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Abstract

Despite the high fidelity of bottom-up coarse-grained (CG) approaches to recapitulate the

structural correlations in atomistic simulations, the general use of bottom-up CG methods is

limited because of the nontransferable nature of these CG models under different thermodynamic

conditions. Because bottom-up CG potentials usually correspond to configuration-dependent free

energies of the system, recent studies have focused on adjusting enthalpic or entropic contributions

to account for issues with transferability. However, these approaches can require a manual

adjustment of the CG interaction a priori and are usually limited to constant volume ensembles. To

overcome these limitations, we construct temperature and phase transferable CG models under

constant pressure by developing the ultra-coarse-graining (UCG) methodology in the mean-field

limit. In the mean-field ansatz, an embedded semi-global order parameter recapitulates global

changes to the system by automatically adjusting the effective CG interactions, thus bridging free

energy decompositions with UCG theory. The method presented is designed to faithfully capture

structural correlations under different thermodynamic conditions, using a single UCG model.

Specifically, we test the applicability of the developed theory in three distinct cases: (1) different

temperatures at constant pressure in liquids, (2) different temperatures across thermodynamic

phases, and (3) liquid/vapor interfaces. We demonstrate that the systematic construction of both
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temperature and phase transferable bottom-up CG models is possible using this generalized UCG

theory. Based on our findings, this approach significantly extends the transferability and

applicability of the bottom-up CG theory and method.

Graphical Abstract

1. INTRODUCTION

Bottom-up coarse-grained (CG) approaches are typically constructed to preserve fine-

grained (FG) static correlations (e.g., full all-atom resolution) by fitting CG interaction

parameters to all-atom reference trajectories.1–3 Iterative Boltzmann inversion,4 inverse

Monte Carlo,5 multiscale coarse-graining (MS-CG),6–10 and relative entropy

minimization11–13 are a few such approaches. It has been shown that these bottom-up CG

approaches can accurately recapitulate pairwise correlations14 or three-body correlations15

in the reference FG system. In comparison with top-down approaches where CG parameters

are designed to reproduce experimental thermodynamics or phenomenology,16–19 a

physically accurate description of these static correlations is the main advantage of bottom-

up methods. However, transferability remains a central issue in bottom-up CG models.20–24
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The transferability problem stems from the fact that bottom-up CG models are often

designed to have probability distribution functions, pR(RN), which are consistent with that of

the FG system, pr(rn), in configuration space. These spaces are linked by the mapping

operator MR
N : rn RN, where rn and RN refer to the configurations of the FG and CG

systems, respectively.8 The consistency condition can be written as

exp −βUCG RN = C∫ drnδ MR
N rn − RN × exp −βu rn

(1)

where u(rn) is the FG (e.g., all-atom) potential energy function and β = 1/kBT. The condition

in eq 1 establishes that the CG effective potential UCG(RN) is a many-body potential of

mean force (PMF), i.e., a configuration-dependent free energy function. The CG potential is

thus substantially different from conventional definitions of potential energy functions.

Because the position-dependent CG free energy function can change for different

thermodynamic conditions, UCG(RN) is arguably not inherently transferable between those

conditions.

Some fundamental thermodynamic relationships should, however, still hold in a many-body

functional form as in eq 1. Inspired by a free energy decomposition (FED) scheme, several

efforts have been made to partition the CG free energy functional into energetic and entropic

components.25,26 This approach allows for the construction of temperature transferrable CG

models with interpolation.27 Recently, we also showed that one can design combining rules

for the CG PMF of mixed-composition systems by decomposing PMFs of individual

components and mixing the terms separately.24 However, these approaches require that the

“interpolation” must be carried out under constant volume conditions.

Given the diverse length scales for CG simulations in chemical or biological systems, it is

not only practical but also necessary to develop a method for the construction of temperature

transferable CG models at constant pressure.28,29 However, evaluating pressure in the CG

system is challenging because of the missing degrees of freedom lost in the CG procedure.

Without a properly designed barostat that accounts for representability issues,30 both CG

model parametrization and simulations at constant pressure are not feasible. In addition,

FED schemes are intrinsic interpolations that require manual adjustments to entropic or

volumic terms under different temperature and pressure conditions after performing atomic

simulations of the target system in a range of temperature or pressure, reducing the

predictiveness of the CG simulations.

One holy grail for CG modeling is to develop a single CG model that can be applied to any

system without a posteriori adjustments.31 A possible scheme to achieve this goal would be

to construct a CG model that automatically detects the system condition and alters its

entropic or volumic contributions on the fly. In practice, one would need to determine an

appropriate order parameter that reflects the changes in the system. By implicitly coupling

the order parameter to the CG interaction, the resultant CG model can be expected to more

faithfully adjust its interaction under different system conditions. While conceptually sound,

this requires a new CG theory to account for these changes and the design of order

parameters that can determine global system properties on the fly.
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We recently developed the ultra-coarse-graining (UCG) theory where CG sites can adopt

internal states to represent the physical or chemical transitions occurring beneath the

resolution of each CG site.32–35 In contrast to conventional CG force fields, the UCG force

field is expressed as a mixed interaction between each substate of the CG site. In principle,

by carefully designing the internal states to be dependent on the order parameter, the single

UCG model can represent more than one characteristic state of the system to help capture

the many-body correlations using only pairwise interaction forms. Practically, by imposing a

separation of time scales, this theory was further elaborated in two opposing limits of

internal state dynamics: a discrete slow switching limit33 and a rapid local equilibrium

(RLE) limit.34,35 The RLE limit allows UCG models to continuously change state

contributions to the overall effective CG interaction based on the local environment on the
fly34,35 and can be applied to construct more transferable CG models.36 In this limit, we

have demonstrated that UCG models are able to capture various structural correlations that

are often missing and not described in conventional CG models. To note a few, the missing

hydrogen bonding interactions are faithfully described by introducing hydrogen bonding

donor and acceptor states,37 and the hydrophobic association of molecules is captured by

constructing internal states based on the local associated density.34 Despite its

expressiveness, the physical connection between the UCG theory and the transferability of

CG models over different state points is less clear.

In this work, we develop temperature transferable CG models under constant NPT dynamics

by developing UCG methodology in the mean-field limit. From the mean-field ansatz, we

aim to rigorously bridge general FED schemes with UCG models that are governed by a

semi-global order parameter. We demonstrate the applicability of this approach in CG

simulations of liquids over different temperatures under constant pressure conditions. We

further develop methods to extend our temperature transferable CG model from a single

phase to multiple phases and to generate “phase combinational” CG models that can capture

structural correlations at liquid/vapor interfaces. Extending from the previous work that

focused on phase transferability for either homogeneous or heterogeneous systems, we argue

that the UCG methodology can be utilized to its fullest extent to encompass both conditions

for the first time.

2. THEORY

2.1. Transferability Challenges and the FED of CG PMFs.

The direct use of CG interaction potentials at nonparametrized state points may be

problematic because the CG interaction potential is essentially a configuration RN dependent

free energy, i.e., the CG PMF8,9

U RN = − kBTln∫ drnexp − u rn

kBT δ MR
N rn − RN + ( const. ) (2)

As the CG potential unambiguously changes at different state points, several bottom-up CG

approaches have attempted to determine this change.24,29,34,36,38–48 Among those, our

particular focus is to treat the CG interaction as a free energy functional.49 FED-based
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interpolation schemes have been developed to generate CG models by altering the entropic

component of the free energy.24–26 However, these methods were limited to constant volume

conditions (NVT ensembles), in which the CG PMF corresponds to the Helmholtz free

energy: A = E − TS.24–26 Because various chemical reactions take place under the constant

pressure condition (e.g., 1 atm), we will further extend our approach to constant pressure

conditions.

Nevertheless, a simple extension of constant NVT to NPT ensembles is not possible because

of pressure representability issues.20–22,24 Because of the missing degrees of freedom in the

CG models, calculating the CG pressure naïvely from the FG virial will result in significant

deviations from the FG pressure.50 In this respect, MS-CG parametrizations for different FG

pressure conditions are still generally conducted for constant NVT dynamics after

performing constant NPT dynamics with different pressure conditions.30 Figure 1 highlights

the temperature transferability issues in CG modeling as a result of difficulties with the

representability of pressure.

It is worth noting an alternative approach called “pressure-matching”,30,46,51–53 inspired

from the work by Das and Andersen (DA), which attempts to resolve this inconsistency.28

Instead of designing CG interactions as a function of configurational variables, the DA

approach introduces a volume term UV to the CG potential. As a consequence, variational

optimization for both configurational and volumic interactions is feasible, enabling

simulations in isothermal-isobaric CG ensembles. Although pressure-matching is appealing

because of its extensibility and accuracy, in this work, we use a more conventional definition

from the MS-CG methodology where the CG interaction is only an explicit function of

configurational variables. Details of the MS-CG models with force-matching

parametrization are discussed in the Supporting Information Section S1.

To account for changes in different pressure conditions, we introduce an enthalpy function to

the Helmholtz free energy under constant pressure conditions, given as49

ΔA = ΔH − PΔV − TΔS (3)

Equation 3 can account for changes in pressure conditions in constant NVT ensembles and

further suggests that temperature transferability under constant pressure may be attained by

manual adjustment of the −PΔV − TΔS terms, as in our prior interpolation scheme for

constant volume conditions. Ultimately, however, the goal here is to construct a temperature

transferable CG model with a force field that determines the effective temperature and

volume and is not explicitly or manually fitted on the basis of FED. We will further discuss

how this can be implemented. In the current work, we aim to develop an automated single
CG force field that is transferable to various temperatures by adjusting contributions to the

free energy on the fly.

2.2. Theory of UCG.

Detailed illustrations of the UCG theory32–35 and implementation36,37,54–57 are discussed

extensively in prior papers, and we recommend readers to refer ref 32 for general formalism,

ref 33 for the MC-like switching limit, and refs 34 and 35 for the quasi-equilibrium (or RLE)
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limit. Under state-free dynamics by adopting a separation of time scales, here, we use the

RLE limit to explicitly couple order parameters to the CG Hamiltonian.

In spirit, the UCG model is defined by two additional variables: internal state s and the

substate probability given the CG configuration, p(s|RN). In p(s|RN), the conditionality to

CG configurations RN derives from a bottom-up manner. In practical terms, we simplify

particle interactions to be pairwise, and the pairwise approximation also applies to the

internal states. Altogether, the mixed UCG interaction can thus be written as a pair

summation of internal state interactions

Umix
UCG RN = ∑

I, J
∑
sI, sJ

p sI |RN p sJ |RN UsI, sJ
(2) RIJ (4)

In eq 4, the superscript (2) denotes that UsI, sJ
(2) RIJ  has a pairwise form, and we will omit this

superscript in subsequent equations for simplicity. We design the substate probabilities p(s|

RN) as differentiable so that the effective forces, − ∇Umix
UCG RN , can be written as the

gradient of the mixed UCG interaction energy

− ∇Umix
UCG RN = − ∑

I, J
∑
sI, sJ

p sI |RN p sJ |RN ∇UsI, s j
RIJ

+ p sJ |RN UsI, sJ
RIJ ∇ p sI |RN + p sI |RN UsI, sJ

RIJ ∇ p sJ |RN
(5)

The first term in eq 5 is the force between CG sites I and J, weighted by each state

probability. Unlike other conventional CG methodologies, the UCG force expression

accounts for contributions from the changes to the substate probabilities ∇p (the second

term), which is related to the driving force for switching between internal states. This

additional probability force facilitates the modeling of rapidly changing substates.35 Because

the force expression in eq 5 is still pairwise decomposable, MS-CG force-matching

approaches can be readily applied to parametrize eq 5. Prior UCG implementations used this

approach to minimize the following force residual58

χ2 U σ, RN

= lim
Ts ∞

1
Ts

∑
t

1
Ns

∑
n

‖∇ U σn, M rt
n + kBTlnpΣ σn | M rt

n − M+ ∇U rt
n ‖2 (6)

Equation 6 suggests that UCG substate interactions can be directly obtained from FG

simulations using force-matching.34,36,37 However, this parametrization scheme limits the

transferability of substate interactions, as it is unclear that substate interactions derived in

this fashion can be fully transferable to bulk systems. In the previous UCG work, we

witnessed that substate interactions derived from interfacial systems had a limited
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transferability to pure CG interactions under bulk conditions because of mismatches of

forces in long-range regimes.37 In turn, one way to enhance the transferability of the CG

model would be to directly utilize the CG interactions from bulk conditions as substate

interactions. The primary remaining problem is then how to choose such CG interactions as

UCG substate interactions and couple them to the UCG framework with an appropriate

order parameter.

2.3. Mean-Field UCG Ansatz.

In the prior subsections, we introduced FEDs of the CG PMF and UCG methodology.

Nevertheless, an actual and physical link between these two theories remains ambiguous.

Here, we now aim to develop an ansatz to connect the two separate theories explicitly.

In order to parametrize UCG force fields, an appropriate order parameter, or collective

variable, must first be determined to distinguish underlying internal UCG states. As an

example, we recently demonstrated that the local (number) density of a particle is a suitable

order parameter for differentiating phases in interfacial systems and also imparting

transferrable interactions from bulk liquids to the UCG models of interfacial systems.37

However, in the systems of interest here where the temperature is an explicitly controlled

variable, there are no straightforward collective variables that are directly coupled to the

temperature. This is because the UCG force field, eq 4, in the RLE limit is built upon the

assumption of the locality in each UCG substate, and extensive variables such as

temperature are not well-defined order parameters for the UCG parametrization.34,35 Thus,

we investigate under which conditions the local density, or other such order parameters, can

represent the global temperature of the system.

A conventional choice for local density from previous UCG studies is a differentiable (∈C1)

switching function w(RIJ) that uses a sigmoidal hyperbolic tangent function

ρI RI = ∑
IJ

1
2 1 − tanh

RIJ − R0
R (7)

Despite other possible forms of switching functions, we decide to utilize the form in eq 7 as

it can recapitulate structural correlations emergent in various systems.59–62 Using the local

density order parameter ρI(RI), the substate probabilities for more dense (α) and less dense

(β) states are given as

psI = α, β , I RI = 1
2 1 ± tanh

ρI RI − ρ0
ρ (8)

The probability and order parameter defined in eqs 7 and 8 are local quantities by definition,

which depend on the CG site I, and vary for different particles in the system. However, an

averaged quantity over the CG ensemble may provide a feasible way to remove locality. The

idea here is thus to introduce the mean-field description
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ρI RI = ∑
IJ

1
2 1 − tanh

RIJ − R0
R (9a)

pI, sI
= 1

2 1 ± tanh
ρI RI − ρ0

ρ (9b)

An average scheme introduced in eq 9a can be alternatively constructed by defi ning a

counting function nI(R) = 1/2 1 − tanh R − R0/R  and then calculating the structural average

over the system using a radial distribution function (RDF), g(r), such that63

ρI = ∫
r = 0

r = rcut
4πr2ρbg(r)nI(r)dr (10)

Because of nontrivial correlations in liquids, an exact analytical form is impossible to

determine. However, certain approximations can be still applied. Our key assumption is that

if the cutoff distance R0 is much larger than the correlation (or characteristic) length of the

system, the structural average may give a local density value ρI that is no longer strongly

dependent on the particle environment. Mathematically, this assumption can be reformulated

as “there exists R0 such that ∫ r = 0
r = R04πr2ρb ⋅ g(r)dr ≈ ∫ r = 0

r = R04πr2ρb ⋅ 1dr”. In this limit, we

can drop the dependence on the Ith particle so the average local density ρI becomes ρ and

depends only on the bulk density (global density), ρb. The local density order parameter ρI,

then, is a quantity that depends on global properties as well. If the system is a homogeneous

liquid, we expect that the densities follow a Gaussian distribution by the law of large

numbers.64,65 We will later validate these assumptions in simulations of real molecular

liquids. In a practical manner, the computational cost of the CG simulation should not be

affected by the choice of a large cutoff distance R0 as long as R0 is shorter than the cutoff

used here to evaluate the pairwise interactions. On the other hand, it is expected that this

semi-global feature allows for much larger integration time steps, which will be discussed

later.

Imposing a global order parameter condition, average substate probabilities can be similarly

treated as global properties

pI, sI
= 1

2 1 ± tanh
ρ − ρ0

ρ = psI
(11)

Because the averaged substate probability pI, sI
 no longer depends on a particular CG

particle, this ansatz allows us to assess the average many-body UCG PMF. Recall that the

full expression of the UCG free energy Umix
UCG RN  is
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Umix
UCG RN = ∑

I, J
pI, αpJ, α Uαα RIJ + pI, βpJ, β Uββ RIJ

+ pI, αpJ, β + pI, βpJ, α Uαβ RIJ
(12)

Equation 12 is the UCG Hamiltonian for the CG simulations. However, it should be noted

that an actual assessment of eq 12 is not feasible because pI, sI
 varies over different particles,

and thus, we are not able to project it on its pairwise basis sets to visualize the interaction.

To rigorously bridge UCG with FED, we define α as a lower temperature Tlow (thus more

dense) state and β as a higher temperature Thigh (less dense) state at constant pressure. In

turn, we obtain a mean-field approximation of the UCG model at the averaged density. The

collective behavior of substate probability in a given ensemble results in the averaged UCG

PMF Umix
UCG RN  as

Umix
UCG RN = ∑

I, J
pI, αpJ, α Uαα RIJ + pI, βpJ, β Uββ RIJ + ( pI, αpJ, β +

pI, βpJ, α) Uαβ RIJ
(13)

In eq 13, pI, sI
pJ, sJ

 is the averaged correlation of substate probabilities. However, in the

mean-field ansatz, pI, sI
 and pJ, sJ

 become uncorrelated

pI, sI
pJ, sJ

= pI, sI
pJ, sJ

(14)

Equation 14 can be thought of as a natural property of the Gaussian distribution function.

Finally, the mean-field UCG free energy is given as

Umix
UCG RN = ∑

I, J
pα

2Uαα RIJ + pβ
2Uββ RIJ + 2 pα pβ Uαβ RIJ (15)

Here, we note that ρI from the mean-field ansatz is still computed locally for each CG site I.
This also satisfies the locality assumption made in the RLE theory as pI and pJ are both

governed by the Gaussian distribution, as shown in eq 14.34 However, in order to distinguish

it from the conventional local density that has been utilized in the previous UCG studies,
34,36,37 we denote the specific local density that accounts for the mean-field limit as the

“semi-local” density hereafter. Figure 2 highlights two major advantages of this semi-global

density order parameter in contrast to conventional local or global density features. Because

the semi-global density is evaluated from pair contributions at each configuration, it still

contains the density fluctuation information during the CG simulation, unlike the global

density with a single value. In the previous UCG studies, we have noticed that density
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fluctuations are essential to model the driving force of rapidly changing substates from the

−∇p contribution.34,36,37 By correctly recapitulating the density fluctuations, the UCG

Hamiltonian in eq 12 can be faithfully applied to inhomogeneous systems, where the

changes in density are expected to be captured by modulating the internal UCG states. We

will revisit this point by the end of the next section.

Despite density fluctuations, the semi-global density is still related to the single global

density under the large R0 value as long as eqs 10 and 11 remain valid. This connection

between two densities allows for resolving the transferability issue; this will be examined in

the next subsection. In turn, even though we adopt the mean-field approach, we emphasize

that pI can still account for fluctuations at the CG site I during the CG simulation because of

changes in the density ρI around the mean-field density 〈ρ〉, which is directly related to the

global property of the system.

2.4. Connection between UCG and FED.

To ensure a more complete transferability of the UCG model, we constructed the effective

UCG interaction in a hybrid manner: bulk interactions that are parametrized at different

temperatures using MS-CG are utilized as substate interactions in eq 12. We aim to obtain

CG interactions at different systems in equilibrium and couple these CG interactions using

an order parameter (semi-global density in this case). However, it should be noted that one

can also rescale the FG canonical configuration integrals ∫ drn exp[−βU(rn)] to numerically

transfer a single CG interaction to different temperatures.27

In eq 12, we define α as the bulk state at Tlow and β as the bulk state at Thigh. In other

words, the αα substate interaction corresponds to interactions in bulk at Tlow, and the ββ
substate interaction corresponds to interactions in bulk at Thigh. Then, naturally, there exists

an intermediate temperature Tint that satisfies Tlow < Tint < Thigh and which corresponds to

the αβ cross-interaction. Taken together, the mean-field UCG free energy can be cast as

Umix
UCG RN = ∑

I, J
pα

2UT = Tlow
RIJ + pβ

2UT = Thigh
RIJ

+ 2 pα pβ UT = Tint 
RIJ

(16)

Introducing the FED scheme from eq 3 to the right-hand side of eq 6, one finds
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Umix
UCG RN = ∑

I, J
pα

2 ΔH RIJ − PlowΔV RIJ − T lowΔS RIJ

+ pβ
2 ΔH RIJ − Phigh ΔV RIJ − Thigh ΔS RIJ

+ 2 pa pβ ΔH RIJ − Pint ΔV RIJ − T int ΔS RIJ

= ∑
I, J

ΔH RIJ pα
2 + pβ

2 + 2 pα pβ

− ΔS RIJ T low  pα
2 + Thigh  pβ

2 + 2T int  pα pβ − PΔV RIJ

(17)

In eq 17, we used a constant pressure condition Plow = Phigh = Pint = 1 atm. Because Tlow <

Tint < Thigh, there exists ϑ ∈ (0, 1) such that Tint = ϑTlow + (1 − ϑ)Thigh, and

T low  pα
2 + Thigh  pβ

2 + 2T int  pα pβ

= T low  pα + 2 1 − ϑ pβ pβ pα + Thigh pβ + 2ϑ pα pβ
(18)

The summation of the coefficients from eq 18, (〈pα〉 + 2(1 − ϑ) 〈pβ〉)〈pα〉 and (〈pβ〉
+ 2ϑ〈pα〉)〈pβ〉, further satisfies

pα
2 + 2 pα pβ − 2ϑ pα pβ + pβ

2 + 2ϑ pα pβ

= pα
2 + 2 pα pβ + pβ

2

= 1

(19)

Therefore, the UCG model based on different temperatures can be interpreted as a single CG

model at an intermediate temperature given below, which is determined by an ensemble

average of the semi-global density and substate probability 〈pα〉 in the mean-field limit

TUCG = Thigh − T low × pα + 2
Thigh  − T int 
Thigh  − T low 

⋅ 1 − pα (20)

It should be noted that formulating temperature transferable CG models using the UCG

framework is possible because of the linearity in (i) coupling enthalpic and entropic terms in

the free energy and (ii) coupling between the UCG statewise interactions.

2.5. Alternative CG Model: Empirical Design Principle for Temperature Transferability.

An alternative approach to derive temperature transferable CG potentials has been suggested

for CG polymers, in which the CG potentials at different temperatures are empirically

rescaled on the basis of temperatures under constant pressure conditions66,67
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Uemp(R, T) = U R, T0 × T
T0

(21)

Here, we use Uemp(R,T) to denote the rescaled PMF with respect to the reference

temperature T0, which differs from the true PMF U(R,T). We note that the proposed scaling

rule in eq 21 is valid only if the entropic contribution from U(R,T) obeys

ΔS(R) ≈ U R, T0 ⋅
5T0 − T

8T0
2 (22)

A detailed derivation for eq 22 is given in the Supporting Information Section S2. Although

this empirical scaling scheme has shown to be useful for polymer systems and hexane, it is

unclear if eq 21 would provide accurate CG interactions for liquids because of strong

approximations made in eq 22. Thus, we assess the applicability of the empirical design

principle in liquid systems and compare performances to that of the systematic approach in

Section 3.1.

3. RESULTS

3.1. Temperature Transferable CG Model for Bulk Liquids.

3.1.1. Changes in CG Interaction over Different Temperatures.—Methanol is

one of the most extensively studied liquid systems in bottom-up CG modeling.7,24,25,30,68

Acetone is also a polar liquid, but it does not have any hydrogen bonding, resulting in

different energetics and pair structures compared to methanol.69 We considered single-site

CG models for both liquid methanol and acetone to develop transferable CG models for

simple liquids. Thus, we could distinguish CG interactions that originate from different FG

energetics: hydrogen bonding (methanol) and van der Waals-type (acetone).

Methanol-methanol and acetone-acetone pair CG interactions were computed from different

temperature ranges based on the ensemble conditions. For methanol, in Figure 3a and 3b, we

selected a temperature range of 225–400 K for the constant NVT ensemble and 200–400 K

for the constant NPT ensemble. For acetone, because of different melting and boiling points,

we adopted 225–375 K under the constant NVT and 150–400 K under constant NPT
dynamics, as shown in Figure 3c and 3d. For both constant NVT ensembles, we used the

fixed volume from the T = 300 K condition under P = 1 atm. Pressures for constant pressure

simulations were maintained as P = 1 atm. Full details for FG and CG simulations are

available in the Supporting Information Section S3. For these temperature ranges, we note

that all simulated CG models have standard liquid structures.

In Figure 3, different ensemble conditions result in distinct changes in the CG interaction as

temperature varies. A notable trend is that UCG(R) seems increasing with temperature (i.e.,

(ΔUCG(R)/ΔT)|NVT > 0) under constant NVT conditions, whereas an opposite trend is

observed for the constant NPT systems (and then the NVT runs were performed for analysis)

in both liquids: (ΔUCG(R)/ΔT)|NPT < 0. Whereas the temperature derivative of the CG PMF
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under fixed volume conditions is expected to be positive,24–26 the CG PMF with a negative

temperature derivative at constant pressure is surprising at first glance. The positive

(ΔUCG(R)/ΔT)|NVT value can be understood from the definition of the mapping entropy

during the CG process where missing modes beneath the CG resolution are integrated into

the entropic component of the CG PMF: −ΔS(R) ≔ SV(R).24–26 The subscript V denotes the

mapping entropy carried out under the constant volume conditions. However, the Helmholtz

free energy term obtained from the constant pressure simulations behaves differently

because the ΔV term in eq 5 will no longer be zero. This gives rise to [(ΔH − PΔV)/

(ΔT)]MS‑CG = −P·(ΔV/ΔT) ≠ 0. Therefore, a natural extension of eq 5 suggests that

(ΔUCG(R)/ΔT)|NPT can be cast as

ΔUCG(R)
ΔT NPT

= SV(R) − PΔV
ΔT (23)

From eq 23, the additional −P·(ΔV/ΔT) term has a negative sign, resulting in the opposite

sign of the temperature derivative of the CG PMF. This is consistent with another study

reported last year.30 From Figure 3b, we find that the P·(ΔV/ΔT) does not depend on the

temperature or the −ΔS(R) term as the CG PMF is equally spaced. In this sense, we can

further associate P·(ΔV/ΔT) from inspection of eq 23 as a mapping entropic term that

originates from volume differences

SΔV(R) ≔ PΔV
ΔT (24)

In turn, the contributions from SV(R) and SΔV(R) complicate the development of

transferable CG models among various state points.

3.1.2. Semi-global Density Distributions at Different Temperatures.—To

construct UCG models that provide temperature transferability in the liquid phase, we

computed density histograms from different temperatures at constant pressures. According

to eqs 17–21, we used a fairly large cutoff R0 = 12 Å with a smoothly decaying function:

ρI RI = ∑IJ 1/2 1 − tanh RIJ − 12 /1.2 .

Figure 4 illustrates the changes in density distribution at various temperatures for both

liquids. As expected, a general trend is that as temperature increases, the volume of the

system also increases, resulting in a lower overall density.

There are two other notable features in the semi-global density histograms that are witnessed

in Figure 4. First, the densities are normally distributed, i.e., Gaussian distributions.

Although other density distributions with a shorter distance cutoff often exhibit bimodal or

more complicated distributions, the normal distributions, here, suggest that the proposed

order parameter can be utilized to quantify the global properties of the system.64,65 Changes

to the average density from each histogram across temperatures are gradual and monotonic,

as noted in Table 1. We now validate whether the order parameter is suitable as a global

order parameter in the UCG models.
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3.1.3. Semi-global Order Parameter: Validation.—The main assumption that links

UCG theory to FED requires the locally computed order parameter to directly respond to the

global properties of the system. In such a case, a “semi-global” number density variable 〈ρ〉
can be further simplified as follows

ρ ≈ ρb ⋅ Vdensity =
Nbulk
Vbulk

⋅ Vdensity (25)

The equality holds if and only if the system is homogeneous and densities are evenly

distributed. Therefore, if we equate 〈ρ〉 to (Nbulk/Vbulk)·Vdensity, we obtain Vdensity as an

idealized volume that gives the number density 〈ρ〉 of the system. This approximation is

valid for methanol, as 〈ρ〉 and 1/Vbulk vary linearly (Table 1, Figure 5a). Thus, a density

radius from the idealized volume is represented as

R0
ρ = 3 ρ

4π ⋅
Vbulk 
Nbulk 

1/3
(26)

Figure 5b depicts the trend of the density radius R0
ρ over different temperatures. Different

from the semi-global density where 〈ρ〉 decreases as temperature increases, we find that the

R0
ρ value is nearly constant as the temperature changes and is almost equal to the density

cutoff R0, indicating that our locally computed order parameter also acts as a global

property. We evaluate these assumptions for acetone in the Supporting Information Section

S4. In spite of small changes in R0
ρ for acetone, we conclude that this semi-global

approximation holds for acetone as well.

To summarize, we conclude that the proposed mean-field ansatz can be readily applied for

the chosen order parameter, indicating temperature transferability due to the connection to

the FED scheme. This connection is possible because the UCG theory allows for one to

couple the semi-global density and pair interaction term multiplicatively. We also tested if

transferability can be achieved additively using a recently developed theory.70 As expected,

although an additive coupling in CG models may capture structural correlations correctly, it

does not produce transferable CG interactions over different temperatures (see the

Supporting Information Section S6).

3.1.4. Temperature Transferable UCG Model: Results.—Based on Figure 4, we

constructed the UCG model of liquids using bulk interactions at different temperatures. To

encompass all possible liquid temperature ranges, we chose more dense-more dense

interaction as the bulk interaction at the lowest temperature and less dense-less dense

interaction as the highest temperature bulk interaction. Then, the intermediate interaction

was chosen as the CG interaction where its temperature gives a median density histogram

between the highest and lowest temperature. For the case of methanol, this gives Tlow = 200

K and Thigh = 400 K with the intermediate temperature of Tint = 300 K (see Figure 4a).

Then, based on Figure 4a, we used ρ0 = 105.0 and ρ = 0.1 ⋅ ρ0 = 10.5 to impose internal UCG
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states, followed by eq 8. Final UCG trajectories were generated using the following free

energy functional

Umix
UCG RN = ∑

I, J
pI, αpJ, αUTlow 

RIJ + pI, βpJ, βUThigh 
RIJ

+ pI, αpJ, β + pI, βpJ, α UTint
RIJ

(27)

Figure 6 presents the RDFs obtained by the UCG models from 200 to 400 K under constant

pressure. To evaluate the performance of other CG models, we introduce four CG models:

three naïve MS-CG models from Tlow, Tint, and Thigh, and an empirically scaled CG model

described earlier. It is clear from Figure 6 that the naïve model from Tlow approximates the

low-temperature structure relatively well, and the high-temperature naïve model can provide

reasonable pair correlations at higher temperatures. However, these naïve models are clearly

not transferable over different temperature ranges, highlighting the transferability issue. We

also generated the scaled CG interaction from T0 = 300 K based on the empirical

relationship. Although scaled to different temperatures, we discover that the scaled CG

interaction still gives similar pair structures as directly employing Tint = 300 K interaction,

indicating that eq 21 does not impart transferable interactions. It is apparent, however, that

the single UCG model enhances the pair correlation, capturing the first minimum near 4 Å

with two peaks at 3.5 and 4.5 Å. The UCG theory designed in this work is able to precisely

reproduce the pair structures across a temperature range of 200 K.

Similarly, we generated the temperature transferable UCG model for acetone using the

following substate interactions Tlow = 150 K, Thigh = 400 K, and Tint = 275 K (see Figure

4b). The cutoff distance was fixed to R0 = 12 Å, but the density cutoff was changed to ρ0 =

49.0 and ρ = 0.1 ⋅ ρ0 = 4.9 because of the changes in the system size, as can be seen in Figure

4b. RDFs computed from these CG trajectories are depicted in Figure 7. As expected, all of

the naïve CG models cannot fully encompass the whole temperature range. Interestingly, the

empirically scaled CG models give a fair agreement to the reference correlations, whereas

they had failed for methanol. Nevertheless, several deviations are noted near the cusp after

the first maximum peak at 6.5 Å. Significant enhancement in pair correlations can be seen in

the UCG models at all different temperatures as delineated by red lines in Figure 7. Among

different temperatures ranging from 150 K to 400 K, the single UCG model can faithfully

recapitulate the pair correlations, even in the long-range regime.

In order to quantitatively examine the performance of various CG models, we introduce here

a statistical measure for probing the accuracy of pair correlations: Δ(g ℒ ), where the error

of model ℒ via g(r) compared to the target RDF gtarget(r) is defined as

Δ(g ℒ ) =
∫ 0

rcut |gℒ(r) − gtarget (r)|dr

∫ 0
rcut gtarget (r)dr

(28)
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This measure manifests how close is the model ℒ to the target under the MS-CG

framework, bounded from 0 to 1. This error metric is first introduced as a convergence

metric to match the RDF71 and later utilized as a quantified measure of the RDF.72

In Figure 8, the relative error, 100 × Δ(g ℒ ), is visualized, and the associated heat map

further confirms the high fidelity of the UCG model for all temperature ranges. For

methanol, the UCG model provides the closest RDF values compared to the reference data

for all temperature ranges. A similar situation is encountered in acetone where the UCG

model improves the accuracy of the existing CG models, except for some temperatures (150,

175, and 250 K) where we witness that the UCG model is less accurate than other UCG

models. Nevertheless, it is apparent that the UCG models do a superb job compared to other

naïve CG models. Deviations observed at these temperatures can be understood as the

imperfection in pairwise basis sets because these deviations also occur in other pairwise CG

models.

Finally, we also computed the density histograms from the UCG simulations to check the

many-body structural correlations. Because locally computed density is a many-body

quantity, density histograms can be regarded as alternative measures to assess N-body

properties. Figure 9 depicts the semi-global density histogram of the UCG models compared

to the reference data, indicating that the UCG models can generally capture the profile of

semi-global density with correct widths and tails for both liquids. We notice that normalized

counts at each peak differ from the reference model, but the relative error is within 0–20%

for both methanol and acetone. Moreover, the averaged density values 〈ρ〉 are almost

identical to the reference value, validating the semi-global hypothesis.

3.1.5. Computational Efficiency.—Computational performance in CG modeling

involves two different procedures: parametrization and simulation of the designed CG

model. Even though introducing internal states to the CG model might slow down the

overall performance compared to the conventional CG model, the present model does not

have to be adjusted under any desired conditions of the system once it is built. Namely,

without manually adjusting the entropic contribution to the system, the present UCG model

instead automatically finds the effective temperature of the system. This feature emphasizes

the effectiveness of the model.

Table 2 lists the effective speed-up factors from UCG simulations compared to FG

resolutions. The speed-up factor was directly calculated by evaluating the ratio of time

needed to complete the fixed amount of time compared to the UCG model. Because the

energy landscape of the CG model is smoother than the one at the FG resolution, we adopted

a time step of 50 fs for the CG simulation. It is known that the UCG model is designed to

calculate the order parameter on the fly to adjust its interaction based on the order parameter

value, and thus, the integration time step should not be large to perform a stable CG

simulation (usually about 10 fs); however, in this work, this large integration step is feasible

because we use the semi-global order parameter, which is not highly affected by the local

environment.
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Table 2 shows that the speed-up factor is ~30–40 for the methanol system and ~90 for

acetone systems under the liquid condition.

3.1.6. Extension to Pressure Transferability.—Even though the current model is

developed for constant pressure conditions, it would be of great interest to extend it to

different pressure conditions in terms of transferability. We further argue that such an

extension is also possible because the equilibrium volume of the system will decrease as the

system pressure increases. Hence, changes in CG interactions at different pressures can be

viewed as if the temperature decreases under the constant pressure conditions. Alternatively,

this can be shown from eq 17 using a similar analogy under constant temperature with

varying pressure. We tested the pressure transferability by extrapolating the current

methanol UCG model to high pressure conditions (see the Supporting Information Section

S7) where methanol is still in the liquid phase.73,74 As shown in Figure S3, we confirmed

that the current methodology is also applicable to different pressures that are not previously

parametrized without any modifications.

Beyond temperature and pressure, a perfectly transferable CG model should be, in principle,

applicable to other conditions. As a next step toward this direction, we aim to develop a

phase transferable UCG model in the next subsection.

3.2. Phase Transferable UCG Model.

3.2.1. Gas Phase: Setup and Interaction.—A gas-liquid phase transferable UCG

model can be designed if one can adequately differentiate two phases with a proper order

parameter. In principle, the semi-global density order parameter can be utilized in this work

because there are large differences in the global densities of liquid and gas phases. A UCG

design principle would be to model any interaction that appeared in either phase as a linear

combination of liquid and gas phase interactions. Without loss of generality, we choose

methanol to construct phase transferable UCG models in this section.

One apparent observation from the gas phase simulation is that the simulation volume

increases significantly compared to that of the liquid phase. For example, at 500 K, in a

system composed of N = 1000 molecules, a system box length becomes 181.80 Å, which is

4.5 times larger than the system size at 300 K. From the identical initial configurations, the

constant NPT simulation for 1 ns of the gas phase (500 K) is 24.6 times slower than that of

the liquid phase (300 K). For the final constant NVT simulation for 5 ns, the gas phase

simulation is 11.1 times slower than the liquid phase simulation, indicating that the

simulation of 1000 gas molecules would be about 100 times slower than liquid. Hence, we

decided to simulate a smaller system to perform more inexpensive gas phase FG

simulations. However, it must be checked if the CG interaction in the reduced system retains

the same interaction profile. In principle, CG interactions should not change in reduced

system sizes at the same density because of periodic boundary conditions. To validate this

assumption, we constructed the gas phase of methanol composed of differing numbers of

methanol molecules ranging from 100 to 750, as depicted in Figure 10a. We set the target

temperature at 500 K, which is certainly beyond the boiling point of methanol, as shown in

Figure S4.
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As expected, the CG pair potentials remain nearly identical across system sizes, and we

chose the smallest system N = 100 that reproduces the CG interaction accurately at

inexpensive computational costs. To understand how gas phase interactions varied at

different temperatures, we also performed simulation at T = 500, 550, and 575 K.

Furthermore, we obtained interactions at T = 450 K, but this phase is near to phase transition

limit, as shown in Figure S4. Figure 10b compares the trend from the liquid phase

interactions (350 and 400 K) to that of gas phase interactions.

The most striking feature from Figure 10b is that there is an abrupt change in the CG

interactions near the phase transition. The repulsive short-ranged interaction profile present

in liquid disappears and becomes highly attractive. Moreover, the way in which the CG

potentials generally change in response to temperature appears reversed in the gas phase

compared to that in the liquid phase. Under constant pressure conditions, it is seen that CG

interaction becomes more attractive as temperature increases. However, in the gas phase, the

CG interaction becomes more repulsive as temperature increases.

Because of the two peculiar changes during the liquid-gas phase transition, a CG interaction

between liquid and gas phases can be expressed by a linear combination between cold liquid

interactions (e.g., the repulsive potential from Figure 10b) and warm gas-like interactions

(the most attractive potential). In other words, the UCG framework is applied for treating

these two interactions as αα and ββ substate interactions and interpolating the intermediate

αβ interaction.

3.2.2. UCG Model Design.—Based on Figure 10, we extended the two-phase UCG

model to achieve phase transferability. Our primary goal of the UCG model is to (1)

accurately reproduce the changes in the liquid phase under different temperatures and (2)

reasonably capture the structural correlations of the gas phase. This is a challenging goal

because liquid and gas have noticeably different interaction profiles and the corresponding

structural correlations.

The final phase transferable UCG model was constructed using the following substate

definitions

ρI RI = ∑
IJ

1
2 1 − tanh

RIJ − 12
1.2 (29a)

psI = α, β , I RI = 1
2 1 ± tanh

ρI RI − 65
42.5 (29b)

As in the previous section, the choice of R0 = 12 Å and R = 0.1R0 = 1.2 Å is invariant. For

the new definition of internal states psI = α, β , I RI , we chose ρ0 = 65 and ρ = 42.5 to

effectively differentiate liquid and gas phases.
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Figure 11 provides a general landscape of the designed phase transferable UCG model

where there are two substate probabilities that represent the liquid state (as density

increases) and gas state (as density decreases). As discussed above, to fully enhance the

transferability of the UCG model, we directly insert CG potentials obtained from the bulk

system into the UCG substate interactions. The choice of CG potentials was based on Figure

11: more dense-more dense interaction is modeled by bulk CG interaction at Tlow = 250 K

and less dense-less dense interaction is borrowed from Thigh = 525 K. Finally, the

intermediate interaction (more dense-less dense) is chosen from Tint = 450 K, where Tint is

located between the liquid and gas phases.

3.2.3. Results.—From the UCG trajectories simulated at different temperatures, we

calculated the RDF to evaluate the performance of the UCG model. To emphasize the

different pair correlations emergent in gas, a naïve liquid CG model is prepared from 300 K

and directly applied to the gas phase.

From Figure 12, it is evident that the phase transferable model can successfully bridge

between liquid and gas phases. The designed UCG model can clearly distinguish two

different structures for the liquid (Figure 12a–d) and gas states (Figure 12e–h). As expected,

pair correlations in gas are less structured, whereas naïve models of liquids are not capable

of capturing either peak intensity or overall correlation profile. Furthermore, we highlight

that the phase transferable UCG model can recapitulate the changes in liquid pair

correlations for different temperatures, where the peak becomes less structured and

separated as temperature increases. Altogether, the phase transferable UCG model

distinguishes structural correlations that originate from differences in phases as well as the

temperature dependent changes in the structure.

3.2.4. Mean-Field Explanation.—Given the performance demonstrated in Figure 12,

phase and temperature transferability of the present UCG model is not an accident. The high

fidelity of the UCG model can be attributed to the mean-field description introduced in the

underlying ansatz. Because the density distributions follow the Gaussian form because of

semi-globality, one can effectively extract the ensemble-averaged UCG PMF for each

system. Recall that the mean-field expression of the UCG PMF for this system is given by

Umix
UCG RN, T = ∑

I, J
pα

2UT = 250K RIJ + pβ
2UT = 525K RIJ

+ 2 pα pβ UT = 450K RIJ
(30)

With an appropriately projected UCG PMF, we compare Umix
UCG RN, T  and UCG(RN, T) at

different temperatures and phases, as shown in Figure 13.

Although the CG interaction potential for liquid and gas phases are distinct, the average

UCG interaction can adjust the PMF in response from 300 to 575 K. A slight deviation in

the gas phase is understood from having only two states for the UCG model, but the

differences are relatively small. In the liquid phase, we found that the phase transferrable
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UCG model behaves similarly as our liquid temperature transferable model. Again, this

performance is a result of the bimodal characteristics observed in Figure 10b, enabling the

UCG model to span intermediate interactions in a finely detailed manner.

3.3. UCG Phase Combinational Model.

3.3.1. FG System Design.—In the aforementioned sections, we constructed UCG

models that can be transferred across different temperatures (1) in liquids (2) in different

phases (liquid and gas phases). In spite of its good performance, there was a clear limitation

that these models were developed for homogeneous systems. Hence, an end goal would be

extending the same methodology to a heterogeneous system, i.e., a liquid/vapor interface.

Given the prevalence and importance of interfaces,75–78 a high fidelity CG model should

encompass the liquid/liquid and liquid/vapor interfaces, including those present in complex

biomolecular systems, e.g., lipids and membranes.79,80 Following our previous work on

interfacial systems,36 we adopted the same protocol to generate the liquid/vapor interface of

methanol. A detailed setup to build the atomistic configurations of the interface is elaborated

in Figure S1.

3.3.2. UCG Model Design.—We generalized the present UCG theory to treat

inhomogeneous interfacial systems comprising both liquid and gas phases. A structural

profile of the interfacial system can be identified by the slab density profile along the axis

normal to the surface.81 Figure 14 highlights this density profile, characterizing two major

regimes underlying the interface: inner and outer regions. The inner region corresponds to a

liquid-like phase with high number density, whereas the regime with low number density

(nearly zero) corresponds to the outer region. The phase boundary is an intermediate region,

located between the inner and outer regions with a monotonically decaying number density.

The link between the number density and the corresponding regimes suggests that a UCG

model using the semi-global density order parameter is possible. In particular, the nonzero

probability force term −∇p in the UCG force originating from the semi-global density

fluctuation is expected to modulate the phase coexistence in an inhomogeneous system with

the present UCG theory without further modification.

In prior work, we demonstrated the capability of the local density-based UCG model for the

various interfacial systems, although transferability was somehow limited to only CG force

terms because of non-negligible artifacts introduced in the long-range interactions because

these interactions were affected by the phase boundary of the interface.36 In this work, we

resolve the limited transferability issue using the theory developed in the current approach.

As mentioned in prior sections, we do not explicitly force-match the UCG interaction from

interfacial systems. Instead, we directly employ the bulk MS-CG interaction under different

temperature (volume) conditions as the UCG substate interaction. In this way, the UCG

statewise interactions do not contain the long-range artifact from the phase boundary and no

longer suffer from the long-range force contributions to the CG potentials. The goal of this

section is to provide a complete description of liquid/vapor interfaces modeled by the mean-

field UCG methodology constructed from other homogeneous systems: a phase

combinational model.
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Because the liquid/vapor interfaces are a heterogeneous mixture of liquid and vapor systems,

we argue that the design principle of the presented phase transferable UCG model can be

readily utilized without further modifications. The only difference between them is that more

dense-more dense statewise interactions are borrowed from bulk liquid at 300 K in this

design because the atomistic system was prepared at 300 K. The choice of other statewise

interactions is invariant. The finalized scheme is depicted in Figure 14 where the resultant

UCG model is governed by the following interaction form

Umix
UCG RN = ∑

I, J
pI, αpJ, αUT = 300K RIJ + pI, βpJ, βUT = 450K RIJ

+ pI, αpJ, β + pI, βpJ, α UT = 425K RIJ
(31)

After defining the interaction form, the last step to design the UCG model is the substate

probability psI = α, β , I RI  and the corresponding density functions ρI(RI). As opposed to

the bulk systems, designing the density threshold and distance cutoff may not be

straightforward because of the inhomogeneous nature of the system and should be different

from the bulk case. In contrast to the bulk density cutoff R0
bulk  = 12 Å, we used a short cutoff

value to avoid counting the particles across the inner and outer regions at the phase

boundary. We chose R0
interface  = 6 Å where it does not exceed half the length of the phase

boundary ranging from 38 < z < 50 Å, as shown in Figure 14. From the R0
interface  value, the

variable ρ0 is determined by the density histograms along the slab axis to impose bimodality.

It is expected that the interfacial system exhibits three different density profiles

corresponding to the inner region, phase boundary, and outer region. Because the system is

no longer periodic along the slab axis, we follow the previous work36 and evaluate the

density histogram by constructing a quasi-periodic subsystem where the subsystem is

composed of CG particles located in the specific z value range. Within a quasi-periodic

condition, the density histograms are then computed, as seen in Figure 15.

In Figure 15, two curves computed from 10 < z < 20 Å and 20 < z < 30 Å, corresponding to

the inner region, are almost identical. A bimodal shape from the inner region (peaks near ρ1

= 8 and ρ2 = 12) suggests that this might be further decomposed into liquid-like phase

density and phase boundary density. For the outer region, in an interval of both 50 < z < 60

Å and 60 < z < 70 Å, we see almost zero density as a gas phase. The intermediate region 32

< z < 42 Å fills this gap where the intermediate density locates exactly between the inner

and outer region curves. Interestingly, the average density in the phase boundary is near ρ1 =

8, confirming our initial hypothesis about bimodality. Because the outer region has mostly

zero density during the simulation, we selected ρ0
interface  as 11.5 to effectively distinguish

the inner region and phase boundary.36

Finally, we arrive at the UCG phase combinational defined by the following definitions
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ρI RI = ∑
IJ

1
2 1 − tanh

RIJ − 6
0.6 (32a)

psI = α, β , I RI = 1
2 1 ± tanh

ρI RI − 11.5
1.15 (32b)

3.3.3. Results.—We tested the fidelity of the phase combinational UCG model by

evaluating two major structural characteristics: the slab density profile and pair correlation

function. The calculated average distribution along the z-axis is shown in Figure 16a. For the

conventional MS-CG model, the density profile follows a bell-like Gaussian shape rather

than the trapezoidal profile observed in the all-atom reference system.36,53,70 Furthermore,

the MS-CG model cannot fully capture the vapor phase where the number density along 50–

70 Å is higher than zero. The UCG model can ameliorate these problems by improving both

the inner and outer regions. It can be discerned that there are two shoulders near the phase

boundary (near 0 and 40 Å) where the liquids are strongly structured compared to the

reference system. Although these structured shoulders were previously reported by other CG

modeling studies,36,53 a clear physical explanation underlying this anomaly has not been

suggested in the literature and thus should be addressed.

We propose here that this deviation can be explained because CG interactions in the gas

phase are much more attractive than CG interactions in the liquid phase.82,83 As depicted in

Figure 10, a gas phase contains fewer molecules but has stronger interactions. This tends to

keep the gas phase stabilized in an enlarged system compared to the liquid system. However,

at the phase boundary, the CG particle becomes more attractive as it enters a gas-like state,

whereas the number density is not as low as in the gas phase. Hence, the CG particles

experiencing attractive interactions at the phase boundary become more strongly structured,

resulting in a shoulder-like anomaly. However, even with this shouldered profile, the UCG

model correctly reproduces the liquid/vapor phase separation.

To demonstrate that interactions at the interface are more complex than the interactions

obtained in bulk, we performed the MS-CG simulations at three different temperatures that

correspond to the temperature of statewise interactions: 300, 425, and 450 K. The slab

density profiles from these naïve MS-CG models are shown in Figure 16b. As expected, we

find that all naïve models produce incorrect interfacial structures. To be specific, naïve

models parametrized at both 300 and 425 K fail to capture phase separation and generate a

homogeneous fluid instead. Another naïve model from 425 K seems to reproduce a

signature of the interface, but the resultant profile greatly deviates from both the reference

and UCG models. This performance is quantified by fitting the density profiles to the

following function based on the previous studies84,85

ρ(z) = ρv + ρ1 − ρv
1 − tanh2z + ω

δ tanh2z − ω
δ

1 + tanh2 ω
δ

(33)
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where the widths of the slab and interface are represented as ω and δ (units in Å), and the

phase densities at the liquid and vapor phases are represented as ρl and ρv (units in Å−1),

respectively. The fitted parameters for the slab density profile using two sigmoid functions

are listed in Table 3 given below.

From Table 3, we observe that the UCG model notably enhances the description of δ, ρl, and

ρv values from the all-atom values, as well as an incremental improvement seen in slab

width ω. In conjunction with Figure 16b, all naïve models completely fail to reproduce any

of the parameters that are required to describe the slab structure.

In addition to the slab density profile, we calculated g(r) functions for the models we studied

here. Because of the inhomogeneous nature of interfacial systems, a direct calculation of g(r)
results in an incorrect normalization in the large distance limit. To mitigate this problem, we

followed the same approach to construct the quasi-periodic system used in Figure 15 that

gives a correct asymptotic behavior. The adjusted g(r) from the inner region of the interface

is depicted in Figure 17.

The introduced scheme gives a correctly converged g(r) value of unity for all simulations. Of

particular note, a general trend demonstrated by the inner region of the atomistic simulation

is equivalent to g(r) from bulk methanol, confirming the validity of our quasi-periodic

scheme. As expected, the naïve CG models generally have poor performance in which the

inner region is too much or less structured. Interestingly, the correlation obtained from 425

K appears to fairly close to the atomistic reference data from Figure 17, but Figure 16b

shows that this model cannot reproduce the slab structure correctly. The UCG model,

however, is the only model where local pair correlations containing two peaks are both

quantitatively and qualitatively captured while maintaining the slab structure.

This analysis suggests that the modeling of CG interfaces may be quite sensitive. At the

phase boundary, the number density starts to decay, whereas the CG interaction becomes

attractive. An accurate high fidelity CG model for an interface must account for such a trade-

off between number density and interaction strength. One possible way of modeling this

behavior is to introduce a third state for the UCG model. In this way, the third state can

bridge between liquid-like and vapor-like states, balancing the right trade-off. This idea is

also supported by Figure 16, which shows the existence of the intermediate state (blue line

corresponding to the 32–42 Å regime) between the gas-like and liquid-like densities.

Nevertheless, the overall performance exhibited by the UCG model clearly suggests that

having only two internal states can faithfully reproduce the structural properties that

originate from the bimodal nature of liquid and vapor states.

3.3.4. Computational Efficiency.—Finally, we evaluate the computational

performance of the phase combinational UCG model by calculating the effective speed-up

factor. Benchmark calculations were performed with the same protocol used in the earlier

section. Effective speed-up values are directly obtained by the ratio of relative time per step

between the all-atom and UCG simulations, as listed in Table 4. Here, we used a time step of

30 fs to propagate the UCG model. We see that the effective speed-up factor is about 100

times, and this factor is larger than the previous UCG models shown in Table 2. We attribute
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this enhanced performance to the following factors: (1) the interface system is not as

compact as the homogeneous system and (2) the density cutoff value is half the bulk case.

To conclude, the UCG model presented in this work can substantially enhance the physical

range of a CG model, encompassing not only the single-phase but also their inter-phases

while reproducing structural correlations both qualitatively and quantitatively.

4. CONCLUSIONS

In this paper, we employed our recently developed UCG framework to construct a single CG

model which is temperature and phase transferable. Bottom-up CG models suffer from

transferability issues when the interaction potential should change in response to the

thermodynamic variables of the system. Even though the UCG methodology can greatly

enhance the many-body correlations lacking in conventional CG models, prior UCG

applications have been limited in their ability to impart transferability to CG models. Here,

we developed a mean-field UCG ansatz expressed by a semi-global order parameter.

Furthermore, we corroborated that the UCG theory provides an FED of the many-body CG

PMF, confirming that the UCG framework naturally imparts temperature transferable CG

models. In particular, we utilized the bulk CG interactions at different temperatures as the

UCG statewise interaction, maintaining the theoretical rigor of the UCG theory while

extending its transferability. In a nutshell, Figure 18 summarizes the overall protocols that

are introduced in this work.

By utilizing the effectiveness of the proposed theory to the maximum extent, we designed

three distinct UCG models: liquid, gas, and interface. The first demonstration of the

methodology was to design temperature transferrable liquid state CG models under constant

pressure conditions. We found that the UCG temperature transferable model is not only

predictive of the effective CG interactions at different temperatures but it also quantitatively

captures the structural correlations of the underlying FG models. Notably, no manual

adjustment of the CG potential was needed to simulate the model at different temperatures.

By going one step further, we constructed a phase transferable UCG model encompassing

both liquid and gas phases. Even with just two internal UCG states, the UCG phase

transferable model reproduces structural correlations over a wide range of temperatures (ΔT
= 300 K). The accuracy of the model was attributed to the correct recapitulation of the CG

PMF using the mean-field UCG ansatz. Finally, we expanded our UCG theory to describe a

heterogeneous liquid/vapor interface. Although two distinct phases coexist in the same

system, our UCG method can be applied without any alterations. Unlike conventional CG

models, the correct phase coexistence feature with accurate pair correlations is observed for

the UCG model. We emphasize that there are currently no other unified bottom-up CG

models that are transferrable to different thermodynamic states and can maintain a similar

degree of accuracy and computational performance.

This paper opens several interesting avenues for future research. The current model can be

improved by including an additional internal state that bridges the liquid and vapor states.

By including the transitional behavior of liquid to vapor phases, we would expect this three-

state UCG model to increase the accuracy and transferability of our CG modeling.

Furthermore, the ultimate goal along this direction is to construct a single UCG model that is
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completely transferrable across the solid, liquid, and vapor phases. Naturally, this requires a

number of internal UCG states, i.e., a minimum of three (for the solid, liquid, and vapor

states) and a maximum of five (including two phase transitional regions). Another important

direction is to design transferable bottom-up CG models of more complex biomolecules and

material systems. Given that the direct bottom-up parametrization of the large-scale systems

is computationally demanding, an effective approach could be to divide such large molecules

into several building blocks, e.g., functional groups or amino acids. One could combine

these higher resolution UCG models into a single, transferable multistate UCG model that

can span larger spatiotemporal scales. The optimization of computationally efficient

multistate UCG models will be pursued in future studies. Altogether, these research

directions may lead to a single, unified approach for transferable “bottom-up” CG modeling.
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Figure 1.
Schematic diagram illustrates challenges in temperature transferability for bottom-up CG

models at constant pressure. Ideally, one could transfer a single CG model to different

temperatures by maintaining pressure in CG resolution (rightmost column) as we perform

simulations at FG resolution (leftmost column). However, in bottom-up CG models, this is

limited because of (1) transferability and (2) representability problems (middle column).
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Figure 2.
Illustration of the semi-global density order parameter introduced in this work. The semi-

global density (middle) demonstrates the Gaussian distribution with a mean value that is

related to the global density. Unlike the semi-global density, a global density of the system

(right) is a single value and, thus, does not account for changes to the local environment. For

the conventional local density with a smaller cutoff (left), the density fluctuation is still

observed throughout the CG simulation, but the density profile becomes too local to

accurately reflect the global density, and it is no longer normally distributed.
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Figure 3.
Effective CG interactions of the methanol and acetone systems for various temperatures

under different ensemble conditions. (a) Methanol-methanol CG PMFs under constant NVT
conditions from 225 to 400 K (blue to red). (b) Methanol-methanol CG PMFs under

constant NPT conditions from 200 to 400 K (blue to red). (c) Acetone-acetone CG PMFs

under constant NVT conditions from 225 to 375 K (purple to red). (d) Acetone-acetone CG

PMFs under constant NPT conditions from 150 to 400 K (blue to red). FG calculation and

CG parametrization protocols are detailed in the Supporting Information Sections S1 and S3.
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Figure 4.
Density histogram of mapped all-atom (FG) systems at various temperatures. (a) Methanol,

from 200 K (blue, filled) to 400 K (red, filled). Intermediate temperatures are shown in

dashed lines from right to left for every 25 K. (b) Acetone, from 150 K (blue, filled) to 400

K (red, filled). Intermediate temperatures are shown in dashed lines from right to left for

every 25 K.
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Figure 5.
Analyzing the semi-global nature of the density order parameter used in this work. (a)

Relationships between the average semi-global densities 〈ρ〉 and the reciprocal of overall

volumes 1/Vbulk, confirming the semi-global nature of the utilized density. (b) Density

radius R0
ρ calculated from the average densities 〈ρ〉 over different temperatures using eq 26.
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Figure 6.
Methanol-methanol intermolecular pair correlation functions g(r) for atomistic (black line)

and various CG models at different temperatures under constant pressure: (a) 200, (b) 250,

(c) 300, (d) 350, and (e) 400 K. Here, we tested four different CG models: UCG (red line),

empirically scaled CG (blue line), naïve CG from Tlow = 200 K (gold dashed), naïve CG

from Tint = 300 K (green dashed), and naïve CG from Thigh = 400 K (purple dashed).
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Figure 7.
Acetone-acetone intermolecular pair correlation functions g(r) for atomistic (black line) and

various CG models at different temperatures under constant pressure: (a) 150, (b) 200, (c)

250, (d) 300, (e) 350, and (f) 400 K. Here, we tested four different CG models: UCG (red

line), empirically scaled CG (blue line), naïve CG from Tlow = 150 K (gold dashed), naïve

CG from Tint = 275 K (green dashed), and naïve CG from Thigh = 400 K (purple dashed).

Jin et al. Page 36

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8.
Heat map of error metric percentage 100 × Δ(g ℒ ) to reproduce the RDF at given

temperatures for various CG models of liquids: (a) methanol and (b) acetone. For each

liquid, we calculated the error metric percentage by comparing it to the actual MS-CG

model (target). Four CG models are introduced in this figure: UCG (first column), naïve CG

at Tlow (second column), naïve CG at Tint (third column), and naïve CG at Thigh (fourth

column). For naïve CG models, we did not calculate errors at the parametrized temperatures.

These values are depicted as white blank. Detailed percentage values are listed in Table S2.

Jin et al. Page 37

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9.
Assessment of the many-body correlation in the UCG model by calculating density

histogram (solid lines) in comparison with the mapped all-atom (dashed lines) from Figure

4. (a) For methanol, density histograms are calculated in the temperature range from 200 K

(blue, filled) to 400 K (red, filled). (b) For acetone, density histograms are calculated at

various temperatures ranging from 150 K (blue, filled) to 400 K (red, filled). For both insets,

intermediate temperatures are located in between two filled curves for every 25 K.
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Figure 10.
Methanol-methanol pair CG interaction profiles for different conditions. (a) Gas phase CG

interaction at T = 500 K with different numbers of methanol molecules from N = 100

(orange) to N = 750 (blue). Within the hard-core region R < 3 Å, the CG interaction from N
= 100 molecules is shown in dashed orange lines. (b) Pair CG interaction profiles for liquid

and gas phases while varying temperature. As temperature increases, liquid state interaction

tends to decrease from 350 K (top, salmon) to 400 K (orange), whereas gas state interaction

becomes less attractive from 450 K (bottom, red), 500 K (pink), 550 K (magenta), and 575

K (violet).
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Figure 11.
Normalized semi-global density distributions for different phases (gas: left corner and liquid:

right corner) at different temperatures with the corresponding substate probabilities (more

dense state: magenta line and less dense state: green line) for the phase transferable UCG

model.
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Figure 12.
RDFs g(r) from the mapped all-atom (red line) and UCG simulations (green line) for liquid,

panel (a–d), and gas states, panel (e–h), with different temperatures: (a) 250, (b) 300, (c)

350, (d) 400, (e) 500, (f) 525, (g) 550, and (h) 575 K. For the gas state, the naïve CG model

where the interaction parameter is directly borrowed from bulk liquid at 300 K was also

employed, and the corresponding g(r) is shown in blue dashed lines.
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Figure 13.
Confirming a high fidelity of the phase transferable UCG model by comparing the actual

MS-CG interactions obtained from each temperature (solid red line) and the mean-field

UCG interactions averaged from the CG ensembles at the certain temperature (dashed red

line). MS-CG/UCG interactions from the liquid state are shown in panel (a–c) and the

interactions from the gas state are shown in panel (d–f), accordingly: (a) T = 300, (b) 350,

(c) 400, (d) 525, (e) 550, and (f) 575 K.
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Figure 14.
Schematic diagram illustrating the liquid/vapor interface and construction scheme of the

corresponding UCG model (top). Based on the number density along the slab axis (z-axis),

the binned number density is calculated (bottom). From the number density profile, three

distinct regions are identified: inner region (bottom, blue line), phase boundary (bottom, red

dashed), and outer region (bottom, blue dashed). The UCG model is then constructed to

faithfully represent each region by utilizing the bulk CG interaction from 300, 425, and 450

K, accordingly (top).
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Figure 15.
Histograms of CG methanol particle’s density in the liquid/vapor interface at different

distances along the slab axis. (a) Each histogram is sampled with 10 Å interval along the z-

axis: 10–20 Å (red line), 20–30 Å (dashed gray line), 32–42 Å (blue line), 50–60 Å (green

line), and 60–70 Å (purple line). (b) Magnified histograms corresponding to the outer region

area (50–70 Å). The plotted densities are normalized counts per frame from the reference

atomistic trajectory.
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Figure 16.
Slab density profiles ρ(z) of the methanol liquid/vapor interface system using various

models: (a) Direct comparison of the all-atom (red line) to the MS-CG (blue line) and UCG

(green line). (b) Evaluation of naïve MS-CG models where interaction parameters are

directly obtained from bulk systems at 300 K (blue line), 425 K (purple line), and 450 K

(gold line). Slab density profiles from the all-atom (red line) and UCG simulations (green

line) are also shown here.
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Figure 17.
RDFs g(r) at the inner region of the liquid/vapor interface from the all-atom (red dashed

line), naïve MS-CG models at different temperatures (300 K: blue line, 425 K: purple line,

and 450 K: gold line), and UCG simulations (green line).
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Figure 18.
Schematic procedure of the temperature and phase transferable UCG models in four steps

summarizing the current work. Step 1: Running the FG simulation. Step 2: Performing CG

mapping (COM mapping is used). Step 3: Designing the UCG model based on the semi-

global density. From the system of interest, we calculate the density histogram with R0 to

determine ρ0 that distinguishes the denser and less dense states. Step 4: Constructing the

UCG free energy function from the bulk MS-CG interactions. Here, the bulk systems are

chosen based on the density histogram from Step 3. Then, with the UCG Hamiltonian in

place, the final UCG trajectories are generated. For clarity, we provide the two density

histograms from Sections 3.2 and 3.3 in Step 3.
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Table 1.

Average Semi-global Density Values Calculated from the Mapped All-Atom Simulations at Different

Temperatures Ranging from 200 to 400 K for (a) Methanol and (b) Acetone
a

(a) methanol (b) acetone

temperature (K) average semi-global density 〈ρ〉 temperature (K) average semi-global density 〈ρ〉

200 119.50 200 54.90

225 116.40 225 53.85

250 113.45 250 52.90

275 108.30 275 51.40

300 105.45 300 50.10

325 100.85 325 49.00

350 96.10 350 47.45

375 91.35 375 46.45

400 86.50 400 44.20

a
As seen in Figure 4, all of the density histograms follow almost the Gaussian distribution.
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Table 2.

Effective Speed-up Factor of the UCG Simulations with Respect to the Fully Atomistic Simulations at

Different Temperatures from 250 to 400 K: (a) Methanol and (b) Acetone

(a) methanol (b) acetone

temperature (K) speed-up factor temperature (K) speed-up factor

250 26.44 250 89.10

275 27.77 275 80.49

300 36.80 300 92.68

325 38.40 325 91.86

350 39.36 350 96.72

375 39.73 375 86.60

400 41.25 400 92.90
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Table 3.

Fitted Parameters for the Slab Density Profiles from the Mapped All-Atom, MS-CG, UCG, and Naïve MS-CG

Models of Various Molecules That Are Delineated in Figure 16
a

model ω (Å) δ (Å) ρ1 (Å−1) ρv (Å−1)

all-atom 41.84 5.797 2.381 0.0

MS-CG 35.50 16.61 2.833 0.154

UCG 45.73 2.98 2.207 0.0

300 K 1.203 1.203 1.203

naïve MS-CG 425 K 1.203 1.203 1.203

450 K 19.80 5.078 5.078 0.0

a
Models with no ω values indicate that the interfacial structure is not observed in such cases.
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Table 4.

Effective Speed-up Analysis of the Phase Combinational UCG Model by Calculating the Relative Time Per

Step

model relative time per step (step·fs−1) effective speed-up factor

all-atom 67.75 1 (reference)

UCG
a 0.67 101.11

a
UCG simulation was performed with a larger time step.
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