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RESEARCH ARTICLE Open Access

Sample size and power determination
when limited preliminary information is
available
Christine E. McLaren1*, Wen-Pin Chen2, Thomas D. O’Sullivan3,4, Daniel L. Gillen5, Min-Ying Su6, Jeon H. Chen6

and Bruce J. Tromberg3

Abstract

Background: We describe a novel strategy for power and sample size determination developed for studies utilizing
investigational technologies with limited available preliminary data, specifically of imaging biomarkers. We evaluated
diffuse optical spectroscopic imaging (DOSI), an experimental noninvasive imaging technique that may be capable of
assessing changes in mammographic density. Because there is significant evidence that tamoxifen treatment is more
effective at reducing breast cancer risk when accompanied by a reduction of breast density, we designed a study to
assess the changes from baseline in DOSI imaging biomarkers that may reflect fluctuations in breast density
in premenopausal women receiving tamoxifen.

Method: While preliminary data demonstrate that DOSI is sensitive to mammographic density in women
about to receive neoadjuvant chemotherapy for breast cancer, there is no information on DOSI in tamoxifen
treatment. Since the relationship between magnetic resonance imaging (MRI) and DOSI has been established
in previous studies, we developed a statistical simulation approach utilizing information from an investigation
of MRI assessment of breast density in 16 women before and after treatment with tamoxifen to estimate the
changes in DOSI biomarkers due to tamoxifen.

Results: Three sets of 10,000 pairs of MRI breast density data with correlation coefficients of 0.5, 0.8 and 0.9
were simulated and generated and were used to simulate and generate a corresponding 5,000,000 pairs of
DOSI values representing water, ctHHB, and lipid. Minimum sample sizes needed per group for specified
clinically-relevant effect sizes were obtained.

Conclusion: The simulation techniques we describe can be applied in studies of other experimental technologies to
obtain the important preliminary data to inform the power and sample size calculations.

Keywords: Power and sample size calculation, Tamoxifen, Breast density, Magnetic resonance imaging, Diffuse optical
spectroscopic imaging

Background
Mammographic density, an assessment of the fibro-
glandular content of the breast using mammography,
is an important indicator of breast cancer risk and
hormonal-based treatment response. Women with
high mammographic density have from 4- to 6-fold
increased breast cancer risk compared to women

with lower density [1]. There is also significant
evidence that the selective estrogen receptor modula-
tor tamoxifen is more effective at reducing breast
cancer risk when accompanied by a reduction of
mammographic density [2–5]. However, due to the
limitations of using mammography for frequent,
quantitative breast density assessment [6], we sought
to test whether other imaging modalities can better
quantify breast density. Magnetic resonance imaging
(MRI) is a safe and quantitative technique for meas-
uring breast density and volume, but its high cost
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precludes frequent, widespread use in risk assessment
or therapeutic monitoring. As an alternative to MRI
and mammography, diffuse optical spectroscopic im-
aging (DOSI) is a non-invasive, relatively low-cost
experimental imaging technique that provides quanti-
tative metrics to measure and track changes in breast
tissue composition and metabolism [7]. In previous
research, we measured the breast density and com-
position of normal breast from 12 volunteers’ contra-
lateral normal side of breast cancer before and
during neoadjuvant chemotherapy (NAC) treatment
with MRI and DOSI. The strong significant linear re-
lationship between the MRI-based breast density and
these DOSI measures including water, deoxygenated
hemoglobin (ctHHb) and lipid volume was reported
[8]. This finding suggests that these DOSI imaging
biomarkers are useful for monitoring changes in
breast tissue composition and density. However
further quanification of the association between
within-subject changes in DOSI measures and
changes in baseline is needed before DOSI measures
can be considered as an alternative biomarker in
treatment settings.
In order to design a study to compare the reduc-

tion from baseline in DOSI measures that may reflect
changes in breast density in premenopausal women
receiving tamoxifen and a control group, preliminary
information of DOSI measures in a tamoxifen treat-
ment setting are needed to inform power and sample
size calculations. While direct information on DOSI
in this case is not available, measures of changes in
MRI-based breast density have previously been re-
ported. Chen and colleagues reported breast density
measurements assessed by three-dimensional (3D)
MRI before and after tamoxifen treatment among
sixteen patients [9]. Utilizing these data along with
cross-sectional estimates of the relationship between
DOSI imaging biomarkers and MRI density could
help to provide more informative uncertainty esti-
mates for the design of studies to assess within-
subject DOSI changes. Specifically, we developed a
statistical simulation approach utilizing information
from MRI assessment of breast density before and
after treatment with tamoxifen [9] and a separate
study of DOSI images obtained from volunteers
about to begin neoadjuvant chemotherapy [8]. We
applied a two-stage strategy that enhances the valid-
ity of the power and sample size calculations in an
observational study where there is a lack of direct
preliminary data [10]. A schematic of our two-stage
procedure involving the simulation approach is
shown in Fig. 1. The simulation alogrithm was pro-
grammed utlizing SAS© software, Version 9.4 [11],
and is provided in the Additional files.

Methods
DOSI measures
A laser breast scanner has been developed based on
DOSI technology (Fig. 2) [12]. Measurements were
acquired before administration of chemotherapy and
frequently during therapy through a handheld probe
placed on the tissue surface. Acquisition times for
single measurements are approximately five seconds.
Measurements are representative of optical proper-
ties in a total tissue volume of approximately
100cm3. Subjects were measured at the Beckman
Laser Institute and Medical Clinic, University of
California, Irvine, CA. The contralateral normal
breast of twelve patients with locally advanced breast
cancer receiving neoadjuvant chemotherapy was
measured with DOSI and MRI. The relevant DOSI
measures for this study included percent water, per-
cent ctHHb and percent lipid.

Modeling the correspondence between DOSI biomarkers
and MRI percent density
Simple linear regression models were formed with an
individual DOSI biomarkers at baseline as the response
variable and the corresponding MRI breast density at
baseline as the explanatory variable. Let Y be a given
DOSI response variable and let x be the corresponding
MRI percent density. Then the regression model can be
written as follows:

Y i ¼ αþ βxi þ εi; εieN 0; σ2
� �

; i ¼ 1;…; 12: ð1Þ

For each model, ordinary least squares was used
to estimate the linear correlation (ρ) between Y and
x and the p-value from the hypothesis test of Ho:
ρ = 0 vs HA: ρ ≠ 0 were recorded. At a significance
level of 0.05, there was a statistically significant
linear correlation between MRI percent breast
density prior to therapy and each of the three
DOSI measures including percent water (estimated
linear correlation r = 0.843, p < 0.001), μM of ctHHb
(r = 0.785, p = 0.003) and lipid (r = −0.707, p < 0.001)
(Table 1, Fig. 3).

Bootstrapping the DOSI measures
The simple linear regression models from Eq. (1)
were based on the data from 12 subjects. In order to
quantify variability in the estimates of the slope par-
ameter in the model (β) while accounting for poten-
tial departures from the assumption of the classical
normal linear regression model, the bootstrap was
used [13, 14]. Specifically, the observations obtained
on the 12 subjects were treated as a pseudo-
population and sampling with replacement was
utilized to obtain 500 replicate sets of data from the
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Fig. 1 Study Schema: A flow chart display of the simulation procedures

Fig. 2 Diffuse Optical Spectroscopic Imaging (DOSI): a Portable, bedside DOSI instrument, b Handheld DOSI probe that is scanned across the breast to
collect data, and c DOSI image of breast water concentration
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pseudo-population. The process was repeated for
each DOSI biomarker and based upon the 500
pseudo-samples, an analogous regression model to
that described in Eq. (1) was fit and the sampling
distribution of the estimated slope and linear correl-
ation coefficient were estimated.

Simulated MRI breast density data in a tamoxifen
treatment setting
Based on the study of Chen and colleagues [9], 16
women were enrolled and received 3D MRI assess-
ment of breast density before and after tamoxifen
treatment. The mean pre- and post-treatment per-
cent density (standard deviation, SD) was 22.1%
(2.6%) and 16.3% (3.3%), respectively. The estimated
correlation coefficient between pre- and post-
treatment was 0.9. Let Xpre represents the MRI per-
cent breast density before the treatment and Ypost

represents the MRI percent breast density after the
treatment. Let μx and μy be the mean percent breast
densities with corresponding standard deviations σx
and σy measured pre- and post-treatment, respect-
ively. The within-subject correlation between Xpre

and Ypost is represented by ρMRI. A bivariate normal
probability density function for Xpre and Ypost is
given in Eq. (2) and was assumed to simulate 10,000
pairs of MRI percent breast density data with a spe-
cified correlation between pre- and post-treatment
values. The simulation procedure was repeated for

each specified correlation coefficient of 0.5, 0.8 and
0.9, separately in order to reflect the strong linear
association observed in Chen et al. as well as two
less optimistic cases.

f x; yð Þ ¼ 1

2πσxσy
ffiffiffiffiffiffiffiffiffiffi
1−ρ2

p exp

"
−

1
2 1−ρ2ð Þ

"
x−μx
σx

� �2

þ y−μy
σy

� �2

−2ρ
x−μx
σx

� �
y−μy
σy

� �##
ð2Þ

Simulation of within-subject changes in DOSI values
To account for uncertainty in both the association
between pre- and post-MRI density measures and the
cross-sectional relationship between a given DOSI
outcome and MRI-based density, the following
algorithm was implemented.

1. 500 bootstrap estimates of the cross-sectional linear
relationship between the DOSI measurement and MRI
density were obtained, as described in the previous
section entitled “Modeling the correspondence
between DOSI biomarkers and MRI percent
density”.

2. For each assumed correlation (0.5, 0.8 and 0.9),
10,000 simulated pre- and post-MRI density pairs
were simulated from the bivariate model described
in the previous section entitled Bootstrapping the
DOSI measures.

3. For each of the bootstrap estimates obtained
in Step 1, the 10,000 pre- and post-simulated
MRI density values from Step 2 were used to
generate a corresponding simulated mean DOSI
value via the simple linear regression model
given in Eq (1).

Table 1 Correlation coefficients and p-values for DOSI measures
versus MRI breast density among twelve patients

Baseline (N = 12)

ρ p-value

Water 0.843 <0.001

ctHHb 0.785 0.003

Lipid −0.707 0.010

Fig. 3 Linear regression models: a water versus MRI breast density, b deoxyhemoglobin (ctHHb) versus MRI breast density and c lipid versus MRI
breast density
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In the above algorithm we assume that the observed
linear relationship between pre-treatment MRI and
DOSI values would also hold for post-treatment
values, and the correlation coefficient in MRI and
DOSI between pre and post-therapy was consistent.
Using this approach, we obtained predicted mean
DOSI values at baseline and after treatment and the
standard deviations of predicted DOSI values for each
simulated case. To take into account the correlation
between estimated pre- and post-treatment DOSI
values, the predicted mean and SD for percent water,
μM ctHHb and percent lipid measured at baseline
and after treatment were then used in a second simu-
lation of bivariate normal distributions with specified
correlation coefficients of 0.5, 0.8, and 0.9. This
resulted in 5,000,000 corresponding pairs of pre- and
post-therapy values generated for each of the three
DOSI measures (percent water, μM ctHHb and per-
cent lipid) at each of specified correlation coefficients.
The SAS programming code for our application of a
two-stage strategy is available (see Additional file 1:
Supplemental SAS program).

Preliminary data for power and sample size calculation
Pre- and post-treatment differences between values for
each DOSI biomarker were calculated and used to
inform power and sample size calculations for a two-
sample t-test of the mean reduction from baseline in the
tamoxifen-treated vs. control groups with a specified
power and significance level. Since a study of tamoxifen-
induced reduction of mammographic density reported
that the mean reduction in density among placebo con-
trol subjects was approximately half the mean density
reduction in tamoxifen-treated subjects (3.5% vs 7.9%),
we assumed that the clinically-relevant reduction in
DOSI measures in the control group would be half that
of the tamoxifen-treated group [2, 8, 15]. The program
nQuery v7.0 was utilized for power and sample size de-
terminations [16].

Results
Results of the simulation procedures are displayed in Fig. 4.
Three sets of 10,000 pairs of MRI breast density data with
correlation coefficient of 0.5, 0.8 and 0.9 were simulated
and generated, respectively as described in the study
schema (Fig. 1). These were used to simulate and generate
a corresponding 5,000,000 pairs of DOSI values represent-
ing water, ctHHb, and lipid (Table 2). Based on the simu-
lated DOSI data, the observed means and SDs of the
changes in the treated group were listed in Table 2. The
estimated sample size of participants per group needed to
detect a mean reduction in the control group of half that
of the treated group for a specified power and a signifi-
cance level are listed in Table 3. For example, under the
assumptions of the correlation coefficient between pre-
and post-treatment with a value of 0.50 and the common
standard deviation for the treated and control groups, the
observed mean changes and SD of the changes in the
treated group were -2.5% (2.12%), −0.3μM (0.29μM) and
2.6% (2.63%) for water, ctHHB, and lipid respectively,
compared to −1.3% (2.12%), −0.2μM (0.29μM), and 1.3%
(2.63%) in the control group. With 80% power and a sig-
nificance level of 0.05, the required sample sizes per group
are 47 subjects for water, 48 for ctHHb, and 65 for lipid
(Table 3). Additional file 2: Tables S1, S2, and S3 show de-
tails of the minimum sample size needed per group for
specified clinically-relevant sample sizes, assuming signifi-
cance levels of 0.05 and 0.01, power of 80 and 90%, and
correlation coefficients between pre- and post-treatment
values of water, ctHHB, and lipid of 0.50, 0.80, and 0.90.

Discussion
When attempting to quantify the statistical operating
characteristics of a proposed study design there is often
little relevant preliminary data available to inform power
and sample size determination. Because of this a common
approach is to use indirect estimates of variability and ef-
fect size (at best) or assumed estimates in the absence of
empirical data (at worst). As with the DOSI trial

Fig. 4 Probability distribution plots of 10,000 simulated MRI breast density data representing pre- and post-tamoxifen treatment assuming
the following: a correlation coefficient of 0.5, b a correlation coefficient of 0.8, and c a correlation coefficient of 0.9

McLaren et al. BMC Medical Research Methodology  (2017) 17:75 Page 5 of 8



Table 2 Simulated preliminary data for power and sample size calculations

Variable Estimated correlation coefficient

0.50 0.80 0.90

N Mean STDa Mean STDa Mean STDa

The simulated MRI breast density at baseline data 10,000 22.1 2.59 22.1 2.59 22.1 2.59

The simulated MRI breast density at follow-up data 10,000 16.3 3.33 16.3 3.32 16.3 3.32

pre_ctH2O: Predicted mean and STD for 2nd simulation 5,000,000 23.8 1.53 23.8 1.53 23.8 1.53

post_ctH2O: Predicted mean and STD for 2nd simulation 5,000,000 21.3 1.64 21.3 1.64 21.4 1.63

Random selected baseline water data after applying the regression model 5,000,000 23.9 2.16 23.9 2.16 23.9 2.16

Random selected follow-up water data after applying the regression model 5,000,000 21.3 2.32 21.3 2.32 21.4 2.31

Water: Follow-up data – Baseline datab 5,000,000 -2.5 2.12 −2.5 1.42 −2.5 1.09

pre_ctHHb: Predicted mean and STD for 2nd simulation 5,000,000 5.2 0.19 5.2 0.19 5.2 0.19

post_ctHHb: Predicted mean and STD for 2nd simulation 5,000,000 4.8 0.23 4.8 0.23 4.9 0.23

Random selected baseline ctHHb data after applying the regression model 5,000,000 5.2 0.26 5.2 0.26 5.2 0.26

Random selected follow-up ctHHb data after applying the regression model 5,000,000 4.8 0.32 4.9 0.32 4.9 0.32

ctHHb: Follow-up data – Baseline datab 5,000,000 −0.3 0.29 −0.3 0.20 −0.3 0.16

pre_Lipid: Predicted mean and STD for 2nd simulation 5,000,000 66.3 2.06 66.3 2.06 66.3 2.06

post_Lipid: Predicted mean and STD for 2nd simulation 5,000,000 68.9 2.01 68.9 2.00 68.9 2.00

Random selected baseline Lipid data after applying the regression model 5,000,000 66.3 2.92 66.3 2.92 66.3 2.92

Random selected follow-up Lipid data after applying the regression model 5,000,000 68.9 2.84 68.9 2.84 68.9 2.83

Lipid: Follow-up data – Baseline datab 5,000,000 2.6 2.63 2.6 1.82 2.6 1.44
aSTD standard deviation
bThe italic font indicates that the values were used in the sample size deteremination procedure

Table 3 Estimated sample size needed per group in various scenarios

DOSI Measure Power Significance level Estimated correlation coefficienta

0.50 0.80 0.90

Common
STDb (σ)

2 × Common
Variance

Common
STDb (σ)

2 × Common
Variance

Common
STDb (σ)

2 × Common
Variance

Water σ = 2.121 σ = 2.999 σ = 1.420 σ = 2.008 σ = 1.088 σ = 1.539

80 0.01 69 136 32 62 20 38

0.05 47 92 22 42 13 25

90 0.01 88 173 41 79 25 47

0.05 62 122 29 56 17 33

Deoxyhemoglobin
(ctHHb)

σ = 0.287 σ = 0.406 σ = 0.198 σ = 0.279 σ = 0.158 σ = 0.224

80 0.01 72 142 35 68 23 45

0.05 48 95 24 46 16 30

90 0.01 90 180 45 86 29 56

0.05 64 127 31 61 21 40

Lipid σ = 2.633 σ = 3.724 σ = 1.816 σ = 2.568 σ = 1.443 σ = 2.041

80 0.01 96 191 47 92 31 59

0.05 65 128 32 62 21 40

90 0.01 122 242 59 117 38 75

0.05 86 171 42 80 27 53
aThe correlation coefficient was estimated between pre- and post-treatment in simulated MRI data and in simulated DOSI measure
bThe standard deviation is denoted as STD
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considered in this manuscript there may exist parameter
estimates for established response variables that have been
shown to be highly correlated with the novel outcome of
interest being considered in the actual study. In this case,
it is tempting to treat association estimated between the
novel and established variables as fixed, but this approach
fails to incorporate uncertainty in these estimates and
hence may yield overly optimistic estimates of the planned
study’s design operating characteristics.
In the example we have discussed, indirect measures of

the distributional parameters for DOSI do exist and could
be utilized to provide more valid estimates of sample size
and power for a prospectively designed study. Specifically,
we were able to utilize information on the cross-sectional
association between DOSI biomarkers and MRI-based
density outcomes together with separate information on
the within-subject change in MRI-based outcomes. In
order to account for uncertainty in the parameter estimates
stemming from both sources of information a two-stage
simulation approach was employed. As demonstrated, the
simulation techniques we described can be applied to ob-
tain the important preliminary data to inform the power
and sample size calculations in such cases. Given the im-
portance of realistic estimates of study design operating
characteristics we view the approach provided here as a far
superior method when compared to the usual simple as-
sumptions that are often employed by study designers.
Multiple authors have considered power and sample

size estimation. A fairly comprehensive approach to
sample size estimation for standard 1- and 2-sample
problems can be found in Van Belle et al. [17]. In
addition, Lenth [18] provides practical guidance for de-
termining the parameters to be used in sample size esti-
mation. In the context of linear regression, Hsieh et al.
[19] provides closed form solutions when parameter
values are assumed under fairly simple settings with lim-
ited numbers of adjustment covariates. In more complex
scenarios, simulation is generally required in order to
capture the correlation structure across adjustment co-
variates. Burton et al. [20] provide comprehensive guide-
lines for designing and implementing simulation studies,
with applications to sample size estimation for logistic
and survival models. In the context of simulated sample
size determination for specific applications, Desmond
and Glover [21] consider the use of simulation for sam-
ple size determination in the context of fMRI imaging
studies. In their work, parameter values used in the
simulation were derived from observed pilot data.
Haneuse et al. [10] have further a two-stage approach
that utilizes simulation of statistical operating character-
istics both at the design phase of a study and later seeks
to incorporate updated correlation and variance
estimates after preliminary data collection has been
obtained. They did not consider the use of indirect

association estimates as we have provided here, though
the techniques presented in [10] could also be of use in
the DOSI study after initial data collection has been ob-
tained in order to update and further inform the statis-
tical operating characteristics of the study. This remains
an area of future work for this project.

Conclusion
Many different breast imaging modalities, including
mammography, MRI, optical imaging, ultrasound, com-
puted tomography (CT), and nuclear medicine, can be
used to measure breast density, as described in a recent
review paper [22]. Although the underlying mechanisms
to identify dense tissue in a breast were different by
using different imaging methods; yet in general, due to
the strong contrast between dense and fatty tissues, and
the quantitative density measures done by using differ-
ent imaging modalities were highly correlated. This of-
fers a great opportunity to obtain a good estimate of
effect size when designing a new study by using the
density measured by more-established methods, such as
mammography and MRI. In this work, the reduction of
density in subject receiving tamoxifen treatment was
measured by MRI, and the effect size along with the
measurement variation of DOSI could be used to do a
realistic power analysis. This strategy can be potentially
applied to many other imaging studies done by using
novel imaging methods that do not have sufficient pre-
liminary results, based on the high correlation with re-
sults obtained by using established imaging modalities.
Our two-stage approach provides a feasible framework.
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Additional file 1: SAS Program Code. (DOCX 50 kb)

Additional file 2: Table S1. Sample sizes needed per group for a
two-sided two group t-test of equal means assuming a significance
level of 0.05 or 0.01, power of 80% or 90%, correlation coefficient between
pre and post-treatment values of 0.50 for each DOSI measure, and equal
sample sizes per group*. Table S2. Sample sizes needed per group for a
two-sided two group t-test of equal means assuming a significance level of
0.05 or 0.01, power of 80% or 90%, correlation coefficient between pre and
post-treatment values of 0.80 for each DOSI measure, and equal sample
sizes per group. Table S3. Sample sizes needed per group for a two-sided
two group t-test of equal means assuming a significance level of 0.05 or
0.01, power of 80% or 90%, correlation coefficient between pre and
post-treatment values of 0.90 for each DOSI measure, and equal
sample sizes per group. (DOC 109 kb)
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