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SYMPLECTIC MODELS FOR GENERAL INSERTION DEVICES ∗

Y. Wu † , E. Forest‡ , D. S. Robin, H. Nishimura, A. Wolski, LBNL, Berkeley, CA 94720, USA
V. N. Litvinenko, FEL Lab, Duke University, Durham, NC 27708, USA

Abstract

A variety of insertion devices (IDs), wigglers and undu-
lators, linearly or elliptically polarized, are widely used as
high brightness radiation sources at the modern light source
rings. Long and high-field wigglers have also been pro-
posed as the main source of radiation damping at next gen-
eration damping rings. As a result, it becomes increasingly
important to understand the impact of IDs on the charged
particle dynamics in the storage ring. In this paper, we
report our recent development of a general explicit sym-
plectic model for IDs with the paraxial ray approximation.
High-order explicit symplectic integrators are developed to
study real-world insertion devices with a number of wig-
gler harmonics and arbitrary polarizations.

1 INTRODUCTION

In the storage ring, symplectic integration provides an
essential tool to study the long-term behavior of the single
particle dynamics. Magnetic multipole elements, such as
quadrupoles and sextupoles, are modeled using a so-called
impulse boundary approximation, in which the magnetic
field is assumed to be constant (s-independent) within the
effective boundary of the magnet and zero outside. Such
a magnetic field model allows one to use a special vector
potential, ~A = Az(x, y)ẑ for each magnet. As a result,
the charged particle Hamiltonian can be separated into the
drift-kick combination of Ruth [1]:H = T (~p) + V (~q),
whereT (~p) is a drift, V (~q) is a kick. A second order
Lie map approximation can be constructed for this type
of Hamiltonians [2], resulting in an explicit symplectic in-
tegrator for magnetic multipoles. Implementing explicit
multipole integration schemes in various tracking codes in
1990’s, it became possible to compute the charged parti-
cle trajectories after a large number of turns without in-
troducing artificial damping or anti-damping. These track-
ing codes have become critical tools for designing the third
generation light storage rings with small emittance as well
as high energy physics collider rings with high luminosity.

The Ruth’s integrator was extended by Forest [3] to
Hamiltonians which can be separated into a multiple num-
ber of integral parts containing coordinates and momenta
belonging to different canonical pairs. This generalized
technique can be used to construct symplectic integrators
for planar wigglers with an infinite pole width. How-
ever, this method is limited to Hamiltonians with a two-
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dimensional magnetic field.
With their increased use in modern light source rings and

next generation damping rings, insertion devices (IDs) with
arbitrary polarizations and rich harmonic contents become
critical components of these rings. It has become essen-
tial to understand and minimize the impact of IDs on the
charged particle beam dynamics. This is particularly true
for rings in which the nonlinear dynamics are dominated
by wigglers. Until recently, the most comprehensive wig-
gler modeling was performed by the BESSY group using
the generating function based implicit method [4], [5]. In
this method, a symplectic higher order map was produced
numerically for the insertion device. However, besides the
convergence issues and limited order of the map which can
be produced, the implicit method has difficulties in dealing
with parameter-dependency of the field, and is limited to
producing maps for a given design orbit.

In this paper, we report the development of a general ex-
plicit symplectic model for insertion devices such as wig-
glers and undulators. This model applies a recently devel-
oped symplectic integration method for a 3D magnetic field
Hamiltonian with the paraxial-ray approximation [6]. The
importance of this method is that it allows the generation
of canonical maps for an ID with any parameter depen-
dency by tracking through the ID once with a differential
algebra package. More importantly, since the method is
explicit in nature, direct trajectory tracking in the real mag-
netic field can be performed for dynamic aperture studies.
Consequently, this provides a benchmark for the dynamics
studies in which the large amplitude motion may or may
not be properly described by the on-axis map of a given
order.

2 EXPLICIT INTEGRATOR FOR 3D
MAGNETIC FIELD

In this section, we will briefly outline the method to con-
struct a second order (and higher) explicit symplectic in-
tegrator for a 3D magnetic field withs-dependency. The
details of this technique can be found in [6]. Let us start
with a charged particle Hamiltonian with a varying mag-
netic field alongz in the Cartesian coordinate system:

H(x, px, y, py, δ, l; z)

= −
√

(1 + δ)2 − (px − ax)2 − (py − ay)2 − az

≈ −δ +
(px − ax)2

2(1 + δ)
+

(py − ay)2

2(1 + δ)
− az, (1)

wherepx,y = Px,y/P0 is the normalized transverse mo-
menta,δ = P/P0−1 is the relative momentum deviation,l
is the path length,ax,y,z(x, y, z) = qAx,y,z(x, y, z)/(P0c)



is the normalized vector potential. A paraxial-ray approx-
imation is made for the Hamiltonian, which is valid and
widely used for large rings.

To see that explicit symplectic integration is possible for
this Hamiltonian, we should extend our phase space to in-
clude(z, pz) as the 4th dimension [7]. The resulting equiv-
alent Hamiltonian in the 4D space is:

K(x, px, y, py, δ, l, z, pz;σ) (2)

≈ −δ +
(px − ax)2

2(1 + δ)
+

(py − ay)2

2(1 + δ)
− az + pz,

whereσ is the new independent variable anddz = dσ.
Noticing that the new HamiltonianK does not depend on
σ explicitly, for a given integration step size,∆σ, we can
write down the Lie map solution symbolically as:

M(∆σ) = exp(: −∆σK :). (3)

Next, we split the Hamiltonian,K, into four parts,K =
K1 + K2 + K3 + K4, and

K1 = pz,

K2 = az,

K3 =
(py − ay)2

2(1 + δ)
,

K4 = −δ +
(px − ax)2

2(1 + δ)
,

Ni(∆σ) = exp(: −∆σKi :). (4)

Using these partial maps, we can readily write down a sec-
ond order approximation for the mapM:

M2(∆σ) = N1(
∆σ

2
)N2(

∆σ

2
)N3(

∆σ

2
)

N4(∆σ)N3(
∆σ

2
)N2(

∆σ

2
)N1(

∆σ

2
)

≈ M(∆σ) + O((∆σ)3). (5)

To see that mapsN3(∆σ
2 ) andN4(∆σ) are also exactly

solvable, we use the following generating functions to
transfer HamiltoniansK3 andK4 to some new coordinate
systems:

K3 = Ay

p2
y

2(1 + δ)
,K4 = Ax(−δ +

p2
x

2(1 + δ)
), (6)

Ay = exp(: −
∫ y

y0

aydy :),Ax = exp(: −
∫ x

x0

axdx :).

We observe that the operations byAx andAy on the phase
space variables are explicit, consequently,M2 can be ex-
pressed as a product of a series of Lie maps which can be
explicitly evaluated:

M2(∆σ) = exp(: −∆σ

2
pz :) exp(: −∆σ

2
az :) (7)

(Ay exp(: −∆σ

2
py

2(1 + δ)
:)Ay

−1)

(Ax exp(: ∆σ(δ − px

2(1 + δ)
) :)Ax

−1)

(Ay exp(: −∆σ

2
py

2(1 + δ)
:)Ay

−1)

exp(: −∆σ

2
az :) exp(: −∆σ

2
pz :).

A higher order symplectic integrator can be constructed
following Yoshida’s procedure [8].

3 SYMPLECTIC WIGGLER MODEL

The three-dimensional magnetic field for a planar hori-
zontal wiggler can be described in the following form:

By = −B0

∑
m,n

Cmn cos(kxl x) cosh(kym y)

cos(kzn z + θzn),

Bx = B0

∑
m,n

Cmn
kxl

kym
sin(kxl x) sinh(kym y)

cos(kzn z + θzn),

Bz = B0

∑
m,n

Cmn
kzn

kym
cos(kxl x) sinh(kym y)

sin(kzn z + θzn), (8)

where,B0 is the amplitude of the on-axis magnetic field,
Cmn are the relative amplitudes of wiggler harmonics,
k2

ym = k2
xl + k2

zn, kzn = nkw, kw = 2π/λw, andθzn

is the relative phase of then-th wiggler harmonic. The cor-
responding scaler potential (~B = −∇V ) is:

V = B0

∑
m,n

Cmn

kym
cos(kxl x) sinh(kym y) sin(kzn z+θzn).

Now we will choose a proper gauge so that the vector po-
tential will have itsz-component,Az = 0. Consequently,
the normalized vector potential is given by:

~a =
q ~A

P0c
= (ax, ay, 0)

ax =
Kw

γ0β0

∑
m,n

Cmn

kzn/kw
cos(kxl x) cosh(kym y)

sin(kzn z + θzn),

ay =
Kw

γ0β0

∑
m,n

Cmn

kzn/kw

kxl

kym
sin(kxl x) sinh(kym y)

sin(kzn z + θzn), (9)

whereq = −|e| for elections,Kw = |eB0|
mc2kw

is the wiggler
parameter, andγ0, β0 are the relativistic parameters for the
charged particle with the nominal energy. By plugging the
above vector potential into the symplectic integrator devel-
oped in Section 2, we arrive at a general explicit integrator
for horizontal wigglers with an arbitrary number of har-
monics.



Similarly, we can construct an explicit integrator for pla-
nar vertical wigglers. By super-positioning vector poten-
tials of a horizontal and a vertical wiggler with different
field strengths, we are ready to model an arbitrarily polar-
ized wiggler.

The harmonic content for a real wiggler magnet can be
determined by using a two-dimensional discrete Fourier
transformation after imposing the periodic condition in one
of the transverse directions [9]. A large number of harmon-
ics may be needed in order to achieve a high degree of ac-
curacy because of the 3D nature of the field. However, it
is expected that few modes are mainly responsible for the
nonlinear beam dynamics. Therefore a reduced subset of
modes can be used in modeling.

4 WIGGLER FRINGE FIELDS

The fringe effects can be treated separately as we do in
the case of magnetic multipoles. A simple dipole hard edge
model can be used for a planar wiggler withθzn = 0 in
Eq. 8, where the magnetic field peaks at wiggler ends. As
expected the linear effect is the edge focusing [7].

To properly treat the “real-world” wiggler fringe fields
including the field tapering used for the orbit compensa-
tion, we need a symplectic model for such a field. Recog-
nizing that the integration scheme outlined in section 2 is
applicable to all types of 3D magnetic fields, we can readily
apply this technique to the wiggler fringe fields.

First, we separate the wiggler magnetic field into “pure
wiggler” field represented by the wiggler harmonics (see
Eq. 8) and the fringe field. This fringe field peaks around
the entrance and exit of the wiggler and tails off. Sec-
ond, we need to choose a particular type of analytic rep-
resentation for the fringe field. One of the candidates is
the pseudo-multipoles, widely used in studying multipole
fringe field [11]. The scalar potential is given by

V (r, φ, z) =
∑
n=0

an(r, z) sin(nφ) + bn(r, z) cos(nφ),

(10)
where an(r, z) =

∑
k=0 cn,k(z) rn+2k and bn(r, z) =∑

k=0 dn,k(z) rn+2k, and ~B = −∇V . Vanishing diver-
gence for~B requires∇2V (r, φ, z) = 0, which yields the
following recursive relation:

αn,k(z) = − 1
4k(n + k)

d2αn,k

dz2
, (11)

whereαn,k = cn,k or dn,k, andk = 1, 2, . . .. To write
down a corresponding vector potential of this field, we
choose~A = (Ar, Aφ, Az = 0):

Ar =
∑

n,k

nrn+2k−1

{∫ z

z0

dn,k(z)dz sin(nφ)

−
∫ z

z0

cn,k(z)dz cos(nφ)
}

Aφ =
∑

n,k

(n + 2k)rn+2k−1

{∫ z

z0

dn,k(z)dz cos(nφ)

+
∫ z

z0

cn,k(z)dz sin(nφ)
}

, (12)

wherez0 is an arbitrary location. And the corresponding
vector potential in the Cartesian coordinate is given by:

Ax = cos φAr − sin φAφ, Ay = sin φAr + cos φAφ.

If ~B is computed from~A, truncatingk to a particular order
for ~A would violate∇× ~B = 0 at higher orders, equivalent
to artificially introducing a small current source term.

5 SUMMARY

In this paper, we have outlined a new technique to com-
pute the motion of a charged particle in a three-dimensional
magnetic field in an explicit symplectic manner under the
paraxial-ray approximation. Applying this technique, we
have developed explicit integrators for modeling general
insertion devices in the storage ring. Multiple wiggler
harmonics, arbitrary polarizations, real fringe fields of the
IDs can all be treated properly in this model. We are
in the process of incorporating this general insertion de-
vice model into traditional particle tracking codes, such as
TRACY [10]. This will enable us to study the details of the
single particle dynamics in the storage ring with insertion
devices. Consequently, it will have a significant impact on
the design of the next generation linear collider damping
rings with damping wigglers, optimal use of insertion de-
vices in the light source rings, and better understanding of
the role that insertion devices play in the storage ring in
general.

It is worth pointing out that the explicit symplectic tech-
nique developed here is not limited to insertion devices as
illustrated by our treatment of the wiggler fringe field. Its
applications extend to the studies the fringe field effects of
super-conducing dipoles and wavelength shifters, final fo-
cus systems with combined solenoids and quadrupoles, as
well as the cross-talk effects of two closely placed magnetic
devices.
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