSMI results are robust to downsampling data to this
frequency.

Modified multiscale entropy. The multiscale entropy computes sample entropy
(SampEn)89 at multiple timescales of the signal to account for both short-term and
long-term temporal patterns in the signal91. The SampEn is given by

SampEn ¼ �ln
∑N�m

i¼1 nmþ1
i ðrÞ

∑N�m
i¼1 nmi ðrÞ

 !
ð2Þ

where m is the embedding dimension or length of vectors in the signal’s embedding
space and nmi ðrÞ is the number of vectors xmðtjÞ which are within a distance r of
xmðtiÞ without counting instances of i= j (i.e., self-matches)89. We implemented
the modification introduced by Xie et al.90 which uses a sigmoidal curve, rather
than a Heaviside step function, for detecting neighbors in the state space embed-
ding of the signal to yield the modified multiscale entropy (mMSE). We used a state
space radius of r= 0.15 of the signal’s standard deviation and dynamically updated
this radius for each timescale to correct for a previously cited weakness in the
original mMSE/MSE algorithm93,94. Computation of mMSE matched that descri-
bed in the Supplemental Material of Frohlich et al.17, i.e., EEG data were down-
sampled to 200 Hz and 20 timescales were computed using 30 s nonoverlapping
segments, with segments rejected if they did not include at least 100 valid samples
for each timescale95. However, given the finding in Frohlich et al. 17 that only the
first 10 mMSE timescales strongly participate in EEG channel-timescale clusters
that differentiate NREM sleep and wakefulness in Angelman syndrome (AS)17, we
averaged mMSE across only the first 10 timescales for our analysis and discarded
those remaining (timescales 11–20).

Lempel-Ziv complexity. The Lempel-Ziv (LZ) algorithm—sometimes referred to
as Lempel-Ziv 1976 or LZ76 to distinguish it from similar compression algorithms
later published by the same authors—is a general-purpose compression routine96.
As such, it can also be used for quantifying the complexity of a sequence based on
the number of unique substrings it contains. Intuitively simple sequences (e.g.,
sinusoids) are easier to compress due to repetition, whereas complex sequences are
more difficult to compress due to a lack of repetition. Quantifying the number of
unique substrings in the EEG signal requires that the signal be converted to a
binary sequence. As described in the main manuscript, we binarized the EEG signal
using its median value as a threshold, computed the number of distinct “patterns”
(or substrings) in the signal, and then normalized the resulting number for data
length by a factor N/log2(N), where N is the data length in samples.

The conventional approach of binarizing EEG data using its mean or median
value prior to application of the LZ algorithm may bias the LZ entropy estimate
toward that of the signal’s low frequency components97. In a previous publication
on AS17, we thus utilized the generalized multiscale Lempel-Ziv (gMLZ)
complexity, which was introduced by Yeh and Shi98 to correct for biases in the
conventional approach. However, our results from this earlier publication17

demonstrated that delta frequency (1–4 Hz) gMLZ timescales best separated
NREM sleep and wake EEG in AS, thus suggesting that the bias toward slower
frequencies in the conventional approach might actually improve the accuracy of
LZ as a biomarker of conscious state. Furthermore, numerous studies have
successfully demonstrated that LZ relates to conscious state without utilizing a
multiscale approach5–7,38,43,44,99. We therefore opted for the conventional LZ
approach in this study, binarizing the EEG signal by its median value after first

downsampling to 200 Hz. LZ was computed using 60-s nonoverlapping segments.
Segments were discarded that did not contain a minimum of 2000 samples (10 s) of
usable data, based on work by Gómez et al. showing the LZ stabilizes after ~2000
EEG samples100.

Context tree-weighted complexity. Like LZ, the context tree-weighted (CTW)
method is a general-purpose compression and prediction algorithm that can be
used for a variety of data modalities, e.g., text, music, protein sequences101 or, in
our case, symbols extracted from EEG signals. In essence, this method uses a
variable-order Markov model101, which builds a hierarchical decomposition of the
symbol string into binary decisions102 that can account for long-term temporal
structure in the data and provide an accurate estimator of entropy rate. In practice,
CTW has been found to consistently outperform LZ when compared in simulated
data, in terms of higher accuracy and lower bias103. Here, we used a symbolic
transform that discretized EEG signals into 2-quantiles using the signal median and
computed the entropy rate (i.e., information per symbol) using CTW. As with LZ,
60-s nonoverlapping segments of EEG data were used to compute CTW after
downsampling to 200 Hz, and segments were discarded that did not contain a
minimum of 2000 samples of usable data.

Functional connectivity overview. We computed FC according to dwPLI (a
spectral measure)104,105 and wSMI (an entropy measure)48. Prior work directly
comparing both measures has suggested that they are sensitive to different types of
functional interactions in EEG data across wakefulness and NREM sleep106. For
both approaches, we used 5-second 50% overlapping windows of artifact-free data.
Note that we did not surface Laplacian filter EEG signals, as this is generally not
advised for sparse 19-channel montages such as ours107. FC values were averaged
separately across short-range and long-range channel pairings. Short-range pair-
ings were defined as channel pairs with a Euclidian distance between 80–130 mm
according to standardized three-dimensional Cartesian channel coordinates from
an adult template, whereas long-range pairings were defined as Euclidian distances
≥130 mm.

Functional connectivity spectral measures (fcSpectral). The dwPLI is a
fcSpectral measure that reflects the imaginary part of the cross-spectral density,
which is robust to spurious phase relationships potentially arising from volume
conduction, with a “debiasing” correction to avoid an inflationary bias induced by
sample size104. Within each 5-s FC window, the cross-spectral density was com-
puted with the MATLAB function cpsd (2-s Hamming windows with 50% overlap;
frequency bins were logarithmically spaced to match wavelets from the spectral
power analysis). Next, we used Fieldtrip108 to compute the dwPLI from the cross-
spectral density and then averaged the output within the s, δ1, δ2, θ, α-σ, and β
frequency bands.

Functional connectivity entropy measures (fcEntropy). The wSMI is an fcEn-
tropy measure rooted in the same procedure introduced for computing PermEn. As
such, it captures both temporal complexity and spatial connectivity, meaning that it
can be regarded as a measure of spatiotemporal complexity. EEG signals are
transformed into permutations, or sequences of discrete symbols. The joint
probability of each pair of symbols is then used to compute the symbolic mutual
information (SMI) between EEG channels, which is then weighted to disregard
same or opposite signed symbols arising from volume condition. As with PermEn,
we computed wSMI using m= 3 and τ= 8, 16, 32, 64, and 128 ms after down-
sampling data to 125 Hz. For each channel pairing, we normalized wSMI values
according to local permutation entropies using the formula

wSMI0 X;Yð Þ ¼ 2
wSMI X;Yð Þ

PE Xð Þ þ PE Yð Þ

� �
ð3Þ

where PE(X) and PE(Y) are the permutation entropies of signals X and Y,
respectively, and wSMI(X,Y) and wSMI’(X,Y) are the unnormalized and normal-
ized wSMI between signal X and Y, respectively.

Window length and total data length. To verify that we used appropriate window
lengths to compute EEG entropy features, we generated 100 simulated EEG signals
and studied the effect of window length on entropy estimates. EEG signals with 0
mean and unit variance were simulated using 1/f or “pink noise” with a spectral
exponent of alpha = 2.0 and a simulated sampling rate of 500 Hz. We then applied
the same bandpass filtering to each simulated signal as we had applied to real EEG
signals. For LZ, CTW, and mMSE, simulated signals were downsampled to 200 Hz
as was done for real EEG signals and entropy estimates were computed with
windows sizes ranging from 2 to 100 s in 2 s increments. For PermEn, simulated
signals were first downsampled to 125 Hz as was done for real EEG signals and
entropy estimates were computed with window sizes ranging from 0.5 to 20 s in
0.5 s increments; this was performed separately for each value of tau (τ= 8, 16, 32,
64, and 128 ms).

Next, to examine how the entropy estimates changed as a function of window
length, for each increment of window length, we computed the difference between
window length n and window length n+ 1. We then computed the mean absolute
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value of all such successive differences up to the current window length n+ 1.
Finally, we also computed the mean and 95% confidence intervals of this quantity
across all 100 simulated signals.

Finally, to verify that the total duration of usable EEG data did not influence
estimates of EEG features, we next modeled each EEG feature using LMMs with the
formula:

FEATURE � GROUPþ CONSCIOUSþ LENGTHþ 1jPARTICIPANTð Þ ð4Þ
where FEATURE is the EEG feature, GROUP is the cohort (either NT, AS, or
Dup15q), CONSCIOUS is the state of consciousness (wakefulness or NREM sleep),
LENGTH is the total length of usable data for each EEG recording, and (1|
PARTICIPANT) indicates random intercepts for each participant. We then
evaluated the significance of the term LENGTH.

EEG peak frequencies. To characterize the spectral profile of each EEG recording,
we channel-averaged and then log-scaled power spectral densities (computed with
Morlet wavelets) separately for wakefulness and NREM sleep. We then used the
fitting oscillations and one over f (FOOOF) algorithm109 with default settings to
extract peaks from channel-averaged spectra, and we defined the peak frequency of
each recording as the frequency of the peak with the greatest power.

Machine learning. Having selected EEG features, we classified EEG data according
to conscious state (wakefulness or NREM sleep) using RLR, selecting the reg-
ularization parameter λ after testing 100 logarithmically spaced values between
4.4 × 10−5 and 0.44 according to the value which gave the best fit using 10-fold
cross-validation on the AS data, with NREM sleep and wake data from the same
participants on the same side of the cross-validation partition. We then trained our
classifier on AS data. Data from NT children and children with Dup15q were used
as two separate validation sets to assess classification performance. In this way, our
classifier first learned features that distinguished conscious (wakefulness) and
unconscious (NREM sleep) states under conditions of abnormal cortical dynamics
in AS and then assessed whether the learned features were generalizable both to
healthy cortical dynamics in NT children and to a different regime of abnormal
high frequency cortical activity in Dup15q.

To test the robustness of our findings to the choice of training data (see Results,
Approach and Rationale), we repeated the above analyses with NT and AS
switched (i.e., using NT as the training set and AS, along with Dup15q, as a
validation set). Dup15q data were never used as a training set due to this cohort’s
small sample size (N= 11). Because there were no features with sufficiently large
(|β| > 0.5) regression coefficients of NREM sleep in the scSpectralA feature category
of the NT data (i.e., mirroring the procedure used to select features for AS-training
with LMMs would yield no features for scSpectralA), we only performed the NT-
training replication using PCA feature selection. Between 2–4 PCs were used to
explain at least 90% of the wakefulness—NREM sleep variance in NT data.

Finally, to further ensure that training AUCs do not reflect overfitting, we also
tested the training dataset using 10-fold cross-validation for both the original
analysis (AS as the training set) and the NT replication (NT as the training set),
and also using 5-fold cross-validation for the original analysis. As with the
hyperparameter fitting, NREM sleep and wake data from the same AS participants
were kept on the same side of the cross-validation partition.

In the machine learning approach that utilized LMMs to select features, we fit
LMMs to each feature in the AS data using the formula

EEG � CONSCIOUSþ 1jPARTICIPANTð Þ ð5Þ
where EEG is the EEG feature, CONSCIOUS is a binary variable denoting
wakefulness or NREM sleep, and (1|PARTICIPANT) denotes random intercepts
for participants. Next, for each feature type, we selected features with |β| > 0.5 for
CONSCIOUS.

For each RLR model, we assessed performance using the AUC. We also
computed accuracy, precision, recall, and specificity using the optimal operating
point of the ROC curve. Conscious states (i.e., wakefulness) were coded as positive
classes, e.g., low specificity would indicate that a model erred toward classifying
unconscious states as conscious. Although RLR models were fit to channel-
averaged data for classification purposes, we also fit models to individual channel
and channel-pair measures for visualization purposes. To test whether classifiers
performed better than chance (i.e., AUC > 0.5), or better than each other (entropy
versus spectral), we converted AUC scores to Mann–Whitney U statistics (see
Statistical Analysis below). Finally, to assess the usefulness of individual features,
we fit unregularized logistic regression models to AS data for each feature and
validated the models using NT and Dup15q data.

Evaluation of classifier performance. To derive 95% confidence intervals for the
AUC of each ROC plot, as well as classifier accuracy, precision, recall, and speci-
ficity, we used 104 bootstrapped resamples using the MATLAB function perfcurve
with the bias corrected and accelerated percentile method. Next, to evaluate clas-
sifier performance, we transformed each AUC to a Mann–Whitney U statistic
using the relation

U ¼ AUC � N2 ð6Þ

where U is the Mann–Whitney U test statistic and N is the number of participants
in the balanced sample (i.e., there are N wake datasets and N sleep datasets). Next,
we used an approximation of the normal distribution to covert each U to a z-score
using the formula

z ¼ U�N2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 ðN2þ1Þ

12

q ð7Þ

which allows one to test the one-tailed hypothesis that the AUC is better than
chance using the normal cumulative distribution function (CDF) to obtain a P-
value from z. In addition, we compared z-scores between entropy and spectral
measures to test the two-tailed hypothesis of different AUCs. A difference in z-
scores was obtained using the formula

z0 ¼ z1�z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N1�3 þ 1
N2�3

q ð8Þ

where N1 and N2 are the sample sizes corresponding to z1 and z2, respectively. As
before, the new z-score was used to derive a P-value using the normal CDF; this
approach is valid as a significance test when N1=N2, as was the case in our
analysis.

Entropy decomposition. We used an entropy decomposition to infer how much of
the ΔPermEn between wakefulness and NREM sleep in AS merely reflects signal
amplitude changes between these conditions, using phase-randomized surrogate
data110. Using 1000 surrogates in all cases, we first randomized the phases within
wakefulness and NREM sleep, reconstructed surrogate signals with an inverse
Fourier transform, and computed PermEn to estimate the effects on PermEn of the
specific pairings of phases and amplitudes in both conditions. Next, we shuffled the
phases across conditions, and compared with the within-condition randomized
data to infer the effects due to the phase distributions of wakefulness and NREM
sleep. The difference in PermEn between wakefulness and NREM sleep data that
remained after the phases had been randomized was the effect due to amplitude
changes alone. Finally, phase randomization was used to infer the difference in
PermEn due to a phase x amplitude interaction. See Mediano et al.111 for full
details. Because we were primarily interested in the extent to which signal
amplitude changes drive entropy changes, we added the differences in PermEn
attributable to phase and interaction to create a single “non-amplitude” quantity.
The number of EEG segments must be balanced between conditions for this
analysis, and we therefore randomly selected 20 segments (5000 ms each) from
wake and NREM sleep for each participant to be used for the entropy decom-
position. Segments were drawn without replacement; however, note that segments
potentially overlapped by 50% (see scEntropy above). After quantifying phase,
amplitude, and interaction components in AS data, we fit LMMs with the formula

ΔPermEn � COMPONENTþ 1jPARTICIPANTð Þ ð9Þ
where ΔPermEn is the change in PermEn attributable to either amplitude or non-
amplitude factors, COMPONENT is a categorical variable denoting either the
amplitude or non-amplitude factor, and (1|PARTICIPANT) denotes random
intercepts for participants. Note that models were fit separately for each of five
values of τ for PermEn.

Multiple comparisons correction. We controlled the FDR using the linear step up
procedure by Benjamini and Hochberg112; this correction was performed sepa-
rately to account for (1) 48 hypothesis tests in the main analysis using AS training
data [i.e., 18 two-tailed tests of entropy versus spectral feature performance
(Table 3) and 30 one-tailed tests of classifier performance (Supplementary
Table 3)], (2) the same 18 two-tailed hypothesis tests performed again using 10-
fold cross validation to report performance in the AS cohort (Supplementary
Table 4), 18 two-tailed tests of entropy versus spectral features performed again
using 5-fold cross validation (Supplementary Table 5), 24 hypothesis tests in the
NT-training replication [i.e., 9 two-tailed tests of entropy versus spectral feature
performance (Supplementary Table 6) and 15 one-tailed tests of classifier perfor-
mance (Supplementary Table 7)], 42 tests of EEG data length on EEG features
(Supplementary Fig. 5), and 5 hypothesis tests in the entropy decomposition (one
for each PermEn timescale, Fig. 7). Note that the Benjamini-Hochberg linear-step
up procedure was repeated again for all hypotheses in the analysis for instances
where we tested the training set using 10-fold cross-validation.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
EEG features extracted for each participant are included in the Supplementary Data 1.
The data used to generate figures in this manuscript are included in Supplementary Data
(Supplementary Data 2: Fig. 2a–c; Supplementary Data 3: Figs. 2d, 3b, c, and 4;
Supplementary Data 4: Fig. 3a; Supplementary Data 5, Figs. 5 and 6; Supplementary
Data 6, Fig. 7). The AS EEG data used in this manuscript are available to researchers who
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apply for Level 2 access to the LADDER database83: https://www.laddertotreatment.org/
for-researchers/. The consenting processes for other EEG data do not allow for them to
be archived to repositories; however, they are in principle accessible upon reasonable
request from the corresponding author. Note that investigators must complete a data
transfer agreement with UCLA to obtain Dup15q EEG data.

Code availability
Analysis code is publicly available at https://github.com/jfrohlich/angelman-
consciousness and archived to Zenodo: https://doi.org/10.5281/zenodo.7428309.
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