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Optimizing Perovskite Thin-Film Parameter Spaces with
Machine Learning-Guided Robotic Platform for
High-Performance Perovskite Solar Cells

Jiyun Zhang,* Bowen Liu, Ziyi Liu, Jianchang Wu, Simon Arnold, Hongyang Shi,
Tobias Osterrieder, Jens A. Hauch, Zhenni Wu, Junsheng Luo, Jerrit Wagner,
Christian G. Berger, Tobias Stubhan, Frederik Schmitt, Kaicheng Zhang, Mykhailo Sytnyk,
Thomas Heumueller, Carolin M. Sutter-Fella, Ian Marius Peters, Yicheng Zhao,*
and Christoph J. Brabec*

Simultaneously optimizing the processing parameters of functional thin films
remains a challenge. The design and utilization of a fully automated platform
called SPINBOT is presented for the engineering of solution-processed
functional thin films. The SPINBOT is capable of performing experiments
with high sampling variability through the unsupervised processing
of hundreds of substrates with exceptional experimental control. Through
the iterative optimization process enabled by the Bayesian optimization
(BO) algorithm, the SPINBOT explores an intricate parameter space,
continuously improving the quality and reproducibility of the produced thin
films. This machine learning (ML)-guided reliable SPINBOT platform enables
the acceleration of the optimization process of perovskite solar cells via
a simple photoluminescence characterization of films. As a result, this study
arrives at an optimal film that, when processed into a solar cell in an ambient
atmosphere, immediately yields a champion power conversion efficiency (PCE)
of 21.6% with satisfactory performance reproducibility. The unsealed devices
retain 90% of their initial efficiency after 1100 h of continuous operation
at 60–65 °C under metal-halide lamps. It is anticipated that the integration of
robotic platforms with the intelligent algorithm will facilitate the widespread
adoption of effective autonomous experimentation to address the evolving
needs and constraints within the materials science research community.
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1. Introduction

Solution-processed thin films commonly
used in organic,[1–3] dye-sensitized,[4,5]

and perovskite solar cells (PSCs)[6–8] are
an attractive alternative to crystalline
wafers due to easier fabrication pro-
cesses, lower manufacturing cost, and
potentially higher power-per-weight
of the materials.[9] Developing a re-
liable manufacturing technique for
solution-processed thin films requires
process optimization in a highly dimen-
sional parameter space. Simultaneously
optimizing the processing parame-
ters of thin films is time-consuming
and labor-intensive because of the
large number of closely correlated
parameters.[10] This non-orthogonality
of the parameter space has a pro-
found influence on identifying unique
causal relations between processing
conditions and the microstructure and
properties of the final semiconducting
layers.[11]

J. Zhang, B. Liu, J. Wu, S. Arnold, H. Shi, J. A. Hauch, Z. Wu, K. Zhang,
T. Heumueller, C. J. Brabec
Faculty of Engineering
Department of Material Science
Materials for Electronics and Energy Technology (i-MEET)
Friedrich-Alexander-University Erlangen-Nuremberg (FAU)
91058 Erlangen, Germany
B. Liu, Z. Liu, J. Luo, Y. Zhao
State Key Laboratory of Electronic Thin Films and Integrated Devices
School of Electronic Science and Engineering
University of Electronic Science and Technology of China (UESTC)
Chengdu 611731, P. R. China
E-mail: zhaoyicheng@uestc.edu.cn

Adv. Energy Mater. 2023, 13, 2302594 2302594 (1 of 9) © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH

http://crossmark.crossref.org/dialog/?doi=10.1002%2Faenm.202302594&domain=pdf&date_stamp=2023-11-01


www.advancedsciencenews.com www.advenergymat.de

At the same time, knowledge-based materials science is a do-
main where manual routines and traditional trial-and-error ap-
proaches are still predominant. One typical example is the op-
timization of functional thin film processing for device opera-
tion. Identifying processing conditions for high-performance de-
vices, in particular, still relies heavily on the empirical decisions
of human experts in single laboratories and underlies the restric-
tions of ad-hoc trials and non-holistic approaches. As a result,
these “optimized” procedures typically work for a single lab but
otherwise suffer from poor intra-lab reproducibility and inter-lab
transferability. Particularly in the field of perovskites, this is re-
flected by the huge number of published processing conditions
and significant standard deviation in device performance.[12–14]

Automated research platforms, commonly known as Mate-
rials Acceleration Platforms (MAPs), have been introduced to
explore the realms in the multi-dimensional parameter space.
These MAPs have already achieved significant successes in ad-
dressing high-dimensional problems in fields such as experi-
mental life sciences, chemistry, and physics, with great preci-
sion, speed, and accuracy.[15–18] The scientific community has
recognized the potential of MAPs to revolutionize materials re-
search and development processes in several ways such as accel-
erated discovery, efficiency and cost savings, improved material
performance, enhanced collaboration, and feasible knowledge
sharing.[19–21] Noteworthy examples include the research work
by MacLeod et al., who introduced a modular robotic platform
called Ada driven by a model-based optimization algorithm to
optimize organic and palladium films by modifying their com-
position and processing conditions.[22,23] Similarly, Zhao et al. re-
ported a robotic platform framework that integrates data min-
ing, controllable synthesis, and inverse design for achieving tar-
geted colloidal nanocrystal morphologies.[24] In our previous
work, we employed a robotic platform, Tecan, to synthesize and
screen hundreds of multi-cation perovskite compositions for per-
ovskite devices with long-term operational stability.[25,26] Addi-
tionally, by coupling the Gaussian Process Regression (GPR) pre-
diction approach based on optical absorption features,[27] we au-
tonomously explored over 100 process conditions to optimize
the efficiency performance and photo-stability of organic photo-
voltaics (OPVs).[28] The methodology of integrating automation
in energy thin film materials research, especially for perovskite
materials, is drawing ever-increasing attention.[6,29–31]

To effectively leverage MAPs, sequential Machine Learning
(ML)-driving tools, such as the Bayesian Optimization (BO)
method, have been widely adopted as robust optimization strate-
gies for material exploration.[22,32,33] The BO method, often em-
ploying the GPR model, has proven to be efficient in optimizing
problems with multi-dimensional variable spaces by providing
a visualized mapping between input and target properties.[34,35]

Combining MAPs with ML-driving algorithms for the fabrication
and characterization of solution-processed PV thin film materi-
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als will undoubtedly contribute to the acceleration of materials
discovery by making high-dimensional parameter optimization
more manageable.[19,28,36,37]

In this report, we introduce a fully automated spin-coating
platform called “SPINBOT” (Figure 1A) for the engineering of
solution-processed functional thin film materials. Through inte-
grating a BO algorithm, the SPINBOT effectively optimized the
manufacturing parameters of perovskite thin films in a complex,
multi-dimensional parameter space. As a result, this ML-guided
reliable platform enables us to accelerate the optimization pro-
cess of perovskite solar cells via a simple PL characterization of
films and make a perovskite device with a champion efficiency of
21.6%. Moreover, unsealed devices from the same batch exhib-
ited satisfactory performance reproducibility and photo-thermal
stability, retaining 90%± 3% of their initial efficiency after 1100 h
of continuous aging at 60–65 °C in Nitrogen atmosphere under
metal-halide lamps.

2. Results and Discussion

2.1. The Automated SPINBOT Platform and Workflow

Figure 1A and Figure S1 (Supporting Information) show the
picture and schematic diagram of the SPINBOT platform. The
robot component utilized for movement along four axes (X-, Y-,
Z- and R-axis) is a Selective Compliance Assembly Robot Arm
(SCARA) with high speed, flexibility, and rigidity (Figure S2, Sup-
porting Information). SCARA performs multiple selective tasks
repetitively with the high accuracy, efficiency, and precision re-
quired for high-throughput device processing. A liquid handling
pipetting (LHP) module and a customized substrate-handling
gripper (Figure S3, Supporting Information) are mounted to
the robot arm. The LHP module driven by a pressure-based
liquid-level sensing mode (Figure S4, Supporting Information)
is used to aspirate, dispense, and mix liquid solutions. The sub-
strate gripper moves the substrates into and out of the system.
Thin films are produced with a customized mini-spin coater in
a quasi-static on-the-fly spin coating mode (Figure S5, Support-
ing Information).[38] A typical deposition process with this tool
looks like this: the precursor is dispensed on a slowly rotating
substrate while the pipette tip slowly moves from the central
site to the periphery of the substrate. The spin coater then ac-
celerates to its target velocity after the solution is completely dis-
pensed. The LHP with a newly mounted tip aspirates and then
dispenses the anti-solvent onto a substrate with a certain tip
height and dispensing speed at the scheduled timing. The car-
rier containing eight film-coated substrates is then transferred
to the hotplates by the gripper for two-step thermal annealing
(Figure S6, Supporting Information). An in-house characteriza-
tion platform is used to carry out optical measurements, includ-
ing recording the UV–vis absorption spectrum, the steady-state
photoluminescence (PL) spectrum, and the time-resolved photo-
luminescence (TRPL) spectrum (Figure 1B; Figure S7, Support-
ing Information).[26,39–44] Multiple positions with a regular pat-
tern on the front and back sides of samples were characterized
to evaluate film reproducibility, homogeneity, and quality. The
entire streamlined fabrication process and measurement of thin
films can be found in the Video S1 (Supporting Information).

Adv. Energy Mater. 2023, 13, 2302594 2302594 (2 of 9) © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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Figure 1. The SPINBOT platform and the step-by-step optimization workflow. A) Photograph of the SPINBOT platform. Part 1. robot arm with four
movement axes: X-, Y-, Z- and R-axis; 2. liquid handling pipette; 3. substrate handling gripper; 4. mini spin coaters; 5. pipette tips; 6. 96-well microplates
as solution-vessel for solutions stocking and anti-solvents; 7. carrier holders; 8. hotplates. B) Schematic of the high-throughput (HT) characterization
for samples fabricated via the SPINBOT platform. Characterization methods include steady-state PL, UV–vis absorption, and time-resolved PL spectra.
C) Schematic of the step-by-step optimization workflow. The sequencing optimization process consists of five steps, with a total of 61 experimental
parameter combinations. Step 1: operational atmospheres (ATM.) inside the spin-coater chamber; Step 2: tip height during CB quenching; Step 3:
dispense velocity of CB; Step 4: rotation speed during high-speed stage; Step 5: combination of CB volume and feeding timing.

2.2. Step-By-Step Optimization Method for Perovskite Thin Films

The ability to produce high-quality, well-organized datasets while
also controlling typically uncontrolled parameters (e.g., the time
between process steps, tip height, and ejection speed of spin-
coating dispense nozzle) adds a new dimension of optimization
parameters to the SPINBOT platform. The design of the experi-
ments covered a multi-parameter space consisting of 5 optimiza-

tion steps, with a total of 61 parameter combinations (Tables S1
and S2, Supporting Information). The homogeneity and qual-
ity of the perovskite thin films were optimized by elaborately
designing film fabrication processing at different atmospheres
and different anti-solvent quenching parameters with various tip
heights, rotation speeds, anti-solvent dropping volume, and dis-
pense timings (steps 1 to 5, Figure 1c). PL measurements were
taken as proxies for device performance. Rather than processing

Adv. Energy Mater. 2023, 13, 2302594 2302594 (3 of 9) © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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Figure 2. Results of step-by-step process optimization of the film homogeneity and reproducibility performed by the automated SPINBOT platform.
A) Grouped box plots depicting the PL intensity of thin films produced in different steps. B) Color maps of the relative coefficient variation for the front
(film) side and back (glass) side of the samples, respectively. C) Box plot of the PL intensity for the films produced under the found optimum conditions.
The inserted photograph with LED backlight panel shows the four perovskite films produced under the found optimum conditions.

whole devices, the SPINBOT optimized film homogeneity and
quality of organic–inorganic halide perovskites according to cri-
teria such as PL peak position, intensity, and spatial homogeneity
of the PL emission.

To evaluate the effect of experimental parameters on the sam-
ple properties, we first converged the absorption spectra from
all test points of each sample. The films show negligible absorp-
tion difference, even the initial thin films produced under differ-
ent atmospheres, indicating sufficient thickness reproducibility
(Figure S8, Supporting Information). The time-resolved PL spec-
tra show similar results (Figure S9, Supporting Information). We
then chose the PL spectrum, a more sensitive indicator of film
homogeneity and quality, as our main target for evaluating fabri-
cation reproducibility under various parameters.[45,46]

Figure 2 shows the results of sequential optimization for thin
film reproducibility and quality. As shown in Figure 2A, the
different operational atmosphere (ATM.) within the spin-coater
chamber, tip height, combinatorial mode of CB dispense volume,
and timing are identified as the dominant parameters influenc-
ing the final PL intensity. Compared with films fabricated in an
ambient atmosphere (ATM. 1 and 2), the films with improved
uniformity and quality can be achieved through the application
of an N2 gas flow or/and vacuum operation due to the creation
of a better-controlled atmosphere and rapid removal of residual
solvent (Table S3, Supporting Information).[47,48] The effect of tip
height is rarely reported in the literature owing to the impos-
sibility of controlling the tip height within 0.1 mm error with
manual operation. Our robotic platform provides the feasibility
to achieve this accuracy and allows us to identify a further critical

parameter in perovskite processing. The SPINBOT reported an
almost linear decline of PL intensity with increasing tip height,
in which the intensity decreased threefold from the lowest dis-
tance to the highest distance. The statistical distribution of the
PL peak position and grouped box plots of the integrated PL in-
tensity for the films were also extracted and analyzed (Figures
S10 and S11, Supporting Information). Figure S9 (Supporting
Information) shows that the PL peak position variance is grad-
ually minimized (from 6.14 to 0.51 nm) through step-by-step op-
timization. A similar trend is also unveiled by the analytical re-
sults of FWHM and peak positions extracted from the substrate
backside (Figure S12, Supporting Information). To have a direct
observation and quantitative evaluation of the PL intensity vari-
ance, the contour value maps were plotted to reveal the PL in-
tensity distribution as a function of 13 specific characterization
positions in the films. As shown in Figure S13 (Supporting Infor-
mation), the films with the best homogeneity were obtained with
2–3 mm tip heights (step 2), which means a trade-off between the
benefits of PL intensity and homogeneity. As the dropping vol-
ume of the anti-solvent was increased, the peak position of the
films decreased. At the same time, the PL intensity remained sta-
ble until the volume increased to 120 μL, which led to a gradual
decrease with the prolongation of CB feeding time (Figure S14,
Supporting Information). The film with the highest photolumi-
nescence intensity and excellent homogeneity is finally achieved
when the CB dispense volume is 120 μL at 3 s (CB quenching
timing).

To better visualize the variability evolution of samples pro-
duced over the parameter space as the optimization progresses,

Adv. Energy Mater. 2023, 13, 2302594 2302594 (4 of 9) © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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we further summarized the color maps of relative coefficient
variation for the front and back sides of each film
(Figure 2B).[49,50] The color maps explicitly manifest the cor-
relations between different parameter combinations and their
impact on film homogeneity. The optimum parameter found in
each step through this analytical approach is consistent with the
previous results. As a result, the films with high reproducibility
and quality (lowest CV: 0.184 and 0.104 for the front and back
sides, respectively) were finally achieved after step-by-step opti-
mization performed by the automated SPINBOT platform. To
confirm the exceptional process control and reproducibility of
the automated platform for film processing under the found
optimum conditions, we repeated producing several thin films
with the same processing parameter. As a result, a narrow
coefficient variance of 0.74% in photoluminescence intensity for
the processed films was achieved (Figure 2C), demonstrating
that complex solution processing can be highly reproducible to
produce high-quality thin films with such a reliable SPINBOT
platform in the lab. Considering the drawbacks of the traditional
step-by-step optimization method such as limited parameter
ranges and local optimal, high-dimensional optimization tasks
may not be adequately addressed even with sophisticated design
of experiments (DoE). Machine learning (ML)-driven systems
could offer a valuable framework for effectively exploring and
expanding the range of parameter sets within the vast and lim-
itless space of materials research. Therefore, in our subsequent
study, we chose a Bayesian Optimization (BO)-guided iterative
optimization strategy to further explore the global optimization
of parameters.

2.3. BO-Guided Closed-Loop Optimization Method for Perovskite
Thin Films

Figure 3A illustrates the experimental workflow of the BO-guided
closed-loop optimization approach. This autonomous workflow
involves iterative experimentation with the objective of discover-
ing the optimal manufacturing parameters for perovskite thin
films with high-quality (highest PL intensity) and high homo-
geneity (lowest PL peak CV and intensity CV) compared to the op-
timal results obtained previously. The initial set of parameters for
the first round is randomly selected from the unlimited param-
eters library using the BO algorithm. The thin films, fabricated
through the SPINBOT, are subsequently characterized using an
in-house HT-spectrometer. The resulting data is analyzed by the
BO algorithm framework, recommending two or three parame-
ter sets for the subsequent iteration round. After multiple rounds
of optimization, the optimal parameter set is finally determined
and translated into perovskite device fabrication.

In total, we conducted eight sequential rounds of prediction
and validation with only three new experiments for each target.
The evaluation of experimental values, including peak CV, aver-
age intensity, and intensity CV, extracted from the PL spectra,
along with the corresponding predicted values and error ranges,
are presented in Figure 3B–D. Initially, the thin films fabricated
under randomly selected parameter sets (Round 0) exhibit poor
performance, indicated by high CV values and low PL intensity.
The quality and reproducibility of the samples were gradually im-
proved when the BO algorithm-recommended sets were adopted.

As shown in Figure 3B, the average PL intensity values exhib-
ited considerable fluctuations during the initial three rounds, fol-
lowed by a gradual increase until reaching a peak intensity in the
final two rounds. The average PL intensity achieved through this
approach was significantly higher than the previous sequential
process method. After 3–4 rounds, the experimental CV values
of PL intensity (Figure 3C) align well with the value interval pre-
dicted by the algorithm, with a final CV value of ≈0.04, signif-
icantly lower than the lowest value obtained using the step-by-
step optimization method. Despite slight fluctuations, the evolu-
tion of PL peak CV values demonstrates a consistent decreasing
trend compared to the Round 0 samples, ultimately reaching an
optimal value in the final round (Figure 3D). These favorable out-
comes demonstrate that through the iterative optimization pro-
cess facilitated by the BO algorithm, the SPINBOT systematically
explores a complex parameter space, continuously improving the
quality and performance of the produced thin films. As a result,
the optimal solution (a higher-speed step at 4660 rpm for 22 s,
150 μL CB was dropped onto the film with a dispense height of
2.6 mm and velocity of 165 μL s−1 at 6 s, followed by annealing
at 100 °C for 10 min and 150 °C for 5 min in the air) has been
identified. This particular parameter set demonstrates promising
potential for the fabrication of high-performance perovskite solar
cells.

Figure 3E illustrates the operational optimization principle of
the customized BO-guided iterative method and step-by-step ap-
proach. The step-by-step method identifies an optimal parame-
ter set within a limit parameter library and narrows it down to a
set of optimal candidates through a sequential process. By ana-
lyzing and leveraging the optimal parameter set at each round,
the ML-guided closed-loop optimization workflow facilitates effi-
cient and effective experimentation. This approach avoids pro-
ducing and evaluating thin films with poorly estimated coeffi-
cient variations and allocates more resources toward the highly
reproducible portion of the parameter space. As a result, the ML-
guided optimization method not only overcomes the limitations
of the step-by-step optimization process but also leads to a sub-
stantial enhancement in the quality of the thin films through a
global optimization strategy.

2.4. Device Characterizations and Stability Performance

To understand the relevance of the PL proxy based film opti-
mization on device performance, perovskite solar cells (PSCs)
with an n–i–p structure of ITO/ SnO2-PEIE (polyethylenimine)/
perovskite/ PDCBT (poly[2,2ʹʹʹʹ-bis[[(2-butyloctyl)oxy] carbonyl]
[2,2ʹ:5ʹ,2ʹʹ:5ʹʹ,2ʹʹʹ-quaterthiophene]−5,5ʹʹʹ-diyl])/ PTAA-BCF ((tris
(pentafluorophenyl) borane-doped poly(triarylamine))/ Au (see
detailed device architecture in Figure 4A) were fabricated. Here
the perovskite absorbers were coated by the SPINBOT with the
optimal parameter sets for film processing in ambient air. All
other layers of the devices were then deposited manually in an
N2-filled glovebox. Representative current density versus voltage
(J–V) curves and performance statistics measured under Air
Mass 1.5 Global (AM 1.5 G) solar irradiation (100 mW cm−2) are
shown in Figure 4B and Figure S15 (Supporting Information)
for the PSCs with various film processing. From the extracted
device performances (Figure S16, Supporting Information), the

Adv. Energy Mater. 2023, 13, 2302594 2302594 (5 of 9) © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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Figure 3. ML-guided closed-loop optimization for the film homogeneity and quality. A) Schematic of the BO-guided experimentation workflow. The work-
flow involves iterative optimization operations aimed at achieving high-quality and reproducible perovskite samples. B–D) Evolution of experimental
PL peak CV, PL intensity, and PL intensity CV values, along with the corresponding prediction values and error ranges for Rounds 1–8. The color bands
represent the predicted values with error ranges based on the most recent obtained values, as estimated by the BO algorithm. The solid balls of vary-
ing colors indicate the resulting experimental values. E) Schematic illustrating the BO-guided iterative optimization method and step-by-step method
designed to achieve optimal parameters.

PCE of all champion devices in each group exceeds 19%, under-
pinning of high quality of the process implemented by the SPIN-
BOT platform in ambient air. The grouped performance distribu-
tion of the devices is consistent with the analytical reproducibil-
ity of the results for the films produced in step 5-2. As shown in
Figure 4B, the device with the optimum perovskite layer fabri-
cated via the SPINBOT achieved PCE of 21.0%, Voc of 1.1 V, Jsc
of 23.7 mA cm−2, and FF of 80%, while the whole handcrafted
(reference) PSCs exhibited PCE of 19.4%, Voc of 1.07 V, Jsc of
23.5 mA cm−2, and FF of 77% (Figure S17, Supporting Informa-
tion). By integrating the SPINBOT with the BO-based iterative
optimization technique, we achieved outstanding device perfor-

mance with the optimal thin film, resulting in a champion PCE of
21.6%. The optimized devices exhibited exceptional performance
metrics, including a Voc of 1.13 V, Jsc of 24.5 mA cm−2, and FF
of 78% (Figure 4C; Table S3, Supporting Information). These
outcomes surpassed those obtained by the step-by-step optimiza-
tion method, highlighting the efficacy of the BO-guided approach
in maximizing film quality and device performance. Benefiting
from the exceptional capabilities for process control of the auto-
mated platform, the devices fabricated on different days with the
SPINBOT-optimized procedure show superior performance and
reproducibility (Figure 4D; Figures S18 and S19, Supporting In-
formation).

Adv. Energy Mater. 2023, 13, 2302594 2302594 (6 of 9) © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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Figure 4. Device characterizations of PSCs with active layer produced via the SPINBOT in ambient air. A) Schematic of the metal halide PSCs structure.
B) J–V curves of the champion devices fabricated with the “optimal parameters” transferred from manual operation and the optimized parameters
through the step-by-step method, respectively. (Insert text shows the detailed performance of the champion device. C) J–V curves for the devices fabricated
under the optimized parameters through the BO-guided closed-loop optimization technique. D) Grouped performance statistics for 36 solar cells
fabricated under the optimum conditions at different times (the 1st, 7th, and 14th days, respectively). E) The best long-term stability of the unsealed
device with optimal fabrication procedure tested at 60–65 °C in an N2-filled chamber under metal-halide lamps (83 mW cm−2) in reverse directions.

Another strong criterion of the quality of the layers and the cor-
responding defects is the operation lifetime at elevated tempera-
tures. We decided to evaluate the long-term operational stability
of unsealed devices with the perovskite layer fabricated via the
SPINBOT. Here, we employed ISOS-L-3 (65 °C with MPP track-
ing, under light) protocols.[25,51] As shown in Figure 4E, after con-
tinuous aging at 60–65 °C in an N2-filled chamber under metal-

halide lamps (83 mW cm−2), the unencapsulated devices retained
90% ± 3% and 85% ± 3% of their initial efficiency after 1100 and
1570 h, respectively in both forward (Figure S20, Supporting In-
formation) and reverse voltage scans. The results indicate that
the optimization of the complete solar cell process using photo-
luminescence (PL) measurements is highly effective, signifying a
noteworthy advancement in the realm of photovoltaics. We assert

Adv. Energy Mater. 2023, 13, 2302594 2302594 (7 of 9) © 2023 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH
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that this methodology, coupled with the reliable automatic plat-
form employed in our study, holds substantial value in providing
guidance to both academia and industry. By offering insights on
acceleration, our research has the potential to contribute signifi-
cantly to advancements in the field.

3. Conclusion

We present the design and utilization of an automated platform,
the SPINBOT, for the engineering of solution-processed func-
tional thin films. The unique capabilities of this ML-guided plat-
form were demonstrated by optimizing the manufacturing pro-
cess of perovskite thin films within a complex multi-dimensional
parameter space, utilizing fast PL proxy parameters for evalua-
tion. By integrating the SPINBOT with a BO-based iterative op-
timization technique, we arrived at a film that, when processed
into a device in an ambient atmosphere, immediately yielded a
champion efficiency of 21.6% in an unsealed device with satis-
factory photo-thermal stability and performance reproducibility.
Our next goal is to expand the capabilities of the SPINBOT to
enable autonomous optimization experiments for multilayer sys-
tems, leveraging artificial intelligence (AI) for experiment design.
Through this advancement, we anticipate facilitating the mate-
rial and process development for environmentally processed and
performance-optimized electronics such as perovskite devices.
We believe the robotic scientist paradigm offered by the SPIN-
BOT opens up new possibilities in materials science, providing
researchers with a powerful tool to accelerate the discovery and
optimization of functional thin films. This advancement has the
potential to revolutionize various fields, including electronics, en-
ergy, and optoelectronics, by enabling rapid prototyping, efficient
process development, and the exploration of novel materials and
device architectures.
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